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Abstract. We present a new method to infer upper bounds on the inner-
most runtime complexity of term rewrite systems (TRSs), which benefits
from recent advances on complexity analysis of integer transition systems
(ITSs). To this end, we develop a transformation from TRSs to a gener-
alized notion of ITSs with (possibly non-tail) recursion. To analyze their
complexity, we introduce a modular technique which allows us to use
existing tools for standard ITSs in order to infer complexity bounds for
our generalized ITSs. The key idea of our technique is a summarization
method that allows us to analyze components of the transition system
independently. We implemented our contributions in the tool AProVE,
and our experiments show that one can now infer bounds for significantly
more TRSs than with previous state-of-the-art tools for term rewriting.

1 Introduction

There are many techniques for automatic complexity analysis of programs with in-
teger (or natural) numbers, e.g., [1,2,4,11,13,14,16–18,23,26–28,34]. On the other
hand, several techniques analyze complexity of term rewrite systems (TRSs),
e.g., [7, 8, 12, 19, 20, 24, 29, 32, 36]. TRSs are a classical model for equational
reasoning and evaluation with user-defined data structures and recursion [9].

Although the approaches for complexity analysis of term rewriting support
modularity, they usually cannot completely remove rules from the TRS after
having analyzed them. In contrast, approaches for integer programs may regard
small program parts independently and combine the results for these parts to
obtain a result for the overall program. In this work, we show how to obtain such
a form of modularity also for complexity analysis of TRSs.

After recapitulating TRSs and their complexity in Sect. 2, in Sect. 3 we in-
troduce a transformation from TRSs into a variant of integer transition systems
(ITSs) called recursive natural transition systems (RNTSs). In contrast to stan-
dard ITSs, RNTSs allow arbitrary recursion, and the variables only range over
the natural numbers. We show that the innermost runtime complexity of the
original TRS is bounded by the complexity of the resulting RNTS, i.e., one can
now use any complexity tool for RNTSs to infer complexity bounds for TRSs.
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Unfortunately, many existing techniques and tools for standard ITSs do not
support the non-tail recursive calls that can occur in RNTSs. Therefore, in Sect. 4
we develop an approach to infer complexity bounds for RNTSs which can use arbi-
trary complexity tools for standard ITSs as a back-end. The approach from
Sect. 4 is completely modular, as it repeatedly finds bounds for parts of the
RNTS and combines them. In this way, our technique benefits from all advances
of any ITS tools, irrespective of whether they support non-tail recursion (e.g.,
CoFloCo [16,17]) or not (e.g., KoAT [13]). As demonstrated by our implementation
in AProVE [22], our contributions allow us to derive complexity bounds for many
TRSs where state-of-the-art tools fail, cf. Sect. 5. All proofs can be found in [5].

2 Complexity of Term Rewriting

We assume basic knowledge of term rewriting [9] and recapitulate innermost
(relative) term rewriting and its runtime complexity.

Definition 1 (Term Rewriting [8, 9]). We denote the set of terms over a
finite signature Σ and the variables V by T (Σ,V). The size |t| of a term t is

defined as |x| = 1 if x ∈ V and |f(t1, . . . , tk)| = 1 +
∑k
i=1|ti|. A TRS R is a set

of rules {`1 → r1, . . . , `n → rn} with `i, ri ∈ T (Σ,V), `i 6∈ V, and V(ri) ⊆ V(`i)
for all 1 ≤ i ≤ n. The rewrite relation is defined as s →R t iff there is a rule
`→ r ∈ R, a position π ∈ Pos(s), and a substitution σ such that s|π = `σ and
t = s[rσ]π. Here, `σ is called the redex of the rewrite step.

For two TRSs R and S,R/S is a relative TRS, and its rewrite relation→R/S
is →∗S ◦ →R ◦ →∗S , i.e., it allows rewriting with S before and after each R-step.
We define the innermost rewrite relation as s i→R/S t iff s →∗S s′ →R s′′ →∗S t
for some terms s′, s′′, where the proper subterms of the redexes of each step with
→S or →R are in normal form w.r.t. R∪ S. We write i→R instead of i→R/∅.

ΣR∪Sd = {root(`) | `→r ∈ R∪S} and ΣR∪Sc = Σ\ΣR∪Sd are the defined (resp.
constructor) symbols of R/S. A term f(t1, . . . , tk) is basic iff f ∈ΣR∪Sd and t1, ...,
tk ∈ T (ΣR∪Sc ,V). R/S is a constructor system iff ` is basic for all `→ r ∈ R∪S.

In this paper, we will restrict ourselves to the analysis of constructor systems.

Example 2. The following rules implement the insertion sort algorithm.

isort(nil, ys)→ ys (1)
isort(cons(x, xs), ys)→ isort(xs, ins(x, ys)) (2)

ins(x, nil)→ cons(x, nil) (3)
ins(x, cons(y, ys))→ if(gt(x, y), x, cons(y, ys)) (4)

if(true, x, cons(y, ys))→ cons(y, ins(x, ys)) (5)
if(false, x, cons(y, ys))→ cons(x, cons(y, ys)) (6)

gt(0, y)→ false (7)
gt(s(x), 0)→ true (8)

gt(s(x), s(y))→ gt(x, y) (9)

Relative rules are useful to model built-in operations in programming lan-
guages since applications of these rules are disregarded for the complexity of a
TRS. For example, the translation from RAML programs [27] to term rewriting
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in [8] uses relative rules to model the semantics of comparisons and similar op-
erations on RAML’s primitive data types. Thus, we decompose the rules above
into a relative TRS R/S with R = {(1), . . . , (6)} and S = {(7), (8), (9)}.4

In our example, we have ΣR∪Sd = {isort, ins, if, gt} and ΣR∪Sc = {cons, nil, s, 0,
true, false}. Since all left-hand sides are basic, R/S is a constructor system. An
example rewrite sequence to sort the list [2, 0] is

t = isort(cons(s(s(0)), cons(0, nil)), nil) i→R isort(cons(0, nil), ins(s(s(0)), nil)) i→R
isort(cons(0, nil), cons(s(s(0)), nil)) i→R isort(nil, ins(0, cons(s(s(0)), nil))) i→R
isort(nil, if(gt(0, s(s(0))), . . . , . . .)) i→S isort(nil, if(false, . . . , . . .)) i→R
isort(nil, cons(0, cons(s(s(0)), nil))) i→R cons(0, cons(s(s(0)), nil))

Note that ordinary TRSs are a special case of relative TRSs (where S = ∅).
We usually just write “TRSs” to denote “relative TRSs”. We now define the
runtime complexity of a TRS R/S. In Def. 3, ω is the smallest infinite ordinal,
i.e., ω > e holds for all e ∈ N, and for any M ⊆ N∪{ω}, supM is the least upper
bound of M , where sup∅ = 0.

Definition 3 (Innermost Runtime Complexity [24,25,32,36]). The deri-
vation height of a term t w.r.t. a relation → is the length of the longest sequence
of →-steps starting with t, i.e., dh(t,→) = sup{e | ∃ t′ ∈ T (Σ,V). t →e t′}.
If t starts an infinite →-sequence, this yields dh(t,→) = ω. The innermost
runtime complexity function ircR/S maps any n ∈ N to the length of the longest
sequence of i→R/S-steps starting with a basic term whose size is at most n, i.e.,
ircR/S(n) = sup{dh(t, i→R/S) | t is basic, |t| ≤ n}.

Example 4. The rewrite sequence for t in Ex. 2 is maximal, and thus, dh(t, i→R/S)
= 6. So the i→S -step does not contribute to t’s derivation height. As |t| = 9, this
implies ircR/S(9) ≥ 6. We will show how our new approach proves ircR/S(n) ∈
O(n2) automatically.

3 From TRSs to Recursive Natural Transition Systems

We now reduce complexity analysis of TRSs to complexity analysis of recursive
natural transition systems (RNTSs). In contrast to term rewriting, RNTSs offer
built-in support for arithmetic, but disallow pattern matching. To analyze TRSs,
it suffices to regard RNTSs where all variables range over N. We use the signature
Σexp = {+, ·} ∪ N for arithmetic expressions and Σfml = Σexp ∪ {true, false, <,∧}
for arithmetic formulas (“constraints”). We will also use relations like = in
constraints, but these are just syntactic sugar. To extend the rewrite relation
with semantics for these symbols, let J.K evaluate all arithmetic and Boolean
expressions in a term. So for example, Jgt(1 + 2, 5 + y)K = gt(3, 5 + y) and

4 In this way, the complexity of gt is 0, whereas comparisons have complexity 1 with
the slightly more complicated encoding from [8]. Since this difference does not affect
the asymptotic complexity of Ex. 2, we use the simpler encoding for the sake of
readability.
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J3 > 5 ∧ trueK = false. We allow substitutions with infinite domains and call σ a
natural substitution iff σ(x) ∈ N for all x ∈ V.

Definition 5 (Recursive Natural Transition System). An RNTS over a
finite signature Σ with Σ ∩Σfml = ∅ is a set of rules P = {`1 w1−→ r1 [ϕ1] , . . . ,
`n

wn−→ rn [ϕn]} with `i = f(x1, . . . , xk) for f ∈ Σ and pairwise different variables
x1, . . . , xk, ri ∈ T (Σ ] Σexp,V), constraints ϕi ∈ T (Σfml,V), and weights wi ∈
T (Σexp,V). An RNTS P induces a rewrite relation

m−→P on ground terms from
T (Σ ] Σexp,∅), where s

m−→P t iff there are ` w−→ r [ϕ] ∈ P, π ∈ Pos(s), and
a natural substitution σ such that s|π = `σ, JϕσK = true, m = JwσK ∈ N, and
t = Js[rσ]πK. We sometimes just write s →P t instead of s

m−→P t. Again, let
ΣPd = {root(`) | ` w−→ r [ϕ] ∈ P} and ΣPc = Σ \ΣPd .

A term f(n1, . . . , nk) with f ∈ Σ and n1, . . . , nk ∈ N is nat-basic, and its size
is ||f(n1, . . . , nk)|| = 1 +n1 + . . .+nk. To consider weights for derivation heights,
we define dhw(t,→P) to be the maximum weight of any →P -sequence starting
with t, i.e., dhw(t0,→P) = sup{

∑e
i=1mi | ∃t1, . . . , te ∈ T (Σ ]Σexp,∅). t0

m1−−→P
. . .

me−−→P te}. Then ircP maps n ∈ N to the maximum weight of any →P -
sequence starting with a nat-basic term whose size is at most n, i.e., ircP(n) =
sup{dhw(t,→P) | t is nat-basic, ||t|| ≤ n}.

Note that the rewrite relation for RNTSs is “innermost” by construction, as
rules do not contain symbols from Σ below the root in left-hand sides, and they
are only applicable if all variables are instantiated by numbers.

The crucial idea of our approach is to model the behavior of a TRS by a
corresponding RNTS which results from abstracting constructor terms to their
size. Thus, we use the following transformation H·I from TRSs to RNTSs.

Definition 6 (Abstraction H·I from TRSs to RNTSs). For a TRS R/S,
the size abstraction HtI of a term t ∈ T (Σ,V) is defined as follows:

HxI = x for x ∈ V
Hf(t1, . . . , tk)I = 1 + Ht1I + . . .+ HtkI if f ∈ ΣR∪Sc

Hf(t1, . . . , tk)I = f(Ht1I, . . . , HtkI) if f ∈ ΣR∪Sd

We lift H·I to rules with basic left-hand sides. For `=f(t1, . . . , tk) with t1, . . . , tk∈
T (ΣR∪Sc ,V) and w ∈ T (Σexp,V), we define

H`→ rIw = f(x1, . . . , xk)
w−→ HrI

[∧k

i=1
xi = HtiI ∧

∧
x∈V(`)

x ≥ 1

]
for pairwise different fresh variables x1, . . . , xk. For a constructor system R/S,
we define the RNTS HR/SI = {H`→ rI1 | `→ r ∈ R} ∪ {H`→ rI0 | `→ r ∈ S}.
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Example 7. For the TRS R/S from Ex. 2, HR/SI corresponds to the following
RNTS.

isort(xs, ys) 1→ ys [xs = 1 ∧ . . .] (1′)

isort(xs ′, ys)
1→ isort(xs, ins(x, ys)) [xs ′ = 1 + x+ xs ∧ . . .] (2′)

ins(x, ys) 1→ 2 + x [ys = 1 ∧ . . .] (3′)

ins(x, ys ′) 1→ if(gt(x, y), x, ys ′) [ys ′ = 1 + y + ys ∧ . . .] (4′)

if(b, x, ys ′) 1→ 1 + y + ins(x, ys) [b = 1 ∧ ys ′ = 1 + y + ys ∧ . . .] (5′)

if(b, x, ys ′) 1→ 1 + x+ ys ′ [b = 1 ∧ ys ′ = 1 + y + ys ∧ . . .] (6′)

gt(x, y) 0→ 1 [x = 1 ∧ . . .] (7′)

gt(x′, y) 0→ 1 [x′ = 1 + x ∧ y = 1 ∧ . . .] (8′)

gt(x′, y′) 0→ gt(x, y) [x′ = 1 + x ∧ y′ = 1 + y ∧ . . .] (9′)

In these rules, “∧ . . .” stands for the constraint that all variables have to be
instantiated with values ≥ 1. Note that we make use of fresh variables like x
and xs on the right-hand side of (2′) to simulate matching of constructor terms.
Using this RNTS, the rewrite steps in Ex. 2 can be simulated as follows.

t′ = isort(7, 1) 1→ isort(3, ins(3, 1)) 1→ isort(3, 5)
1→ isort(1, ins(1, 5)) 1→ isort(1, if(gt(1, 3), 1, 5)) 0→ isort(1, if(1, 1, 5))
1→ isort(1, 7)

1→ 7

For the nat-basic term t′, we have ||t′|| = 1 + 7 + 1 = 9. So the above
sequence proves dhw(t′,→P) ≥ 6 and hence, ircP(9) ≥ 6. Note that unlike
Ex. 2, here rewriting nat-basic terms is non-deterministic as, e.g., we also have
isort(7, 1) 1→ isort(2, ins(4, 1)). The reason is that H·I is a blind abstraction [10],
which abstracts several different terms to the same number.

JH·IK maps basic ground terms to nat-basic terms, e.g., JHins(s(0), nil)IK =
Jins(1+1, 1)K = ins(2, 1). We now show that under certain conditions, dh(t, i→R/S)
≤ dhw(JHtIK,→HR/SI) holds for all ground terms t, i.e., rewrite sequences of a TRS
R/S can be simulated in the RNTS HR/SI resulting from its transformation. We
would like to conclude that in these cases, we also have ircR/S(n) ≤ ircHR/SI(n).
However, irc considers arbitrary (basic) terms, but the above connection between
the derivation heights of t and JHtIK only holds for ground terms t. For full rewrit-
ing, we clearly have dh(t,→R) ≤ dh(tσ,→R) for any substitution σ. However,
this does not hold for innermost rewriting. For example, f(g(x)) has an infinite
innermost reduction with the TRS {f(g(x)) → f(g(x)), g(a) → a}, but f(g(a))
is innermost terminating. Nevertheless, we show in Thm. 9 that for constructor
systems R, dh(t, i→R) ≤ dh(tσ, i→R) holds for any ground substitution σ.

However, for relative rewriting with constructor systemsR and S, dh(t, i→R/S)
≤ dh(tσ, i→R/S) does not necessarily hold if S is not innermost terminating. To
see this, consider R = {f(x) → f(x)} and S = {g(a) → g(a)}. Now f(g(x))
has an infinite reduction w.r.t. i→R/S since g(x) is a normal form w.r.t. R ∪ S.
However, its instance f(g(a)) has the derivation height 0 w.r.t. i→R/S , as g(a)
is not innermost terminating w.r.t. S and no rule of R can ever be applied. To
solve this problem, we extend the TRS S by a terminating variant N .
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Definition 8 (Terminating Variant). A TRS N is a terminating variant of S
iff i→N terminates and every N -normal form is also an S-normal form.

So if one can prove innermost termination of S, then one can use S as a ter-
minating variant of itself. For instance in Ex. 2, termination of S = {(7), (8), (9)}
can easily be shown automatically by standard tools like AProVE [22]. Otherwise,
one can for instance use a terminating variant {f(x1, . . . , xk) → tf | f ∈ ΣSd }
where for each f , we pick some constructor ground term tf ∈ T (ΣR∪Sc ,∅). Now
one can prove that for innermost (relative) rewriting, the derivation height of a
term does not decrease when it is instantiated by a ground substitution.

Theorem 9 (Soundness of Instantiation and Terminating Variants).
Let R, S be constructor systems and N be a terminating variant of S. Then
dh(t, i→R/S) ≤ dh(tσ, i→R/(S∪N )) holds for any term t where tσ is ground.

However, the restriction to ground terms t still does not ensure dh(t, i→R/S)
≤ dhw(JHtIK,→HR/SI). The problem is that i→R/S can rewrite a term t at position
π also if there is a defined symbol below t|π as long as no rule can be applied to
that subterm. So for Ex. 2, we have isort(nil, if(true, 0, nil)) i→R if(true, 0, nil), but
HR/SI cannot rewrite JHisort(nil, if(true, 0, nil))IK = isort(1, if(1, 1, 1)) since the if-
rules of HR/SI may be applied only if the third argument is ≥ 3, and the variables
in the isort-rule may be instantiated only by numbers (not by normal forms like
if(1, 1, 1)). This problem can be solved by requiring that R/S is completely
defined, i.e., that R∪S can rewrite every basic ground term. However, this is too
restrictive as we, e.g., would like gt(true, false) to be in normal form. Fortunately,
(innermost) runtime complexity is persistent w.r.t. type introduction [6]. Thus,
we only need to ensure that every well-typed basic ground term can be rewritten.

Definition 10 (Typed TRSs (cf. e.g. [21, 37])). In a many-sorted (first-
order monomorphic) signature Σ over the set of types Ty, every symbol f ∈ Σ
has a type of the form τ1 × . . .× τk → τ with τ1, . . . , τk, τ ∈ Ty. Moreover, every
variable has a type from Ty, and we assume that V contains infinitely many
variables of every type in Ty. We call t ∈ T (Σ,V) a well-typed term of type τ
iff either t ∈ V is a variable of type τ or t = f(t1, . . . , tk) where f has the type
τ1 × . . .× τk → τ and each ti is a well-typed term of type τi.

A rewrite rule `→ r is well typed iff ` and r are well-typed terms of the same
type. A TRS R/S is well typed iff all rules of R ∪ S are well typed. (W.l.o.g.,
here one may rename the variables in every rule. Then it is not a problem if the
variable x is used with type τ1 in one rule and with type τ2 in another rule.)

Example 11. For any TRS R/S, standard algorithms can compute a type as-
signment to make R/S well typed (and to decompose the terms into as many
types as possible). For the TRS from Ex. 2 we obtain the following type assign-
ment. Note that for this type assignment the TRS is not completely defined since
if(true, 0, nil) is a well-typed basic ground term in normal form w.r.t. R∪ S.

isort :: List× List→ List 0 :: Nat gt :: Nat×Nat→ Bool
ins :: Nat× List→ List s :: Nat→ Nat true, false :: Bool
if :: Bool×Nat× List→ List nil :: List cons :: Nat× List→ List
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Definition 12 (Completely Defined). A well-typed TRS R/S over a many-
sorted signature with types Ty is completely defined iff there is at least one con-
stant for each τ ∈ Ty and no well-typed basic ground term in R∪S-normal form.

For completely defined TRSs, the transformation from TRSs to RNTSs is sound.

Theorem 13 (Soundness of Abstraction H·I). Let R/S be a well-typed,
completely defined constructor system. Then dh(t, i→R/S) ≤ dhw(JHtIK,→HR/SI)
holds for all well-typed ground terms t. Let N be a terminating variant of S such
that R/(S ∪ N ) is also well typed. If R/(S ∪ N ) is completely defined, then we
have ircR/S(n) ≤ ircHR/(S∪N )I(n) for all n ∈ N.

As every TRS R/S is well typed w.r.t. some type assignment (e.g., the one
with just a single type), the only additional restriction in Thm. 13 is that the
TRS has to be completely defined. This can always be achieved by extending
S by a suitable terminating variant N of S automatically. Based on standard
algorithms to detect well-typed basic ground terms f(. . .) in (R ∪ S)-normal
form [30, 31], we add the rules f(x1, . . . , xk) → tf to N , where again for each
f , we choose some constructor ground term tf ∈ T (ΣR∪Sc ,∅). As shown by
Thm. 9, we have dh(t, i→R/S) ≤ dh(tσ, i→R/(S∪N )) for any terminating variant
N , i.e., adding such rules never decreases the derivation height. So even if R/S
is not completely defined and just R/(S ∪N ) is completely defined, we still have
ircR/S(n) ≤ ircR/(S∪N )(n) ≤ ircHR/(S∪N )I(n).

Example 14. To make the TRS of Ex. 2 completely defined, we add rules for all
defined symbols in basic ground normal forms. In this example, the only such
symbol is if. Hence, for instance we add if(b, x, xs)→ nil to S. The resulting TRS
S ∪ {if(b, x, xs) → nil} is clearly a terminating variant of S. Hence, to analyze
complexity of the insertion sort TRS, we now extend the RNTS of Ex. 7 by

Hif(b, x, xs)→ nilI0 = if(b, x, xs)
0−→ 1 [b ≥ 1 ∧ x ≥ 1 ∧ xs ≥ 1] (10)

4 Analyzing the Complexity of RNTSs

Thm. 13 allows us to reduce complexity analysis of term rewriting to the analysis
of RNTSs. Our RNTSs are related to integer transition systems (ITSs), a for-
malism often used to abstract programs. The main difference is that RNTSs can
model procedure calls by nested function symbols f(. . . g(. . .) . . .) on the right-
hand side of rules, whereas ITSs may allow right-hand sides like f(. . .) + g(. . .),
but no nesting of f, g ∈ Σ. So ITSs cannot pass the result of one function as a
parameter to another function. Note that in contrast to the usual definition of
ITSs, in our setting reductions can begin with any (nat-basic) terms instead of
dedicated start terms, and it suffices to regard natural instead of integer numbers.
(An extension to recursive transition systems on integers would be possible by
measuring the size of integers by their absolute value, as in [13].)

Definition 15 (ITS). An RNTS P over the signature Σ is an ITS iff symbols
from Σ occur only at parallel positions in right-hand sides of P. Here, π and π′

are parallel iff π is not a prefix of π′ and π′ is not a prefix of π.
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Upper runtime complexity bounds for an ITS P can, for example, be inferred
by generating ranking functions which decrease with each application of a rule
from P. Then, the ranking functions are multiplied with the weight of the rules.

However, many analysis techniques for ITSs (e.g., [1,4,13,34]) cannot handle
the RNTSs generated from standard TRSs. Thus, we now introduce a new mod-
ular approach that allows us to apply existing tools for ITSs to analyze RNTSs.
Our approach builds upon the idea of alternating between runtime and size
analysis [13]. The key insight is to summarize procedures by approximating their
runtime and the size of their result, and then to eliminate them from the program.
In this way, our analysis decomposes the “call graph” of the RNTS into “blocks”
of mutually recursive functions and exports each block of mutually recursive
functions into a separate ITS. Thus, in each analysis step it suffices to analyze
just an ITS instead of an RNTS. We use weakly monotonic runtime and size
bounds from T (Σexp,V) to compose them easily when analyzing nested terms.

Definition 16 (Runtime and Size Bounds). For any terms t1, . . . , tk, let
{x1/t1, . . . , xk/tk} be the substitution σ with xiσ = ti for 1 ≤ i ≤ k and yσ = y
for y ∈ V \{x1, . . . , xk}. Then rt : Σ → T (Σexp,V)∪{ω} is a runtime bound for
an RNTS P iff we have dhw(f(n1, . . . , nk),→P) ≤ Jrt(f) {x1/n1, . . . , xk/nk}K
for all n1, . . . , nk ∈ N and all f ∈ Σ. Similarly, sz : Σ → T (Σexp,V) ∪ {ω} is a
size bound for P iff n ≤ Jsz(f) {x1/n1, . . . , xk/nk}K for all n1, . . . , nk ∈ N, all
f ∈ Σ, and all n ∈ N with f(n1, . . . , nk)→∗P n.

Example 17. For the RNTS {(1′), . . . , (9′), (10)} from Ex. 14, any function rt with
rt(isort) ≥ bx1−1

2 c ·x2 +1, rt(ins) ≥ x2, rt(if) ≥ x3−1, and rt(gt) ≥ 0 is a runtime
bound (recall that the gt-rules have weight 0). Similarly, any sz with sz(isort) ≥
x1 + x2− 1, sz(ins) ≥ x1 + x2 + 1, sz(if) ≥ x2 + x3 + 1, sz(gt) ≥ 1 is a size bound.

A runtime bound clearly gives rise to an upper bound on the runtime complexity.

Theorem 18 (rt and irc). Let rt be a runtime bound for an RNTS P. Then for
all n ∈ N, we have ircP(n) ≤ sup{Jrt(f) {x1/n1, . . . , xk/nk}K | f ∈ Σ,n1, ..., nk ∈
N,
∑k
i=1 ni < n}. So in particular, ircP(n) ∈ O(

∑
f∈ΣJrt(f) {x1/n, . . . , xk/n}K).

Thus, a suitable runtime bound rt for the RNTS {(1′), . . . , (9′), (10)} yields
irc(n) ∈ O(n2), cf. Ex. 17. In Sect. 4.2 we present a new technique to infer
runtime and size bounds rt and sz automatically with existing complexity tools
for ITSs. As these tools usually return only runtime bounds, Sect. 4.1 shows how
they can also be used to generate size bounds.

4.1 Size Bounds as Runtime Bounds

We first present a transformation for a large class of ITSs that lets us obtain size
bounds from any method that can infer runtime bounds. The transformation ex-
tends each function symbol from Σ by an additional accumulator argument. Then
terms that are multiplied with the result of a function are collected in the accumu-
lator. Terms that are added to the result are moved to the weight of the rule.
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Theorem 19 (ITS Size Bounds). Let P be an ITS whose rules are of the form
` w→ u+ v · r [ϕ] or ` w→ u [ϕ] with u, v ∈ T (Σexp,V) and root(r) ∈ Σ. Let Psize =

{f ′(x1, ..., xk, z)
u·z−−→ g′(t1, ..., tn, v · z) [ϕ] | f(x1, ..., xk)

w→ u+ v · g(t1, ..., tn) [ϕ] ∈ P}
∪ {f ′(x1, ..., xk, z)

u·z−−→ 0 [ϕ] | f(x1, ..., xk)
w→ u [ϕ] ∈ P}

for a fresh variable z ∈ V. Let rt be a runtime bound for Psize. Then sz with
sz(f) = rt(f ′){xk+1/1} for any f ∈ Σ is a size bound for P.

Thm. 19 can be generalized to right-hand sides like f(x)+2·g(y) with f, g ∈ Σ,
cf. [5]. However, it is not applicable if the results of function calls are multiplied
on right-hand sides (e.g., f(x) · g(y)) and our technique fails in such cases.

Example 20. To get a size bound for Pgt = {(7′), (8′), (9′)}, we construct Pgt
size:

gt′(x, y, z)
z→ 0 [x = 1 ∧ . . .] gt′(x′, y, z)

z→ 0 [x′ = 1 + x ∧ y = 1 ∧ . . .]
gt′(x′, y′, z)

0→ gt′(x, y, z) [x′ = 1 + x ∧ y′ = 1 + y ∧ . . .]

Existing ITS tools can compute a runtime bound like rt(gt′) = x3 for Pgt
size. Hence,

by Thm. 19 we obtain the size bound sz for Pgt with sz(gt) = rt(gt′){x3/1} = 1.

4.2 Complexity Bounds for Recursive Programs

Now we show how complexity tools for ITSs can be used to infer runtime and
size bounds for RNTSs. We first define a call-graph relation A to determine in
which order we analyze symbols of Σ. Essentially, f A g holds iff f(. . .) rewrites
to a term containing g.

Definition 21 (A). For an RNTS P, the call-graph relation A is the tran-
sitive closure of {(root(`), g) | ` w→ r[ϕ] ∈ P, g ∈ Σ occurs in r}. An RNTS
has nested recursion iff it has a rule ` w→ r [ϕ] with root(r|π) A root(`) and
root(r|π′) A root(`) for positions π < π′. As usual, π < π′ means that π is a
proper prefix of π′ (i.e., that π′ is strictly below π). A symbol f ∈ ΣPd is a bot-
tom symbol iff f A g implies g A f for all g ∈ ΣPd . The sub-RNTS of P induced
by f is Pf = {` w→ r[ϕ] ∈ P | f w root(`)}, where w is the reflexive closure of A.

Example 22. For the RNTS P from Ex. 14 and 17, we have isort A ins A if A ins
A gt. The only bottom symbol is gt. It induces the sub-RNTS Pgt = {(7′), (8′),
(9′)}, ins induces {(3′), . . . , (9′), (10)}, and isort induces the full RNTS of Ex. 14.

Our approach cannot handle programs like f(. . .) → f(. . . f(. . .) . . .) with
nested recursion, but such programs rarely occur in practice. To compute bounds
for an RNTS P without nested recursion, we start with the trivial bounds rt(f) =
sz(f) = ω for all f ∈ ΣPd . In each step, we analyze the sub-RNTS Pf induced by
a bottom symbol f and refine rt and sz for all defined symbols of Pf . Afterwards
we remove the rules Pf from P and continue with the next bottom symbol. By
this removal of rules, the former defined symbol f becomes a constructor, and
former non-bottom symbols are turned into bottom symbols.
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Algorithm 1 Computing Runtime and Size Bounds for RNTSs

1 Let rt(f) := sz(f) := ω for each f ∈ ΣPd and rt(f) := sz(f) := 0 for each f ∈ ΣPc .
2 If P has nested recursion, then return rt and sz.
3 While P is not empty:

3.1 Choose a bottom symbol f of P and let Pf be the sub-RNTS induced by f .
3.2 Construct Pf

sz according to Thm. 27 and (Pf
sz)size according to Thm. 19 (resp.

its generalization) if possible, otherwise return rt and sz.
3.3 Compute a runtime bound for (Pf

sz)size using existing ITS tools and let szf be
this bound (cf. Thm. 19).

3.4 For each g ∈ ΣP
f

d , let sz(g) := szf (g).
3.5 Construct Pf

rt,sz according to Thm. 27.

3.6 Compute a runtime bound rtf for Pf
rt,sz using existing ITS tools.

3.7 For each g ∈ ΣP
f

d , let rt(g) := rtf (g).
3.8 Let P := P \ Pf .

4 Return rt and sz.

To analyze the RNTS Pf , Thm. 27 will transform Pf into two ITSs Pfsz and

Pfrt,sz by abstracting away calls to functions which we already analyzed. Then

existing tools for ITSs can be used to compute a size resp. runtime bound for Pfsz
resp. Pfrt,sz. Our overall algorithm to infer bounds for RNTSs is summarized in
Alg. 1. It clearly terminates, as every loop iteration eliminates a defined symbol
(since Step 3.8 removes all rules for the currently analyzed symbol f).

When computing bounds for a bottom symbol f ∈ ΣPd , we already know
(weakly monotonic) size and runtime bounds for all constructors g ∈ ΣPc . Hence to
transform RNTSs into ITSs, outer calls of constructors g in terms g(. . . f(. . .) . . .)
can be replaced by sz(g). In Def. 23, while sz(t) replaces all calls to procedures g ∈
Σ in t by their size bound, the outer abstraction aosz(t) only replaces constructors
g ∈ ΣPc by their size bound sz(g), provided that they do not occur below defined
symbols f ∈ ΣPd .

Definition 23 (Outer Abstraction). Let P be an RNTS with the size bound
sz. We lift sz to terms by defining sz(x) = x for x ∈ V and

sz(g(s1, . . . , sn)) =

{
sz(g) {xj/sz(sj) | 1 ≤ j ≤ n} if g ∈ Σ
g(sz(s1), . . . , sz(sn)) if g ∈ Σexp

The outer abstraction of a term is defined as aosz(x) = x for x ∈ V and

aosz(g(s1, . . . , sn)) =


sz(g) {xj/aosz(sj) | 1 ≤ j ≤ n} if g ∈ ΣPc
g(aosz(s1), . . . , aosz(sn)) if g ∈ Σexp

g(s1, . . . , sn) if g ∈ ΣPd
Example 24. Consider the following variant R× of AG01/#3.16.xml from the
TPDB5 and its RNTS-counterpart HR×I:

5 Termination Problems Data Base, the collection of examples used at the annual
Termination and Complexity Competition, see http://termination-portal.org.
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R× :
f+(0, y) → y
f+(s(x), y)→ s(f+(x, y))
f×(0, y) → 0
f×(s(x), y)→ f+(f×(x, y), y)

HR×I :
f+(x, y)

1→ y [x = 1 ∧ . . .] (11)
f+(x′, y)

1→ 1 + f+(x, y) [x′ = x+ 1 ∧ . . .] (12)
f×(x, y) 1→ 1 [x = 1 ∧ . . .] (13)
f×(x′, y) 1→ f+(f×(x, y), y) [x′ = x+ 1 ∧ . . .] (14)

Assume that we already analyzed its only bottom symbol f+ and obtained
sz(f+) = x1 + x2 and rt(f+) = x1. Afterwards, (11) and (12) were removed. Now
Def. 23 is used to transform the sub-RNTS {(13), (14)} induced by f× into an
ITS. The only rule of HR×I that violates the restriction of ITSs is (14). Thus, let
(14′) result from (14) by replacing its right-hand side by aosz(f+(f×(x, y), y)) =
sz(f+) {x1/f×(x, y), x2/y} = f×(x, y)+y. Now {(13), (14′)} is an ITS, and together
with Thm. 19, existing ITS tools can generate a size bound like sz(f×) = x1 · x2.

To finish the transformation of RNTSs to ITSs, we now handle terms like
f(. . . g(. . .) . . .) where f ∈ ΣPd is the bottom symbol we are analyzing and we
have an inner call of a constructor g ∈ ΣPc . We would like to replace g by
sz(g) again. However, f might behave non-monotonically (i.e., f might need less
runtime on greater arguments). Therefore, we replace all inner calls g(. . .) of
constructors by fresh variables x. The size bound of the replaced call g(. . .) is an
upper bound for the value of x, but x can also take smaller values.

Definition 25 (Inner Abstraction). Let P be an RNTS with size bound sz,
t be a term, and Postopc ⊆ Pos(t) be the topmost positions of ΣPc -symbols below
ΣPd -symbols in t. Thus, µ ∈ Postopc iff root(t|µ) ∈ ΣPc , there exists a π < µ with
root(t|π) ∈ ΣPd , and root(t|π′) ∈ Σexp for all π < π′ < µ. For Postopc = {µ1, . . . ,
µk}, t’s inner abstraction is ai(t) = t[x1]µ1 . . . [xk]µk

where x1, . . . , xk are pairwise
different fresh variables, and its condition is ψi

sz(t) =
∧

1≤i≤k xi ≤ sz(t|µi
).

Example 26. For the RNTS of Ex. 14 and 17, we start with analyzing Pgt which
yields sz(gt) = 1 and rt(gt) = 0, cf. Ex. 20. After removing the gt-rules, the new
bottom symbols are ins and if. The right-hand side of Rule (4′) contains a call of
gt below the symbol if. With the size bound sz(gt) = 1, the inner abstraction of
this right-hand side is ai(if(gt(x, y), x, ys ′)) = if(x1, x, ys ′), and the corresponding
condition ψi

sz(if(gt(x, y), x, ys ′)) is x1 ≤ 1, since sz(gt(x, y)) = 1.

Thm. 27 states how to transform RNTSs into ITSs in order to compute run-
time and size bounds. Suppose that we have already analyzed the function sym-
bols g1, . . . , gm, that f becomes a new bottom symbol if the rules for g1, . . . , gm
are removed, that Q is the sub-RNTS induced by f , and that P results from Q
by deleting the rules for g1, . . . , gm. Thus, if gi occurs in P, then gi ∈ ΣPc .

So in our leading example, we have g1 = gt (i.e., all gt-rules were analyzed and
removed). Thus, ins is a new bottom symbol. If we want to analyze it by Thm. 27,
then Q contains all ins-, if-, and gt-rules and P just contains all ins- and if-rules.

Since we restricted ourselves to RNTSs Q without nested recursion, P has
no nested defined symbols. To infer a size bound for the bottom symbol f of P,
we abstract away inner occurrences of gi by ai (e.g., gt on the right-hand side
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of Rule (4′) in our example), and we abstract away outer occurrences of gi by
aosz. So every right-hand side r is replaced by aosz(a

i(r)) and we add the condition
ψi
sz(r) which restricts the values of the fresh variables introduced by ai.

To infer runtime bounds, inner occurrences of gi are also abstracted by ai,
and outer occurrences of gi are simply removed. So every right-hand side r is
replaced by

∑
π∈Posd(r) a

i(r|π), where Posd(r) = {π ∈ Pos(r) | root(r|π) ∈ ΣPd }.
However, we have to take into account how many computation steps would be
required in the procedures gi that were called in r. Therefore, we compute the
cost of all calls of gi in a rule’s right-hand side and add it to the weight of the
rule. To estimate the cost of a call gi(s1, . . . , sn), we “apply” rt(gi) to the size
bounds of s1, . . . , sn and add the costs for evaluating s1, . . . , sn.

Theorem 27 (Transformation of RNTSs to ITSs). Let Q be an RNTS
with size and runtime bounds sz and rt and let P = Q\ (Qg1 ∪ . . .∪Qgm), where
g1, . . . , gm ∈ Σ and Qgi is the sub-RNTS of Q induced by gi. We define

Psz = { ` w→ aosz(a
i(r))

[
ϕ ∧ ψi

sz(r)
]
| `

w→ r [ϕ] ∈ P }

Let sz′ be a size bound for Psz where sz′(f) = sz(f) for all f ∈ Σ \ΣPd . If P does
not have nested defined symbols, then sz′ is a size bound for Q.

To obtain a runtime bound for Q, we define an RNTS Prt,sz′ . To this end, we
define the cost of a term as crt,sz′(x) = 0 for x ∈ V and

crt,sz′(g(s1, . . . , sn)) =

{∑
1≤j≤n crt,sz′(sj) + rt(g) {xj/sz′(sj) | 1 ≤ j ≤ n} if g ∈ ΣPc∑
1≤j≤n crt,sz′(sj) otherwise

Now Prt,sz′ = {`
w+crt,sz′ (r)−−−−−−−→

∑
π∈Posd(r) a

i(r|π)
[
ϕ ∧ ψi

sz′(r)
]
| ` w→ r [ϕ] ∈ P}.

Then every runtime bound rt′ for Prt,sz′ with rt′(f) = rt(f) for all f ∈ Σ \ΣPd is
a runtime bound for Q. Here, all occurrences of ω in Psz or Prt,sz′ are replaced
by pairwise different fresh variables.

If P does not have nested defined symbols, then Psz and Prt,sz′ are ITSs and
thus, they can be analyzed by existing ITS tools.

Example 28. We now finish analyzing the RNTS HR×I after updating sz as in Ex.
24. The cost of the right-hand side of (14) is crt,sz(f+(f×(x, y), y)) = rt(f+) {x1/x·y,
x2/y} = x · y. So for the sub-RNTS P = {(13), (14)} induced by f×, Prt,sz is

f×(x, y) 1→ 0 [x = 1 ∧ . . .] f×(x′, y)
1+x·y−−−−→ f×(x, y) [x′ = x+ 1 ∧ . . .]

Hence, existing ITS tools like CoFloCo [16, 17] or KoAT [13] yield a bound like
rt(f×) = x21 · x2. So by Thm. 13 and 18 we get ircR×(n) ≤ ircHR×I(n) ∈ O(n3).

Example 29. To finish the analysis of the RNTS from Ex. 14, we continue Ex. 26.
After we removed Pgt, the new bottom symbols ins and if both induce P ins =
{(3′), . . . , (6′), (10)}. Constructing P ins

sz yields the rules (3′), (5′), (6′), (10), and

ins(x, ys ′) 1→ if(x1, x, ys ′) [ ys ′ = 1 + y + ys ∧ . . . ∧ x1 ≤ 1 ] (4′′)
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Existing tools like CoFloCo or KoAT compute size bounds like 1 + x1 + x2 for
ins and 1 + x2 + x3 for if using Thm. 19. After updating sz, we construct P ins

rt,sz

which consists of (4′′) and variants of (3′), (5′), (6′), (10) with unchanged weights
(as crt,sz(gt(x, y)) = rt(gt) = 0). ITS tools now infer runtime bounds like 2 ·x2 for
ins and 2 · x3 for if. After removing ins and if, we analyze the remaining RNTS
P isort = {(1′), (2′)}. Since the right-hand side of (2′) contains an inner occurrence
of ins below isort, (2′) is replaced by

isort(xs ′, ys)
w→ isort(xs, ys ′) [xs ′ = 1 + x+ xs ∧ ys ′ ≤ 1 + x+ ys ∧ . . .]

where w = 1 in P isort
sz and w = 1 + rt(ins){x1/x, x2/ys} = 1 + 2 · ys in P isort

rt,sz .
Using Thm. 19, one can now infer bounds like sz(isort) = x1 + x2 and rt(isort) =
x21 + 2 · x1 · x2. Hence, by Thm. 18 one can deduce irc(n) ∈ O(n2).

Based on Thm. 27, we can now show the correctness of our overall analysis.

Theorem 30 (Alg. 1 is Sound). Let P be an RNTS and let rt and sz be the
result of Alg. 1 for P. Then rt is a runtime bound and sz is a size bound for P.

5 Related Work, Experiments, and Conclusion

To make techniques for complexity analysis of integer programs also applicable
to TRSs, we presented two main contributions: First, we showed in Sect. 3 how
TRSs can be abstracted to a variant of integer transition systems (called RNTSs)
and presented conditions for the soundness of this abstraction. While abstractions
from term-shaped data to numbers are common in program analysis (e.g., for
proving termination), soundness of our abstraction for complexity of TRSs is
not trivial. In [3] a related abstraction technique from first-order functional
programs to a formalism corresponding to RNTSs is presented. However, there
are important differences between such functional programs and term rewriting:
In TRSs, one can also rewrite non-ground terms, whereas functional programming
only evaluates ground expressions. Moreover, overlapping rules in TRSs may lead
to non-determinism. The most challenging part in Sect. 3 is Thm. 9, i.e., showing
that the step from innermost term rewriting to ground innermost rewriting
is complexity preserving, even for relative rewriting. Mappings from terms to
numbers were also used for complexity analysis of logic programs [15]. However,
[15] operates on the logic program level, i.e., it does not translate programs to
ITSs and it does not allow the application of ITS-techniques and tools.

Our second contribution (Sect. 4) is an approach to lift any technique for
runtime complexity of ITSs to handle (non-nested, but otherwise arbitrary) re-
cursion as well. This approach is useful for the analysis of recursive arithmetic
programs in general. In particular, by combining our two main contributions we
obtain a completely modular approach for the analysis of TRSs. To infer runtime
bounds, we also compute size bounds, which may be useful on their own as well.

There exist several approaches that also analyze complexity by inferring both
runtime and size bounds. Wegbreit [35] tries to generate closed forms for the
exact runtime and size of the result of each analyzed function, whereas we esti-
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mate runtime and size by upper bounds. Hence, [35] fails whenever finding such
exact closed forms automatically is infeasible. Serrano et al. [33] also compute
runtime and size bounds, but in contrast to us they work on logic programs, and
their approach is based on abstract interpretation. Our technique in Sect. 4 was
inspired by our work on the tool KoAT [13], which composes results of alternating
size and runtime complexity analyses for ITSs. In [13] we developed a “bottom-up”
technique that corresponds to the approach of Sect. 4.2 when restricting it to
ordinary ITSs without (non-tail) recursion. But in contrast to Sect. 4.2, KoAT’s
support for recursion is very limited, as it disregards the return values of “inner”
calls. Moreover, [13] does not contain an approach like Thm. 19 in Sect. 4.1 which
allows us to obtain size bounds from techniques that compute runtime bounds.

RAML [26–28] reduces the inference of resource annotated types (and hence
complexity bounds) for ML programs to linear optimization. Like other techniques
for functional programs, it is not directly applicable to TRSs due to the differences
between ML and term rewriting.6 Moreover,RAML has two theoretical boundaries
w.r.t. modularity [26]: (A) The number of linear constraints arising from type
inference grows exponentially in the size of the program. (B) To achieve context-
sensitivity, functions are typed differently for different invocations. In our setting,
a blow-up similar to (A) may occur within the used ITS tool, but as the program is
analyzed one function at a time, this blow-up is exponential in the size of a single
function instead of the whole program. To avoid (B), we analyze each function
only once. However, RAML takes amortization effects into account and obtains
impressive results in practice. Further leading tools for complexity analysis of
programs on integers (resp. naturals) are, e.g., ABC [11], C4B [14], CoFloCo [16,17],
LoAT [18], Loopus [34], PUBS [1, 2], Rank [4], and SPEED [23].

Finally, there are numerous techniques for automated complexity analysis
of TRSs, e.g., [7, 8, 24, 32, 36]. While they also allow forms of modularity, the
modularity of our approach differs substantially due to two reasons:

(1) Most previous complexity analysis techniques for TRSs are top-down
approaches which estimate how often a rule g(. . .)→ . . . is applied in reductions
that start with terms of a certain size. So the complexity of a rule depends on
the context of the whole TRS. This restricts the modularity of these approaches,
since one cannot analyze g’s complexity without taking the rest of the TRS into
account. In contrast, we propose a bottom-up approach which analyzes how the
complexity of any function g depends on g’s inputs. Hence, one can analyze g
without taking into account how g is called by other functions f .

(2) In our technique, if a function g has been analyzed, we can replace it
by its size bound and do not have to regard g’s rules anymore when analyzing
a function f that calls g. This is possible because we use a fixed abstraction
from terms to numbers. In contrast, existing approaches for TRSs cannot remove
rules from the original TRS after having oriented them (with a strict order �),
except for special cases. When other parts of the TRS are analyzed afterwards,
these previous rules still have to be oriented weakly (with %), since existing TRS

6 See [29] for an adaption of an amortized analysis as in [27] to term rewriting. However,
[29] is not automated, and it is restricted to ground rewriting with orthogonal rules.
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approaches do not have any dedicated size analysis. This makes the existing
approaches for TRSs less modular, but also more flexible (since they do not use a
fixed abstraction from terms to numbers). In future work, we will try to improve
our approach by integrating ideas from [3] which could allow us to infer and to
apply multiple norms when abstracting functional programs to RNTSs.

We implemented our contributions in the tool AProVE [22] and evaluated its
power on all 922 examples of the category “Runtime Complexity - Innermost
Rewriting” of the Termination and Complexity Competition 2016.7 Here, we
excluded the 100 examples where AProVE shows irc(n) = ω.

In our experiments, we consider the previous version of AProVE (AProVE ’16),
a version using only the techniques from this paper (AProVE RNTS), and AProVE
’17 which integrates the techniques from this paper into AProVE’s previous ap-
proach to analyze irc. In all these versions, AProVE pre-processes the TRS to
remove rules with non-basic left-hand sides that are unreachable from basic terms,
cf. [19]. AProVE RNTS uses the external tools CoFloCo, KoAT, and PUBS to com-
pute runtime bounds for the ITSs resulting from the technique in Sect. 4. While
we restricted ourselves to polynomial arithmetic for simplicity in this paper,
KoAT’s ability to prove exponential bounds for ITSs also enables AProVE to infer
exponential upper bounds for some TRSs. Thus, the capabilities of the back-
end ITS tool determine which kinds of bounds can be derived by AProVE. We
also compare with TcT 3.1.0 [7], since AProVE and TcT were the most powerful
complexity tools for TRSs at the Termination and Complexity Competition 2016.

Note that while the approach of Sect. 4 allows us to use any existing (or future)
ITS tools for complexity analysis of RNTSs, CoFloCo can also infer complexity
bounds for recursive ITSs directly, i.e., it does not require the technique in Sect. 4.
To this end, CoFloCo analyzes program parts independently and uses linear invari-
ants to compose the results. So CoFloCo’s approach differs significantly from Sect.
4, which can also infer non-linear size bounds. Thus, the approach of Sect. 4 is
especially suitable for examples where non-linear growth of data causes non-linear
runtime. For instance, in Ex. 28 the quadratic size bound for f× is crucial to
prove a (tight) cubic runtime bound with the technique of Sect. 4. Consequently,
CoFloCo’s linear invariants are not sufficient and hence it fails for this RNTS.
See [5] for a list of 17 examples with non-linear runtime where Sect. 4 was superior
to all other considered techniques in our experiments. However, CoFloCo’s amor-
tized analysis often results in very precise bounds, i.e., both approaches are ortho-
gonal. Therefore, as an alternative to Sect. 4, AProVE RNTS also uses CoFloCo
to analyze the RNTSs obtained from the transformation in Sect. 3 directly.

ircR(n) TcT AProVE RNTS AProVE ’16 AProVE & TcT AProVE ’17

O(1) 47 43 48 53 53
≤ O(n) 276 254 320 354 379
≤ O(n2) 362 366 425 463 506
≤ O(n3) 386 402 439 485 541
≤ O(n>3) 393 412 439 491 548
≤ EXP 393 422 439 491 553

The table on
the right shows
the results of our
experiments. As
suggested in [8],
we used a timeout
of 300 seconds per

7 See http://termination-portal.org/wiki/Termination_Competition/
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example (on an Intel Xeon with 4 cores at 2.33 GHz each and 16 GB of RAM).
AProVE & TcT represents the former state of the art, i.e., for each example here
we took the best bound found by AProVE ’16 or TcT. A row “≤ O(nk)” means
that the corresponding tools proved a bound ≤ O(nk) (e.g., TcT proved constant
or linear upper bounds in 276 cases). Clearly, AProVE ’17 is the most powerful
tool, i.e., the contributions of this paper significantly improve the state of the
art for complexity analysis of TRSs. This also shows that the new technique
of this paper is orthogonal to the existing ones. In fact, AProVE RNTS infers
better bounds than AProVE & TcT in 127 cases. In 102 of them, AProVE &
TcT fails to prove any bound at all. The main reasons for this orthogonality are
that on the one hand, our approaches loses precision when abstracting terms to
numbers. But on the other hand, our approach allows us to apply arbitrary tools
for complexity analysis of ITSs in the back-end and to benefit from their respec-
tive strengths. Moreover as mentioned above, the approach of Sect. 4 succeeds
on many examples where non-linear growth of data leads to non-linear runtime,
which are challenging for existing techniques.

For further details on our experiments including a detailed comparison of
AProVE RNTS and prior techniques for TRSs, to access AProVE ’17 via a web
interface, for improvements to increase the precision of our abstraction from
TRSs to RNTSs, and for the proofs of all theorems, we refer to [5].
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