Tuning Parallel Code on Solaris —
Lessons Learned from HPC

Dani Flexer dani@daniflexer.com

Presentation to the London OpenSolaris User Group
Based on a Sun White Paper of the same name published 09/09

23/9/2009

Agenda

* Background
* Performance analysis on Solaris

* Examples of using DTrace for performance
analysis
— Thread scheduling
— 1/O performance

e Conclusion

Background

* Business processing increasingly requires
parallel applications

— Multicore CPUs dominant

— Multi-server and multi-CPU applications
prevalent

— Both models perform best with parallel code

* Performance tuning of parallel code is
required in most environments

Challenges

* Due to the complex interactions in parallel
systems, tuning parallel code in test
environments is often ineffective

e Conventional tools are not well suited to
analysis of parallel code

* Tuning production environments with most
conventional tools is risky

Some System Analysis Tools

intrstat — gathers and displays run-time
Interrupt statistics

busstat — reports memory bus related
performance statistics

cputrack, cpustat — monitor system and/or
application performance using CPU hardware
counters

trapstat — reports trap statistics
prstat — reports active process statistics
vmstat — reports memory statistics

Studio Performance Analyzer

Collector — collects performance related
data for an application

Analyzer — analyzes and displays data

Can run directly on unmodified production
code

Supports

— Clock-counter and hardware-counter memory allocation
tracing

— Other hardware counters
— MPI tracing

DTrace

* A framework that allows the dynamic

instrumentation of both kernel and user
level code

* Permits users to trace system data safely
without affecting performance

* Programmable in D

— No control statements — flow depends on
state of specific data through predicates

Observability — a key Solaris
design goal

» Observability is a measure for how
well internal states of a system can
be inferred by knowledge of its

xternal .
external outputs Wikipedic

* DTrace is arguably the best
observability tool available

A few questions suitable for a
quick, initial diagnosis

* Are there a lot of cache misses?

* |s a CPU accessing local memory or is it accessing
memory controlled by another CPU?

* How much time is spent in user system mode?

* |s the system short on memory or other critical
resources?

* Is the system running at high interrupt rates and
how are they assigned to different processors?

* What are the system’s I/O characteristics?

Analyzing results of prstat

Col Meaning If the value seems high ...
USR | % user mode Proﬁ.le user mode with DTrace using either pid or profile
providers
SYS | % system mode |Profile the kernel
LCK % waiting for Use plockstat DTrace provider to see which user locks
locks are used extensively
o : Use sched DTrace provider and view call stacks with
SLP | % sleeping ,
DTrace to see why threads are sleeping
TFL/ | % processing Use the vminfo DTrace provider to identify the source of
DFL |page faults the page faules

Two practical examples

* Thread Scheduling Analysis
* I/O Performance Problems
* See the White Paper for more!

Thread Scheduling Analysis (1)

* Performance of a multithreaded application
requires balanced allocation of cores to
threads

* Analyzing thread scheduling on the different
cores can help tune multithreaded
applications

Thread Scheduling Analysis (2)

* Use -xautopar to

compile
. int main(int argc, char *argv[]) {
* Compiler T
. for (i = 0; i < ITER; i++)

automatically e 5 B B
generates puts (“LOOP2") ;

. for (j = 0; j < REPEAT; Jj++)
multithreaded code for (i = 0; i < ITER; i++)

c[i] += a[i] * b[1];

that uses OpenMP

* Program is CPU
bound

1 #!/usr/sbin/dtrace -s
2 #pragma D option quiet

Thread

Scheduling Analysis (3)

BEGIN fires when the script starts and initializes
the baseline timestamp from walltimestamp

3 BEGIN

4 { DTrace timestamps are in nanos so measurement
5 baseline = walltimestamp; is scaled down to milliseconds (scale)

6 scale = 1000000;

7}

8 sched:::on-cpu sched::on-cpu fires when a thread is

9 / pid == S$Starget && !self->stamp /

10 scheduled to run

11 self->stamp = walltimestamp;

12 self->lastcpu = curcpu->cpu_ id; .

13 self->lastlgrp = curcpu->cpu_ lgrp; pld == $target

14 self->stamp = (walltimestamp — baseline) / scale; ensures that probe
15 printf(“$9d:%-9d TID %3d CPU %3d(%d) created\n”, fires for processes
16 self->stamp, 0, tid, curcpu->cpu_id, curcpu->cpu 1lgrp); | that are controlled by
17} this script

Thread Scheduling Analysis (4)

* Thread switches from one CPU to another

sched: : :on-cpu
/ pid == S$target && self->stamp && self->lastcpu != \
curcpu->cpu_id /

* Thread is rescheduled to run on the same CPU it

ran on the previous time it was scheduled to run
sched: : :on-cpu
/ pid == $target && self->stamp && self->lastcpu ==
curcpu->cpu_id /
* The sched::off-cpu probe fires whenever a thread

is about to be stopped by the scheduler
sched:::0ff-cpu
/ pid == $target && self->stamp /

Thread Scheduling Analysis (5)

53 sched:::sleep
54 / pid == S$target /

55 {
56
57
58
59
60
61
62
63
64
65
66
67
68
69 }

self->sobj = (curlwpsinfo->pr stype == SOBJ MUTEX ?

“kernel mutex” : curlwpsinfo->pr stype == SOBJ RWLOCK ?
“kernel RW lock” : curlwpsinfo->pr stype == SOBJ CV ?

“cond var” : curlwpsinfo->pr stype == SOBJ SEMA ?

“kernel semaphore” : curlwpsinfo->pr stype == SOBJ USER ?
“user-level lock” : curlwpsinfo->pr stype == SOBJ USER PI ?
“user-level PI lock” : curlwpsinfo->pr stype ==

SOBJ SHUTTLE ? “shuttle” : “unknown”);

self->delta = (walltimestamp - self->stamp) /scale;

self->stamp = walltimestamp;

self->stamp = (walltimestamp - baseline) / scale;
printf(“%9d:%-9d TID %3d sleeping on ‘%s’\n”,
self->stamp, self->delta, tid, self->sobj);

This code runs when sched:::sleep probe fires before the thread
Sleeps on a synchronization object and the type of synchronization
object is printed

Thread Scheduling Analysis (6)

70 sched:::sleep

71 / pid == $target && (curlwpsinfo->pr stype == SOBJ CV ||
72 curlwpsinfo->pr stype == SOBJ USER ||

73 curlwpsinfo->pr stype == SOBJ USER PI) /

74 {

75 ustack();

76 }

The second sched:::sleep probe fires
when a thread is put to sleep on a

condition variable or user-level lock,
which are typically caused by the
application itself, and prints the call-
stack.

Thread Scheduling Analysis (7)

* The psrset command is used to set up a processor
set with two CPUs (0, 4) to simulate CPU over-

commitment:
host# psrset -c 0 4

* The number of threads is set to three with the
OMP NUM THREADS environment variable and

threadsched.d is executed with partest:
host# OMP_NUM THREADS=3 ./threadsched.d -c ./partest

Thread Scheduling Analysis (8)

The output first shows the startup of the main thread (lines 1 to 5). The
second thread first runs at line 6 and the third at line 12:

1 0 : 0 TID 1 CPU 0(0) created

2 0 : 0 TID 1 CPU 0(0) restarted on same CPU
3 0 : 0 TID 1 CPU 0(0) preempted

ot 0 : 0 TID 1 CPU 0(0) restarted on same CPU
5 0 : 0 TID 1 CPU 0(0) preempted

6 49 : 0 TID 2 CPU 0(0) created

7 49 : 0 TID 2 CPU 0(0) restarted on same CPU
8 49 : 0 TID 2 CPU 0(0) preempted

9 49 : 0 TID 2 CPU 0(0) restarted on same CPU
10 49 : 0 TID 2 sleeping on ‘user-level lock’

11 49 : 0 TID 2 CPU 0(0) preempted

12 49 : 0 TID 3 CPU 0(0) created

13 49 : 0 TID 3 CPU 0(0) restarted on same CPU
14 420 : 370 TID 3 CPU 0(0) preempted

15

©2009 Dani Flexer
dani@daniflexer.com

Thread Scheduling Analysis (9)

As the number of available CPUs is set to two, only two of the three threads
can run simultaneously resulting in many thread migrations between CPUs.
On line 24, thread 3 goes to sleep:

16 LOOP2

17 176024 :1000 TID 2 CPU 0(0) preempted

18 176024 :0 TID 2 CPU 0(0) restarted on same CPU

19 176804 :0 TID 3 from-CPU 4(0) to-CPU 0(0) CPU migration
20 176804 :0 TID 3 CPU 0(0) restarted on same CPU

21 176804 :0 TID 1 from-CPU 4(0) to-CPU 0(0) CPU migration
22 176804 :0 TID 1 CPU 0(0) restarted on same CPU

23 176024 :0 TID 3 CPU 4(0) restarted on same CPU

24 176104 :80 TID 3 sleeping on ‘cond var’

25 176104 :0 TID 3 CPU 4(0) preempted

26 176484 :380 TID 3 CPU 4(0) restarted on same CPU

27 176484 :0 TID 3 CPU 4(0) preempted

28 176484 :3550 TID 1 CPU 4(0) restarted on same CPU

29 176624 :140 TID 1 CPU 4(0) preempted

30 176624 :140 TID 3 CPU 4(0) restarted on same CPU

Thread Scheduling Analysis (10)

From line 31, the call stack dump shows that the last function called is
thrp_join, which indicates the end of a parallelized section of the program with
all threads concluding their processing and only the main thread of the
process remaining:

31 libc.so.1” 1lwp wait+0x4

32 libc.so.1” thrp join+0x38

33 libmtsk.so.1l threads fini+0x178
34 libmtsk.so.1l libmtsk fini+0xlc
35 libmtsk.so.1l call array+0xa0
36 libmtsk.so.1l call fini+0xb0

37 libmtsk.so.1l atexit fini+0x80
38 libc.so.1l” exithandle+0x44

39 libc.so.1l exit+0x4

40 partest”™ start+0x184

/O Performance Problems (1)

* Sluggishness due to a high rate of /O
system calls is a common problem

* To identify the cause it is necessary to
determine:

— Which system calls are called
— What frequency
— By which process
— Why!?
* Good tools for initial analysis: vmstat,
prstat

/O Performance Problems (2)

* In this example:

— A Windows 2008 server is virtualized on
OpenSolaris using the Sun xVM hypervisor for
x86 and runs fine

— When the system is activated as an Active
Directory domain controller, it becomes
extremely sluggish

/O Performance Problems (3)

e vmstat results:

kthr memory page disk faults cpu

r b w swap free re mf pipofrdesrmOmlm2m3in sy cs us sy |id

0 0 0 17635724 4096356 0 0 0 0O OO O 3 3 0 O 994 (441 717 0 2 (98

0 0 0 17635724 4096356 0 0 0O 0O OO O O O O O 961 (416 713 0 0 (100
0 0 0O 17631448 409552879 465 O 0 O O O O O O O 1074 (9205 (1428 1 2 |97

0 0 0 17604524 4072148407 4554 0 1 1 0 0O &6 6 0 O 1055872783/202134 17|79

0 0 O 17595828 4062360102828 0 0 0 0 0 3 3 0O O 3441 44747105201 1485

0 0 0 17598492 4064628 2 2 0 0O OO O 1 1 O O 5363/ 285088752 2 3 |95

0 0 0 17598412 4065068 0 0 0O 0O OO O 20200 O 1707783024 306335 7 |88

0 0 0O 17598108 4065136 0 0 0O 0O OO O O O O O 8951 46456/161402 4 |93

* # system calls (sy) grows and stays high while CPU is more than
79% idle (id)

* A CPU-bound workload on this system normally generates <5,000
calls per interval, here it is >9,000 up to 83,000

©2009 Dani Flexer
dani@daniflexer.com

/O Performance Problems (4)

* prstat -Lm results:

PID USERNAME USR SYS TRP TFL DFL LCK SLP LAT VCX ICX|SCL |SIC PROCESS/LWPID
16480 xvm 6.9 9.8 0.0 0.0 0.0 27 54 1.8 30K 114|.2M O gemu-dm/ 3

363 xvm 0.1 0.2 0.0 0.0 0.0 0.0 100 0.0 4 1 2K |0 xenstored/1
16374 root 0.0 0.1 0.0 0.0 0.0 1000.0 0.0 10 O 1K |0 dtrace/1

1644 xvm 0.1 0.1 0.0 0.0 0.0 33 66 0.0 569 7 835 |0 gemu-dm/3
2399 root 0.0 0.1 0.0 0.0 0.0 0.0 100 0.0 49 0O 388 (0 sshd/1

16376 root 0.0 0.1 0.0 0.0 0.0 0.0 100 0.0 38 0O 297 |0 prstat/1
11705 xvm 0.0 0.1 0.0 0.0 0.0 50 50 0.0 576 15 |858 |0 gemu-dm/ 4
16536 root 0.0 0.1 0.0 0.00.0 0.0 100 0.0 48 0 286 |0 vncviewer/1

Total: 36 processes, 129 lwps, load averages: 0.64, 0.37, 0.31

« gemu-dm executes a very large number of system calls
(200K) SCL

« 100X more than xenstored in 2nd place

* Need to drill down to find out which system call and why

©2009 Dani Flexer
dani@daniflexer.com

00 o0l WDN PR

e e
o U1l W NN E OV

/O Performance Problems (5)

* count_syscalls.d, prints call rates for the top-
ten processes/system calls every 5 seconds:

#!/usr/sbin/dtrace -s

#pragma D option quiet

BEGIN {
timer = timestamp; /* nanosecond timestamp */

} :

syscall:::entry { The syscall:::entry probe fires for each system call.
@call count[pid, execname, probefunc] = count();

; : The system call name, executable, and PID

tick=5s { are saved in the call _count aggregation
trunc(@c, 10); — ggreg

normalize(@call count, (timestamp-timer) / 1000000000);
printa(?%5d %-20s %6@d %s\n?, @call count);

clear(@call count);

printf(?\n?);

timer = timestamp; tick-5s prints the information collected — line 10 truncates
} the aggregation to its top 10 entries, line 12 prints the

system call count, and line 13 clears the aggregation.

/O Performance Problems (6)

* When count_syscalls.d is run, gemu-dm is
clearly creating the load, primarily through
calls to write and 1lseek:

./count_ syscalls.d
209 nscd 27 xstat
16376 prstat 35 pread
16480 gemu-dm 117 pollsys
16480 gemu-dm 123 read
16480 gemu-dm 136 ioctl
11705 gemu-dm 145 pollsys
1644 gemu-dm 151 pollsys
16374 dtrace 331 ioctl
16480 gemu-dm 35512 1lseek
16480 gemu-dm 35607 write

/O Performance Problems (7)

* To see why gemu-dm is making these calls, gemu-
stat.d is implemented to collect statistics of the
/O calls, focusing on write (not shown) and

lseek: Probes called only if the triggering call to
Iseek sets the file pointer to an absolute

1 #!/usr/sbin/dtrace -s
2 #pragma D option quiet value, (arg2 - whence - SEEK_SET)
3 BEGIN { The difference between the
4 seek = 0L; . »
5 3 current and previous position
of the file pointer is used as

6 syscall::lseek:entry th i fth
7 / execname == “gemu-dm” && !arg2 && seek / easecoq IO QXC) ©
8 { aggregation in line 9
9 @lseek[arg0, argl-seek] = count();

12 } seek = argl; To determine the I/O pattern, the

script saves the absolute position
of the file pointer passed to Iseek()
in the variable seek in line 10

/O Performance Problems (8)

* Results show massive number of calls to file
descriptor 5, moving the descriptor by offset |,
and writing a single byte

* In other words, gemu-dm writes a data stream as
single bytes, without any buffering

1lseek fdesc offset count
5 26 28
5 29 28
5 0 42
5 21 42
5 1 134540
write fdesc size count
5 21 42
15 4 54

16 = 63
14 < 441
5 1 134554

/O Performance Problems (9)

* The pfiles command identifies the file accessed by
gemu-dm through file descriptor 5 as the virtual Windows
system disk:

pfiles 16480

5: S IFREG mode:0600 dev:182,65543 1ino:26 uid:60 gid:0
size:11623923712

O RDWR |0 LARGEFILE
/xvm/hermia/disk c/vdisk.vmdk

/O Performance Problems (10)

* Next gemu-callstack.d is implemented to see
where the calls to Iseek originate by viewing the
call stack

* Script prints the three most common call stacks
for the Iseek and write system calls every five

0 o Ul WDN B

10
11
12

count();

Line 6 saves
the call stack of
Iseek and write

seconds
#1/usr/sbin/dtrace -s
#pragma D option quiet
syscall::1lseek:entry, syscall::write:entry
/ execname == “gemu-dm” /
{

@c[probefunc, ustack()] =
}
tick-5s {

trunc(@c, 3);

printa(@c);

}

clear(@c);

Line 10 prints the three most
common stacks.

/O Performance Problems (I 1)

* Looking at the most common stack trace:

write * The stack trace shows
libc.so.1l write+0xa . . .
qemu—dm” RTFileWrite+0x37 that the virtual machine is
gemu-dm”RTFileWriteAt+0x48 flushing the disk cache for

gemu-dm vmdkWriteDescriptor+0x1d5 every bvte indicatine a
gemu-dm vmdkFlushImage+0x23 Yy oY 8

gemu—-dm vmdkFlush+0x9 disabled disk cache

gemu-dm VDFlush+0x91 . .
gemu-dm™ vdisk flush+0x1c Later it was discovered

gemu-dm bdrv flush+0x2e that when an MS server is

qemu—cm ide_write_dma_cb+0x187 an Active Directory domain
gemu-dm bdrv_aio bh cb+0x16

gemu-dm™ gemu_bh poll+0x2d controller, the directory
Qe G main_loop Mait 0x2zc service writes unbuffered
2:22:32-§22:i2i§;2ﬂa and disables the disk write
gemu-dm™_start+0x6c cache on certain volumes

28758

Other Examples in the Doc

* Additional detailed examples:
— Improving performance by reducing data cache misses
— Improving scalability by avoiding memory stalls

— Memory placement optimization with OpenMP
— Using DTrace with MPI

* These use a wider range of tools, including:
— Sun Studio Performance Analyzer

— busstat, cpustat, cputrack

— gnuplot

DTrace — not just text

DLight

i

SS I 2 File Edit View Navigate Source
L R IEK

Projects ‘ Files ‘ Classes ‘ Senices

Sun Studio

Run Debug Versioning Tools ~Advanced Window Help

pewg v F B b E- -

D-L.. @ x|| sart page "I D-Light Tool. Timeline /tmp/dlight_root/session_2053.er localhost: /us/shin/tar X

FODE 4§ elaqle FAPBa

(S)(E)(x]

<[> [+][=]

User Call Stack
[getdents64
[readdiré4
[putiile
@ putiile

a /tmp/include/wand/wand-config.h 18K
A a /tmp/include/zh.UTF-8/ 0K
a /tmp/include/zh.UTF-8/xctype.h 3K

D-Light Execution (/tmp/dlight_root/session_2053.er) successful. Exit value 0.
v [<] m |

10 11 15
N R PR T T] PR E RRET) FYRTN R FRTRY FRRT PR TEY PRTT) EREE CRRTS FRRRY FRRTY FRRTY T REETT AT FRRRT PRRR) FRRTE CRTT) PRTE RYEEl FETTR PRrR) FRR T PreT) PRy e
’ B
v
4 File System Activity
="
Read/Write Monitor
[
) 1
Heap monitor
= N
‘ =" |0 Monitor ‘ 5L
W &l
] Show Valid Tools Only [—
Navigator D-Light Event Details « ><|
File System Activity .
i dil
CPU id Io is
v
Thread number{l [>)
Time stamp IJ.2.329967J.8 ’ Output - D-Light (/tmp/dlight_root/session_2053.er) at localhost 5 XI Tasks
a /tmp/include/wand/pixel-iterator.h 2K [~]
Operation {mp_readdir ‘ . .
a /tmp/include/wand/pixel-wand.h 4K
File name |n/a | a /tmp/include/wand/stream.h 1K

(i

[]

adrm@adrimimeXer.COITI

DTrace — not just text

Chime
(NetBeans)

1 rfileio LB
Total File System miss-rate: 0.0 %

File Type Read IOPS ¥ Read Bandwidth (bytes)
Jdevices/pci@0,0/pci-ide@1, 1/ide@0/cmdk@0,0:¢,raw logical 5,556 43.4 M|~
/devices/pseudo/clone@0:ptm logical 834 152.9 K
Jdevices/pseudo/consms@0:mouse logical 210 6.1 K
/proc/604/psinfo logical 5 1.6 K
/proc/620/psinfo logical 5 1.6 K
/etc/inittab logical Q 0=
/etc/inittab physical 0 0
Jusr/jdk/instances/jdk1.6.0/jre/lib/fonts/LucidaSansDemiB... logical Q 0
Jusr/jdk/instances/jdk1.6.0/jre/lib/fonts/LucidaSansDemiB... physical 0 0
Jdev/pts/2 logical 0 0
Jdevices/pseudo/conskbd@0: kbd logical 0 o] B
Jdev/pts/3 logical 0 0
Jdevices/pseudo/random@0:urandom logical 0 0
/etc/default/init logical 0 0
/etc/default/init physical 0 0
Jetc/anome-vfs-2.0/modules/default-modules.conf logical 0 0
Jetc/anome-vfs-2.0/modules/default-modules.conf physical 0 0
Jetc/anome-vfs-2.0/modules/smb-module.conf logical 0 0
Jetc/anome-vfs-2.0/modules/smb-module.conf physical 0 0
Jetc/anome-vfs-2.0/modules/ssl-modules.conf logical 0 0
Jetc/anome-vfs-2.0/modules/ssl-modules.conf physical 0 0
/etc/motd logical 0 0
/etc/motd physical 0 0
/etc/netconfig logical 0 0
/etc/netconfig physical 0 0
Jetc/orhitrc logical 0 0
Jetc/orbitrc physical 0 0
Jetc/profile logical 0 0
Jetc/profile physical 0 0
Jetc/ttysrch logical 0 0
Jetc/ttysrch physical 0 Q0
Jlib/ld.s0.1 logical 0 0|
/proc/1185 /nsinfo lodical 0 0>

-

5 Interval in seconds

-

Conclusions

* Computing is getting more complex

— Multiple CPUs, cores, threads, virtualized operating
systems, networking, and storage devices

* Serious challenges to architects, administrators,
developers, and users

— Need high availability and reliability

— Increasing pressure on datacenter infrastructure,
budgets, and resources

* Need to maintain systems at a high level of
performance — without adding resources

* Demand control through optimization is
the most cost efficient way to grow DC
capacity

Conclusions

* To achieve these objectives, OpenSolaris has a
comprehensive set of tools with DTrace at their
core

— Enable unprecedented levels of observability and
insight into the workings of the operating system and
the applications running on it

— Tools allow you to quickly analyze and diagnose issues
without increasing risk

* Observability is a primary
driver of consistent system
performance and stability

©2009 Dani Flexer
dani@daniflexer.com

Thanks!

* Technical content and experience provided by
Thomas Nau of the Infrastructure Department,
Ulm University, Germany

— Except section on MPI

* Paper recently published by Sun see:

— http://sun.com/solutions/hpc/resources.jsp (under
White Papers)

— http://sun.com/solutions/hpc/development.jsp (under
Sun Tools and Services)

* Dani Flexer — dani@daniflexer.com

Q&A

dani@daniflexer.com

