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Today’s Topics
• DTrace and MySQL 
> How it works
> What you can do with the DTrace Probes
> Live Demo!
• Memcached
> What it isnt
> What it is
> How to use It
> Live Demo?
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MySQL and DTrace
• MySQL 
> Database
> SQL Based
> Query Optimization is Key
• DTrace
> Monitors Application Execution through Probes
> Monitors anything, including time
> Monitor production applications
• MySQL+DTrace
> Best way to get execution info from MySQL
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Availability
• OpenSolaris/Solaris Compatible Probes in 6.0.8
• Extended set of probes coming in 6.0.10
• Extended probes (based on 6.0.10) in OpenSolaris/

MySQL 5.1
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How MySQL Executes a Query
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Query Cache, Parsing and Locks
• Query Cache
> Returns queries from memory if the SQL statement matches
> Not perfect for all environments
> Knowing when QC is used can be vital
• Parsing
> Determines tables, required fields, and core information used 

by the optimizer
• Locks
> Read, Write, External Locks
> Locks can delay execution on busy servers between threads
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Storage Engine
• MySQL Supports multiple Storage Engines
• MySQL/SE Interface is based on individual rows
• Engines provide hints to optimizer on execution
• Different Engines return information in different ways
• Slow downs in one engine aren’t replicated
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EXPLAIN
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mysql> explain select * from t1 order by s limit 10;
+----+-------------+-------+------+---------------+------+---------+------+---------+----------------+
| id | select_type | table | type | possible_keys | key  | key_len | ref  | rows    | Extra          |
+----+-------------+-------+------+---------------+------+---------+------+---------+----------------+
|  1 | SIMPLE      | t1    | ALL  | NULL          | NULL | NULL    | NULL | 2097152 | Using filesort | 
+----+-------------+-------+------+---------------+------+---------+------+---------+----------------+
1 row in set (0.03 sec)

mysql> explain select * from t1 order by s limit 10;
+----+-------------+-------+-------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type  | possible_keys | key  | key_len | ref  | rows | Extra       |
+----+-------------+-------+-------+---------------+------+---------+------+------+-------------+
|  1 | SIMPLE      | t1    | index | NULL          | t1b  | 86      | NULL |   10 | Using index | 
+----+-------------+-------+-------+---------------+------+---------+------+------+-------------+
1 row in set (0.00 sec)
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Probe Sets
• Query
• Query Parsing
• Query Cache
• Query Execution
• Locks
• Statements
• Row-Level
• Filesort
• Network
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Getting Execution Times
• query-start(query, connectionid, database, user, host)
> query - query text
> connectionid - MySQL process ID
> database - DB name
> user - user name
> host - client host
• query-done(status)
• Combine with the built-in timestamp to get some 

execution times
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Getting Execution Times Example
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#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
   printf("%-20s %-20s %-40s %2s %-9s\n", "Who", "Database", "Query", "QC", "Time(ms)");
}
mysql*:::query-start
{
   self->query = copyinstr(arg0);
   self->connid = arg1;
   self->db    = copyinstr(arg2);
   self->who   = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
   self->querystart = timestamp;
   self->qc = 0;
}
mysql*:::query-cache-hit
{
   self->qc = 1;
}
mysql*:::query-cache-miss
{
   self->qc = 0;
}
mysql*:::query-done
{
   printf("%-20s %-20s %-40s %-2s %-9d\n",self->who,self->db,self->query,(self->qc ? "Y" : "N"),
          (timestamp - self->querystart) / 1000000);
}
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Live Demo
• Here is where the fun begins....
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Getting More Detail
• Find out how much time is spent parsing
• Time spent purely executing statement
• Time spent in locks
• Time spent transferring data
• Time spent doing a filesort
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Live Demo
• Watch the birdie!
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DTrace and Enterprise Monitor
• MySQL Enterprise Monitor
> Monitors an entire enterprise of MySQL servers
> Provides live query analysis
> Works using proxy/redirection
> Adds tiny overhead
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DTrace Feeding Enterprise Monitor
• Monitor Supports REST interface
• Take the DTrace query stats
• Pass the query stats up to Enterprise Monitor
• Doesn’t need the proxy
• Lower overhead
• Collates the data for multiple servers of DTrace probes
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Where Next
• Go deeper into Storage Engines
• Get statistics on global server operations
• Get statistics on general locks and structures
• Get probes into other parts of the Webstack
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Query Optimization Only Gets <> Far
• Query optimization speeds up queries
• You don’t always need to execute a query
• Query Cache isn’t quite what we mean
• Bigger cache
• More general purpose cache
• Flexible
• Cluster-like features
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What memcached is
• Big memory cache into which you can store what you 

want
• Accessible from multiple applications, languages, 

environments
• Client-driven fault tolerance
• Client-driven data distribution (not replication)
• Exceedingly easy to use
• Unix/Linux
• In OpenSolaris soon
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What memcached isn’t
• Not a database
> It’s a cache
• Not persistent
> It’s a cache
• Not clustered
> It’s a cache
• No replication
> It’s a cache
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Execution during Load
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Execution during Save
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What do I mean by Client Driven
• Imagine you have multiple servers
• You store data by a unique ID (user-1234)
• Client chooses which server to store the data on using 

hash on key ID
• Client writes data
• Another client, looking for user-1234, has the same list of 

servers, runs the same hash algorithm and chooses the 
same server, and loads the data

• Hashing algorithms
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Cache Management
• Keys exist in cache until:
> Explicitly removed (delete)
> Removed through lack of use (Least Recently Used (LRU))
> Entry expires
• Specific Expiry
> Allows finer control over expiry
> Useful for sessions
> Specify an absolute time (epoch)
> Specify a relative time; object will expire within  # seconds of 

store 
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Some things to ponder
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• It’s a cache
• Cache what you need; not everything
• Don’t worry about ‘filling it up’
• Don’t worry about ‘seeding it’
• Don’t worry about replication
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Some more things to ponder
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• Don’t panic about server failures
> But do consider the consequences
• Don’t panic about cache misses
> You can load it from the DB (it’s a cache!)
> But do investigate the reasons if they are excessive
• Don’t cache things you don’t need
> Images
> Files that can be accessed directly through Apache
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Questions
Martin ‘MC’ Brown
Technical Writer, Database Group
Sun Microsystems
mc.brown@sun.com

sun.com/mysql
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