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Abstract

We present an algorithm called the Best Trail Algorithm,
which helps solve the hypertext navigation problem by au-
tomating the construction of memex-like trails through the
corpus. The algorithm performs a probabilistic best-first
expansion of a set of navigation trees to find relevant and
compact trails. We describe the implementation of the algo-
rithm, scoring methods for trails, filtering algorithms and a
new metric called potential gain which measures the poten-
tial of a page for future navigation opportunities.

1 Introduction

The World Wide Web is a massive global hypertext sys-
tem in which documents (or pages) can be found on almost
every subject imaginable. These pages are made available
by many authors and written in many languages. We con-
sider a web site to represent a collection of pages with some
common element, such as topic, author or institution. The
process of navigation or surfing is that of following links
according to the topology of the web site and viewing (or
browsing) the contents of visited pages. During the naviga-
tion process users may become “lost in hyperspace”, mean-
ing that they become disoriented [28]. This happens when
users fail to understand the context of the pages they are
viewing, are unsure of how they reached a page, cannot see
how the page is related to key pages such as the homepage
or are uncertain as to where they should proceed to find the
information they are looking for [23].

Vannevar Bush envisaged a hypothetical machine called a
memex [9] - a cabinet-like box into which the user could
store documents and images. A sequence of such docu-
ments could then be annotated and linked together to form a

trail. By continuing the process, Bush imagined that future
workers could build a “web of trails”.

In Berners-Lee’s Web, a trail or navigation path is implic-
itly formed as the result of a navigation session in which
the user visits a sequence of web pages. Previous research
[7] has shown how the trails which users follow can be ex-
tracted from log data. Often the starting point for one of
these trails is a page resulting from a search request [29], yet
existing site search engines will neither consider the possi-
bilities for future navigation when returning their result nor
present details of the paths users might follow.

It is our hypothesis that constructing trails or paths in a
query-dependant manner will provide contextual informa-
tion that will reduce the effects of the navigation problem
and increase user-satisfaction during search tasks. Our con-
tribution is to describe a probabilistic best-first algorithm
for automating the discovery of memex-like trails from a
set of starting points. We describe metrics for evaluating
trails, and introduce a new metric for determining more ef-
fective starting points by evaluating the potential gain of fu-
ture navigation from a given page. Previous hypertext sys-
tems have featured the ability to manipulate trails manually
[12, 36, 33] or allowed the construction of trails using pure
IR metrics [4, 16]. However, none of these systems has al-
lowed the automatic construction of trails by the computer
in any way that takes account of hyperlinks.

The rest of this paper is organized as follows: In section 2
we describe our system for computing trails - selecting start-
ing points using the potential gain metric, expanding the
trails using the Best Trail algorithm and filtering redundant
information from them with heuristic methods. In section 3
we describe our preliminary efforts to evaluate the utility
of the navigation engine which uses these trails to assist
users [24]. In section 4 we describe our implementation of
the algorithm. In section 5 we describe experiments into
the behaviour and performance of this implementation. We



discuss related work in section 6 and give our concluding
remarks and directions for future research in section 7.

2 Computing Trails

In this section we outline our methodology for computing
trails. Trails are computed by selecting relevant starting
points, expanding a navigation tree from each node using
the Best Trail algorithm before filtering and sorting the re-
sulting set of trails.

We view a web site as a hypertext system H having two
components: a directed graph G = (N, E), having finite
sets of nodes and edges NV and F, respectively, and a scoring
function g which is a function from N to the set of non-
negative real numbers. The directed graph G defines the
web site topology and is referred to as the web graph; the
nodes in IV represent the web pages and the edges in E
represent hyperlinks (or simply links) between anchor and
destination nodes. Figure 1 shows an example web graph,
taken from the GraphViz web site!, which we will use as
a running example. The terms node, web page and URL
will be used interchangeably. We interpret the score, p(m)
of a web page m € N, as a measure of how relevant m is
with respect to a given query, where the query is viewed as
the goal of the navigation session. The Best Trail algorithm
computes trails scored by a function of these page scores.

2.1 Selecting Starting Points

Whilst simply expanding from relevant points is effective,
we can do better by considering future navigation oppor-
tunities in our starting point selection. We have created a
metric for finding good starting points which we refer to as
the potential gain of a url. That is, the potential for future
navigation opportunities. Defined as the sum for all depths
of the product of the fraction of trails to that depth, d and the
discounting function f(d), it is easily computed by an iter-
ative algorithm or by a series of matrix operations [39, 25].
For larger graphs, we can utilize similar techniques to those
proposed for the PageRank citation metric [30, 17, 19]. For
our experiments, we compute potential gain using the recip-

rocal function, f(z) = z7!.

When restricted to a maximum depth of traversal, d,y 4, the
naive algorithm takes time proportional to O(d .| E|) and
space proportional to O(|N|) to compute potential gain val-
ues for all nodes in G given that G is sparse. In practice,
after a brief settling period, convergence to a set of poten-
tial gain values occurs in a short space of time. Bucketed
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values for potential gain follow a power-law distribution,
as is found for PageRank and many other web-related phe-
nomena [1].

2.2 The Best Trail Algorithm

The pseudo-code of the Best Trail algorithm is shown in fig-
ure 2. It takes as input a set of starting URLs, S, and a pa-
rameter, M > 1, which specifies the number of repetitions
of the algorithm for each input URL. When the algorithm
terminates it outputs a set of trails, B. There are M trails in
B for each URL in S. Each trail is the highest ranking trail
contained within the navigation tree expanded from a sin-
gle starting node. A navigation tree is a finite subtree of the
possibly infinite tree generated by traversing through G, the
root of which is a member of the set of starting points. Ma-
nipulating sets of navigation trees has a filtering effect on
the set of starting points, reducing the rank of nodes which
are isolated from other relevant documents and from which
navigation is problematic. Returning trails from separate
trees also has the effect of removing highly similar trails
before further filtering is required.

Algorithm 1 (Best_Trail(S, M))

1. begin

2. foreachu € S

3. for ;s = 0to M do

4. D + {u};

5. for j = 0to I.zpiore do
6. t « select(D);

7. D + expand(D,1);
8. end for

9. for j = 0to I onperge do
10. t « select(D,df,j);
11. D + expand(D,t);
12. end for

13. B + B U {best(D)}
14. end for

15. end foreach

16. return B

17. end.

Figure 2. The Best Trail Algorithm. The algo-
rithm takes two arguments. A is the number
of repetitions and S is a set of starting URLs.

Starting from each node in S, the algorithm follows links
from anchor to destination according to the topology of the
web site. At each stage of the traversal, one of the tips (the
leaf nodes of the navigation tree) is chosen for expansion.



Figure 1. An example Web topology, extracted from a crawl of the web site for the Graphviz project.
The numbers denote unique ldentifiers assigned to all URLs. The gaps in the sequence of IDs are
due to URLs referenced by the website to pages elsewhere on the web. These URLs are reference,
but the textual content of the pages is not indexed. The numbers in parentheses denote relevance

scores for the query “dotty”.

The destination node of each outlink whose source is rep-
resented by the chosen tip is assigned a new tip which is
added to the navigation tree, along with a computed trail
score. Previously visited nodes in the web graph will re-
sult in distinct nodes in the navigation tree, with identical
page scores but different trail scores. Figure 3 shows an ex-
ample navigation tree based on the web topology shown in
figure 1.

The algorithm has a main outer for loop which computes
the best trail for each URL. The second loop recomputes the
best trail M times. The two innermost loops comprise the
exploration and convergence stages of the algorithm, both
of which expand the navigation tree - from which the best
trail is selected by the best() function. The number of it-
erations in the exploration phase is set by I.gpiore, Whilst
the number of iterations in the convergence phase is set by
Iconverge- During the exploration phase, the select() func-
tion selects a tip to expand where the probability of a tip ¢
being selected is given by

o p(t)
PD:t) = s "0y

where p is a scoring function for the trail, making the proba-
bility of any node being selected directly proportional to its
score. During the convergence phase, the probability of a
node ¢ being selected is dependant only on its relative rank,
7(t), in the ordered set of candidate tips, and is given by

df ™)

P(D;,t,df,j) = ST @

where j is the number of completed convergence iterations
and 0 < df < 1is a discrimination factor. The discrimina-
tion factor allows us to discriminate between “good” trails
and “bad” trails by reducing the influence of trails with low
scores. Thus during the convergence stage “better” trails get
assigned exponentially higher probability. Setting df equal
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to 1 would imply a uniform random selection, whilst as df
tends towards O, the behaviour of the algorithm tends to-
wards that of a best-first approach. The degenerate case of
the Best Trail algorithm where df = 0, I.ypiore = 0 and
Iconverge>o is equivalent a simple best-first algorithm. The
rank of a tip, t, (or of the trail leading to it), denoted by
7(t), is determined by the tip’s position within the ordered
set of candidate tips. The position of ¢ is determined by
comparing trails based upon

1. The number of query terms matched by the trail ending
att.

2. The maximum number of query terms matched by any
single page in the trail.

3. The trail score, p(t).

It has been argued that the number of keywords in a query
that are matched by a document should take precedence
over other scoring mechanisms, and that the terms for a
query may be spread across several pages [2, 26, 18]. Rank-
ing the trails first upon the number of keywords that are
matched, incorporates both of these ideas and improves rel-
evance.

2.3 Scoring Trails

We compute the relevance or score of a trail, T =
Ui,Us,...,U,, as a function, p, of the scores of the in-
dividual web pages of the trail. We need a function which
encourages non-trivial trails whilst discouraging redundant
nodes. The following functions perform well in this regard:

1. The sum of the scores of the distinct URLs in the
trail divided by the the number of pages in the trail
plus some constant (e.g. 1). We refer to this scoring
function as sum distinct. This function penalises the
trail when a URL is visited more than once. It also
penalises trivial singleton trails and encourages trails
where every node makes a significant contribution to
the score. Removing the constant factor leads the ob-
jective function to return a maximal score in the case
of a singleton node where that node is the highest scor-
ing page in the corpus. Scoring functions such as the
average score or maximum score of a node on a trail
also suffer from this problem.

2. The discounted sum of the scores of the URLSs in the
trail, where the discounted score of U;, the URL in the
ith position in the trail, is the score of U; with respect
to the query multiplied by v and raised to the power of
1 — 1, where 0 < v < 1 1is the discount factor.

3. The weighted sum of discounted scores, where the
additional weighting is achieved by discounting each
URL according to its previous number of occurrences
within the trail. The weighted score of T' is given by

n

p(T) = weighted(T) = ZM(Ui) ,yz'—l 5e(@)

i=1

where ¢(i) = [{U;]j < i AU; = U;}| and § is a
second discounting function, which reduces the im-
portance of nodes with equal content. We note that
although i = j implies U; = Uj, U; = U; does not im-
ply @ = j. Two distinct nodes may be considered equal
if they have equal content, determined in advance us-
ing checksum of page contents and comparing likely
candidates. This definition of node equality can eas-
ily be extended to refer to near-duplicate documents
[8, 35].

Figure 4 shows examples of score shows how the trails in
the navigation tree (figure 3) would be scored after two ex-
pansions (of tips 1 and 3). The examples shown in this paper
are constructed by computing two trails from each starting
point - one scored using the sum distinct metric and one us-
ing the weighted sum.

Tip | Weighted Sum | Sum Unique
1 1.8076 0.9038
2 3.2593 1.2477
3 6.5056 2.6905
4 1.8076 0.6025
5 3.6534 1.4230
6 1.8076 0.6025
7 1.8076 0.6025
8 1.8076 0.6025
9 7.5940 2.5018
10 6.5056 2.0179
11 6.5056 2.0179
12 6.9194 2.2018

Figure 4. Table showing trail scores using
Weighted Sum and Sum Unique. Example
trails scores. The high score associated with
the first trail has a useful control in forcing the
most relevant pages to the forefront of the dis-
play. Merging trails with common roots gives
a good ordering to the display, as can be seen
in figure 5
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Figure 3. An example navigation tree based upon the site structure shown in figure 1. Each node
is annotated with a unique tip id, a URLid, with the corresponding URL also shown. Red ellipses
denote candidate tips for expansion. The tip humbers are assigned in sequence during the iteration
of the algorithm. In this example, the tips humbered 1, 3, 9, 5 and 24 were expanded.

2.4 Sorting and Filtering

The returned set of trails is unsorted and may contain redun-
dant information. To sort the trails would appear to be trivial
- we simply apply the same rules of sorting by number of
keywords matches and then by the trail score. However, we
have more than one mechanism for scoring trails, and we
can compute trails in different navigation trees using differ-
ent functions. We can sort the resulting trails using a set of
scoring functions, F', by specifying that a trail, T} should
be ranked higher than a trail T if :

F(m) F(T)
L T+ 1@~ 2 T + 170

We can improve results by removing redundant trails and
redundant sections within trails. To achieve this, we need
to define precisely what is meant by a redundant trail. We
say that a trail 77 subsumes a trail 7% if and only if all the
pages in T5 are contained in 7. A trail, ¢ is removed from
a result set, r if and only if there exists a trail 5 € 7 such
that ¢o subsumes ¢; and p(t2) > p(t1). Within a trail T, we
consider a page, t; to be redundant if and only if the page
can be removed whilst still leaving a valid trail through the
web site topology (i.e. if ¢; is the last node of the trail or

(ti—1,t;+1) € E and the information contained on page ¢
is either not relevant or contained in a previous page (i.e. if
p(t) = 0or3jt; =t; Aj < ). These definitions were
arrived at as the result of several experiments and typically
remove trivial reorderings and irrelevant content.

Finally, the trails with common roots are merged into a tree
and presented in the NavSearch Ul [24], shown in figure 5.
Two other interfaces have been

developed for displaying these trails - a flat TrailSearch in-
terface similar to that used by traditional search engines for
displaying linear results and a GraphSearch interface which
displays the results in the form of a graph [41]

3 Evaluation

3.1 A Case Study

A case study was performed into the use of the navigation
engine on the Birkbeck School of Computer Science and
Information Systems (SCSIS). Queries were taken from a
recent log file and analysed. The chief results of the analysis
are presented along with examples.
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Figure 5. Screenshot showing the presen-
tation of results for the query “dotty” on the
topology shown in figure 1.

The trails provide relevant information. For example, re-
sults for the query “andrew” find the home pages of Andrew
Bielinski, Andrew Watkins and Andrew Mair. For the query
“application form”, the first trail identifies the application
form for the MSc E-Commerce course and the second iden-
tifies the application form required for the undergraduate
program (figure 6). The first two trails for the query “xml”,
shown in figure 7, give brief tours of an XML tutorial, al-
ways linking to external resources containing a great deal of
relevant information. The third trail provides an explanation
of XML namespaces connected to hub with lots of XML
references. The use of Potential Gain in the starting point
selection encourages such hubs to be chosen. The fourth
trail details the use and history of XML as a markup lan-
guage and it’s relationship to SGML. Subsequent trails de-
scribe the Information Technology (IT) applications module
on XML.

However, relevant content can be found with conventional,
linear, search engines. More important is that the trails pro-
vide context to show associations and to help disambiguate
the meaning of keywords and page descriptions. For exam-
ple, the structure of the trails for the query “andrew” shows
Andrew Bielinski to be a research student under the supervi-
sion of Mark Levene and that Andrew Mair is (although not
a member of the department) associated with the BSc Infor-
mation Systems and Management course. Similarly, for the
query “neural network”, the first trail shows the course “Ar-
tificial Intelligence & Neural Networks” linked to the home
page of Chris Christodoulou who teaches the course. Chris
Christodoulou is the SCSIS expert on neural networks. The
second trail leads from his home page to the only one of his
papers, “A Spiking Neuron Model: Applications and Learn-
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Figure 6. Trails found for the query “applica-
tion form” on the SCSIS site.

ing” linked to from his home page. The user posing the
query “exam papers” was almost certainly a student look-
ing for past papers for revision. Figure 8 shows that the first
two trails provide exactly that. The second trail shows that
the papers relate to the module “Developing Internet Appli-
cations”. There are suprisingly few past papers available on
the SCSIS site and the remaining trails for this query details
relating to arrangements for sitting exams for that summer.
The context provided by the trails makes it easier to distin-
guish between the two types of result.

Unfortunately, the contextual information can be lost when
inadequate short titles are presented to describe the pages.
For example, in figure 7, it is impossible to tell any differ-
ences between the page which share the title “IT APPLI-
CATIONS”. Similarly, for the query “accomodation” (sic.),
there are many different pages shown in the trails, all of
which relate to the Web Dynamics workshop and contain
the search term, but there is no means to discriminate be-
tween them. The authors of the pages made no changes in
the h1l or title tags by which to identify the differences.
The most appropriate title is contained in a later h3 tag.

The query “accomodation” also highlights another major
problem - spelling errors are not corrected. Minor user er-
rors or parsing errors in the software introduce significant
errors in the presented trails. Similarly, examples such as
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Figure 7. Trails found for the query “xml” on
the SCSIS site.
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“birkbol programmes”, “infirmation systems” and “Infor-
mation Enginerring” highlight the failure of users to con-
struct meaningful, accurate queries [37].

Overall, the filtering operations appear to work well at re-
ducing redundant information without destroying contex-
tual information. However, redundant information appears
commonly when near-duplicate documents cause separate,
highly similar, trails to be created. For example, in figure 6,
pages entitled “IT APPLICATIONS” are distinct but differ
only by the inclusion of an irrelevant “assessment” section.
This small difference causes the creation of 2 separate trails.
This can be fixed with the application of near-duplicate de-
tection algorithms [8, 35].

The link structure can be broken when the crawler-based
engine fails to identify all the possible links. This can
happen for several reasons - malformed URLs, conser-
vative robot exclusion policies [21], javascript links and
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Figure 8. Trails found for the query “exam
papers” on the SCSIS site.

CGI forms. For example, the link between rstudentper-
son.asp?name=Dbielinski and Andrew Bielinski’s home page
is missing, as are the links from all pages in the SCSIS
site to the home page, news, courses, research and seminars
pages. Similar behaviour found with the output of Content
Management Systems (CMSs) such as Vignette or Docu-
mentum. The long-term solution to this problem is to tie
the trail engine into a better IR system and offer interfaces
to the main CMSs. For the current research prototype this is
not feasible, but would be essential if the navigation engine
was to be developed fully.

The conclusion that can be drawn from this analysis is that
the trails found by the navigation engine are useful, but the
overall utility of the system is being limited by problems
with related modules - namely IR, near-duplicate detection
and short title generation. Given all these problem, the over-
all performance of the system is highly promising. How-
ever, to truly test the system’s effectiveness requires an in-
dependent test with real users.

3.2 A User Study

In order to assess the usefulness of the NavSearch interface
and prove the hypothesis that “a trail-based search and nav-
igation engine improves users’ navigation efficiency”’, Mat-
Hassan and Levene conducted a usability study. The results
they obtained from the study revealed that users of the nav-
igation engine performed better in solving the question set
posed than users of a conventional search engine [27].

Users were given two sets of information seeking tasks to
complete based upon the pages in UCL’s official Web site.
Three different search tools were evaluated, one of which



was the navigation engine with the NavSearch interface.
The others were Compass (UCL’s official site search en-
gine) and Google’s university search of UCL2. Subjects
were asked to answer two sets of questions, designed to
be at the same level of difficulty, using either NavSearch
and Google or NavSearch and Compass. The question sets
were formulated so that all the questions fell within one of
five types : fact finding, judgement questions, comparison
of fact, comparison of judgement and general navigational
questions.

Most of the subjects assigned to use Google were more op-
timistic about the initial likelihood of completing the task,
whilst those subjects assigned to use NavSearch were ini-
tially more reserved and pessimistic. None of the subjects
had had any previous experience with NavSearch and famil-
iarity was identified as the main factor in favour of Google’s
linear interface model. Users were reported to have “found
the interface quite intimidating” considering it a “radical
shift” from the conventional layout and format of results.

The interfaces were assessed according to users’ comple-
tion time, the number of clicks employed, the number of
correct answers found by the subjects and the confidence
and satisfaction levels expressed by the subjects. When
asked to compare NavSearch with Google or Compass, sub-
jects expressed a much higher degree of confidence in their
ability to complete future tasks, a higher degree of satis-
faction with NavSearch with regards to the completion of
tasks and a higher degree of satisfaction completion with
regard to navigation and the display of results. Users stated
that “showing link relationship helps” and that the system
provided “useful trails” which gave “an indication of the
pages already looked at and the pages that might be useful
to look at”. 96% of the study’s subjects chose NavSearch
over Google and Compass as their preferred search engine.
Mat-Hassan and Levene concluded that “the proposed user
interface does indeed provide effective information retrieval
assistance”.

4 Implementation

In this section we give a brief outline of the architecture re-
quired to support trail finding and details of the algorithm’s
implementation.

Each node, page or URL is assigned a unique ID. IDs are
32-bit signed integers assigned in sequence (from 1) to each
URL such that any two identical URLs will have an identi-
cal ID. The mapping between URLs and IDs is performed
using Berkeley DB files [38]. Each page is associated with a
relevance score, determined using ¢ f.idf measures although

2 www.google.com/univ/ucl

they may be computed using any information retrieval met-
ric [34, 3]. Given a set of relevances and a graph in this
form, we compute the best trails by running the traversal
stages in a separate threads for each starting point.

There are many ways to access relevance data in constant
time - either through array lookups or hashtables, depending
on the size of the webcase. The graph is stored using the
URL ids as references. Many strategies have been presented
for returning sets of inlinks and outlinks from large graphs
with appropriate time-space trade-offs [5, 32, 6].

At each step of the expand and converge process we must
select a tip for expansion based upon the probability dis-
tribution described in section 2. These distributions have
been carefully selected to allow the use of binary trees for
storing this trail score information. We can implement this
efficiently by using a table describing the tip selection tree
at each stage, reducing the object creation overhead. As-
sociated with each tip is the sum of all relevances for all
descendants, denoted as the subscore, s, and the total num-
ber of descendants which are referred to as the subcount, c.
Figure 9 shows the table storing the tips of the navigation
tree shown in figure 3.

Tip | Weighted Sum | Left | Right | SubScore | SubCount
1 1.8076 2 4 49.9809 12
2 3.2593 3 40.9429 7
3 6.5056 9 5 37.6836 6
4 1.8076 6 7.2304 4
5 3.6534 10 16.6646 3
6 1.8076 7 5.4228 3
7 1.8076 8 3.6152 2
8 1.8076 1.8076 1
9 7.5940 12 14.5134 2
10 6.5056 11 13.0112 2
11 6.5056 6.5056 1
12 6.9194 6.9194 1

Figure 9. Table showing candidate tips for
expansion. SS is the sum of the scores for
the current node and all descendants and SC
is the number of active nodes reachable from
that node. It should be noted that the nodes
in this tree represent tips and should not be
confused with either the nodes of the graph
or the navigation tree produced by the Best
Trail.

When selecting a tip to expand, a random number between
0 and =z is selected where either z is the subscore or

c—1
k=0



which can be computed in constant time by applying the
known result for the sum of a geometric series®. At each
step in the subsequent traversal, this process is repeated for
the nodes to the left and right of the current node, adjust-
ing = and y appropriately. Thus, the interval in which the
selected value lies can be chosen and a direction selected.
Once completed a single tip will remain, which is then ex-
panded. For example, in an expansion iteration, the process
would start with the selection of a random number between
0 and 49.9809. If the number 49 was chosen, the process
would proceed to the right. If the number 35 was chosen,
the process would proceed to the left.

4.1 Complexity

It has been shown how the step select(D;, df, j) can be im-
plemented to run in time O(log(n)) where n is the number
of candidate tips. The function best() has the same time
complexity, but is slightly simpler in that each iteration is to
the left of the current node. Hence, the worst case complex-
ity of algorithm 1 using this implementation can be given
as O(K MI?$?) where I = I.apiore + Iconverge and j is
the maximal outdegree of any link in E. This can be broken
down as follows:

I3 as the worst-case insertion time for a tip. This factor
emanates from the fact that the tree of tips may be-
come a linked list if all new tips are added to the same
part of the tree. This might occur in the simple case
of nodes having identical scores, so these scores are
biased using tiny random numbers to adjust the rank.
The magnitude of these adjustments means that they
affect only the speed of the operation, not the end re-
sults.

B representing the number of potential tips which may be
added to the candidate set at each iteration. This num-
ber would always be added on a fully connected graph,
but graphs based upon Web data are very sparse and
this will never occur in practice.

KMI as the maximum number of iterations the Best Trail
may take to find the given trails.

In practice the tree of tips is unlikely to be skewed to such a
degree. Nor is the graph likely to be fully-connected. How-
ever, if the average-case complexity is performed by sub-
stituting the average outdegree, the results are still inaccu-
rate. Using the weighted average outdegree better models
the expansion of the navigation tree during the expansion
and convergence phases. The weighted outdegree, W, of

3N gk a®(1—a¥7Hh
k=x - (1-a)

a node, n, is defined as the product of the number of out-
links (n, ) from that node and the proportion of links in the
graph which point to that node % It is assumed that
all links are as likely to be followed as any others, given a
sufficient number of queries. It should be noted that, when
expanding a navigation tree, the number of potential trails
to a depth of d is roughly equal to Zle w'. where w de-
notes the weighted average outdegree of a graph. Given that
B is the weighted average outdegree, the average case com-
plexity can be given as O(K M Ilog(IB)). Using binary
trees the average-case complexity of the expand operation
is O(B log BI) since there are, on average, 3 elements to be
added to the list of candidate tips and the complexity of op-
eration to insert these new candidates is equal to that of the
select function - O(log BI).

5 Experimental Results

We have conducted numerous experiments to test the be-
haviour of the algorithm and explore the effect of the var-
ious parameters which control it. These were mostly per-
formed on crawls of the Birkbeck website, the school of
computer science and information systems website and the
JDK 1.4 javadocs, primarily due to the abundance of query
information available to us.

Behaviour of the algorithm is controlled by the parameters
df, Tezpiore> Iconverges M and the set of starting points
{Uo,Uy,...,Uk}. As we would expect, increasing the
value of either of the parameters Ieqpiore OF Ieonverge Pro-
duces higher scoring trails on average (figure 10). Unsupris-
ingly, increasing Iconyerge finds the local limit of the trail
score faster than increasing Iczpiore, as shown by the sharp
rise at the very start of the curve. Perhaps more suprising is
the behaviour when altering the ratio between I¢zpiore and
Iconverge. Increasing Iegpiore Whilst decreasing Icopyerge
increases the scores of the resulting trails if we measure the
relevance using sum distinct but decreases the trail score
when calculated using the weighted sum (figure 11). The
balance between the values Iezpiore and Icopyerge can be
tuned to reflect the importance of the two metrics. Increas-
ing the value of M is less effective, as repeated exploration
from the same node causes many of the expansions to be
duplicates of those performed in other trees. We can use
the multi-treaded environment better by expanding from a
greater number of starting points, as shown in figure 12.

In order to evaluate the effectiveness of the Potential Gain
metric in improving trail scores, we analysed the scores of
trails found by traversing the graph from starting points se-
lected by combining the ¢ f.idf IR measure, u(p), of a page
p with the page’s potential gain, Pg(p) in several different
ways. Comparisons were also made to test the effectiveness
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Figure 10. Increasing either (a) the number of exploration iterations or (b) the number of convergence
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Figure 12. Increasing the number of starting
points increases the score for trails, by allow-
ing a greater number of opportunities for dis-
covery. Trail sets are truncated to the same
size.

of a simple outdegree count, Out(p) and of Kleinberg’s hub
metric[20]. The results showed that, relative to the base-
line of selecting according to u(p), a significant improve-
ment is achieved by taking the highest scoring pages when
scored using u(p) Pg(p) or u(p) log Pg(p). Suprisingly, the
simple metric u(p) log Out(p) also performed well for the
task of starting point selected whilst Kleinberg’s metric per-
formed badly.
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6 Related Work

Many graph traversal and path-finding algorithms have been
developed over the last 50 years and it is not unreasonable
to question the development of a new one. We will consider
the effects of a few of them. A depth-first traversal, for ex-
ample is unsuitable for trail finding as it may tend towards
“black-holes” from which there is no escape. It is consid-
ered unsuitable for crawling for similar reasons. Breadth-
first search is non-viable for anything other than very short
trails, due to the exponential growth of the tree. A best-first
search is possible but will struggle in situations where the
best pages are separated by content which is less relevant -
exactly the situations where automated navigation is most
needed! Another approach that has been used effectively
for computing solutions to the Travelling Salesman Prob-
lem (TCP) is Ant Colony Optimization (ACO) [14]. Each
“ant” is an agent which uses a greedy heuristic to follow
a trail based upon the weight of links and the presence of
a “pheromone”. This pheromone is laid by ants following
a path, based upon the length of the final result. Our own
experiments have provided anecdotal evidence that the Best
Trail algorithm out-performs ACO for web-site trail find-
ing, although the ACO system appears to out-perform the
Best Trail in finding solutions to TSP.

Several systems have allowed the manual construction of
trails. Sillitoe et al. [36] proposed a system for manipu-
lating trails, complete with forks and subtrails. They dis-
cussed a database backed scheme for storing and retrieving
the information. Furuta et al. [15] developed a system for
authoring modifying and re-using Walden’s paths - guided
tours which could be used in a teaching environment. Web-
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Figure 11. Increasing lexpand, whilst decreasing I..»..rq. increases the resultant trail score when
calculated using sum distinct but decreases the resultant trail score when calculated using the weighted
sum The graphs show values for 0 < I.;pi0re < 100 Where Ieopperge = 100 — Iegpiore-

Watcher advises users on navigation possibilities by high-
lighting links as they browse. This forms a trail over time,
but the link-at-a-time approach does not allow the user to
see the context initially. We agree with Joachims et al.’s [18]
belief that “in many cases only a sequence of pages and the
knowledge about how they relate to each other can satisfy
the user’s information need”, but extend this to compute and
show complete sequences in advance. Bernstein’s approach
to constructing trails was to ask the user to “choose an in-
teresting starting point and ask the apprentice to construct a
path through related material”. The tours were constructed
via a best-first page finding scheme using document simi-
larity measures [4].

The concept of Information Units, presented in [26] also at-
tempts to break away from the single page model, returning
small clusters of linked pages answering the user’s query.
The returned units may be more compact than the trails
returned by the best trail, and cover situation which can-
not be handled using trails, but the returned results are not
navigable, nor has there been sufficient consideration to the
display of the results and subsequent user interaction. The
Cha-Cha system [10] presents results in a similar manner
to the NavSearch interface and shows results in context, but
the scoring is only conducted at the page level, the trails
leading to the page are chosen as the shortest paths, not
those with informative content.

Several metrics have been proposed for selecting nodes in
search results which relate to the issue of starting point se-
lection. The most famous, the PageRank citation [30] only
considers the effect of incoming links, whilst Kleinberg’s
Hubs and Authorities metrics and extensions of it only con-
sider the effect of single links in each direction, whilst po-
tential gain will consider the effect of more distant pages
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[20, 22].

7 Conclusions and Future Work

We have presented an algorithm for finding trails across the
graph of linked pages in a web site. Inspired by Bush’s
memex, these trails provide a structure to the returned re-
sults and provide users with contextual information not pro-
vided by traditional search facilities.

Although site-search is of vital importance, and deserves
special attention as an area of research separate from global
search engines, it would be highly beneficial to allow full
web-scale trail finding. Unfortunately, the current architec-
ture will not scale to full-size web data. However, we can
break the problem down. Conventional search engines do
not index the full content of the web. They select some
subset to index based on usage statistics, link analysis or
the output of dedicated crawling algorithms designed to se-
lect high-quality nodes first [31, 11]. We can select a sub-
set of this on which to perform trail computation. For ex-
ample, we could compute trail information on high-profile
or highly-popular sites and return single-page results for
the remaining indexed pages. An alternative strategy is to
construct a restricted graph based upon the search results
for a given query, over which trails could be constructed.
Whilst this approach would suffer less scalability problems,
it might suffer similar performance issues to Kleinberg’s ap-
proach of expanding the search results [20].

The work presented here has many applications in other,
non-hypertext areas. We have built a system called Db-
Surfer, which applies these ideas to solve the join discovery
problem in relational databases by finding trails through the



graph of foreign key dependencies. We have also built sys-
tems for finding trails in program documentation [41] and
source code. In this last example, the results are achieved
by combining trails discovered on several graphs, where
each graph corresponds to interactions in one of five dif-
ferent coupling types (Inheritance, Interface, Aggregation,
Parameter Type and Return Type) [40]. In these exam-
ples, the problems identified earlier are largely eliminated
and the true potential of the trail-based navigation engine
can be clearly seen. The navigation problem is widespread
and occurs in all type of software system. Alan Cooper de-
scribes the phenomenon as “uninformed consent”, when “at
each step the user is required to make a choice, the scope
and consequences of which are not known” [13]. Providing
keyword search and trail discovery over the graph of op-
tions available at the application or operating system level
could greatly enhance user experience. For example in Mi-
crosoft Windows, the query “active desktop” might return
a path Start — Settings — Control Panel —
Folder Options. Finally, we believe that the algorithm
may have applications in the fields of game playing and op-
timization problems.
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