
LOSUG January 2009
MySQL/DTrace and
Memcached
Martin MC Brown
Technical Writer, Database Group
Sun Microsystems

Tuesday, 17 March 2009

Today’s Topics
• DTrace and MySQL
> How it works
> What you can do with the DTrace Probes
> Live Demo!
• Memcached
> What it isnt
> What it is
> How to use It
> Live Demo?

2
Tuesday, 17 March 2009

MySQL and DTrace
• MySQL
> Database
> SQL Based
> Query Optimization is Key
• DTrace
> Monitors Application Execution through Probes
> Monitors anything, including time
> Monitor production applications
• MySQL+DTrace
> Best way to get execution info from MySQL

3
Tuesday, 17 March 2009

Availability
• OpenSolaris/Solaris Compatible Probes in 6.0.8
• Extended set of probes coming in 6.0.10
• Extended probes (based on 6.0.10) in OpenSolaris/

MySQL 5.1

4
Tuesday, 17 March 2009

How MySQL Executes a Query

5

Query

Query
Cache?

Results

Parse
Start

Execution
Query

Optimizer

Locking
Execute

Statement
Filesort

Tuesday, 17 March 2009

Query Cache, Parsing and Locks
• Query Cache
> Returns queries from memory if the SQL statement matches
> Not perfect for all environments
> Knowing when QC is used can be vital
• Parsing
> Determines tables, required fields, and core information used

by the optimizer
• Locks
> Read, Write, External Locks
> Locks can delay execution on busy servers between threads

6
Tuesday, 17 March 2009

Storage Engine
• MySQL Supports multiple Storage Engines
• MySQL/SE Interface is based on individual rows
• Engines provide hints to optimizer on execution
• Different Engines return information in different ways
• Slow downs in one engine aren’t replicated

7
Tuesday, 17 March 2009

EXPLAIN

8

mysql> explain select * from t1 order by s limit 10;
+----+-------------+-------+------+---------------+------+---------+------+---------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+---------+----------------+
| 1 | SIMPLE | t1 | ALL | NULL | NULL | NULL | NULL | 2097152 | Using filesort |
+----+-------------+-------+------+---------------+------+---------+------+---------+----------------+
1 row in set (0.03 sec)

mysql> explain select * from t1 order by s limit 10;
+----+-------------+-------+-------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+-------+---------------+------+---------+------+------+-------------+
| 1 | SIMPLE | t1 | index | NULL | t1b | 86 | NULL | 10 | Using index |
+----+-------------+-------+-------+---------------+------+---------+------+------+-------------+
1 row in set (0.00 sec)

Tuesday, 17 March 2009

Probe Sets
• Query
• Query Parsing
• Query Cache
• Query Execution
• Locks
• Statements
• Row-Level
• Filesort
• Network

9
Tuesday, 17 March 2009

Getting Execution Times
• query-start(query, connectionid, database, user, host)
> query - query text
> connectionid - MySQL process ID
> database - DB name
> user - user name
> host - client host
• query-done(status)
• Combine with the built-in timestamp to get some

execution times

10
Tuesday, 17 March 2009

Getting Execution Times Example

11

#!/usr/sbin/dtrace -s

#pragma D option quiet

dtrace:::BEGIN
{
 printf("%-20s %-20s %-40s %2s %-9s\n", "Who", "Database", "Query", "QC", "Time(ms)");
}
mysql*:::query-start
{
 self->query = copyinstr(arg0);
 self->connid = arg1;
 self->db = copyinstr(arg2);
 self->who = strjoin(copyinstr(arg3),strjoin("@",copyinstr(arg4)));
 self->querystart = timestamp;
 self->qc = 0;
}
mysql*:::query-cache-hit
{
 self->qc = 1;
}
mysql*:::query-cache-miss
{
 self->qc = 0;
}
mysql*:::query-done
{
 printf("%-20s %-20s %-40s %-2s %-9d\n",self->who,self->db,self->query,(self->qc ? "Y" : "N"),
 (timestamp - self->querystart) / 1000000);
}

Tuesday, 17 March 2009

Live Demo
• Here is where the fun begins....

12
Tuesday, 17 March 2009

Getting More Detail
• Find out how much time is spent parsing
• Time spent purely executing statement
• Time spent in locks
• Time spent transferring data
• Time spent doing a filesort

13
Tuesday, 17 March 2009

Live Demo
• Watch the birdie!

14
Tuesday, 17 March 2009

DTrace and Enterprise Monitor
• MySQL Enterprise Monitor
> Monitors an entire enterprise of MySQL servers
> Provides live query analysis
> Works using proxy/redirection
> Adds tiny overhead

15
Tuesday, 17 March 2009

DTrace Feeding Enterprise Monitor
• Monitor Supports REST interface
• Take the DTrace query stats
• Pass the query stats up to Enterprise Monitor
• Doesn’t need the proxy
• Lower overhead
• Collates the data for multiple servers of DTrace probes

16
Tuesday, 17 March 2009

Where Next
• Go deeper into Storage Engines
• Get statistics on global server operations
• Get statistics on general locks and structures
• Get probes into other parts of the Webstack

17
Tuesday, 17 March 2009

Query Optimization Only Gets <> Far
• Query optimization speeds up queries
• You don’t always need to execute a query
• Query Cache isn’t quite what we mean
• Bigger cache
• More general purpose cache
• Flexible
• Cluster-like features

18
Tuesday, 17 March 2009

What memcached is
• Big memory cache into which you can store what you

want
• Accessible from multiple applications, languages,

environments
• Client-driven fault tolerance
• Client-driven data distribution (not replication)
• Exceedingly easy to use
• Unix/Linux
• In OpenSolaris soon

19
Tuesday, 17 March 2009

What memcached isn’t
• Not a database
> It’s a cache
• Not persistent
> It’s a cache
• Not clustered
> It’s a cache
• No replication
> It’s a cache

20
Tuesday, 17 March 2009

Execution during Load

21
Tuesday, 17 March 2009

Execution during Save

22

Start

Store data into

database

Update

memcached

Use data

Tuesday, 17 March 2009

What do I mean by Client Driven
• Imagine you have multiple servers
• You store data by a unique ID (user-1234)
• Client chooses which server to store the data on using

hash on key ID
• Client writes data
• Another client, looking for user-1234, has the same list of

servers, runs the same hash algorithm and chooses the
same server, and loads the data

• Hashing algorithms

23
Tuesday, 17 March 2009

Cache Management
• Keys exist in cache until:
> Explicitly removed (delete)
> Removed through lack of use (Least Recently Used (LRU))
> Entry expires
• Specific Expiry
> Allows finer control over expiry
> Useful for sessions
> Specify an absolute time (epoch)
> Specify a relative time; object will expire within # seconds of

store

24
Tuesday, 17 March 2009

Some things to ponder

25

• It’s a cache
• Cache what you need; not everything
• Don’t worry about ‘filling it up’
• Don’t worry about ‘seeding it’
• Don’t worry about replication

Tuesday, 17 March 2009

Some more things to ponder

26

• Don’t panic about server failures
> But do consider the consequences
• Don’t panic about cache misses
> You can load it from the DB (it’s a cache!)
> But do investigate the reasons if they are excessive
• Don’t cache things you don’t need
> Images
> Files that can be accessed directly through Apache

Tuesday, 17 March 2009

Questions
Martin ‘MC’ Brown
Technical Writer, Database Group
Sun Microsystems
mc.brown@sun.com

sun.com/mysql
Tuesday, 17 March 2009

mailto:mc.brown@sun.com
mailto:mc.brown@sun.com

