
SMF
Service Management Facility
Codename: Greenline

Jarod Nash
Systems TSC Kernel
Sun Microsystems

Agenda

• SMF Background, Advantages and Architecture
• Commands Summary
• Milestones, Contracts, Booting and Profiles
• Writing an SMF service manifest
• Live Demo
• SMF ARC Policy
• Other Stuff

SMF: A Child of FMA

• Before the FMA project began, it was recognised that
Solaris needed an automated response to H/W faults
> eg UE (Uncorrectable Error) detected by hardware
> Pre-Solaris 10: Identify whether UE impacts kernel or userland

– kernel – panic
– userland – kill process and reboot

> Reboot as we have no knowledge of what was killed
>No knowledge of interdependencies
> Services are not monitored
> Services are stateless

• SMF defines, monitors and restarts system services
to provide an automated response (Self Heal)

SMF: Advantages

• In addition to this H/W resilience, SMF also offers:
> Recovery from SysAdmin mistakes, ie killing wrong daemon
> Clear dependencies
> Services start when dependencies met
>Dependents can be set to restart if required
> Services start in parallel
> Faster boot times (65% NQF)*

> Central configuration database: Repository
> System is quieter when booting
> Services write to their own log files

*Non-Qualified Figure
 Based on Marketing information at time of launch.
 Your mileage will vary depending upon hardware configuration and service workload

SMF: Architecture
• New daemons
> svc.startd
> svc.configd

• inetd integrated into SMF
• New commands:
> svcs(1), svcadm(1m),
> svccfg(1m), svcprop(1)

• Centralised log files
> /var/svc/log/FMRI.log

• FMRI names for services

SMF: Terminolgy
• FMRI (Fault Managed Resource Identifier)
> Name of the service, eg svc:/system/system-log:default

• Service Instance
> Running version of a service. Most instances are default

• Restarter
> Service responsible for restarting a service: svc.startd/inetd

• Dependency
> Formal description of the other services that are required to

start a service

• Contract
> New process notification mechanism used by restarters

SMF: Terminolgy

• Manifest
> Description and initial configuration file for a service or

set of related services. Delivered with the product
> Written in XML

• Repository
> Configuration database for all services. Allows for

settings to remain persistent across reboot

• Milestone
> A way to group services together. If services are like

files, then milestones are like directories

SMF: Key Commands
svcs

• Display service(s) state
• Supports pattern matching, eg svcs '*print*'
• Useful usage:

svcs - show state of all enabled services
svcs -xv - used to debug non-running services
svcs -d <FMRI> - show service dependencies

• Examples:
svcs -xv nfs/server
svcs '*print*'

SMF: Key Commands:
svcadm

• Control services and milestones
• Useful usage:

enable/disable - permanently, or use "-t" for temporarily
refresh - refresh config, run optional refresh method
restart - run stop, then start methods
milestone - move system to specified milestone
clear - clear maintenance flag and retry

• Use clear to retry a service when failed

• Examples:
svcadm refresh system-log
svcadm disable -t name-service-cache

SMF: Key Commands
svccfg

• Used to access SMF Repository
• Import new service definitions from XML files
• Modify definition in the SMF Repository
> Does not modify XML definition

• Remove service definitions
• Changes are persistent across reboots

SMF: Key Commands
svcprop

• Retrieve properties from SMF Repository
• Useful for method scripts to extract service properties
> Avoids nasty “hacks” which can be lost via patching
> For example, rather than edit /etc/rc2.d/S80lp, we

now use properties and svcprop in start method:
fd_limit=`/bin/svcprop -p lpsched/fd_limit ${SVC}

• Also useful in debugging:
 # svcprop -p start FMRI_of_failing_svc
 ...
 start/exec astring /lib/svc/method/svc-start-script
 ...

SMF: Not Quite Key Commands
inetconv/inetadm

• inetd now a delegated restarter
• Configuration stored in Repository, not inetd.conf
• inetconv provided to ease transistion to Repository
> Generates XML file for inetd.conf entries

• inetadm is an inetd specific admin tool
> Combined svcs/svccfg roles
> inetadm -d telnet – disable svc, useful for recent Bug: 6523815
> inetadm -l telnet – list svc properites
> inetadm | grep telnet – report svc state

> When new to SMF, easier to stick to generic SMF commands

SMF: Contracts
• New functionality in Solaris 10

which notifies svc.startd when
something bad happens to a
process which is part of a service
• Works by grouping processes

together and generating events,
rather than polling to check state
• svc.startd can then restart service

by running stop, then start method
• Too many failures will results in

the service being put into the
maintenance state

 pid1 pid2

 svc.startd

Contract Events:
 hwerr
 core
 signal
 empty

Contract Ownership

svc:/application/example:default

SMF: Milestones

• 3 milestones relate to existing run levels
• 2 pseudo milestones
• Use existing tools for Solaris administration
• Only use the none and all milestones for SMF

administration
• Start methods for su/mu/mus run /sbin/rc[S,2,3] scripts

Milestone Solaris Admin SMF Admin
none boot -m milestone=none
single-user boot -s
multi-user
multi-user-server
all ^D to finish svcadm milestone all

SMF: More Notes on Booting
• SMF “-m” boot flag understands:
> milestone – see previous slide
> verbose
> single line output for each service state change

> debug
> An impossible amount of information, detailing at a function by

function level the activity within svc.startd

• Almost always not what you want (old school)
> Debug the service, not the boot:
> svcs -xv, service log file, svcprop -p start, svcadm clear

Profiles

• Description of the services that are to be used on a system
> Processed in order: generic, platform, site
> Profiles may include sub-profiles, eg: ns, inetd

• Each profile is applied once
> Can apply profile at any time with:

cd /var/svc/profile
svccfg apply ns_none.xml
svccfg apply ns_nis.xml

• Never modify existing profiles
> site.xml is for local customisations/JumpStart

Writing an SMF Manifest

• Start with “Service Developer Introduction”
> BigAdmin link from OpenSolaris SMF Community

• Also check example SMF Community manifests:
> http://opensolaris.org/os/community/smf/manifests/

• Outlines 12 steps:
> 1. Name your service, 2. Identify whether your service may have multiple

instances, 3. Identify your service model, 4. Identify how your service is
started/stopped, 5. Determine faults to be ignored, 6. Identify dependencies, 7.
Identify dependents, 8. Insert your service into a milestone, 9. Create, if
appropriate, a default instance, 10.Create template information to describe your
service, 11.Write/update an administrative command, 12.Remove your script
from /etc/rc?.d locations and /etc/init.

• Or, take a copy of existing manifest and edit...

SMF Manifest for littled

• littled is a simple daemon
> Configuration file: /var/tmp/littled.conf
> Listens on port 13567, with commands:
> prtconfig, status, bye, die, signal, core, udue (where available)

• Copy utmp.xml, edit and change:
> Manifest Name: SUNWcsr:utmpd -> JN:littled
> Name: system/utmp -> application/littled
> Dependent Name: utmpd_... -> littled_...
> Exec method: /lib/svc/method/svc-utmpd -> /bin/littled
> Template: utmpx monitoring -> littled daemon
> Documentation: Delete utmpd(1m)/utmpd(4) references

SMF Demo...

SMF ARC Policy

• Work done in the last 6-8 months
• Policy requires no new files or modifications in /etc

directories and files (exception: private config files)
• Legacy (/etc/rc?.d/*) services must switch to SMF

before changes are approved
• Guidelines:
> Disabled by default, use least privilege, provide RBAC

authorizations, use profiles where appropriate, template
info, distinct/structured Repository property naming

• ARC consultation required for complex configuration

Other Stuff

• Service types: Legacy, Contract, Transient, Wait
• Service relationships: restarting dependants
• Method variables and tokens
• Delegated administration with RBAC
• OpenSolaris SMF Community
> Overview, FAQ, Developer Guide, Upcoming Work
> smf-discuss@opensolaris.org alias

