
Slide 1 
 

What has ZFS ever done 
for us?

ZFS boot in the Mission Critical 
Environment

Philip Scarlett
http://www.linkedin.com/in/philipscarlett

 
  

 
 
 
I’m Philip Scarlett and have been working with Solaris in mission critical 
environments on and off for about 15 years.  
 
No matter what job titles I’ve had I still consider myself to be a Sys Admin. 
The main reason for this is that I’m still keen to automate and reduce 
duplication of effort wherever I can.  And I’m sure that ZFS is going to make 
my life a whole lot easier.  In fact is has already has! 
 

Part of the glorious life of a Sys Admin is to interface technology with the 
business, and this is what I hope to achieve with my presentation tonight. 
 
I’ve already used ZFS for my shared data volumes in a recent Sun Cluster 
build and it really did solve many problems we were facing with Solaris 
Volume Manager. 
 
My next goal is get ZFS boot adopted as a standard so we can transform the 
management of Solaris boot in mission critical environments.   
 



Slide 2 
 

What’s the problem?

{ We have to patch
{ We will need to make config changes
{ We will need to upgrade

{ Downtime
{ Cost
{ Risk

“It’s working – why change it”

 
 
 

(XXX) 
 
So what’s the problem with our current Solaris Volume Manager or Veritas 
Volume Manager boot environments?  
 
Is there a problem?  
 
After all they’ve been good enough for the past decade - haven’t they? 
 
Well - probably not. It’s just been what was available to us and as Sys Admins 
we came up with some very clever ways to work with them. 
 
So let’s consider the most common planned changes to systems.  If we were 
to consider the unplanned ones we’d be here all night!! 
 
 
(XXX)  
 
Patching  
 
Nothing new here, we all patch twice a year don’t we?  Possibly more often if 
we have to apply regular security patches. 
 
 
 
Configuration changes 
 
These range from small, single file changes to larger, say Cluster, 
reconfigurations. 
 
 



 
 
Upgrades  
 
Our developers and application teams may want Java updates, Perl updates 
etc.   
 
 
In our mission critical environments all these changes will be subject to a 
defined change window and will require proven back out plans.  This is where 
it starts to get a little bit more complicated than our home or test systems. 
 
 
(XXX) 
 
So what restraints are we working under to achieve these tasks? 
 
In mission critical environments the business will always want minimum 
downtime to their systems.  When trading systems aren’t trading they are 
usually running reconciliation tasks or batch jobs.   
 
Change windows are small and most likely on pre-planned weekends 
throughout the year.   
 
This means we may not even have the luxury of preparing our systems for the 
changes as we can only touch systems during the change window.  This 
severely hampers existing tools such as Live Upgrade or scripted solutions 
that may create a 3rd mirror. 
 
 
Cost is always a concern.  Most changes are out-of-hours which costs money, 
not just in overtime but also possibly over-running changes that may delay the 
service coming back online. 
 
 
And Risk!!  This is the big one.  In most mission critical environments there will 
be some form of a change management process that will scrutinize everything 
we do as Sys Admins.  This process will require cast iron guarantees and 
back out plans for all eventualities.   
 
ZFS boot can reduce all of the above.  Downtime, Cost and Risk. 
 
But how do we convince the less than technical people around us?  Usually 
the business groups or the service owners. 
 
 
 
 
 
 



 
(XXX) 
 
Their usual response is – “It’s working – why change it” 
 
All of us here probably appreciate how wrong this statement is.  However 
when you are trying to convince a change board or a business group in a 
major financial institution, it’s a common response.   
 
 
Believe me, I’ve been there. 
 
 
So when we talk about how ZFS boot can reduce Downtime, Cost and Risk 
we can represent it all in a very basic process for Patching.  Patching is one of 
those relentless Sys Admin tasks that consumes an amazing amount of time 
and money – especially when you scale it to a thousand servers or more. 
 



 
 
 
 
Slide 3 
 

 

Patching - Traditional vs. ZFS

Backup (ufsdump)

Split mirrors

Patch

Cooling off period

Re-mirror & Tidy up

SVM / VxVM

Day 1 - 1h

Day 1 – 1.5h

Day 1 - ??h

Day 2 - 6

Day 7 – 1.5h

Day 1 – 5 mins

Day 1 – 5 mins

Day 1 - ??h

Day 2 - 6

Day 7

Backup (zfs send)

zfs snap/clone

Patch

ZFS

“No worries mate”

Weekend Off

 
 
(XXX) 
 
 
So let’s look at a typical patch process for our traditional volume management 
products, VxVM or SVM.  Remember that preparation isn’t always possible as 
we often can’t touch systems until the change window begins.  This may give 
us only a few hours over a weekend in which we have to complete the whole 
change. 
 
I’ve tried to convey an elapsed time down the side with the number of hours 
for each task.  Please remember this is just an example. 
 
 
So, all Sys Admins should insist on a consistent, restorable backup.  Most 
daily enterprise backups will be incremental and may be split over several 
tapes, and may even be offsite.  So we look to ufsdump – it’s been a standard 
for many years and we know it will give us a reliable backup.   
 
 
 
Now we come to splitting our root mirrors.  There are so many methods for 
this depending upon which Volume Manager you are using.  They all take 
time and effort and introduce risk, even if scripted, maybe especially if 
scripted, but it will give us a more-or-less instant fail-back  
 
I’ve allowed 1½ hours for this which sounds a lot but it’s no good splitting our 
root mirrors if we don’t successfully test boot both sides.  



 
 
Then we move onto patching.  There are so many ways to do this – manual 
patching, smpatch, OpsWare, xVM, SunConnection. 
 
This is where you will be glad that you took a backup and split your mirrors. 
 
It’s been rumoured that some patches can break things, or more than likely 
not reading the patch READMEs will help YOU break things.   
 
In short this is a risky business so you need to be covered. 
 
Assuming all went well, 2 hours or so later you should have a patched system, 
all rebooted and ready to go. 
 
 
 
Now, our application teams, the business and our risk managers will usually 
insist on a cooling off period after a major change such as patching.  They will 
want a guaranteed, rapid fail-back method for a period of time if the patching 
proves problematic.  So we leave our systems in an un-mirrored state.   
 
 
 
 
Then, probably on the next weekend, when all has been proven OK we get 
the go ahead from the business and the change board to re-mirror and tidy 
up. We will be allowed a small change window do this work. 
 
Approximately an hour and a half for this work especially as disks have to re-
sync. 
 
 
 
You’ve probably all guessed that the red shows us when we are running our 
systems at risk.  Production running on a single disk for a whole week!  Best 
be checking out the MTBF figures of those disks.  It does really happen out 
there!! 
 
 
Please note that this is just a basic example.  In reality there are many 
different ways of doing this but whatever the way it will take time, cost money 
and introduce risk. 
 
 
 
So let’s compare this traditional approach to patching to how we would 
perform the same tasks with a ZFS boot environment.  Here we will see we 
not only reduce downtime, but reduce cost and reduce RISK. 
 



 
(XXX) 
 
 
So instead of a ufsdump we perform a ZFS send/receive of our latest 
incremental snapshot.  Here we really start to see how ZFS will transform our 
boot environments.  If you were here in July, Sally Houghton gave a 
presentation on a ZFS OpenBackup solution that she’s now successfully 
implemented.  This means that we only ever have to take a ZFS snapshot and 
send it to our ZFS backup server to have a consistent, full, restorable backup. 
 
Time for this - I would say 5 mins is playing it really safe.  I would expect sub 
minute backup time for a root filesystem. 
 
 
 
Now instead of slitting mirrors we perform a ZFS snapshot and clone. Here we 
really reap the benefits of ZFS.  A ZFS snapshot and clone will give us a 
complete boot environment we can revert to if our patching doesn’t go to plan.   
 
Once again 5 mins is really pessimistic and we would probably script it as part 
of our pre-patch process and it will be 5 seconds! 
 
So we are 10 minutes into our change and we have a full root system backup 
and a recoverable boot environment on the still mirrored boot disks. 
 
 
 
 
Patching more or less remains the same.  But what happens if I lose a disk 
while patching? For the traditional method, depending on which disk fails, 
either my patching will fail, and the system will most likely panic, or my 
failback boot environment will be no more.  With ZFS all we’ll have to do is 
replace a disk.   
 
 
 
Now my next comment sounds a bit flippant but you’re not going to have to 
explain to the business what went wrong if you lose your single boot disk 
during that week!!   
 
 
Do we really get a day off? No, probably not, as Sys Admins we don’t have a 
social life so we will be using all that spare time to update our firmware or 
patching more servers. 
 
 
So how do we communicate this wonderful news to the business and get their 
buy-in?  Money obviously. 



Slide 4 
 

The Money Slide

Savings of ZFS over traditional 
patching

z 250 servers
z Patch twice a year
z Saving of 4 hours per server
z £50/hour

Total = 250 * 2 * 4 * 50 = £100,000

 
 

 
 
(XXX) 
 
This is a very simple but effective slide that I’ve used on management to get 
my way and move to ZFS boot.  Unfortunately part of a Sys Admin’s job is to 
interface the technology with reality.  As much as we’d love to promote all 
good technical advancements in Solaris sometimes it just comes down to 
money.  The good news is that ZFS boot is an easy sell. 
 
 
 
(XXX) Let’s assume we have 250 servers to patch.  This represents a small 
environment in terms of some Solaris estates out there. 
 
(XXX) Well we all say, or like to believe, we patch twice a year. 
 
(XXX) And from the previous slide a saving of around 4 hours per server could 
be achieved with ZFS boot. 
 
(XXX) Another large assumption is the paper cost of Sys Admin time – please 
don’t quote this as it’s for accounting purposes only.  In truth it’s probably a 
very conservative figure. 
 
(XXX) So by some simple calculations we can save £100,000 a year – and 
that’s in patching time alone.  If we added in all the unplanned outages which 
we can also protect against using ZFS boot this figure could be a lot higher. 
 
Oh! And don’t forget the cost savings for all of those Veritas licenses. 



 
 
Slide 5 
 

What could we do with £100,000?

 
 

 
(XXX) 
 
Now in no way am I advocating this is money that should be taken away from 
your department’s budget.  It’s money that might be spent on other worthwhile 
tasks such as firmware patching or sorting out your other issues such as……. 
 
 
(XXX) 
 
We all have “housekeeping” tasks that never seem to get done.  Hopefully 
ZFS Boot will help us focus on other areas that require our attention. 
 
 
 
 
So what is this ZFS magic we’re talking about?  The previous slides are really 
the management pitch, not much for Sys Admins. 
 
 
The reality is there isn’t that much for the Sys Admin to do with ZFS boot.  It’s 
all been built into ZFS. 
 
 
So let’s run through a real example that will give us an effective full backup 
and a quick and easy failback Boot Environment. 
 
 



 
 
 
 
Slide 6 
 

ZFS pre-change process
# zfs snapshot rpool/ROOT/std_s10u8@CR54321
# zfs send <snapshot> | ssh <backup_server> zfs recv <backup_pool>/<target> 
# zfs clone rpool/ROOT/std_s10u8@CR54321 rpool/ROOT/std_s10u8_CR54321
# zfs set canmount=noauto rpool/ROOT/std_s10u8_CR54321 
# zfs set mountpoint=/ rpool/ROOT/std_s10u8_CR54321 

# echo “
#--------------- Pre-Patch CR54321 ------------------
#
title Solaris 10 - Pre-Patch CR54321
bootfs rpool/ROOT/std_s10u8_CR54321
kernel$ /platform/i86pc/multiboot -B $ZFS-BOOTFS
module /platform/i86pc/boot_archive
#
# ---------- Pre-Patch CR54321 Failsafe -------------
#
title Solaris 10 - Pre-Patch CR54321 - Failsafe
bootfs rpool/ROOT/std_s10u8_CR54321
kernel /boot/multiboot –s –B console=ttya
module /boot/amd64/x86.miniroot/safe
#
#--------------- END Pre-Patch CR54321 --------------
” >> /rpool/boot/grub/menu.lst

 
 
(XXX) 
 
I hope you can all see this………….. 
 

- We take our snapshot giving it a real, sensible name.  Here I’ve used a 
change record number.   
 

- We send it to our ZFS OpenBackup Server which by magic will give us 
a full backup off host.  The actual syntax will probably be different to 
this as we’ll usually be sending just incremental changes but it wouldn’t 
all fit on the slide ☺    

 
- Now we clone our snapshot and make a couple of property changes 

then update our GRUB menu adding an entry for our cloned Boot 
Environment as well as it’s failsafe environment.  Remember  some 
patches will update our failsafe environments so it’s important we have 
a failback for this as well. 

 
This is all I need to do prior to any change.  Pretty easy to script as part of our 
process.  This process is so lightweight in space and time that there’s no 
excuse not to do it.  
 
So, say we make some radical system changes – and it fails miserably.  
System won’t boot.  How do we dig ourselves out of this hole? 
 
 
 
 



 
Slide 7 
 
 

ZFS fail-back process

{ Boot failsafe (either original or cloned version)
{ Don't elect to mount any discovered root filesystem

# zpool import -f rpool
# zfs promote rpool/ROOT/std_s10u8_CR54321
# zfs destroy -r rpool/ROOT/std_s10u8
# zfs rename rpool/ROOT/std_s10u8_CR54321 rpool/ROOT/std_s10u8
# reboot

{ Once system is up, update the /rpool/boot/grub/menu.lst

appropriately

Note:- This maintains any snapshots prior to cloning

 
 
 
(XXX) 
 
The first step is to boot in failsafe mode.  Just pick the one that works.  No 
DVDs or Boot Net required.  Believe me this is a real bonus at 3am in the 
morning. 
 
Don’t let Failsafe mount anything when it boots. 
 
Then we can follow these five simple commands and we are right back where 
we started.  OK – we may have lost our changes but we are back in a 
production ready state in 10-15mins.  No restores required or changes to 
manually back out.  More importantly anyone can perform the backout plan – 
we don’t have to have prior knowledge of what occurred during the change. 
 
If we fail-back to our renamed clone we can even be assured that our 
snapshots are still present and in sync with our ZFS Open Backup solution.   
 
To back out minor changes we could use ZFS rollback of the associated 
snapshot. However with ZFS rollback I’m not sure how stable the system will 
be after major changes such as kernel patches or system libraries have been 
changed – This is one to look into and test. 
 
 
So in addition to major system changes we now have a mechanism where 
every time we log in as a privileged user we can reduce risk.  
 
 
Consider the ever so common admin mistake, chmod 777 in the wrong 
directory. 



 
 
If we can incorporate a zfs snapshot and clone routine into our patch tools, 
our login mechanisms and any other process that may put a system at risk 
then we may just save ourselves a whole heap of trouble.   
 
You may ask why I’m not using beadm or Live Update.  I’m not knocking 
these tools – it’s just a Sys Admin thing to give a common solution across 
OpenSolaris and Solaris that can easily be incorporated into our existing 
processes. 
 
 
Whilst this process won’t stop human error it gives you that instant recovery 
point.  Our scripts could even send a syslog message or e-mail when a login 
snapshot is taken so everyone knows where to recover to. 
 
 
Now if we would like this functionality in our traditional SVM or VxVM 
environments we may consider……………………………… 
 
 
(click)



Slide 7 
 

Traditional pre/post change process

 
 

 
All 180 pages of it.   
 
This is an excellent book and I would highly recommend it to anyone still 
managing SVM or VxVM. 
 
I’ve used this over the years as a reference and as a foundation for building 
Jumpstart and scripted solutions.  
 
If you’ve worked with or delivered solutions similar to those detailed in this 
book then you will really appreciate ZFS boot. 
 
 
 
 
 
So now we have a low maintenance, low cost, low risk boot environment -- 
what else can ZFS do for us? 



 Slide 8 
 

ZFS Boot 
Flexible Hardware Choices

{ Supports all H/W solutions
z Single disk
z S/W mirroring
z H/W mirroring
z SAN Boot
z SSD

 
 

 
(XXX) 
 
 
It levels the playing field when it comes to different hardware types.   
 
No matter whether we have single disk, s/w mirroring, h/w mirroring, SAN boot 
or SSD it’s all the same to us (more or less).  Our management above the 
hardware layer is exactly the same. 
 
After all, it’s pretty difficult to split mirrors on a single-disk system. 
 
We’re not even touching on the advantages of using ZFS on SSDs.  I’m sure 
Joy can get someone else to talk on that soon! 
 
So, apart from all this, what else can ZFS boot do for us? 
 
 



Slide 9 
 

More ZFS Boot Features

{ Compression 
{ Swap & Dump management
{ ZFS Flash install in U8 (10/09) 
{ ZFS Supported in Jumpstart
{ ZFS Backup Solutions

{ De-dupe?
{ zpool split/join?

 
 

 
(XXX) 
 
 
We can apply lzjb compression to our boot file systems.  No more gzip’ing  log 
files when they get a bit big.  It’s not the best compression ZFS offers but it’s 
better than nothing and the only currently supported option for root 
filesystems. 
 
 
We can now, more or less, dynamically manage swap and dump space with 
the use of zvols.   
 
 
ZFS Flash, Jumpstart and ZFS Open Backup Solutions 
 
These three really complete the ZFS boot picture for me.  We saw in the ZFS 
OpenBackup presentation back in July how we’ll never need to do full 
backups again.   
 
Now combine this with the ability to create ZFS Flash Archives on your ZFS 
OpenBackup server ready to deploy new ZFS boot’d servers via Jumpstart. 
 
OK – it will need some work to put it all together but nothing compared to what 
we’ve had to do with SVM and VxVM in the past. 
 
 
 
 
(XXX) 
 
 



 
 
I’ve added these two options as futures enhancements I’m looking forward to. 
 
De-dupe will save us so much space on our ZFS OpenBackup server.  
Especially if we have a thousand ZFS boot images.   
 
Zpool split I think is coming.  I know I can just pull a ZFS disk but it would be 
nice to have a more controlled way to do it that keeps the pool consistent.  
 
 



Slide 10 
 

Summary

{ UFS has served us well
{ Other VMs are “heavyweight”

and/or costly 
{ UNIX skill sets are changing
{ Unified System Administration

 
 

 
(XXX) 
 
So, in summary, UFS has served us well...so well, it’s lasted for 25 years.  It’s 
time for change and I only hope that ZFS will last the same amount of time.  
 
All other volume managers I’ve known require a lot of maintenance and 
specialist knowledge.  ZFS is not only free but is comprised of just two 
commands – zpool and zfs.  For an aging population of Sys Admins such as 
me, this is much better than remembering all the various Vx commands and 
where they live! 
 
UNIX skill sets are changing – try finding someone with an in-depth 
knowledge of fixing corrupted Veritas private regions!  It’s even worse with all 
the convoluted, custom script solutions out there – who maintains those when 
people move on? 
 
For all our Solaris systems, whether they be SPARC or x86, we can now have 
a simple,  unified approach to managing our boot environments. 
 
 
 
Unfortunately, it can’t help our linux systems, or any other unix systems come 
to that.  Maybe one day eh! 
 
 
So That’s it - apart from the obligatory links page 
 
(XXX) 



Slide 11 
 

Handy Links 
Big Admin
http://www.sun.com/bigadmin/topics/zfs/

Boot Disk Management – John Howard, David Deeths
http://www.sun.com/books/catalog/howard.xml

OpenSolaris ZFS Resources
http://www.opensolaris.org/os/community/zfs/

Solaris 10 – 10/09 
http://docs.sun.com/app/docs/coll/1236.11?l=en

Lori Alt – Staff Engineer at Sun
http://blogs.sun.com/storage/entry/what_we_re_watching_lori

OpenBackups using ZFS – LOSUG Presentation - Sally Houghton 
http://opensolaris.org/os/project/losug/files/June2009/

Solaris Internals Wiki – ZFS Root Pool Info
http://www.solarisinternals.com/wiki/index.php/ZFS_Troubleshooting_Guide

 
 

 
 
Here we have the usually culprits but of special note are 
 

- Lori Alt’s ZFS boot presentation  
 

- The July LOSUG presentation on ZFS Open Backups 
 

 
 

Any questions is what I should say now….. 
 


