
USE IMPROVE EVANGELIZE

Making Your Own
Distro
Peter Dennis
Sun Microsystems

2

USE IMPROVE EVANGELIZE

Making Your Own OpenSolaris Distro
● Why would you want to do this ?

– Because you can and it is interesting ?

– Build a pre-configured image used for install/testing/
diagnostics ?

● OpenSolaris provides redistributable
packages and so you they can be used to
create distros

3

USE IMPROVE EVANGELIZE

Approaches to doing this
● Two methods

– Top Down: install the system with all the required
software that you need, make modifications as
required (new software repos, new grub menus,
remove unwanted software components)

– Bottom Up: look for the set of software required build
a list and then see if the system starts with this list

● Top Down is going to be easier – start with
a working system and add/remove what is
required.

4

USE IMPROVE EVANGELIZE

Construction OverView
● Identify the required software
● Build the image
● Construct the miniroot
● Build the grub infrastructure
● Create the iso image
● Create the usb image (if required)
● Test the images

5

USE IMPROVE EVANGELIZE

Two Construction Methods
● There are two construction methods

– Manually running commands via a script or the cli
and building the required image

– Using the distro_const(1M)

6

USE IMPROVE EVANGELIZE

Common Elements to both Methods
● Identify the software you want to use and

where to get it from – using the top down or
bottom up method

● What modifications are required post install
(for example grub menu settings), network
settings ?

7

USE IMPROVE EVANGELIZE

Manually Building a Distro
● Cool thing about IPS – it allows you to build

an 'image area' for the IPS packages to be
placed:
– Pkg image-create -F -a authority ${ROOTDIR}

– Now install the required packages

pkg -R ${ROOTDIR} install pkgname

● Wait time.....packages to down load and
install into the image

8

USE IMPROVE EVANGELIZE

Manually Building a Distro
● Configure the root information:

– Initialise the smf(5) repository

– Set up the etc/vfstab to mount the ramdisk

– hostname/timezone/network configuration

– Anything that might be useful (ssh ?)

● Build the miniroot
– The miniroot is the image that is used for the boot

archive by grub(5)

– Create a file, lofiadm -a it, newfs it, mount it

– Copy the configured root above into it

– Umount and compress it

9

USE IMPROVE EVANGELIZE

Manual Creation
● Test the image, fix if required (it will) but

start again or run commands again and
hope the manual image has not been
damaged

● It is error prone (indeed twice I wipped out
my system's menu.lst because it is a link)

10

USE IMPROVE EVANGELIZE

And now the easy way.....
● Distribution Constructor!
● Not installed by default

pkg install SUNWdistro-const
● Consists of a central command, helper

commands, xml files and scripts
● It allows for the easy creation of Live media

adding in IPS packages, SVR4 packages

11

USE IMPROVE EVANGELIZE

Building the first distro
● Build the OpenSolaris.YYYY.MM LiveCD
cd /usr/share/distro_const/slim_cd

distro_const build ./slim_cd_x86.xml

● This will result in two image files:
/rpool/dc/media/OpenSolaris.iso

/rpool/dc/media/OpenSolaris.usb

● These are the two Live images, one for a CD
and one for a usb device

● That is it!

12

USE IMPROVE EVANGELIZE

How to use it ?
● Everything is driven from the manifest file
● The manifest is an XML file that describes

the:
– The packages that make up the distribution

– The IPS configuration

– Scripts that run once the image has been created

● The package comes with some predefined/
example files:
– /usr/share/distro_const/slim_cd/*.xml

– /usr/share/distro_const/auto_install/*.xml

13

USE IMPROVE EVANGELIZE

The Manifest File
● The example one for the

OpenSolaris.YYYY.MM contains lots of text
describing each option

● The file contains
– The name of the resultant image

– The list of packages that will make up the image

– The authority to pull the packages from

– The files that are used to make up the miniroot

– The IPS authorities to setup once the system is
installed

– Where to build the image and associated files

14

USE IMPROVE EVANGELIZE

More Manifest File
● Packages to remove once the image has

been built
● Finalizer information

– A finalizer is a program (shell script, C program) that

takes some arguments and does 'something' to the

built image.

15

USE IMPROVE EVANGELIZE

Example Modifications
● Change the source package repository

- take a copy of the example xml file and
edit it

● Look for <pkg_repo_default_authority>
and the associated value -
"pkg.opensolaris.org/release" change it
to “pkg.opensolaris.org/dev”

● Save and rerun the command – the
packages will be taken from the 'dev'
repository

16

USE IMPROVE EVANGELIZE

I Want Other Packages Installed
● Which repository do the packages come

from ?
● If not in <pkg_repo_default_authority>

then add authority to
<pkg_repo_addl_authority>

● Add in extra packages add them to the
<packages> list

● Add the authority to
<post_install_repo_addl_authority>

● Rerun the distro_const command

17

USE IMPROVE EVANGELIZE

What about SVR4 packages ?
● This is slightly harder than the IPS case
● Requires a Finaliser script to do the work

18

USE IMPROVE EVANGELIZE

Finalizer Details
● A finalizer is a program that is executed by

the distro_const program
● Five standard arguments are passed to

each one:
– MFEST_SOCKET: socket to query manifest values

– PKG_IMG_PATH: package image area location

– TMP_DIR: temporary directory

– BR_BUILD: bootroot directory

– MEDIA_DIR: directory for the resultant media

● Plus any further defined ones in the
manifest

19

USE IMPROVE EVANGELIZE

Finalizer Example
● Pass in arbitrary arguments in <argslist>

 <script name="/pete/new-package/grub_setup.py">
 <checkpoint
 name="my-grub-setup"
 message="My Grub menu setup"/>
 <argslist>
 "my-splash-image.png"
 </argslist>
 </script>

● In this case the image is passed to the
finalizer as the sixth argument

20

USE IMPROVE EVANGELIZE

What is this 'checkpoint' word ?
● Checkpointing is a facility that allows for

the build process to be
stopped/started/resumed at arbitrary points

● Checkpointing is enabled within the
manifest file

● Checkpointing uses ZFS snapshots and so
must be run on ZFS

21

USE IMPROVE EVANGELIZE

Checkpointing command line
● Various options:

– -R start from the last successful checkpoint

– -r start from the named checkpoint

– -p stop at the named checkpoint

– -l List available checkpoints

 # distro_const
Usage:
 distro_const build -R <manifest-file>
 distro_const build -r <step name or number> <manifest-file>
 distro_const build -p <step name or number> <manifest-file>
 distro_const build -l <manifest-file>

22

USE IMPROVE EVANGELIZE

Checkpoint listing
distro_const build -l add_package.xml
/usr/share/distro_const/DC-manifest.defval.xml validates
/tmp/add_package_temp_8873.xml validates

�

Step Resumable Description
-------------- --------- -------------
im-pop X Populate the image with packages
add-pack Adding Custom Packages
im-mod Image area modifications
slim-im-mod Slim CD Image area Modifications
br-init Boot root initialization
slim-br-config Slim CD boot root configuration
br-config Boot root configuration
br-arch Boot root archiving
slim-post-mod Slim CD post bootroot image area modification
my-grub-setup My Grub menu setup
post-mod Post bootroot image area modification
iso ISO image creation

23

USE IMPROVE EVANGELIZE

Check pointing
● Stop at a particular point:

– distro_const build -p br-init
add_package.xml

● Restart from the last checkpoint:
– distro_const build -R add_package.xml

● Restart from a particular checkpoint:
– distro_const build -r in_mod

add_package.xml

24

USE IMPROVE EVANGELIZE

Debugging the process...
● Log files are generated during the build

process:
– <build_area>/logs/simple-log-...timestamp...

– <build_area>/logs/detail-log-...timestamp

● build_area is defined in the manifest file
(default is rpool/dc)

● Simple log just contains the output sent to
the stdout

● Detail contains all the details including the
package installation pieces

25

USE IMPROVE EVANGELIZE

Debugging Finalizers
● They are scripts that do stuff – they query

the manifest to get data and so can you...
● /usr/bin/ManifestRead
● This allows for the querying of the manifest

via the socket passed to the script to query
the values

● ManifestRead /tmp/ManifestServ.9171
“...”

where “...” is a parameter in the manifest:
distro_constr_params/pkg_repo_default_authority/mai
n/url

26

USE IMPROVE EVANGELIZE

More debugging
● Use dtrace – I traced the pkg client calls
#!/usr/sbin/dtrace -qs

�

proc:::exec
/execname == "pkg"/
{
 printf("%s\n", curpsinfo->pr_psargs);
}

● Set debug options in the scripts (set -x for
shell) output goes to the stdout

27

USE IMPROVE EVANGELIZE

Supplied Finalizers
● Locations of the finalizers in the manifest
● pre_bootroot_pkg_image_mod

– Tidies up the image by removing some files

● bootroot_initialize.py
– Creates the mini root area by reading the files in the

bootroot contents in the manifest, creates
directories

● slimcd_bootroot_configure
– Sets the image up for the slim install (adds the user

jack, sets up gdm)

28

USE IMPROVE EVANGELIZE

Supplied Finalizers
● bootroot_configure

– Device, coreadm configuration, sets the name of the
machine, initialises smf repo

● bootroot_archive.py
– Creates the compressed miniroot archives and puts

it in boot/boot_archive

● slimcd_port_bootroot_pkg_image_mod
– Tidies up more files, cleans the platform tree

● grub_setup.py
– Sets up grub menus

29

USE IMPROVE EVANGELIZE

Supplied Finalizers
● post_bootroot_pkg_image_mod

– Builds the compressed zlib's on the Live image
(solaris.zlib, solarismisc.zlib, pkg.zlib)

● create_iso
– Creates the iso image using mkisofs and the

pkg_img_path

● create_usb
– Creates the usb image based off the ISO one so to

build an usb image you must build the ISO

30

USE IMPROVE EVANGELIZE

Testing the Images!
● Use virtual box to test the ISO
● Write the USB image to a USB device with

/usr/bin/usbcopy <path to usb image>

31

USE IMPROVE EVANGELIZE

References
● Home Page

– http://opensolaris.org/os/project/caiman/Constructor

● Source code
– http://src.opensolaris.org/source/xref/caiman/slim_so

urce/

● Wiki
– http://wikis.sun.com/display/OSOLInstall/Home
 Includes example finalizer scripts

● Discuss Alias
– caiman-discuss@opensolaris.org

● Manual Distro construction
– http://alexeremin.blogspot.com/

http://opensolaris.org/os/project/caiman/Constructor
http://wikis.sun.com/display/OSOLInstall/Home
mailto:caiman-discuss@opensolaris.org

USE IMPROVE EVANGELIZE

Thank you!

Peter Dennis

peter.dennis@sun.com

“open” artwork and icons by chandan:
http://blogs.sun.com/chandan

http://blogs.sun.com/chandan

	Title Slide
	Slide
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	End

