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Making Your Own OpenSolaris Distro
● Why would you want to do this ?

– Because you can and it is interesting ?

– Build a pre-configured image used for install/testing/
diagnostics ?

● OpenSolaris provides redistributable 
packages and so you they can be used to  
create distros
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Approaches to doing this 
● Two methods

– Top Down: install the system with all the required 
software that you need, make modifications as 
required (new software repos, new grub menus, 
remove unwanted software components)

– Bottom Up: look for the set of software required build 
a list and then see if the system starts with this list

● Top Down is going to be easier – start with 
a working system and add/remove what is 
required. 
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Construction OverView
● Identify the required software
● Build the image
● Construct the miniroot
● Build the grub infrastructure
● Create the iso image
● Create the usb image (if required)
● Test the images
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Two Construction Methods 
● There are two construction methods 

– Manually running commands via a script or the cli 
and building the required image

– Using the distro_const(1M)
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Common Elements to both Methods
● Identify the software you want to use and 

where to get it from – using the top down or 
bottom up method

● What modifications are required post install 
(for example grub menu settings), network 
settings ?
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Manually Building a Distro
● Cool thing about IPS – it allows you to build 

an 'image area' for the IPS packages to be 
placed:
– Pkg image-create -F -a authority ${ROOTDIR}

– Now install the required packages 

pkg -R ${ROOTDIR} install pkgname

● Wait time.....packages to down load and 
install into the image
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Manually Building a Distro
● Configure the root information:

– Initialise the smf(5) repository 

– Set up the etc/vfstab to mount the ramdisk 

– hostname/timezone/network configuration

– Anything that might be useful (ssh ?)

● Build the miniroot
– The miniroot is the image that is used for the boot 

archive by grub(5)

– Create a file, lofiadm -a it, newfs it, mount it

– Copy the configured root above into it

– Umount and compress it
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Manual Creation
● Test the image, fix if required (it will) but 

start again or run commands again and 
hope the manual image has not been 
damaged

● It is error prone (indeed twice I wipped out 
my system's menu.lst because it is a link)
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And now the easy way.....
● Distribution Constructor!
● Not installed by default 

pkg install SUNWdistro-const
● Consists of a central command, helper 

commands, xml files and scripts
● It allows for the easy creation of Live media 

adding in IPS packages, SVR4 packages
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Building the first distro
● Build the OpenSolaris.YYYY.MM LiveCD
cd /usr/share/distro_const/slim_cd

distro_const build ./slim_cd_x86.xml

● This will result in two image files:
/rpool/dc/media/OpenSolaris.iso

/rpool/dc/media/OpenSolaris.usb

● These are the two Live images, one for a CD 
and one for a usb device

● That is it!
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How to use it ? 
● Everything is driven from the manifest file
● The manifest is an XML file that describes 

the:
– The packages that make up the distribution

– The IPS configuration

– Scripts that run once the image has been created

● The package comes with some predefined/
example files:
– /usr/share/distro_const/slim_cd/*.xml

– /usr/share/distro_const/auto_install/*.xml
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The Manifest File
● The example one for the 

OpenSolaris.YYYY.MM contains lots of text 
describing each option

● The file contains
– The name of the resultant image

– The list of packages that will make up the image

– The authority to pull the packages from

– The files that are used to make up the miniroot

– The IPS authorities to setup once the system is 
installed

– Where to build the image and associated files
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More Manifest File
● Packages to remove once the image has 

been built
● Finalizer information

– A finalizer is a program (shell script, C program) that

takes some arguments and does 'something' to the

built image.
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Example Modifications
● Change the source package repository

- take a copy of the example xml file and 
edit it

● Look for  <pkg_repo_default_authority>
and the associated value - 
"pkg.opensolaris.org/release" change it
to “pkg.opensolaris.org/dev”

● Save and rerun the command – the 
packages will be taken from the 'dev' 
repository
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I Want Other Packages Installed
● Which repository do the packages come 

from ? 
● If not in <pkg_repo_default_authority> 

then add authority to 
<pkg_repo_addl_authority>

● Add in extra packages add them to the 
<packages> list

● Add the authority to  
<post_install_repo_addl_authority>

● Rerun the distro_const command
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What about SVR4 packages ?
● This is slightly harder than the IPS case
● Requires a Finaliser script to do the work
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Finalizer Details
● A finalizer is a program that is executed by 

the distro_const program
● Five standard arguments are passed to 

each one:
– MFEST_SOCKET: socket to query  manifest values

– PKG_IMG_PATH: package image area location

– TMP_DIR: temporary directory 

– BR_BUILD: bootroot directory

– MEDIA_DIR: directory for the resultant media

● Plus any further defined ones in the 
manifest
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Finalizer Example
● Pass in arbitrary arguments in <argslist>

    <script name="/pete/new-package/grub_setup.py">
      <checkpoint
           name="my-grub-setup"
           message="My Grub menu setup"/>
      <argslist>
           "my-splash-image.png"
      </argslist>
   </script>

● In this case the image is passed to the 
finalizer as the sixth argument
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What is this 'checkpoint' word ?
● Checkpointing is a facility that allows for  

the build process to be 
stopped/started/resumed at arbitrary points

● Checkpointing is enabled within the 
manifest file

● Checkpointing uses ZFS snapshots and so 
must be run on ZFS
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Checkpointing command line
● Various options:

– -R start from the last successful checkpoint

– -r start from the named checkpoint

– -p stop at the named checkpoint

– -l List available checkpoints

 # distro_const
Usage:
        distro_const build -R <manifest-file>
        distro_const build -r <step name or number> <manifest-file>
        distro_const build -p <step name or number> <manifest-file>
        distro_const build -l <manifest-file>
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Checkpoint listing
# distro_const build -l add_package.xml
/usr/share/distro_const/DC-manifest.defval.xml validates
/tmp/add_package_temp_8873.xml validates

�

Step           Resumable Description
-------------- --------- -------------
im-pop             X     Populate the image with packages
add-pack                 Adding Custom Packages
im-mod                   Image area modifications
slim-im-mod              Slim CD Image area Modifications
br-init                  Boot root initialization
slim-br-config           Slim CD boot root configuration
br-config                Boot root configuration
br-arch                  Boot root archiving
slim-post-mod            Slim CD post bootroot image area modification
my-grub-setup            My Grub menu setup
post-mod                 Post bootroot image area modification
iso                      ISO image creation
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Check pointing
● Stop at a particular point:

– distro_const build -p br-init 
add_package.xml

● Restart from the last checkpoint:
– distro_const build -R add_package.xml

● Restart from a particular checkpoint:
– distro_const build -r in_mod 

add_package.xml
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Debugging the process...
● Log files are generated during the build 

process:
– <build_area>/logs/simple-log-...timestamp...

– <build_area>/logs/detail-log-...timestamp

● build_area is defined in the manifest file 
(default is rpool/dc)

● Simple log just contains the output sent to 
the stdout

● Detail contains all the details including the 
package installation pieces
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Debugging Finalizers
● They are scripts that do stuff – they query 

the manifest to get data and so can you...
● /usr/bin/ManifestRead
● This allows for the querying of the manifest 

via the socket passed to the script to query 
the values

● ManifestRead /tmp/ManifestServ.9171 
“...”

where “...” is a parameter in the manifest:
distro_constr_params/pkg_repo_default_authority/mai
n/url
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More debugging
● Use dtrace – I traced the pkg client calls
#!/usr/sbin/dtrace -qs

�

proc:::exec
/execname == "pkg"/
{
        printf("%s\n", curpsinfo->pr_psargs);
}

● Set debug options in the scripts (set -x for 
shell) output goes to the stdout
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Supplied Finalizers
● Locations of the finalizers in the manifest
● pre_bootroot_pkg_image_mod

– Tidies up the image by removing some files

● bootroot_initialize.py
– Creates the mini root area by reading the files in the 

bootroot contents in the manifest, creates 
directories 

● slimcd_bootroot_configure
– Sets the image up for the slim install (adds the user 

jack, sets up gdm)
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Supplied Finalizers
● bootroot_configure

– Device, coreadm configuration, sets the name of the 
machine, initialises smf repo

● bootroot_archive.py
– Creates the compressed miniroot archives and puts 

it in boot/boot_archive

● slimcd_port_bootroot_pkg_image_mod
– Tidies up more files, cleans the platform tree

● grub_setup.py
– Sets up grub menus
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Supplied Finalizers
● post_bootroot_pkg_image_mod

– Builds the compressed zlib's on the Live image 
(solaris.zlib, solarismisc.zlib, pkg.zlib)

● create_iso
– Creates the iso image using mkisofs and the 

pkg_img_path

● create_usb
– Creates the usb image based off the ISO one so to 

build an usb image you must build the ISO
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Testing the Images!
● Use virtual box to test the ISO
● Write the USB image to a USB device with

/usr/bin/usbcopy <path to usb image> 



31

USE IMPROVE EVANGELIZE

References
● Home Page

– http://opensolaris.org/os/project/caiman/Constructor

● Source code
– http://src.opensolaris.org/source/xref/caiman/slim_so

urce/

● Wiki
– http://wikis.sun.com/display/OSOLInstall/Home
 Includes example finalizer scripts

● Discuss Alias
– caiman-discuss@opensolaris.org

● Manual Distro construction
– http://alexeremin.blogspot.com/

http://opensolaris.org/os/project/caiman/Constructor
http://wikis.sun.com/display/OSOLInstall/Home
mailto:caiman-discuss@opensolaris.org
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Thank you!

Peter Dennis

peter.dennis@sun.com

“open” artwork and icons by chandan: 
http://blogs.sun.com/chandan

http://blogs.sun.com/chandan
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