
©2009 Dani Flexer
dani@daniflexer.com

Tuning Parallel Code on Solaris —
Lessons Learned from HPC

Dani Flexer dani@daniflexer.com
Presentation to the London OpenSolaris User Group
Based on a Sun White Paper of the same name published 09/09

23/9/2009

©2009 Dani Flexer
dani@daniflexer.com

Agenda

• Background
• Performance analysis on Solaris
• Examples of using DTrace for performance

analysis
– Thread scheduling
– I/O performance

• Conclusion

©2009 Dani Flexer
dani@daniflexer.com

Background

• Business processing increasingly requires
parallel applications
– Multicore CPUs dominant
– Multi-server and multi-CPU applications

prevalent
– Both models perform best with parallel code

• Performance tuning of parallel code is
required in most environments

©2009 Dani Flexer
dani@daniflexer.com

Challenges

• Due to the complex interactions in parallel
systems, tuning parallel code in test
environments is often ineffective

• Conventional tools are not well suited to
analysis of parallel code

• Tuning production environments with most
conventional tools is risky

©2009 Dani Flexer
dani@daniflexer.com

Some System Analysis Tools

• intrstat — gathers and displays run-time
interrupt statistics

• busstat — reports memory bus related
performance statistics

• cputrack, cpustat — monitor system and/or
application performance using CPU hardware
counters

• trapstat — reports trap statistics
• prstat — reports active process statistics
• vmstat — reports memory statistics

©2009 Dani Flexer
dani@daniflexer.com

Studio Performance Analyzer

• Collector — collects performance related
data for an application

• Analyzer — analyzes and displays data
• Can run directly on unmodified production

code
• Supports

– Clock-counter and hardware-counter memory allocation
tracing

– Other hardware counters
– MPI tracing

©2009 Dani Flexer
dani@daniflexer.com

DTrace

• A framework that allows the dynamic
instrumentation of both kernel and user
level code

• Permits users to trace system data safely
without affecting performance

• Programmable in D
– No control statements — flow depends on

state of specific data through predicates

©2009 Dani Flexer
dani@daniflexer.com

Observability — a key Solaris
design goal

• Observability is a measure for how
well internal states of a system can
be inferred by knowledge of its
external outputs.

• DTrace is arguably the best
observability tool available

Wikipedia

©2009 Dani Flexer
dani@daniflexer.com

A few questions suitable for a
quick, initial diagnosis
• Are there a lot of cache misses?
• Is a CPU accessing local memory or is it accessing

memory controlled by another CPU?
• How much time is spent in user system mode?
• Is the system short on memory or other critical

resources?
• Is the system running at high interrupt rates and

how are they assigned to different processors?
• What are the system’s I/O characteristics?

©2009 Dani Flexer
dani@daniflexer.com

Analyzing results of prstat

Use the vminfo DTrace provider to identify the source of
the page faults

% processing
page faults

TFL/
DFL

Use sched DTrace provider and view call stacks with
DTrace to see why threads are sleeping

% sleepingSLP

Use plockstat DTrace provider to see which user locks
are used extensively

% waiting for
locks

LCK

Profile the kernel% system modeSYS

Profile user mode with DTrace using either pid or profile
providers

% user modeUSR

If the value seems high …MeaningCol

©2009 Dani Flexer
dani@daniflexer.com

Two practical examples

• Thread Scheduling Analysis
• I/O Performance Problems

• See the White Paper for more!

©2009 Dani Flexer
dani@daniflexer.com

Thread Scheduling Analysis (1)

• Performance of a multithreaded application
requires balanced allocation of cores to
threads

• Analyzing thread scheduling on the different
cores can help tune multithreaded
applications

©2009 Dani Flexer
dani@daniflexer.com

Thread Scheduling Analysis (2)

• Use -xautopar to
compile

• Compiler
automatically
generates
multithreaded code
that uses OpenMP

• Program is CPU
bound

©2009 Dani Flexer
dani@daniflexer.com

 1 #!/usr/sbin/dtrace -s
 2 #pragma D option quiet
 3 BEGIN
 4 {
 5 baseline = walltimestamp;
 6 scale = 1000000;
 7 }
 8 sched:::on-cpu
 9 / pid == $target && !self->stamp /
10 {
11 self->stamp = walltimestamp;
12 self->lastcpu = curcpu->cpu_id;
13 self->lastlgrp = curcpu->cpu_lgrp;
14 self->stamp = (walltimestamp – baseline) / scale;
15 printf(“%9d:%-9d TID %3d CPU %3d(%d) created\n”,
16 self->stamp, 0, tid, curcpu->cpu_id, curcpu->cpu_lgrp);
17 }

Thread Scheduling Analysis (3)
BEGIN fires when the script starts and initializes
the baseline timestamp from walltimestamp
DTrace timestamps are in nanos so measurement
is scaled down to milliseconds (scale)

sched:::on-cpu fires when a thread is
scheduled to run

pid == $target
ensures that probe
fires for processes
that are controlled by
this script

©2009 Dani Flexer
dani@daniflexer.com

• Thread switches from one CPU to another
sched:::on-cpu
/ pid == $target && self->stamp && self->lastcpu != \

curcpu->cpu_id /

• Thread is rescheduled to run on the same CPU it
ran on the previous time it was scheduled to run

sched:::on-cpu
/ pid == $target && self->stamp && self->lastcpu == \

curcpu->cpu_id /

• The sched::off-cpu probe fires whenever a thread
is about to be stopped by the scheduler

sched:::off-cpu
/ pid == $target && self->stamp /

Thread Scheduling Analysis (4)

©2009 Dani Flexer
dani@daniflexer.com

Thread Scheduling Analysis (5)
53 sched:::sleep
54 / pid == $target /
55 {
56 self->sobj = (curlwpsinfo->pr_stype == SOBJ_MUTEX ?
57 “kernel mutex” : curlwpsinfo->pr_stype == SOBJ_RWLOCK ?
58 “kernel RW lock” : curlwpsinfo->pr_stype == SOBJ_CV ?
59 “cond var” : curlwpsinfo->pr_stype == SOBJ_SEMA ?
60 “kernel semaphore” : curlwpsinfo->pr_stype == SOBJ_USER ?
61 “user-level lock” : curlwpsinfo->pr_stype == SOBJ_USER_PI ?
62 “user-level PI lock” : curlwpsinfo->pr_stype ==
63 SOBJ_SHUTTLE ? “shuttle” : “unknown”);
64 self->delta = (walltimestamp - self->stamp) /scale;
65 self->stamp = walltimestamp;
66 self->stamp = (walltimestamp - baseline) / scale;
67 printf(“%9d:%-9d TID %3d sleeping on ‘%s’\n”,
68 self->stamp, self->delta, tid, self->sobj);
69 }

This code runs when sched:::sleep probe fires before the thread
sleeps on a synchronization object and the type of synchronization
object is printed

©2009 Dani Flexer
dani@daniflexer.com

Thread Scheduling Analysis (6)
70 sched:::sleep
71 / pid == $target && (curlwpsinfo->pr_stype == SOBJ_CV ||
72 curlwpsinfo->pr_stype == SOBJ_USER ||
73 curlwpsinfo->pr_stype == SOBJ_USER_PI) /
74 {
75 ustack();
76 }

The second sched:::sleep probe fires
when a thread is put to sleep on a
condition variable or user-level lock,
which are typically caused by the
application itself, and prints the call-
stack.

©2009 Dani Flexer
dani@daniflexer.com

Thread Scheduling Analysis (7)

• The psrset command is used to set up a processor
set with two CPUs (0, 4) to simulate CPU over-
commitment:

host# psrset -c 0 4

• The number of threads is set to three with the
OMP_NUM_THREADS environment variable and
threadsched.d is executed with partest:

host# OMP_NUM_THREADS=3 ./threadsched.d -c ./partest

©2009 Dani Flexer
dani@daniflexer.com

Thread Scheduling Analysis (8)
The output first shows the startup of the main thread (lines 1 to 5). The
second thread first runs at line 6 and the third at line 12:

©2009 Dani Flexer
dani@daniflexer.com

Thread Scheduling Analysis (9)
As the number of available CPUs is set to two, only two of the three threads
can run simultaneously resulting in many thread migrations between CPUs.
On line 24, thread 3 goes to sleep:

©2009 Dani Flexer
dani@daniflexer.com

Thread Scheduling Analysis (10)
From line 31, the call stack dump shows that the last function called is
thrp_join, which indicates the end of a parallelized section of the program with
all threads concluding their processing and only the main thread of the
process remaining:

©2009 Dani Flexer
dani@daniflexer.com

I/O Performance Problems (1)
• Sluggishness due to a high rate of I/O

system calls is a common problem
• To identify the cause it is necessary to

determine:
– Which system calls are called
– What frequency
– By which process
– Why?

• Good tools for initial analysis: vmstat,
prstat

©2009 Dani Flexer
dani@daniflexer.com

I/O Performance Problems (2)

• In this example:
– A Windows 2008 server is virtualized on

OpenSolaris using the Sun xVM hypervisor for
x86 and runs fine

– When the system is activated as an Active
Directory domain controller, it becomes
extremely sluggish

©2009 Dani Flexer
dani@daniflexer.com

I/O Performance Problems (3)

• vmstat results:

• # system calls (sy) grows and stays high while CPU is more than
79% idle (id)
• A CPU-bound workload on this system normally generates <5,000
calls per interval, here it is >9,000 up to 83,000

©2009 Dani Flexer
dani@daniflexer.com

I/O Performance Problems (4)
• prstat -Lm results:

• qemu-dm executes a very large number of system calls
(200K) SCL
• 100X more than xenstored in 2nd place
• Need to drill down to find out which system call and why

©2009 Dani Flexer
dani@daniflexer.com

I/O Performance Problems (5)
• count_syscalls.d, prints call rates for the top-

ten processes/system calls every 5 seconds:
 1 #!/usr/sbin/dtrace -s
 2 #pragma D option quiet
 3 BEGIN {
 4 timer = timestamp; /* nanosecond timestamp */
 5 }
 6 syscall:::entry {
 7 @call_count[pid, execname, probefunc] = count();
 8 }
 9 tick-5s {
10 trunc(@c, 10);
11 normalize(@call_count, (timestamp-timer) / 1000000000);
12 printa(?%5d %-20s %6@d %s\n?, @call_count);
13 clear(@call_count);
14 printf(?\n?);
15 timer = timestamp;
16 }

tick-5s prints the information collected — line 10 truncates
the aggregation to its top 10 entries, line 12 prints the
system call count, and line 13 clears the aggregation.

The syscall:::entry probe fires for each system call.

The system call name, executable, and PID
are saved in the call_count aggregation

©2009 Dani Flexer
dani@daniflexer.com

I/O Performance Problems (6)

• When count_syscalls.d is run, qemu-dm is
clearly creating the load, primarily through
calls to write and lseek:

©2009 Dani Flexer
dani@daniflexer.com

I/O Performance Problems (7)
• To see why qemu-dm is making these calls, qemu-

stat.d is implemented to collect statistics of the
I/O calls, focusing on write (not shown) and
lseek:

 1 #!/usr/sbin/dtrace -s
 2 #pragma D option quiet
 3 BEGIN {
 4 seek = 0L;
 5 }
 6 syscall::lseek:entry
 7 / execname == “qemu-dm” && !arg2 && seek /
 8 {
 9 @lseek[arg0, arg1-seek] = count();
10 seek = arg1;
11 }

The difference between the
current and previous position
of the file pointer is used as
the second index of the
aggregation in line 9

Probes called only if the triggering call to
lseek sets the file pointer to an absolute
value, (arg2 - whence - SEEK_SET)

To determine the I/O pattern, the
script saves the absolute position
of the file pointer passed to lseek()
in the variable seek in line 10

©2009 Dani Flexer
dani@daniflexer.com

I/O Performance Problems (8)
• Results show massive number of calls to file

descriptor 5, moving the descriptor by offset 1,
and writing a single byte

• In other words, qemu-dm writes a data stream as
single bytes, without any buffering

©2009 Dani Flexer
dani@daniflexer.com

I/O Performance Problems (9)

• The pfiles command identifies the file accessed by
qemu-dm through file descriptor 5 as the virtual Windows
system disk:

©2009 Dani Flexer
dani@daniflexer.com

I/O Performance Problems (10)
• Next qemu-callstack.d is implemented to see

where the calls to lseek originate by viewing the
call stack

• Script prints the three most common call stacks
for the lseek and write system calls every five
seconds

 1 #!/usr/sbin/dtrace -s
 2 #pragma D option quiet
 3 syscall::lseek:entry, syscall::write:entry
 4 / execname == “qemu-dm” /
 5 {
 6 @c[probefunc, ustack()] = count();
 7 }
 8 tick-5s {
 9 trunc(@c, 3);
10 printa(@c);
11 clear(@c);
12 }

Line 10 prints the three most
common stacks.

Line 6 saves
the call stack of
lseek and write

©2009 Dani Flexer
dani@daniflexer.com

I/O Performance Problems (11)
• Looking at the most common stack trace:

• The stack trace shows
that the virtual machine is
flushing the disk cache for
every byte indicating a
disabled disk cache
• Later it was discovered
that when an MS server is
an Active Directory dom ain
controller, the directory
service writes unbuffered
and disables the disk write
cache on certain volumes

©2009 Dani Flexer
dani@daniflexer.com

Other Examples in the Doc

• Additional detailed examples:
– Improving performance by reducing data cache misses

– Improving scalability by avoiding memory stalls

– Memory placement optimization with OpenMP
– Using DTrace with MPI

• These use a wider range of tools, including:
– Sun Studio Performance Analyzer

– busstat, cpustat, cputrack

– gnuplot

©2009 Dani Flexer
dani@daniflexer.com

DTrace — not just text

DLight
(SS12)

©2009 Dani Flexer
dani@daniflexer.com

DTrace — not just text

Chime
(NetBeans)

©2009 Dani Flexer
dani@daniflexer.com

Conclusions
• Computing is getting more complex

– Multiple CPUs, cores, threads, virtualized operating
systems, networking, and storage devices

• Serious challenges to architects, administrators,
developers, and users
– Need high availability and reliability
– Increasing pressure on datacenter infrastructure,

budgets, and resources

• Need to maintain systems at a high level of
performance — without adding resources

• Demand control through optimization is
the most cost efficient way to grow DC
capacity

©2009 Dani Flexer
dani@daniflexer.com

Conclusions
• To achieve these objectives, OpenSolaris has a

comprehensive set of tools with DTrace at their
core
– Enable unprecedented levels of observability and

insight into the workings of the operating system and
the applications running on it

– Tools allow you to quickly analyze and diagnose issues
without increasing risk

• Observability is a primary
driver of consistent system
performance and stability

©2009 Dani Flexer
dani@daniflexer.com

Thanks!
• Technical content and experience provided by

Thomas Nau of the Infrastructure Department,
Ulm University, Germany
– Except section on MPI

• Paper recently published by Sun see:
– http://sun.com/solutions/hpc/resources.jsp (under

White Papers)

– http://sun.com/solutions/hpc/development.jsp (under
Sun Tools and Services)

• Dani Flexer — dani@daniflexer.com

©2009 Dani Flexer
dani@daniflexer.com

Q&A
dani@daniflexer.com

