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Abstract

In 1944, McKinsey and Tarski proved that &4 is the logic of the topological interior
and closure operators of any separable dense-in-itself metric space. Thus, the logic of
topological interior and closure over arbitrary metric spaces coincides with the logic of
the real line, the real plane, and any separable dense-in-itself metric space; it is finitely
axiomatisable and PSPACE-complete. Because of this result S4 has become a logic of
prime importance in Qualitative Spatial Representation and Reasoning in Artificial Intel-
ligence. And in Logic this result has triggered the investigation of a number of variants
and extensions of §4 designed for reasoning about qualitative aspects of metric spaces.

In parallel to this line of research (but without much interaction), Philosophical Logic
and Al have suggested and investigated a variety of logics — such as conditional logics,
certain non-monotonic logics, and logics of comparative similarity — which are natu-
rally interpreted in metric (or more general distance) spaces and which contain a binary
operator for comparing distances between points and sets in such spaces.

The contribution of this paper is as follows: We suggest a uniform framework covering
large parts of these two lines of research, thus enabling a comparison of the logics involved
and a systematic investigation of their expressive power and computational complexity.
This framework is obtained by decomposing the underlying modal-like operators into first-
order quantifier patterns. We then show that quite a powerful and natural fragment of
the resulting first-order logic can be captured by one binary operator comparing distances
between sets and one unary operator distinguishing between realised and limit distances
(i.e., between minimum and infimum). Due to its greater expressive power, this logic
turns out to behave quite differently from Tarski’s S4. We provide finite (Hilbert-style)
axiomatisations and EXPTIME-completeness proofs for the logics of various classes of
distance spaces, in particular metric spaces. But we also show that the logic of the real
line (and various other important metric spaces) is not recursively enumerable. This result
is proved by an encoding of Diophantine equations.

1 Introduction

Tarski’s work on the ‘algebraisation’ of mathematical theories has had numerous repercussions
in logic and its applications. The one that is relevant to this paper is that propositional modal
logics like 4 (originally introduced as a logic of necessity and possibility by Lewis in [17] and
a logic of ‘provability’ by Orlov [22] and Gddel [11]; see also [1] and references therein) can
be used for reasoning about topological spaces.



In their seminal paper [20], McKinsey and Tarski showed in fact that S4 is sound and
complete with respect to the interpretation of its possibility and necessity operators as the
topological closure and interior, respectively. More importantly, according to their main
theorem, this interpretation can be taken over any Euclidean space where the topology is
defined by the standard Euclidean metric. As S4 (extended with the universal modality)
can express many important topological relations over spatial regions (such as ‘region X is a
tangential proper part of region Y’ or ‘regions X, Y and Z are externally connected and share a
common point’), on the one hand, and is of ‘reasonable’ computational complexity (compared
with the corresponding first-order logics which can be even non-recursively enumerable; see
[13, 4]), on the other hand, this logic and its various fragments and extensions provide basic
formalisms for spatial representation and reasoning in Al; see, e.g., [8, 24, 2, 38, 26, 23, 34, 16]
and references therein.

Topology abstracts away from the metric aspects of geometry, in particular the ‘qualita-
tive’ notion of relative or comparative distance. For example, both Hilbert [15] and Tarski
[28] used the 4-ary relation ‘the distance between  and y is the same as the distance between
u and v’ in their axiomatisations of Euclidean geometry. In the context of comparative sim-
ilarity, Lewis [18] considered the ternary predicate ‘x is more similar to y than to z,” while
Williamson [37] the 4-ary one ‘@ resembles y at least as much as u resembles v.” Quite re-
cently Giritli [10] has axiomatised and investigated de Laguna’s [6] ‘can-connect’ predicate:
a solid X can connect two other solids Y and Z if X can be moved to a position where it
contacts both Y and Z. Such relations of comparative distance have been exploited to provide
a semantics for various modal formalisms: in conditional logic [18, 21, 27], the conditional
implication ¢ > 1 is regarded to be true in a world if ¢ is true in every closest p-world. Going
further in this direction, the notion of relative similarity between worlds has been proposed
as a semantic underpinning for belief revision and certain forms of non-monotonic reasoning
[7, 27]. Finally, in modal logics for spatial reasoning, relative distances are used to interpret
geometric modalities [33, 25].

In this paper we propose and investigate a uniform modal logic framework covering large
parts of these two lines of research: reasoning about topology and relative distance in metric
and more general distance spaces. In particular, we explore the interaction between these two
notions.

Our starting point is to analyse the explicit quantifier patterns that are used to define the
truth conditions for the corresponding ‘modal’ operators. Let (A,d) be a metric space and
R>Y the set of positive real numbers. Then

e the interior of a set X C A is the set

0X = {ueA]EI:BER>OVv€A(d(u,v)<x—>U€X)},

e the universal modality V is defined by
VX = {ueA]VweR>OVUEA (d(u,v) <z —veX)}

(that is, VX = A if X = A and VX = () otherwise),
e the derived set of X is

0X = {ueA|VzeR"eA (ve X A0 <d(w,v) <z)}.



To make the quantifier patterns above more explicit, we can introduce modal-like parame-
terised operators of the form 3<%, 3=¢ 3I=¢ 35§ (and their duals V<%, V77, etc.), where the
variable x ranges over R>? and can be bound by the quantifiers Vo and 3z. Intuitively, if
is assigned a value a € R>?, then 3<*X is the set of all points that are located at distance
< a from at least one point in X. In this language, the intended meaning of the operators
considered above can be represented in a clear and concise manner:

OX = 3v<rX,
VX = Vav<rX,
0X = ‘v’:pﬂi%X.

Observe that in all our examples so far the quantifiers 3x and Va over the real numbers have
been followed by exactly one parameterised operator ranging over the metric space. Restricted
to the parameterised operators of the form 3<%, 3<% V¥<? and V=%, the resulting logic over
metric spaces is equivalent to S4,,, that is, S4 with the universal modality [29].

A number of other well-known ‘modal’ operators can be obtained if we allow formulas
in which the quantifiers 3x and Vx are applied to Boolean combinations of formulas starting
with a parameterised operator. For example, the binary ‘closer operator’ X = Y returning
all the points that are closer to X than to Y (first introduced in [30]) requires a Boolean
combination of parameterised operators over the metric space:

X £V = 3z (3UX A-IFY).

Another example of a modal operator of this sort is the conditional implication X > Y [18].
If our metric (or distance) space (A, d) satisfies the so-called limit assumption

d(X,Y) = inf{d(u,v) |ue X,v €Y} = min{d(u,v) |ue X,veY}, (1)

for all X, Y C A, then a natural system for conditional implication [18, 7, 27] is obtained by
setting1

X>Y = F3X — Jz (I=°X A -IFF(X AY)).

The interpretation of X > Y over spaces without the limit assumption has been proposed
and investigated by Veltman [35, 21]:

X>Y = 339X - Ip(IFX A 35X A-Y) V(X AY))).

In this paper, we consider the language (called QML) obtained by considering all for-
mulas in which the quantifiers 3= and Va over the reals are applied to Boolean combinations
of formulas starting with the parameterised operators 3<%, 3%, V<% or V=*. As we have
seen above, this language covers the most important modal languages introduced in the lit-
erature so far for reasoning about topology and comparative distance/similarity in metric

Tt should be noted that instead of distance spaces, in conditional logic one mostly considers models con-
sisting of worlds w which come with additional strict partial orders <., over the set of worlds to represent the
relative distance to w. This semantics is more flexible than using the order <<, induced by a distance space
defined by <% (z,v) iff d(w,z) < d(w,y). However, according to the classification in [9], the system obtained
using distance spaces corresponds to the conditional logic of frames satisfying the normality, reflexivity, strict
centering, uniformity and connectedness conditions.



and distance spaces. Note that the syntactic condition imposed on QM L-formulas resembles
the definition of the computational tree logic CT L™ in which path quantifiers are applied to
Boolean combinations of formulas starting with a temporal operator; see [36] and references
therein. The fragment S4,, of QML corresponds then to the standard computational tree
logic CT L where path quantifiers can only be directly applied to formulas starting with a
temporal operator.

For OML, we analyse the following problems:

e Is it possible to capture the language QML by means of a (natural) modal language
without first-order quantifiers and parameterised operators? Omnce such a modal lan-
guage has been found, do languages previously introduced in the literature correspond
to some of its natural fragments?

e [s the resulting logic axiomatisable over interesting classes of distance spaces? Are mod-
ular axiomatisations possible? In contrast to §4,, does the resulting modal language
have enough expressive power to distinguish between important spaces?

e What is the computational complexity of deciding validity over important classes of
distances spaces?

Our main results are as follows: We show that there is indeed a modal language (called
CSL) with one binary and one unary operators (for comparing distances and distinguishing
between inf and min; see (1)) which is expressively complete for QML. We provide modular
axiomatisations of the logics in the language CSL interpreted over arbitrary and symmetric
distance space, distance spaces with the triangle inequality, as well as standard metric spaces.
The validity problem is proved to be EXPTIME-complete for all those classes of spaces. In
contrast, the logic of the real line (and other Euclidean and discrete spaces) is shown to
be non-recursively enumerable. This is proved by a reduction of the solvability problem for
Diophantine equations.

2 The logics

We begin by defining the syntax and semantics of the qualitative metric logic QML outlined
in the introduction. Starting with a countably infinite set {p1, po, ...} of atomic terms (unary
predicates or spatial variables), we define closed QML-terms T and QML-terms o by the
following inductive rules:

T u= p; | o1 | mNm | Jzo,

o u= 71| -0 | oMoy | 3% | 357,
Other Boolean operators will be used as abbreviations: 7; U7y is a shorthand for —(—7M—7y),
11 — 79 for =(71 M —72), 71 <> T for (11 — 72) M (12 — 71), T for p1 — p1, and L for = T. As
usual, we introduce the universal quantifiers as the duals of the existential ones: Vxo is an
abbreviation for =3z—0, V<7 for =3<%—r, and similarly for ¥<%7. It should be emphasised
that expressions like 3<% (p M 3<%py) are not well-formed terms of QML: each pair of nested
occurrences of operators of the form 3<% and 3% must be interleaved with a quantifier 3x.
QM L-terms are interpreted over distance spaces, that is pairs (A, d) where A # () and
d:AxA — R" with d(u,u) = 0, for all u € A (here RT is the set of non-negative real



numbers). If the distance function d on A is symmetric and satisfies the triangle inequality,
that is, if the conditions

d(u,v) = d(v,u), (sym)
du,w) < d(u,v)+ d(v,w) (tri)

hold for all points u,v,w € A, then (A,d) is clearly a standard metric space. We remind the
reader that, for a point v € A and a set A C A, the distance d(u, A) from u to A is defined
by taking

d(u, A) = 52£d(u,’u). (2)

If A =0 then, by definition, d(u, A) = +00. We say that the distance d(u, A) is realised (by
a point v € A) if d(u, A) = d(u,v); in this case d(u, A) = min,eca d(u,v).
A distance model is a structure of the form

J = (Aj,dj,pf,pg,...), (3)

where (A7, d”) is a distance space and the pg are subsets of A7. Let o be a QM /L-term and
a € R*. We define the extension 0°[a] of o in J on a inductively by taking

pila] = »j.
(~o)la] = A7\ o7a),
(01N o2)’[a] = ofla] No3[d],
(3<*7)[a)] = {ue AY | (d(u,v) <a A vera])},
(35°7)a] = {ue A7 | (du,v) <a A vera])l,
(Fzo)’la] = | o7l

beRt

Note that the extension 77[a] of a closed term 7 does not depend on a; in such a case we
simply write 77. Note also that in the definition above we allow quantification 3z over non-
negative real numbers. To restrict quantification to the positive reals (as in most examples in
the introduction), one can use terms of the form 3z(3<*T Mo). Indeed, in this case we have

(F2(3Tno)’ = |J o)
beR>0

because (3<*T)?[0] = () and (3<*T)7[a] = A?, for a > 0.

We say that a closed QML-term 7 is satisfiable (in a class C of models) if there is a
distance model J (in C) such that 77 # (). And we say that 7 is valid (in C) if 77 = A?, for
all models J (in C). Terms 71 and 7 are called equivalent (71 = 7o, in symbols) if 77 = 75,
for every distance model J.

Our first result in this paper is that the logic QML turns out to be as expressive as its
fragment which only deals with comparing distances. Given two terms 7 and 7, how can we
define the property ‘ry is closer than 75’7 The language of QML suggests four possibilities:

Jx (I 7 M-I 1), (I M _\HSZTQ),

EIx(EISle M —EISQ:TQ), 335(3971 M—=3<%n).



In fact, the difference between them is quite subtle. Let us see first their semantical meaning:

(B3 n N-37))” = (Be(3<n N-3"n))” =

{uGAj|dju7'f)<dj(u 7'23)} (4)

(3z(3%"m N —-37n) )j = {ue A? | v e o Vw € 73 d’(u,v) < d’(u, w)}, (5)
(EI:U(H— 7 M =3 )j = {ue A? | Jv e Vw € 75 d°(u,v) < d’(u, w)}. (6)

Note that we always have (4) C (5) C (6), and the difference between these sets can only

contain points u with dj(u, le) = dj(u, 723) More precisely, it is not hard to compute that

u € (6)\ (5) iff d>(u,77) = d’(u,75) and d’(u,77) = d’(u,v1) for some v; € 77, i.e., the
distance d”(u,7{) is realised (by the point v1). And u € (5)\ (4) iff d°(u,7{) = d”(u,13),
d’(u, 7{) is realised, and d”(u,7s) is not realised. Thus, (5) and (6) can be expressed using
(4) and the following ‘diagonal’ of (6):

(3z(3=*r N —E|<w7')):i = {ue A? ‘ d”(u,77) is realised }. (7)

Denote the QM/L-terms from the left-hand sides of (4), (5), (6) and (7) by 71 & 7o,
T1 = 19, 71 = T2 and (DT, respectively. Then we have ()7 = (7 = 1) and

T1 =Ty = (7‘1 = 7'2) L (—\(TQ = 7'1) |_|®7'1 |_|—|®7'2),

TIET = (7‘1§:7'2)|_|(—\(7‘2§:7'1)|_|®7‘1). (8)

Note also that, over the class of models satisfying the limit assumption, the following equiv-
alences hold: M7 « 7= Landp&=19Y « o=9Y « ~(P=y).

Consider now the sublanguage CSL (for comparative similarity logic) of QML with terms
7 defined by the rule

T ou= p | or | N | O | &

Given a QML- or CSL-term 7, denote by at 7 the set of atomic terms occurring in 7, and
by com 7 the set of all subterms ¢ of 7 such that

e 7 contains a subterm of the form (Ny, ¢ &= ¥, or ¢ & o, if 7 is a CSL-term;

e 7 contains a subterm of the form 3<%y or 3%y, if 7 is a QM L-term.

Theorem 1. For every closed QML-term 7, there exists an equivalent CSL-term T such that
atT =at7 and comT = {¢ | ¢ € comT}.

Proof. We proceed by induction on the construction of 7. The basis of induction and the
case of the Booleans are trivial. Suppose now that 7 starts with Jz. Using the equivalence
Jz(pUv) = JrpU Tz and the classical transformation to disjunctive normal form, we obtain

7= ([ |30 [ 30 []-3%¢; 0 [|-3%¢) ns, (9

i€l i€l Jj€Jo jeJ

where 7/ is a closed QM L-term (here we also use the obvious Jz(xM7') = (JzxM7’)). Thus,
without loss of generality we may assume that 7 is just the first conjunct of (9). We can also
assume that Iy, I, Jo, Ji are all nonempty as 3<*T = -3<? | = 3I*T = -3¢ =T.



Let I =1IyUli, J = JyUJ;. We show now that 7 is equivalent to the CSL-term

=[] @eg)n [] @=d)n [] @@= (10)

iely,jet i€l,j€Jo €l jedr

where = and = are regarded as abbreviations defined by (8).

It follows from definitions and the induction hypothesis that 77 C 77, for every distance
model J. Clearly, we also have at7 = at7 and com7 = {¢ | ¢ € com7}.

Conversely, suppose that w € 77, for some distance model J. Then, by the induction
hypothesis, there exist a;; € RY, for i € I,j € J, such that

w € (3%p; M =35%;) [ay], i € Io,j € Jo; w € (3% M=3<%Y;)[ay;], i € Iy, j € Ju;
w € (I M=357;)[ay;], i € I1,j € Jo;  w € (3% M=3%;)[ay;], i € I,j € Ji.

We need to find an a € R™ such that w belongs to each of the sets

(3%%¢;)7[a), i € Io, (—=3%%;)7a), j € Jo,

~ 11
@)l ich, (-39l j e . 1D

Let m; = min{a;; | j € J}, for i € I. Then w belongs the sets in the first column of (11), for
any a > max{m; | i € I}. Similarly, let m’ = max{a;; | i € I}. Then w belongs to the sets in
the second column of (11), for any a < min{m/ | j € J}. Thus, w belongs to all of the sets
in (11) whenever m; < a < m/, for all i € I,j € J. By definition we have m; < a;j < md for
alli € I and j € J, and so the required a must exist. a

Note that the translation 7 +— 7 defined in the proof above involves two exponential
blowups: the reduction to the disjunctive normal form (9) and the multiple occurrences of
the @; and 1, in (10). We conjecture that QML is exponentially more succinet than CSL
— similarly to C7 L1 being exponentially more succinct than C7 £ [36]. However, according
to Theorems 8, 17 and 28 below, CSL and QML turn out to have the same computational
complexity as far as the satisfiability problem is concerned.

We have already mentioned in the introduction that the modal logic §4,, is equivalent to
a proper fragment of CSL. Indeed, let us introduce the following abbreviations:

Or = (T&e-7), Or=~(Tes7), Vr = a(-rel), It = (re 1) (12)

Then, clearly, Ot is dual to 7, V7 is dual to 37, and these operators represent, respec-
tively, the interior operator, the closure operator, the universal modality, and the existential
modality. Thus, §4, can be defined as the logic

T u= p; | 7| mNm | O | V7

interpreted over distance models based on metric spaces.
Recall from the introduction that over spaces satisfying the limit assumption the condi-
tional implication > can be defined as

p>9 = (p=1) = (p=(pn)).

Conversely, over such spaces we also have

p=¢ = =(¢> L) ((pU) > ).



Thus, conditional logic interpreted over distance spaces with the limit assumption corresponds
to the —fragment of CSL. In this paper, we do not consider models with the limit assump-
tion; for a comparison between the logics interpreted in models with and without the limit
assumption the reader is referred to the discussion at the end of the paper.

Let us now turn to the decidability, complexity and axiomatisation problems for QML
and CSL. The most transparent case, which actually demonstrates some basic ideas and
constructions required for the more complex ones, is the class of all and all symmetric distance
models.

3 CSL over arbitrary and symmetric distance models

Our plan is as follows. First we show that the satisfiability problem for CSL-terms over the
classes of all and only symmetric distance models is decidable. As a consequence of the proof
we obtain the EXPTIME upper bound for this problem, and we establish the matching lower
one by interpreting in CSL the global consequence relation for the modal logic K which is
known to be EXpTIME-complete. Finally, we use the decidability proof to find a transparent
Hilbert-style axiomatisation of CSL (and so of QML as well).

3.1 Decidability and complexity

The general scheme of our decidability proof is similar to many other decidability proofs for
modal (temporal, dynamic, etc.) logics. Given a term 7, we take an appropriate ‘closure’
cl 7 of the set sub 7 of subterms of 7, introduce a syntactical notion of a ‘type’ approximating
those subsets of cl7 that can be realised in distance models, and then try to construct a
model realising a given type ¢ with 7 € ¢ by providing first a ‘witness type’ ¢, > ¢, for each
¢ &= L € t, then witness types for comparisons in all these ¢, and so on. So far the scheme is
pretty standard. The most essential difference of our construction is that some of the witness
types t, represent sets of isolated points, while others — namely, those t,, for which =(Dp € ¢
— represent infinite converging sequences of points. The main difficulty of the proof is to
define a distance function over all these points which respects the comparisons ¥ £ x in their

types.
Recall that, for a CSL-term 7, the set com 7 of ‘comparisons’ in 7 was defined as

comT = {p, | =t esubrU{p | Op esubr}U{L, T}.
Define cl7 to be the closure under (single) negation of the set

subTU{p =9 |p,¢p e comTU{D¢ | ¢ € comT}.

To understand what a type for 7 could be, consider first a distance model J of the form
(3) and a point u € AY. The 7-type of u in J is the set

') = {pedr|uec’)
Clearly, this set is Boolean closed in the sense that

o —~pct?(u)iff ¢ & t7(u), for ~p € cl, and
o oMy € t?(u) iff g, € t?(u), for MY € clr.



Besides, t”(u) provides us with some information as to which of the sets ¢7,¢” € comT is
closer to u and whether the distance from u to ¢? is realised. Indeed, this information is given
by the linear quasi-order <;s(,y on com 7 and the subset g;5(, of com 7 defined by taking, for
all p,1 € com,

o <puy ¥ iff d(u,¢?) < d(u,9?) iff =(y = ¢) € t(u),

13
€ opn if Jve 07 d’(u,v) = d”(u, @) iff O¢ € t’(u). (13)

We will need the following obvious facts:

e ¢ € comT is a <y5(,y-minimal element iff d’(u,¢”) = 0, which means that u is in the
closure of the set ¢” (in this case ¢ € g, () e ©?);
® ¢ € comT is a <p5(,y-maximal element iff d’(u,¢?) = 400, which means that ¢ = ()

(in this case ¢ & 013(y))-

Denote by <, the strict (partial) order induced by <;s:
P <pu ¥ Iff @u,¢?) < (u,y?) iff o= et (). (14)

These considerations suggest the following syntactical approximation of the ‘real’ T-types.
For a Boolean closed subset t of cl7, we define, by analogy with (13)—(14), binary relations
<¢, <t and a set o as follows: for ¢,y € comT,

p<py iff p=pet, o<y iff =(v =) et p e o iff Opet.

Now we say that a Boolean closed subset t of cl7 is a 7-type if it satisfies the following
conditions:

e <, is a linear quasi-order on com T,

e tNcom is the set of those <;-minimal elements that belong to o,

e | is a <;-maximal element, and no <;-maximal term belongs to o;.

Let mint and maxt denote the sets of <;-minimal and <;-maximal elements, respectively.
We also write ¢ ~; ¢ if ¢ <; ¢ and ¢ <; 9.

Lemma 2. FEvery t-type t is determined by the sets t N atT, o, and the order <;. In
particular, the number of distinct T-types does not exceed glatT| . glcom| . olcom|*

To motivate our next definition of a link, which will be used to provide witnesses for
comparisons ¢ = 1 (i.e., Jp), consider a simple example.

Example 3. Suppose that we want to construct a model J satisfying the term

7 = (T =p1) N (p1 = p2) TOp2 N -Op1 (15)

at some point u. As u € (@pg)j, we should also have u € (p2 &= 1)? (the distance to the
empty set cannot be realised), and so u € (p; & L)”. Therefore, we need witnesses v; and
vy (which can be a single point or a sequence of points) such that d”(u,v;) = d”(u,p]) with
0 < d?(u,v1) < d?(u,v2). Asu € (Opz2)? and u € (-®p1)?, va should be a single point, while
vy should be an infinite set, say, {v? | n € N}, such that lim,, o d°(u,v}) = d°(u,p7) with



d?(u,v}) > d’(u,p?) for all n. Thus, we arrive to a model J such as the one in the figure
below:

U1 U2

u

The following obvious lemma ensures that even if we need an infinite set as a witness, all
of its points can be chosen to have the same type. For a model J and a type t we write ¢7 for

{ve AV |t7(v) =t}
Lemma 4. Let J be a distance model.

(i) For all u,v € A? and 1) € comT, we have ¥ <pw) L W Y <pe) L if PI £ 0.

(ii) Suppose that u € A and o’ # O for some p € comt. Then there is a T-type t such
that o € t and d(u,p’) = d(u,t”), with d(u,¢”) and d(u,t”) being realised or not realised
simultaneously. Moreover, for all ¢b € com T we have:

Y et implies ¥ <g @,

. (16)
©E s, p=s Y, andp €T imply P € os.

This observation suggests the following definition. Let s,t be 7-types, ¢ € com7, and
¢ ¢ s. The pair (s,t) is called a p-link if, for every ) € comr, the conditions (16) are
satisfied and we have ¥ <4 L iff ¢» <; L. Thus, a @-link (s,t) provides s with a p-witness t.
A complete set of such links will be called a 7-diagram. More precisely, a set D of T-types is
a 7-diagram if the following conditions are satisfied:

there exists t, € D with 7 € t,,
for all s,t € D and 9 € com T, we have ¢ < L iff ¢p <; L.

for every s € D and every ¢ ¢ s with ¢ <, L, there exists t € D
such that (s,t) is a ¢-link,

Theorem 5. The following conditions are equivalent, for every CSL-term 7:

(i) 7 is satisfied in a distance model;
(ii) there exists a T-diagram;
(iii) 7 1is satisfied in a symmetric distance model.
Proof. (i) = (ii) If J is a distance model with 77 # ) then it is not hard to check that the

set D = {t’(z) | * € A%} is a T-diagram.
(ii) = (iii) Suppose now that D is a 7-diagram with 7 € ¢,. Let

{0, pp—1} = {p€com7|p <y L, forallt e D},

with all the ¢; being distinct.

Consider the tree I' whose nodes are the words over the alphabet {(i,j) | ¢ < k, j € N},
the root is the empty word A, and the immediate successors (children) of a node a € I" are
the words of the form «(i,j). We are going to ‘unravel’ D into a subtree A of I" endowed
with a labelling function tp : A — D. Then we will define a symmetric distance function d

10



on A that respects the comparisons from the types given by tp. Thus, the triple (A,d,tp)
will provide us with the components for the required model satisfying 7.

The tree A and labelling tp are defined by the following inductive procedure. First we set
A € A and tp(A) = t.. Then, at every next step, we choose some shortest word o € A that
does not have children in A yet. As D is a diagram, for each i < k with ¢; ¢ tp(a) there
exists t; € D such that (tp(a),t;) is a ¢;-link. We extend A according to the following rules:

o if ¢; € tp(a) then a(i,j) ¢ A, for all j € N — tp(a) does not require p;-witnesses,

o if ¥; € 0yp(a) \ tp(@), then a(i,0) € A, tp(a(i,0)) = t;, and (i, j) ¢ A, for all j >0 —
tp(ar) requires a single yp;-witness,
o if v; & 01p(a), then a(i,j) € A and tp(a(i,j)) = t;, for all j € N — tp(a) requires

infinitely many ¢;-witnesses.

For a € A and i < k, we set

{CY} if pi € tp(a),
ati= {a(l70)} if pi € Otp(a) \tp(Oé),
{Ol(i,j) ‘ JE N} if Pi ¢ Otp(a)-
Thus, the set a4 = (J; ;. (a+1i) consists of a and its children in A (we always have T € tp(a)).
Let us now define the distance function d. To simplify notation, we write d* for d(c/, ),
where o’ is the parent of a. The values d®, for a € A, are defined inductively as follows.
For convenience we set d* = 1. Now suppose that d® is already defined, for some a € A.

As tp(a) is a type, we can choose numbers d** € [0, d®), for all i < k, satisfying the following
conditions, for all 7,1 < k:

Ao < d"M O @ <oy @1, AT =0 i @; € mintp(a). (18)
Then we set, for all i < k and j € N:

da(i,O) _ da-i-i’ if ©Y; € Otp(a) \tp(a),

o (i,5) o+ o a+1 . : (19)
A\ = (d +(d —d )/(2+])7 1f@i¢@tp(a)'

Thus, we obtain d(a, a+i) = d***. Note that we always have d(o, a(i,5)) < d* < 1. Finally
we define distances between arbitrary nodes in A by taking

0 ifa=g0,
d(a, ) = <d* if ais a child of 3,

1 otherwise.

Clearly, d is a symmetric distance function on A.
For p € cl7, let o® = {a € A | p € tp(a)}. Then > =@ if o € comT\ {¢0,...,0r_1},
anda—i—iggof, for all i < k and o € A.

Lemma 6. Let « € A and i < k. Then d(a, p2) = d®Tt. More precisely,
o if pi € Oip(a) \ tP(Q) then d(a, o) = d*(0),
* i & Opa) then d(o; 1) = limj o d*9) and d(a, 7*) is not realised.

11



Proof. According to our choice of the distances, it suffices to prove the following property:
VBepd 3 eati da,f)<da,p). (20)

To this end we first note that d(a, gpiA Na+) <1 <d(a, goiA \ a+). Therefore we can assume
that 8 € a+ in (20).

Suppose that ¢; € gy(a) \ tp(a). Then a(i,0) € ¢ and (tp(), tp(a(i, 0))) is a @;-link by
the construction. Consider an arbitrary 3 € 2 Na-+. Then p; € tp(3) and (tp(a),tp(B)) is
a -link, for some | < k. Hence ¢; <;,(4) @1 by the definition of a link, and then doi:0) —
dott < ot < dP by (18).

Suppose now that ©; € oyp(q)- Then a(i, j) € @2 and (tp(a), tp(al(i,j))) is a @;-link, for
all j € N. Consider an arbitrary 8 € o> Na+. Then ¢; € tp(3) and (tp(a), tp(B)) is a ¢;-link,
for some [ < k. Since ¢; ¢ 04y() and by the definition of a link, we have either ¢; <) ¥1,
O P (o) Pi and @y & 0yp(a)- Hence we obtain, respectively, that either doti < gotl = @b
or d*t = d*tt < dP. Q

Define now a model J by setting A7 = A, d7 = d, and p° = p?, for all atomic terms p.

Lemma 7. For each ¢ € cl7, we have ¢° = p>.

Proof. We proceed by induction on the construction of ¢. The basis of induction and the
case of Boolean operators are trivial. So two cases remain.

Case 1: ¢ = (1o = 11). Suppose that a € (1o = t1)”. Then 9§ # 0. By the induction
hypothesis, this means that ¥ # ), i.e., ¥y = @; for some i < k. If 1 ¢ {©o,...,Qr_1}
then 1 € maxtp(a), and so Yy &= 11 € tp(a). Let 11 = ¢ for some [ < k. In view of the
induction hypothesis and Lemma 6, we obtain d®T* < d**, and so ¢; & ¢; € tp(a) by the
choice of d“.

Conversely, suppose that o € (g £ 11)2. Then 1) <ip(a) ¥1; hence g ¢ maxip(a)
and ¥y = ;, for some i < k. By the induction hypothesis, 1/15 = cpiA, which is nonempty.
If 1 & {©o,...,06—1} then 97 = ¥» = (), and so & € A = p?. Let ¢y = ¢; for some
| < k. Then d®** < d®*! by definition. By Lemma 6 and the induction hypothesis we obtain
d(a,¥3) < d(a,¢7), ie., a € .

Case 2: ¢ = (D). Suppose that a € (D)7, i.e., d(a,?) is realised. We have 97 = ¢4
by the induction hypothesis, and hence 9 € gyp(q), i-€., a € (®)?, by Lemma 6.

Conversely, suppose a € (D)2, that is ¢ € Otp(a)- Then d(a, ¥?) is realised by Lemma
6. Thus, a € (OY)”. Q

Recall now that 7 € tp(\) by the construction. It follows that J is a symmetric distance
model with 77 # 0.
The implication (iii) = (i) is trivial. Q

It follows from Theorem 5 that CSL ‘does not feel’ the difference between symmetric and
non-symmetric models that in general do not satisfy the triangle inequality. Moreover, we
have the following;:

Theorem 8. The satisfiability problem for CSL-terms and closed QML-terms in both the
class of all distance models and the class of symmetric distance models is EXPTIME-complete.
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Proof. We begin by establishing the upper bound. Consider first the case of CSL. Let 7 be
a CSL-term and B the set of all 7-types. By Lemma 2, we have |B| < olat|-lcom7|?

As the third property of a diagram (see (17)) is preserved under set unions, B contains
a unique maximal subset D satisfying this property. It is not hard to see that D can be
constructed using the following elimination procedure (cf. [14]).

Step 0. Set Dy = B.

Step n+ 1. For each s € D,,, we check whether

for every ¢ <s L with ¢ ¢ s, there exists ¢t € D,, such that (s,t) is a ¢-link. (21)

Once we find s € D,, which does not satisfy (21), we set D,4+1 = D, \ {s} and go to step
n + 2. Otherwise (in particular, if D,, = 0)), we set D = D,, and halt.
This procedure will halt in at most |B| steps, each of which takes at most |B x com 7|
checks. Therefore the construction of D requires at most 20([at7||lcom ) operations.
Suppose now that 7 does not belong to any type in D. Then obviously no 7-diagram
exists, and so 7 is not satisfiable by Theorem 5. Now let 7 € t, € D. Then the set

{tn | (ts,t0), ..., (tn—1,tn) are links, for some ty,...,t, € D}.

is clearly a 7-diagram, and so 7 is satisfiable by Theorem 5.

It follows that satisfiability of 7 can be checked in time < 90(Jat 7|-|com 7*) < 20(I71Y),

If 7 is a closed QM L-term then, by Theorem 1 and Lemma 2, there exists an equivalent
CSL-term T such that |at7| = |at 7| and |com 7| = |com 7|. It follows that satisfiability of 7
can be checked in time < 20(71") as well.

The proof of the matching lower bound is by reduction of the global K-consequence relation
that is known to be ExpTiME-hard [31]. As CSL is a fragment of QML, it suffices to consider
the case of CSL only.

We remind the reader that the language Lx of the basic modal logic K extends the
language of classical propositional logic (with propositional variables pi, pe,...) by means of
one unary operator <. Ly is interpreted in models of the form

m = (W7R7p?t7pgl7"')7 (22)

where W is a nonempty set, S C W x W and p?t C W. The value p”* C W of an Li-formula
@ in M is defined inductively as follows:

o (pAY)T =T NyY%

o (-p)N =W\ %

o (o) M={veW |3w (vRwAw e ™)},
We say that o1 follows globally from o and write oo = ¢ if, for every model M, ¢t = W
whenever 3t = W.

Now we define inductively a translation # from L into the set of CSL-terms. Let kg = qo,
K1 = —qo M qi, k2 = —qo M —qp, for some fresh variables qp,q1. Then we set p]” = p;,

(—p)# = ~p#, (o1 A2)# = oF MY, and

(0 = [] (ki = ®rier N ™) N =(kig1 = (kie1 N e™))),
1<3
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where @ is addition modulo 3. We show now that, for any ¢, ¥ € Li, ¥ follows globally from
@ iff (Vo™ — 1)#) is valid in all distance models iff (Vyp# — 9)7) is valid in all metric models
(the universal modality V was defined by (12) on page 7).

Suppose first that ¢ I/ 1. This means that there is a -model 91 of the form (22) such
that ™ = W and r ¢ " for some r € W. As is well-known from modal logic (see, e.g., [3]),
without loss of generality we may assume that (W, R) is an irreflexive intransitive tree with
root r. Let d be the standard tree metric on (W, R), i.e., d(u,v) = d(v,u) is the length of the
shortest undirected path from u to v in (W, R). Consider the tree metric model

J = (W7dap(inapgta 7qgqu)u

where ¢ (i = 0,1) consists of all points u € W such that d(u,r) = 3n + i for some n € N.

Then it is easily checked by induction that xy™ = (x#)?, for every x € Lx. Hence (¢7)? = W

and r ¢ (¢¥7)7, and so the term (Vo™ — 17) is not valid in the class of distance models.
Conversely, suppose that Yo# M —p# is satisfied in some distance model

J = (A& p7,p3, ... 43, q0).
Consider the K-model
N = (AJ,Rj,pf,pg,...)

where uR”v for u,v € A? iff, for some i < 3, u € k7, v € K3y, and d”(u,v) = d”(u, K3y).

[

Again, it is easily checked by induction that y™ = (x#)?, for every formula y € Lx. It follows
that ¢ I/ . a

3.2 Axiomatisation

Now we present a Hilbert-style axiomatisation of the set of valid CSL-terms. Our aziom
schemas are all tautologies of classical propositional logic as well as the following ones:

(=)W EX) — (P EX),

(o = 9) 1~ = X)) — (o= ), )
~((pUv) =) U =((pU) =), (24)
V(g =) — =(p =), (25)
Olpuy) — (OpUOY), (26)
(O@pU)N(p=v)) — Op (27)
OeN=(Y =¢) — OpUy) (28)
Ve =) = (Op — OY), (29)
= (OpN=(T = 9)), (30)
Te, (31)

~(®L, (32)
Cle=Ll)e=1) = ~((pe=l)=1). (33)

Informally, the meaning of these schemas is as follows:
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(23) expresses transitivity of the relations ‘closer’ and ‘not closer,’

(24) says that the union of two sets cannot be closer (to any given point) than either of
these sets,

e (25) that a smaller set cannot be closer than a larger one (and, in particular, that
Boolean equivalence preserves the relation ‘closer’),

e (206) is, in a sense, an (r)-counterpart of (24): if the distance to the union of two sets is
realised, then the distance to at least one of these sets must be realised as well,

e (27) specialises (26): if the distance to the union of two sets is realised and one of them
is closer than the other, then the distance to the former set is realised,

e (28) is a partial inverse of (26): if the distance to one set is realised, and another set is
not closer than the former one, then the distance to the union of these sets is realised,

e the meaning of (29) is clear,

e (30) says that the distance to some set is realised and equal to zero if, and only if, we
are actually in that set (recall that T £ ¢ gives those points whose distance from ¢ is
positive),

e (31) says that the whole space is closer than the empty set, and
e (32) that the distance to the empty set cannot be realised,

e finally, (33)—by definition (12)—is just the classical implication 3—Jp — —FJp; it will
be used to prove various properties like o — V3p, Vo — YW, etc.

It is worth noting that (24)—(29) can actually be replaced with just two axiom schemas using
the operator —. Namely, the conjunction of (24), (26) and (27) is equivalent to

~(pUy) =) U =((pUy) =1),

while the conjunction of (25), (28), and (29) is equivalent to

Vip = ¢) = ~(p=1).

The inference rules of our axiomatic system are standard:

Modus ponens: W, (MP)
Generalisation: . (Gen)
Ve

As usual, the fact that a CSL-term 7 is deducible in the axiomatic system above is denoted
by F 7, and we write g, ..., pn_1 F @, if there exists a derivation of ¢, from the premises
©0, - - - n—1 in which (Gen) is not applied to terms that depend on ¢y, ..., @n_1.

It easy to see that all of our axioms are valid in the class of distance models, and that
the rules (MP) and (Gen) preserve validity. Therefore, the axiomatic system is consistent.
Clearly, we also have the standard deduction theorem:

Lemma 9. If o, =1 then o = o — 1, for any set o U{p, 1} of terms.

Another standard property, the replacement theorem, is a consequence of the following:
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Lemma 10. If ¥y results from 1o by replacing some occurrences of wg with o1, then

FV(po < 1) — (Yo < ¥1).
Proof. Astp —> T, F ¢ - ¢pand - L — ¢, we obtain - V(p — T), - V(¢ — ¢) and
F V(L — ¢) by (Gen), and then, by (25) and (MP),
Fo(ee=ET), FolesEe), Fo(l=e) (34)

Thus, in particular, ‘not closer’ is reflexive which, together with transitivity (23) of ‘closer’
and its negation, gives linearity of the latter:

Falp =) U (Y & o). (35)

It follows that the relation {(p,%) | ® F (¢ &= @)}, for any set ® of terms, is a linear
quasi-order on the set of all terms. In particular,

Fllp=d)n-x&=9) = (p&=x), FEWENWEY) = (@=X).  (36)

By (30), (31), and the substitution instance (—(T &= ¢) M (T & 1)) — (p &= L) of (36) we
obtain
Fo—3p, FVo—o (37)
(the latter implication is obtained from the former in view of the definition Vo = —3—¢).
By (25) and (36),

V(o — 1) — ((po =) — (91 =),

(38)
EY (1 = ho) — ((p = ¢o) = (¢ & 1)),
from which we obtain
FY(e — ) = (Vo — Vo). (39)
And using (33), (37), and (38) we prove
F3dp —V3p, F-3p—V-Jp, FVeo— We. (40)
It follows then from (39) and (40) that
FVYp —1 implies F Vo — Vi (41)

By (39) we have V(M) — (VeMVy), and so - V(po < p1) — Y(po — ¢1) MV (1 — ©o).
By combining this with (38) and (41) we obtain
F V(o < ¢1) — Y((po =) < (p1 =),
FY(po < 01) — V(¥ = ¢o) « (¥ = ¢1)).
Finally, (39) also yields

(42)

FV¥(po < ¢1) — V(=0 < =p1),
F V(0o < ¢1) — Y((po M) < (p1M19)).

Now, using (43), (42), and (29), we complete the proof of our lemma by an easy induction on
the construction of . a

(43)

We are now in a position to prove completeness of our axiomatic system with respect to
the class of (symmetric) distance models. Say that a term ¢ is consistent if I/ —¢. A finite
set @ of terms is consistent if [ |® is consistent. (Note that ® is consistent iff & & L is
consistent.) Our aim is to prove that if a term 7 is consistent then there exists a 7-diagram.
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Lemma 11. FEvery mazimal consistent subset t of clT is a T-type.

Proof. Clearly, t is Boolean closed. As was observed above, the relation <; is a linear quasi-
order on com 7 with T € mint and L € maxt. We also have t NcomT = go; Nmint by (30).
To show that o Nmaxt = (), we use the replacement theorem to obtain - =3¢ «— V(p < 1),
which yields, by (29) and (32), F ¢ — Jp. a

Our next lemma will show how to construct links between consistent types. To prove it
we require some more derivable terms. Let us show first that we have

(e =¢)N3x) — ((pM3Ix) =), F(=(p =) N 3x) — ~(p = (YN 3I)),

F (e =) M -3x) = (PN =3x) = 1), F ((p = ¥)N-Tx) — —(p = (WN-3y).

Indeed, we obtain - V(£ — (p — ¢ 1&)) by (Gen) from a tautology, and then continue:

FvE—= V(e — (png)) by (39),

FY(p = (pN¢)) = ~(p = (pNE)) by (25),

F (e = (eNO) N {e =) = ((pNE) =v) by (36),
F(VEN (g =) — ((pM€) &=1) by propositional logic.

A similar argument shows that F (V&M =(p & ¥)) — =(p &= (¥ 1E)). It remains to take
¢ = Jx or £ = ~Ix and make use of (40).
We shall also need the following theorem:

F L] (=((poUer) =) M (O(poUer) — @pi))- (45)
1=0,1

To prove it suppose that it does not hold. Then the term

o = [ (((oer) = i) U(®(go U 1) N=0p;)).

i=0,1

must be consistent. We show that in this case we would have - ¢ — L, which is a contradic-
tion. Clearly, - ¢ < (’lﬂo M ’lbl) LJ (Xo M Xl) U (¢0 1 Xl) U (XO I Lﬁl), where

i = ((poUe1) =) and x; = (O(poU 1) M-®Ow;), i=0,1.

In view of (24), we have - 1gM¢; — L and, in view of (26), - xoMx1 — L. Consider now the
case of ¥ M x1 (¢1 M xo is treated analogously). By (24) we obtain ¢ F = ((¢0 L v1) & ¢1),
and so ¥y F o1 & o by (36). But this implies 1o M ®(po U v1) = Op1 by (27), which
together with the conjunct —(Ny1 of x1 gives g M x1 F L. It follows that - ¢ — 1 and
therefore (45) does hold.

For finite sets s,t of terms and a term ¢, let

sopt = [1sT=(p &=[11) (O — O1).

Then, for every =) € cl 7, we have

sopt (80, (FU{9})) U (sop (EU{9})) (46)
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Indeed, let v¥g,11 € cl7, where one of these terms is the negation of the other. Then we
obtain:

F V(((l_lt Mapo) U (|_|t Map)) « |_|t) by (Gen) from a tautology,

- |_| (ﬁ(|_|t = (I—lt Map;)) (O |_|t — @(l_lt M1;))) by (45) and replacement,

=0t sopth | | (so, (tU{1:})) by (23) and the definition of o,.
i=0,1
Lemma 12. Suppose that ¢ <s L and ¢ ¢ s, for some consistent T-type s. Then there exists
a consistent T-type t such that (s,t) is a p-link.

Proof. It is easy to see that the term s o, {¢} is consistent. Let ¢ C cl7 be maximal with
the properties: ¢ € t and s o, t is consistent. By assumption, so, t - (¢ &= L) M —=(¢ & [1]1),
and so so, t =[]t & L by (36). Therefore, ¢ is consistent. By the maximality of ¢, it follows
from (46) that either ¢ € t or =) € ¢, for every =) € cl7. Therefore ¢ is a maximal consistent
subset of cl 7, and so, by Lemma 11, it is a 7-type. We now prove that (s,t) is a 7-link.

Suppose that 1 <, L, i.e., (1 &= L) € s. As we have already observed, so, t =[]t & L.
Hence so,t = ([t M (v & L)) & L by the first theorem in (44), and (¢» & 1) € t by the
maximality of ¢. Similarly, ¢ ~4 | implies ¥ ~; L by the third theorem in (44).

Suppose now that 1 € t, ¥ ~; ¢, and ¢ € p5. We need to show that ¢ € g, i.e., (DY € s.
By assumption, Dy, (1) & ¢) € s. Hence so, t = =(¢ &= []t) M O[]t in view of (23),
so,t = ®([1tU) by (28), and so,t = (DY by (29) [because - V(([]tL1) < 9)]. Therefore,
{1y} U s is consistent, whence (N € s, as s is a 7-type and (DY € cl 7. a

Theorem 13. A CSL-term 7T is valid in the class of all (symmetric) distance models iff & 7.
Proof. AslF ¢ < ==, it suffices to show that the following conditions are equivalent:

T is satisfied in a distance model, 7 is satisfied in a symmetric model, (47)

T is consistent.

The equivalence of the first two conditions in (47) follows from Theorem 5. And we have
already observed that every deducible term is valid, and so every satisfiable term is consistent.

Suppose now that 7 is a consistent term. Then 7 is contained in some consistent T-type
t.. Take the set D of all consistent 7-types ¢ such that ¢ <; L iff ¢p <, L, for all b € cl7. By
Lemma 12 and the definition of a link, D is a 7-diagram, and so 7 is satisfiable in a symmetric
model by Theorem 5. Qa

4 CSL over distance models with the triangle inequality

Now we extend the results and techniques from Section 3 to the class of distance models
satisfying the triangle inequality (tri).
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4.1 Decidability and complexity

To understand the main problem we face in this case, consider the following example.

Recall from (12) that the term Op = —(T & p) represents the (topological) closure of the
set defined by the atom p. Now take the term 7 = $p & p, which says that the closure of p
is (strictly) closer than p. It is easy to see that no model J with (tri) can satisfy 7. Indeed,
consider points u € A%, v € (Op)? and w € p°. By (tri), we must have

4 (u, w) < d’(u,v) + d°(v,w).
By taking first the infimum over w € (¢p)” and then the infimum over v € p”, we obtain
4’ (u,p”) < d”(u,0) + &°(v,p”) < & (u, (Op)”) + d°((Op)”,p”) = & (u, (Op)”)

because d”((Op)?, p’) = 0. Therefore, 77 = (). However, 7% # () in the symmetric model &,
where

A® ={a,b,¢; | i € N}, Co C1\C2
p® ={¢ | i € N},

b
d®(a,c;) =2, i€N,
d®(a,b) =1, d®(b,¢;) =1/2', ieN, a

and all other distances are defined by symmetry. Clearly, (Op)® = {b,¢; | i € N}. Therefore
d®(a, (Op)®) < d®(a,p®), i.e., a € 7®. Obviously, the only reason for this ‘strange’ behaviour
is that the distance from a to ¢; is 2, whereas by (tri) it should be < 1+ 1/2¢ < 2.

This example suggests that we should slightly modify the second condition in the definition
of a ¢-link from Section 3.1. Let s,t be 7-types, ¢ € com7 and ¢ ¢ s. The pair (s,t) will be
called now a p-link if, for every ¢ € com 7, we have:

P <g L iff ¢ < L,
¥ € mint implies ¥ <, ¢, (48)
P € s, ¢, and ¢ € ¢ Imply ¢ € g5

Thus, now we require that 1) <; ¢ holds for all <;-minimal terms ¢ in cl7, not only for those
in t; in other words, we take into account those terms 1 that are ‘infinitely close’ to t.

We illustrate the new definition by the example considered above. Let s = tS(a) and
t = tS(b). Then (s,t) is a Op-link for the case of models without (tri), because b € Op® and
d®(a,b) = d®(a, ©p®). On the other hand, ¢Op € t means that p € mint, and so in the case
of models with (tri) we should have p <; <p, contrary to Op &= p € s.

In fact, this turns out to be the only change we need to prove the following:

Theorem 14. A CSL-term 7 is satisfied in a distance model with the triangle inequality iff
there exists a T-diagram.

Proof. (=) Let J be a distance model satisfying the triangle inequality and such that 79 # 0.
Then one can readily check that the set D of 7-types of elements in J is a 7-diagram.

(<) Conversely, suppose that D is a 7-diagram and 7 € t,. € D. Let ¢y,...,pr_1 be all
the distinct terms in com 7 such that ¢; <; L for some (and so all) ¢t € D. We construct
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the tree A C ({0,...,k — 1} x N)* and the labelling tp : A — D in exactly the same way as
in the proof of Theorem 5. However, the definition of the distance function d on A is quite
different now. The main reason is that, unlike the previous definition which did not comply
with (tri), by providing a witness for some node a we can ‘spoil” witnesses for the ancestors
of «, and this cannot be repaired now by simply assigning a sufficiently large value to the
distances between nodes which are not immediate successors or predecessors of each other.

To cope with this problem, for each o € A we introduce a new numerical parameter e(«),
the main purpose of which is to ensure the following condition, for all a, a(i,j) € A:

either lim d(o,a(i, 7)) =0 or 1—2e(a) < d(a,a(i,j)) < 1—e(a). (49)

J]—00

The distances d®, for a € A (here we use the notation from the proof of Theorem 5;
in particular, d* stands for d(o/, ), where ' is the parent of «), are defined inductively as
follows. First we set d* = 1 and e(\) = 1/4. Suppose now that d* is already defined. Since
D is a diagram, we can find a type t; € D such that (tp(«),t;) is a @;-link, for all ¢ < k. And
since tp(a) is a type, we can choose the values d*** € {0} U[1 — 2e(a),1 — e(a)) such that,
for all 7,1 < k,

da-H < da—H iff (%27 Stp(oz) @1, da—H =0 iff ©Y; € min tp(a). (50)
Then we set, for all a(7, j) € A:
da(i,O) = da+i if Yi € Otp(a)>
09 = " (1= e(a) —d**) /(2 + ) i i & Oup(a),

e(ali, ) = {e(a) if ; ¢ mintp(a),
’ e(a)/2 if ¢; € mintp(a) \ tp(a).

Note that (49) is satisfied and 0 < e(«r) < 1/4.
Finally, we define distances between arbitrary nodes in A as follows:

d(a,a) =0, d(a,a’) =1 if o is the parent of
d(a, B) =d(a, 1) + -+ d(ay, 8) if a,aq,..., 0, [ is the shortest
undirected path between o and 3, and n > 1.

Then d is a distance function on A satisfying (tri) (but not (sym), which will be essentially
used in the proof below).

Now we can prove an analogue of Lemma 6 for the case of models with (tri), where as
before we let o™ = {a € A | ¢ € tp(a)}.

Lemma 15. Let o« € A and i < k. Then d(a,gpiA) — d+i. More precisely,
® if Vi € O1p(a) \ tP(a) then d(a, ©R) = >0,
o if oi ¢ Oy then d(a, of) = Timj oo d*%9) and d(a, f*) is not realised.

Proof. Again it is enough to show that

VB e 3 ca+i dla,Br) < d(a,f). (51)

20



Suppose that § € ¢® is not a successor of a. Then d(a, ) > 1 and d(a, 51) < 1 —e(a) < 1,
for all B € a+i. Now let 3 be a successor of aw. We prove (51) by induction on the number
of nodes between o and 3. Let o/ be the parent of 3.

Induction bastis: Suppose first that n = 0, i.e., a is the parent of 5. Then we simply repeat
the argument from the proof of Lemma 6.

Suppose now that n = 1. Then o € a+I, for some [ < k, and we consider three cases:

Case 1: ¢; ¢ mintp(a) and ¢; ¢ mintp(a’). Then e(a’) = e(a) and d(a, §) = d(a, ') +
d(a/,3) > 2(1 — 2e(«)) > 1, while d(a, £1) < 1 for all 81 € a+i.

Case 2: ¢; € mintp(a) and ¢; ¢ mintp(a’). Then e(a’) = e(a))/2 and d(«, ) > d(a/, 5) >
1 —e(a), while d(a, 51) < 1 —e(a) for all 5 € a+ 3.

Case 3: p; € mintp(a’). Then (tp(a),tp(a’)) is a @;-link by construction. Hence o; <y
@1 by the definition of a link, d*** < d**! by (50), and therefore d(a, 3) > d(a,a’) > d*H >
doti. As d** = inf{d® | B € a+i}, we obtain d(a, ) > d(a, 1) for some 1 € a + .

Induction step: suppose that the parent o of o is still a successor of «. By the induction
basis, there exists B2 € o 4 i such that d(a”, 82) < d(a”,3). Then d(a, 52) < d(a, 3) and
the number of nodes between o and [s is less than that between a and 8. So we can apply
the induction hypothesis. a

Define now a model J by setting A7 = A, d? = d, and p° = p?, for all atomic terms p.
Then the following lemma is proved in precisely the same way as Lemma 7 (we only need to
use Lemma 15 instead of Lemma 6).

Lemma 16. For all ¢ € cl7, we have ¢° = p>.

Thus, J is a distance model satisfying (tri), and 77 # () because 7 € tp(\) by the con-
struction. a

The proof of the next theorem is almost the same as the proof of Theorem 8 (we use
Theorem 14 instead of Theorem 5, and only consider models with (tri), not all distance
models; the proof of the lower bound remains without changes).

Theorem 17. The satisfiability problem for CSL- and QML-terms in models with the tri-
angle inequality is EXPTIME-complete.

4.2 Axiomatisation

As we observed at the beginning of Section 4.1, the term —(<$y & @), that is,
(T =) =) (52)

is valid in the class of distance models with (tri). Let us add (52) as an axiom schema to the
axiomatic system from Section 3.2. Then it is easy to see that (34)—(46) and Lemmas 9-11
hold true for the extended system as well.

To show that this new axiomatic system is complete with respect to the class of distance
models with (tri) it suffices to prove that Lemma 12 holds for the new definition of links.

As before, we write g, ..., on—1 F @, if there exists a derivation of ¢, from the premises
©0, -+, Pn—1 in which (Gen) is not applied to terms that depend on o, ...,¢on—1. We also
use the notation so, t =[]sM—(¢ &=[1t) N (Op — Of]t) for finite sets s, of terms and a
term .
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Lemma 18. Let s be a consistent T-type and ¢ <s L, ¢ ¢ s. Then there exists a consistent
T-type t such that (s,t) is a @-link.

Proof. Taking into account the proof of Lemma 12, we only need to show that the pair
(s,t) from that proof satisfies the second condition in (48), that is, 1) <s ¢, for all 1) € mint.
So let ¢ € mint, ie., =(T & ¢) € t. Then so, t F [|sM (e &= =(T & ¢)) by (38),
F=(=(T =19) =) by (52), and so so,t = []sM—(p & 1) by (23). Hence sU{—(¢ =)}
is consistent, which means that —(p &= ) € s, ie., ¥ <; ¢, because s is a 7-type and
—(p =) eclr. a

Theorem 19. A CSL-term 7 is valid in the class of distance models satisfying (tri) iff b 7.

Proof. As we know, all the axioms are valid in the class of distance models with (tri) and the
inference rules preserve the validity. Conversely, as we have - ¢ < ==, it suffices to show
that every consistent term is satisfiable. Suppose that 7 is consistent. Then 7 is contained
in some consistent 7-type and the set of all consistent 7-types is a 7-diagram by Lemma 18.
But then, by Theorem 14, 7 is satisfiable in a distance model with (tri). u

5 CSL over metric models

A typical CSL-term which distinguishes between metric and non-metric models is

(P E=9) — (T &=(p=19). (53)

Interpreted over metric models, it says in fact that (¢ &= ) < O(p &= ). Indeed, let
J be a metric model and u € (¢ = )?. Then ¢ = d”(u,”) — d”(u,p’) > 0. Take any
v with d’(u,v) < &/2. By (tri), we have d(v,p”) < d°(v,u) + d’(u,¢”) and d(u,”) <
d?(u,v) + d’(v, 7). It follows, by (sim), that
dj(”? Qﬂj) - dj(”? (pj) Z dj(ua 77/}3) - dj(uv ’U) - (dj(v7 ’U,) =+ dj(u7 903))
> & —2d°(u,v) >0,
from which v € (¢ = 1)?, and so u € (O(p = ).

On the other hand, (p &= ¢q) — O(p & ¢) is not valid in the following non-symmetric
model ¥ with (tri), where

AT = {a,a;,b,c; | i € N},
pr=1{b}, ¢ ={c|ieN},

d*(a,b) =d¥(b,a) =1, d*(a,a;) =1/2°,
dr‘((ai,a) =1, d‘z(ai,ci) = dT(ci,ai) =3/2, i€N,

and the other distances are computed as the lengths of the corresponding paths in the graph
above. It is easy to see that a € (p &= ¢)* but a ¢ (O(p & ¢))* (in fact, d*(a, {a; | i € N}) =0
and {a; | i € N} C (¢ = p)%).
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5.1 Decidability and complexity

In metric models, every sequence converging to a given point should eventually satisfy all
the ‘strict inequalities’ satisfied by this point. Therefore, we have to consider two essentially
different cases when defining a link (s, t): if the distance from an s-point to the ¢-set is positive,
we have the usual constraints on s and ¢; but if the ¢-set is infinitely close to the s-point, then
s and t should agree on terms of the form ¢ = 1.

Lemma 20. Let J be a metric model, u € A%, and d°(u, ”) = 0 for some ¢ € comT. Then
there is a T-type t such that o € t and d’(u,t’) = 0. Moreover, for any such t we have
<) © <t, that is, x <;(y) ¥ implies x <¢ ¥, for all x,7 € comr.

Proof. If u € ¢” then we take t = ¢t”(u) and everything is trivial. So assume that u ¢ ¢7.
Then, in ¢7, there exists a sequence z;, i € N, converging to z, with all the z; being of the
same type t. The remaining part of the proof is similar to the argument for (53). a

Now, let s,t be T-types and ¢ <s L. Suppose first that ¢ ¢ mins. We say that (s,t) is a
@-link if conditions (48) hold for all ) € com 7. In this case we also say that (s,t) is a long
link. Suppose now that ¢ € mins \ s. Then we call (s,t) a p-link if p € t and

V<, L iff <L, x<sv¢ implies x <; v, (54)

for all ¢, x € com7. In this case we also call (s,t) a short link.

Note that ¢ must be a <;-minimal element in (48). So the second condition there is
equivalent to the following one: ¢ <y 1 implies ¢ <; 1, which is a special case of the second
condition in (54). In particular, we have min¢ C mins for every short link (s,t). We also
observe that the third condition in (48) trivially holds for any short ¢-link (s,t), as we have
¢ ¢ s in this case.

The following lemma is proved similarly to Lemma 4 wit the help of Lemma 20:

Lemma 21. Let J be a metric model, w € A” and u & ©° # 0, for some ¢ € comT. Then
there is a type t such that ¢ € t and d°(u,”) = d>(u,t?), with d(u,¢”) and d(u,t”) being
realised or not realised simultaneously. Moreover, (t°(u),t) is a long @-link if d°(u, ¢”) > 0,
and a short @-link if d°(u, ) = 0.

Unfortunately, the notion of a link does not take into account a possible interaction of
two (or more) short links. To be more specific, consider the following situation. Suppose
that ¢y is a type and ¢ € mintg \ tg. Then we need a short ¢-link (¢g,t1). Assume further
that ¢ € mintg \ ¢;. This means that we also need a (long or short) w-link (¢1,%2). In
a model, say J, this corresponds to the following situation: we have u € tg(u) such that
d’(u,t7) = 0 = d”(u,¥?) and d’(v,t3) = d(v,?), for all v € t{. Then we have d”(u,t3) = 0.
Indeed, take an arbitrary e > 0 and choose v € ¢7 such that d”(u,v) < £/2. Then d°(v,t3) =
d?(v,?) < d”(v,u) +d”(u,”) < /2, and so d(u,t?) < d(u,v) +d(v,?) < . Therefore, we
must have <;, C <4,, which by no means follows from the definition of a link.

Thus, we should be careful when constructing sequences of links starting with a short one
in the sense that sometimes we should remember some previous links in the sequence. Let us
consider possible scenarios when we start with a short link (o, ¢1).

1. Suppose that <;, = <;, and we need a @-link (¢1,t2) for some ¢ € com 7. In this case the
types to and t; contain precisely the same terms of the form x; £ x2 and can only differ in
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Boolean terms. It follows that (t1,%2) is a @-link iff (¢g,t2) is a @-link. This means that the
choice of t3 does not depend on the link (¢g, ;).

2. Suppose that <;; C <;, and we need a ¢-link (¢1,t2) for some ¢ € comr. As we have
mint; € mintg, three cases are possible.

2.1: ¢ € mint;. Then for any ¢-link (t1,%2) we have <;; C <¢;, C <4,, and therefore no
additional requirement should be imposed on (¢1, t2).

2.2: ¢ € mintp \ mint¢;. In this case, when choosing a (long) ¢-link (¢1,?2), we must also
ensure that (to,t2) is a short p-link.

2.3: ¢ ¢ minty, and so ¢ ¢ mint;. In this case (¢o,¢1) does not have any influence on
subsequent links at all.

3. Suppose that <;, C <y and (t1,t2) is a ¢-link, for ¢ € minty \ mint; (as in 2.2), and so
<ty € <¢,. Suppose also that we are looking for a i-link (t2,t3). As (t1,t2) is a long link, ¢;
has no influence on the choice of t3. However, (o, t2) should be taken into account. We again

have three cases.

3.1: ¢ € minte. Then the inclusion is satisfied for any -link (to, t3).

3.2: ¢ € mintp \ minty. Then, when choosing a long ¢-link (t2,t3), we must also ensure that
<t - <tg-

3.3: ¢ ¢ minty. No additional requirement is needed in this case.

This analysis suggests the following definitions. A sequence t = (to,...,t,) of T-types is
called a block if we have <3, C --- C <y, , € <y,. We call t,, the type of t, while (to,...,tn—1)
is understood as its ‘history’ or ‘heredity.” We say that t is realised in a model J if there exist
subsets Uy C tg, ..., Uy €t such that d”(u;, Usy1) = 0 for all u; € U; and i < n.

It is easy to see that the size of com 7, and so the length of any block, is bounded by |7]|.
Therefore, by Lemma 2, we have

Lemma 22. The number of distinct blocks does not exceed glat7|-lcom7[*,

Now, for ¢ € com7, we introduce a notion of a -link of blocks, which specialises the
notion of a p-link of types. Let s and t be blocks with s = (sg,..., sy). Consider four cases.

e Suppose that ¢ ¢ minsg. Then (s, t) is called a p-link (of blocks) if t = (¢) and (s, t)
is a ¢-link of types. In this case the long link (s,,,t) allows us to ‘forget’ everything
that happened before t.

e Suppose that ¢ € mins,_; \ min s,, for some n < m. Then (s, t) is a p-link (of blocks)
if t = (s0,...,8n-1,t) and (s, t) is a ¢-link of types. In this case (s,,t) is a long link,
while (s,—1,t) is a short one, and so s, and its ‘heredity’ should be kept.

e Suppose that ¢ € min s, \ s, and <s,, ;| = <s,,. Then (s,t) is a p-link (of blocks) if
t =(80,..,8m—1,t) and (S, t) is a p-link of types. In this case s,,,—1 and s,, carry the
same information on ‘heredity’ of ¢, so we can drop $;,.

e Suppose that ¢ € min s, \ s, and <, , C <s,,. Then (s,t) is a p-link (of blocks) if
t =(80,...,8m,t) and (sp,,t) is a ¢-link of types.
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Let D be a set of blocks and T the set of all types occurring in blocks from D. We call D a
T-diagram if the following conditions hold:

there exists (t) € D with 7 € ¢, (55)
for all s,t € T and ¢ € com7, we have ¢ <g L iff o <; L, (56)

for all s = (sg,...,sn) € D and ¢ <, L, ¢ & sp, there exists t € D
such that (s, t) is a @-link.

Theorem 23. A CSL-term T is satisfied in a metric model iff there exists a T-diagram.

Proof. (=) Suppose first that J is a metric model with 77 # (). Let D be the set of blocks
realised in J. We show that D is a 7-diagram.

Clearly, D satisfies (55) and (56). Let us prove (57). Suppose that a block s = (sg, ..., Sm)
is realised in J and Uy C s3,...,Uy, C s, are such that d”(u;, Ui11) = 0 for all 4 < m and
all u; € U;. Let p <5, L and ¢ ¢ s,,,. We first prove that there exist a type ¢ and subsets
Vo C Uy, ..., Vy C U, with the following properties:

d(v,t7) = d*(v,¢7), for all v € Vj,,

- (58)
d’(v,Vi41) =0, forallv eV, andl < m.

Choose an arbitrary uy € Uy, where A denotes the empty sequence. By our assumption, we
can further choose elements u, € Uj, for all & € N! with [ < m, so that each ug is the limit of
the sequence gy, u(3,1), - --- And for every a € N™, there exists a type t, such that ¢ € ¢,
and d”(uq, ¢”) = d”(uqa,t2). Thus we obtain a finite partition N™ = Ny U --- U N, where
to =ty iff a, o’ € N, for some common r < n. It is not hard to check that there exists r < n
such that the set N = N, satisfies the following condition:

E|ooa0 3%, (ao, e am_l) € N, (59)

where 3°° means ‘there exist infinitely many.” Let ¢ = t, (all the t,, for &« € N, coincide)
and, for every [ < m, let

N|; = {a eN'|(a,3) € N for some g € N"~1}

(in particular, N|g = {\} and N|,,, = N). Then (59) implies that, for all « € N|; with [ < m,
there are infinitely many a € N such that («,a) € N|;41. So by setting V; = {u, | @ € N|;},
for all I < m, we obtain that each u, € V; (where | < m) is a limit of some sequence in
Vii1. Therefore, t and Vj, ..., V,, satisfy (58). Note that the second line in (58) implies that
d’(v, Vi) =0, for all v € V; and [ < I' < m.

Our aim now is to present a block t such that (s, t) is a ¢-link and t is realised in J. Four
cases are possible.

Case 1: ¢ ¢ minsg. Then the block t = (¢) is realised in J since t? # () and (s,t) is a
-link by construction.

Case 2: ¢ € mins,_1 \ min s, for some n < m. Let us show that t = (sg,...,sp_1,%) is
a block realised in J. Take any u € V;,_; and v € Vp,. Then d”(u,t”) < d”(u,v) + d*(v,t7) =
d?(u,v) + d?(v, %) < d”(u,v) + d’(v,u) + d>(u,¢”) = 2d”(u,v). Since d’(u,V;,) = 0, we
obtain d”(u,t?) = 0 and hence (s,_1,t) is a short link, as u € V,,_; C sg_l. Thus, t is a
block. By considering the sets Vi, ..., V,_1,t7, we see that t is realised in J. Finally, (s,t) is
a -link by construction.

25



Case 3: ¢ € min s,, \ spm, and <, , = <s,,. Similarly to the previous case we obtain that
d’(u,t”) = 0 for all u € V;,,_; and hence (s,,,_1,t) is a short link. Thus, t = (sg...,Sm_1,%)
is a block, t is realised in J (consider Vj,...,V,,_1,t”), and (s,t) is a o-link.

Case 4: ¢ € min s, \ s, and <g,,_, C <g,.. Then d(u,t”) = d(u, ) = 0 for all u € Vj,.
Therefore t = (sg.. ., Sm,t) is a block, t is realised in J (consider Vg, ..., Vi, t7), and (s, t) is
a -link.

(<) To prove our theorem in the other direction, suppose that D is a 7-diagram and
construct a metric model J with 77 # (. Roughly, we proceed according to the same plan
as in the proofs of Theorems 5 and 14. Let T' be the set of all types from blocks in D. Let
©0, .-, pr—1 be all different elements of the set {¢ € comT | ¢ <; L forall t € T}. The
first goal is to unravel D into a tree A C ({0,...,k — 1} x N)* endowed with three labelling
functions: tp: A —- T, bl : A — D and hr : A — A*. The intended meaning of the labellings
is as follows: bl(«a) is some block in D of the type tp(«), and if bl(«) = (to,...,tn) then
hr(a) = (ag, ..., an—1), where a,, is the node ‘responsible’ for the presence of ¢,, in bl(«).

We proceed by induction. First we choose some (t,) € D with 7 € ¢, and set

AEA, tp(\) =t., b(N) =(t), hr(\)=A

(recall that A is the empty word). Suppose now that at some step « is the shortest word in
A which has no children in A yet. Suppose also that

tp(a) = sm, bl(a) = (s0,.-,8m), hr(a)= (ag,...,Qn-1)

(so hr(a) = XA when m = 0). As D is a diagram, for each i < k with ¢; ¢ tp(a), there exists
some t = (tp,...,t,) in D such that (bl(«),t) is a @;-link (note that n < m + 1). We extend
A according to the following rules:

o if p; € tp(a) then a(i,j) ¢ A, for all j € N,

e if ©; € 040 \ tP(), then (7, 0) € A and (i, j) ¢ A, for all j >0,

o if v; & Op(a), then a(i, j) € A, for all j € N.

Now, for all i, j with «a(i,j) € A we set

tp(Oé(Z,])) =tn, bl(a(l7])) =t, h’r‘(()é(l,j)) = (OL[), s ,Oénfl),
where o, stands for « if n = m 4 1. Clearly, we have the following;:

if o € A, hr(a) = (ap, ..., an—1) and bl(a) = (to,...,tn) then, for allm < n,
hr(am) = (o, - -y am—1) and bl(am) = (to, .-, tm)- (60)

Our next goal is to define a metric function d on A. We again use the notation introduced
in the proof of Theorem 5. For a« € A and i < k, we set a+i = {a(i,j) € A | j € N}
if ¢; ¢ tp(gi), and a+i = {a} otherwise. Further, we let a+ = J;_,(a+i). The distance
d(d/,a), where o' is the parent of «a, is denoted by d®.

Recall that, by the construction of A, if ¢ € tp(3), for some ¢ € com7 and § € A,
then every a € A with ¢ ¢ tp(a) has a child 5" with ¢ € tp(3’). The main idea behind
the construction of d is to ensure that such a ' can always be chosen so that d(«, 3) <
d(a, ). For this purpose we introduce a number of numerical parameters that will be defined
simultaneously with the distances d*:
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e A sequence c(a) of the same length as bl(a). The distances d”, for all children 3 of
a, will be distributed among several disjoint segments of the form [2¢/3,¢) within the
interval (0, 1), and ¢(«) stores the upper bounds ¢ of these segments.

e Numbers d®*, for all i < k, that provide some landmarks for concrete distances in the
sense that the condition d(a, a + i) = d*™ is to be satisfied.

e A ‘sufficiently small’ number e(«) which is defined as follows. Suppose c(a) = (co, ..., c).
Th , , , :
o e(a) = min ({d*t = d* | i,j < k, d*T' > d®H} U
{em — det |m<n, i<k, ¢p> dO‘H}).

Roughly speaking, (o) measures the space available for ‘splitting’ the values d*™* =
dot! where i # [, with respect to the existing strict inequalities.

We now list the principal conditions (61)—(66) that determine the choice of distances:
e Forallye A andi,l <k,
<D o gy o1, ATT=0 iff @i € mintp(y). (61)

o Let v € A be such that hr(y) = A, bl(y) = (t), c(v) = (¢). Then, for alli <k, j € N,
A € [2¢/3,¢) if ¢; ¢ mint, (62)
A9 € (0,e(7)/2] if @i € mint\ ¢. (63)

o Let v € A be such that hr(y) = (70,---,9m-1), bl(7) = (to,...,tn), c(v) = (co,--.,¢n),
where n > 0. Then, for alli <k, j € N,

e I:d'Ynfl"!‘i’ dn-1ti cn/3) if @i ¢ mint,_1, (64)
A" € [2¢0/3,¢n) if i € mint, 1\ mint,, (65)

And in the process of construction we will prove that the following property is satisfied as
well:

o Let v e A: hr(’Y) - (707 cee 7’771—1)7 bl("}/) - (t07 o 7tn): and c(f)/) - (007 B 7Cn)' Then;
for allm < n,

Cm—+1 < 5('7m)/27 Cm+1 < Cm/2, c(’Ym) = (007 ceey Cm)‘ (67)

Let us now turn to the construction. First, let ¢(A) = (1) and d* = 2/3 (the latter is
introduced for convenience). Then (67) holds trivially for v = A.

Suppose now that d* and ¢(«) = (cp, - .., ¢,) are defined for some o € A, conditions (61)—
(67) are satisfied for every ancestor v of «, and (67) is satisfied for v = « as well. Let
hr(a) = (ag, .. .,an—1) and bl(«a) = (to,...,tn). Two cases are possible.

Case 1: n =0, i.e., hr(a) = A, bl(a) = (to), and c¢(a) = (¢p). Then we can choose values
d®*t i < k, that satisfy (61) and (62) for v = a. Thus &(«a) is defined, and we set, for all
1<k,j€eN,

a0 = @*t i g € i\ o,

. . N . . <68)
d*0D) = @V e(a)/(+2) i i & or
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This makes (63) satisfied for v = «, while (64)—(66) do not apply to this case. We further set

c(a(i,j)) = (co/2) if ¢; ¢ minty,
c(ali, 5)) = (co, d*)) if ; € minto \ to,

for all a(i,j) € A. This makes (67) satisfied on the children of o, as e(a) < ¢, and d*(+) <
e(a)/2, for ¢; € minty \ tg, by definition.

Case 2: n > 0, i.e., hr(a) is a nonempty sequence. Since (to,...,t,) is a block, we have
<t,_, C <4,. And for all i < k with ¢; ¢ mint,_1, we have ¢, < e(a,_1) < d*-17 in
view of (67), (61), and the definition of £(,—1). Therefore we can choose values d**, i < k,
that satisfy (61) and (64)—(65). Now () is defined, and we also define the distances d*(»7)
according to (68). This makes (66) satisfied for v = «, while (62)—(63) do not apply to this
case.

It remains to define ¢(+y), for all children « of a, so that (67) holds. Consider any «(i, j) €
A. We have four possibilities. First, let ¢; ¢ mintg. Then hr(a(i,j)) = A, and we set
c(a(i, j)) = (co/2). Clearly, (67) holds for v = a(3, j).

Let ¢; € mint,,_; \ mint,, for some 1 < m < n. Then hr(a(i,j)) = (ao,...,¥m-1),
and we set c(a(i,5)) = (coy---yCm—1,¢m/2). Now (67) holds for v = «(i,7) in view of the
induction hypothesis.

Let ¢; € mint, and <, , = <,. Then hr(a(i,j)) = (ao,...,an—1), and we set
c(a(i, 7)) = (o, cn1,d*®7)). Recall that d*)) < £(a)/2 and e(a) < ¢, by definition.
Therefore (67) holds for v = «(i, j) by the induction hypothesis.

Let finally ¢; € mint, and <;, , C <;,. Then hr(a(i,j)) = (ao,...,a), and we set
c(a(i,§)) = (co,. .., cn,d*®9)). Again, (67) holds for v = (i, j) as in the previous case.

Thus we define all the distances d° = d(ca, 3), where « is the parent of 5. Then we extend
d to all the pairs in A by setting

d(a,a) =0, forall a €A,
d(B,a) =d(a, 3), if ais the parent of [,
dla, B) = d(a, 1) + -+ +d(an, 3), if a,aq,...,ap, [ is the shortest path from « to f.

This distance function satisfies the following properties:
Lemma 24. Let o € A and hr(a) = (ag, ..., an-1), bl(a) = (to,...,tn), c(a) = (coy...,¢n).
(i) Let m < n. Then, for all i < k with p; ¢ mint,,, we have

0 < d"™ —d* < (epgr + -+ en)/3 < 20me1/3 (69)
(ii) For alli <k and 1 <m <n, we have

dott e [200/3,00), if i ¢ min £,
doT € 2, /3, ¢m), i @i € mint,, 1 \ mint,,,

Proof. Let us prove (69) first. Note that, by (67), we have,
Cma1+ - Fen <(14+1/24 - +1/27" D < 20m41,

for any m < n. This proves the right-hand side inequality in (69). We then proceed by
induction on n — m.
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For m = n — 1, (69) follows directly from (64). Let now m < n — 2 and ¢; ¢ mint,,, for
some ¢ < k. By (60) and (67), we have hr(ap—1) = (ap,...,an—2), bl(an-1) = (to,...,th—1)
and c¢(ap—1) = (co, ..., cn—1). Therefore, by the induction hypothesis, we have

0< don—1+t _ gomti < (Cm+1 + -+ Cn_l)/g.

Combining this with (64) we obtain the required inequalities.
We now prove (70). Let 1 < m < n and ¢; € mint,,—; \ mint,,, or m = 0 and ¢; ¢
mintg. By (60) and (67) we have hr(am,) = (ao,...,Qm-1), bl(am) = (to,...,tm) and

c(am) = (co,...,cm). Therefore, by (65), we have 2¢,,/3 < d*=*" < ¢,,, and moreover
dom+t < ¢, — e(aym) by the definition of €(ay,). But then, by applying (69) and (67), we
obtain 2¢,,/3 < d*" < ¢ — e(am) + 2¢ma1/3 < em. Q

For ¢ € cl7, let again ¢® = {a € A| ¢ € tp(a)} (s0 o> =D if p € com7\{o,...,0r 1},
and a +1i C ¢ for all i < k and a € A).

Lemma 25. Let « € A and i < k. Then d(a, o) = d®Tt. More precisely,

i Zf SOZ S Qtp(a) \tp(Oé) the'n/ d(O[, SOZA) e da(ivo)’
hd 'Lf Pi g Qtp(a) then d(Oé, 907,A) = hm]HOO da(i’j) and d(Oé, CIOZA) 18 not realised.

Proof. As before, we have to show that for every 8 € goiA there exists 81 € a + ¢ such that
d(a, 1) < d(a, 3). The latter, in turn, is implied by the following:

Claim 26. Let o, € A and i < k. Then, for every 31 € 8+ 1, there exists aq € a+ 1 such
that d(a, ) — d(B, 1) < d(, 3).

We proceed by induction on the length N of the shortest path between o and S3.

Induction basis. If N = 0 (that is, & = [3), there is nothing to prove. To handle the case
N =1 (which means 8 € a+ or o € 8+) we suppose that « is the parent of 3 and prove the
assertion of Claim 26 together with the symmetrical one: for every a; € a + i, there exists
B1 € B+ i such that d(B, /1) — d(ao, 1) < d(a, ).

Recall that, by (68), we have d*** = inf{d(a,v) | ¥ € @ + i}, and similarly for 3.

Let hr(a) = (g, ..., an-1), bl(a) = (s0,...,8n), and c¢(a) = (cg,...,cn). Let also €
a + 1, where | < k, and t = tp(f3). Six cases are possible.

Case 1: @; € t. Then §+i = {8}, d**" =0, and d(3,8) — d**t* <0 < d°. On the other
hand, we have ¢; <;, ¢, since @; € t and (s,,t) is a @-link. Hence d*** < d**! by (60).

If p; € 0s,, then a +i = {1}, for some ay, and d(a, a1) = d** < d*+ < dP in view of
(68). Thus, d(a, ) — d?* < dP.

And if p; ¢ o5, then, by the definition of a link [see the third condition in (48)] we have
either o; ¢ 0s,, or @ %, @;. Hence we have either d*+ < d®*t! < d°, or d*+* < d**+ < dP.
Thus, d*t" — d°tt = @t < d@P and therefore d*' — d°t* < dP, for some aq € a + i.

Case 2: ¢; € mint \ t. Then d°T" = 0 < d” and therefore d? — d*+* < d, for some
B1 € B+ i. On the other hand, we have p; <, ¢y, since ¢; € mint and (s,,t) is a @;-link.
This implies d*t? < d*t! < dP. And, for each 31 € 8+ i, we have d®* > 0; hence there exists
a1 € o+ i such that d*Ti — @7 < dP.

So we assume that ¢; ¢ mint in all the remaining cases. Note that the strict inequality
|d®*? — dBF?| < dP ensures the properties we are aiming to prove.
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Case 3 ¢; ¢ minsg. Then d® € [2¢0/3,c0), c¢(B) = (co/2), d°T € [co/3,c0/2), and
d®* € [0, ¢p). Therefore we have |d** — d°*+| < cg — co/3 < dP.

Case 4: ¢ € minsy,_1 \ Sm, for some m € {1,...,n}. Then d® € [2¢,,/3,cm), hr(B) =
(0y .-y m—1), l(B) = (S0,---ySm—1,1t), and ¢(B) = (co, ..., Cm—1,¢m/2). Suppose first that
@; € mins,,_1 \ mint. Then d°*% € [¢,n/3,cm/2) and d*t? € [0, ¢, ), hence [d*H — dBF| <
Cm — Cm /3 < d°.

Suppose now that ¢; ¢ mins,, ;. Then 0 < d?t" — d*m—1+ < ¢, /6 by (64) and 0 <
doti — dovm=1+i < 2¢, /3 by (69). Thus, we again have |[d*+ — d°+| < 2¢,,/3 < d°.

Case 5 ¢ € mins,, and <, |, = <, . Then hr(f) = (a,...,an—1) and c¢(f8) =
(co,-..,Cn_1,d%). Suppose first that ¢; € mins,. Then d*** = 0 and d°* < d° by construc-
tion; hence |d*T — dFF?| < dP.

Suppose now that o; ¢ mins,. Then o; ¢ mins, 1 and d*+, d0+? € [@on—17 don—1+i 4
d®/3) by (64); hence |d*+* — dFi| < dP.

Case 6: ¢; € min s, and <g; | C < is similar to the previous one.

Induction step: N > 2. Consider v € A such that «,...,~, is the shortest path between
« and (. Take an arbitrary 8y € § + 4. Then, by the induction basis, there exists y; € v+ i
such that d(v,v1) < d(v,1). Hence d(a,y1) < d(c, 31). Now, by the induction hypothesis,
there exists a; € a+ i such that d(a, aq) < d(a,71). a

Define a metric model J by setting A7 = A, d” = d, and p” = p?, for all atomic terms p.
Lemma 27. For all ¢ € cl1, we have p° = p>.

Proof. We proceed by induction on the structure of ¢ € cl7. If ¢ is an atomic term, then
we simply have the definition of J. If ¢ = =)y or ¢ = M1, then our assertion for ¢ follows
easily from the induction hypothesis.

So, let now ¢ = g & 1. Recall that D is the initial diagram and T is the set of types
occurring in blocks from D (thus, tp(«) € T for all a € A). Suppose first that 1y = ¢; and
11 = ¢ for some 4,1 < k. Then, by Lemma 25 and (61), we have

o€ (g =) iff doH < dtiff o e (¢ = )P

Suppose now that 1y = ¢; and ¥1 ¢ {¢o,...,px_1}. Then P = @ # 2. Moreover,
for all t € T, 11 is a <;-maximal element, while 1) is not; hence (19 & 1) € t. Therefore
(Yo &= ¥1)® = A. On the other hand, ¥j = 0 # 7 by the induction hypothesis. Hence
(Yo = 11)? = A as well.

The cases with ¥g ¢ {wo,...,0k-1} 2 1 or ¥o, Y1 ¢ {wo,...,pr—1} are considered
similarly.

Let finally ¢ = (Dvy. Suppose first that ¢ = ; for some ¢ < k. Then, by Lemma 25, we
have

a € () iff d(o, o+ 1) is realised iff o € ()2,

Suppose now that ¥ ¢ {¢g,...,or_1}. Then ¥ =@ and ¥ is a <;-maximal element, for
all t € T. Hence ¥” = () by the induction hypothesis, and ¢ ¢ g; (t € T) by the definition of
a link. This implies @7 = ) = *. a

Thus, by Lemma 27, A € 77 which completes the proof of Theorem 23. a
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Theorem 28. The satisfiability problem for CSL- and QML-terms in metric models is
ExXpPTIME-complete.

Proof. To prove the upper bound, we use basically the same elimination procedure as in
the proof of Theorem 8. The only difference is that we now apply it to the set of blocks
rather than the set of types. So satisfiability of 7 in metric models can be checked in time
< 20(latrllecom7[*) < 9O(I7I*)  The proof of the lower bound remains the same as in the proof
of Theorem 8. a

5.2 Axiomatisation

Recall that term (53) corresponds to a property of metric models which follows neither from
(sym) nor from (tri). Similarly, (52) is a consequence of (tri), but not (sym). Let us now
add both (52) and (53) as axiom schemas to the axiomatic system from Section 3.2. In this
section we prove that the extended axiomatic system is complete with respect to the class of
metric models.

Note first that (34)—(45) and Lemmas 9-11 still hold true. So we now need to find terms
that reflect the newly introduced or modified notions (links of types, blocks, links of blocks).

As before, we write g,...,on—1 F ¢, to say that here is a derivation of ¢, from the
premises @, ..., pp—1 in which (Gen) is not applied to terms that depend on ¢y, ..., ¢n_1,
and so,t =[]sM=(e =[]t) N (O — ©O[]t) for finite sets s,t of terms and a term .

Lemma 29. Suppose that s,t are T-types, ¢ € mins, and [|s T —(p & [|t) is consistent.
Then <45 C <.

Proof. Let & =[]|sM (¢ &= []t). Take an arbitrary —(¢p9 & 1) € t. We have to show
that =(¢o &= Y1) € s. We have - so,t — (T & ¢) and F s o, t — (¢ & (g & 1)).
Therefore - so,t — =(T &= (¢ & 91)) by (23), and so - £ — —(pg &= 91) in view of (53).
Thus, sU{—(1o = 1)} is consistent, which means that = (g £ 1) € s, as s is a 7-type and
(1 = 1) € clT. a

Lemma 30. Let s be a consistent T-type and ¢ <s L, ¢ ¢ s. Then there exists a consistent
T-type t such that (s,t) is a @-link.

Proof. By Lemma 12, there exists a consistent 7-type ¢ such that the pair (s,t) satisfies
(16). And by Lemma 18, (s,t) satisfies (48). Finally, if ¢ € min s then (s, t) satisfies (54) in
view of Lemma 29. a

For a sequence t = (tg, ..., t,) of sets of terms, let t& denote a term defined inductively
by the following rules:

e if n = 0 then t% = [to,
e if n > 0 then t¥ =[to M (T = t¥), where t; = (t1,...,t,).

So we have (tg,...,t)% = (to, ... tms (tmsts - - ., t)¥)%, for any m < n. We say that t is
consistent if t¥ is consistent.

Lemma 31. Let t = (to,...,t,) be a sequence of sets of terms.
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(i) If to,. .., tn are T-types and t is consistent then <;; C -+ C <, .

(ii) If s = (s0,-..,8m) is a subsequence of t then t& - —~(T = s%); moreover, t¥ F s¥
provided that sg = tg.

(iii) If r = (ro,...,7n) and [1t; F [rs, for all i < n, then t¥ F r&.

(iv) For any 1, we have t = (to, ..., tn_1,tn U{DE U (to, ... tnrt, tn U {p})E.

Proof. Note first that the following properties hold for all terms ¢, 9, g, and )y:

F1ho — 91 implies F —(p &= 1) — —(p &= Y1), (71)
Fa(TeEg) =T = (@ny)U-(T = (pN—2)). (72)

Indeed, (71) is proved using (38) and (Gen), while (72) is shown similarly to (46). Now
(ii), (iii) and (iv) are easily proved by induction using (71) and (72), and (i) follows from
Lemma 29 and (ii). a

Lemma 32. Let s = (sg,...,5m) be a consistent block and ¢ <s,, L, ¢ & Spm. Then there
exists a consistent block t such that (s,t) is @-link.

Proof. For a set of terms ¢, let so,t = (S0,...,8m—1,5m 9 t). S0 S0, is consistent. Hence
we can find some ¢ C cl7 that is maximal with the properties ¢ € t and s o, t is consistent.
By Lemma 31, ¢ is a maximal consistent subset of cl7 and s,, o, t is consistent. So by the
proof of Lemma 29, (s,,,%) is a ¢-link of consistent types. Two cases are now possible.

Case 1: (T & ¢) € so. Then t = (t) is a consistent block and (s, t) is a ¢-link of blocks.

Case 2: —(T & ¢) € s, for some n < m. Then we may assume that n is chosen to be
maximal with this property. We have (s o, t)& F (s, ..., 85, ~(¢ & [1t))¥ by Lemma 31,
where the latter term can be represented as (sg,...,sn_1, (50, ~(¢ = []t))¥)¥. Further,
(30, = (0 = [11)% =M N =(T &= =(p = [11)), and so

(50,20 =T1N¥ F MsnM—=(@ =[1t), in view of (53),
(50, (e =[1t)¥ F [sn (T =[t), by (36), since =(T & ¢) € sy,

that is (s,, ~(@ = [t)% F (s,,1)%. Let t = (sq,...,Sn,t). Then we obtain s -t by Lemma
31. Hence t is a consistent block and (s, t) is a ¢-link of blocks. a

Theorem 33. A CSL-term 7 is valid in the class of metric models iff + 7.

Proof. As before, it suffices to show that an arbitrary consistent term, say, 7, is satisfiable.
Then 7 is contained in some consistent 7-type t., and hence (t,) is a consistent block. Let T
be the set of all 7-types ¢ such that ¢ <; L iff ¥ <4, L, for all ¢ € cl7. Take the set D of all
consistent blocks which only contain types from 7. Then D is a diagram: (55) and (56) are
satisfied by the construction, and (57) by Lemma 32. Thus, 7 is satisfiable by Theorem 23,
which completes the proof. a
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6 Non-axiomatisability of C§L over R

Despite the decidability and axiomatisability results obtained in the previous sections, CSL
turns out to be undecidable and non-axiomatisable when interpreted over models based on
R or its metric subspaces (perhaps at this point it is worth recalling Tarski’s theorem [32]
according to which the first-order theory of (R, +, x, =) is decidable). It follows, in particular,
that the set of CSL-terms valid in models based on R is a proper superset of the set of CSL
formulas valid in all metric models.

Theorem 34. Let D be the class of all models based on D, or all models based on metric
subspaces of D, where D is R, Q, or Z (with the standard Euclidean metric). Then the set of
CSL-terms wvalid in D s not recursively enumerable.

The remainder of this section is devoted to the proof of Theorem 34. The proof is by
reduction of the decision problem for Diophantine equations (Hilbert’s 10th problem) which
is known to be undecidable; see [19, 5] and references therein. More precisely, we will use the
following (still undecidable) variant of this problem:

given arbitrary polynomials g and h with coefficients from N\ {0,1}, decide whether the
equation g = h has a solution in the set N\ {0, 1}.

We give an algorithm that constructs, for every polynomial equation g = h over N\ {0, 1}, a
CSL-term 744 such that the following conditions are equivalent:

e 7,5, is satisfiable in a model J € D;

e 7,4 is satisfiable in a model based on Z;

e g = his solvable in N'\ {0, 1}.
As set of equations without solutions is not recursively enumerable, we immediately obtain
Theorem 34.

Each polynomial equation can be rewritten equivalently as a set of elementary equations

of the form
r=y+z, T=Yy-2, T=Y, T=n, (73)

where x,y, z are variables and n € N\ {0,1}. Thus, it suffices to reduce solvability of such

sets of elementary equations to satisfiability of CSL-terms. This will be done in three steps:

1. first we ensure that (modulo an affine transformation) the underlying space of a given
model contains Z, and define the operations ‘+1’ and ‘—1’ on Z;

2. then we define, in this model, sets of the form {kl+j | k € Z} that are used to represent
the (possibly unknown) number [ € N;

3. finally, we encode addition and multiplication on such sets.

In what follows, we use 71 < 79 as an abbreviation for (7 &= 7o) M (12 & 7).

Step 1. Say that models J, £ € D are affine isomorphic and (in symbols, J ~ £) if there
exists an affine transformation f(x) = ax+b from A7 onto A*® such that € p” iff f(z) € p*,
for all 2 € A” and atomic terms p. In this case we clearly have f(77) = 7* for every term .
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Take atomic terms pg, p1, p2 and set Base(po, p1,p2) to be the following term:
[]v®p: 0[] v=(pipy) 1 [ ]Y(pi = (ier S pic1)),
i<3 i<j<3 i<3
where @ and © denote + and — modulo 3. A typical model satisfying Base(pg, p1,p2) is
depicted below:
p1 D2 Po n b2
—2 -1 0 1 2

More precisely, we have the following:

Lemma 35. A model £ € D satisfies Base(pg, p1,p2) iff there exists 3 € D such that J ~ £

and
p} = (8k+i|lkeZ, k<n}, i<3. (74)

Proof. Given z,y € A® and a term 7, we say that y is a 7-neighbour of = if y € 7° and
d(z,y) = d(x,7%). If y is a T-neighbour of z and y < x, then y is called the left T-neighbour
of x (observe that there exists at most one such neighbour); the right T-neighbour of x is
defined dually.

(=) Suppose £ satisfies Base(po, p1, p2); then, in particular, p(’):, p’f, and p§ are nonempty
and pairwise disjoint. Suppose that {i,j,k} = {0,1,2} and take any = € p. According to
Base(po, p1,p2), there exist, for x, a pj-neighbour y and a pj-neighbour z, and we have y # 2z
and d(z,y) = d(z, z). Hence y and z lie on the different sides of x, that is, the interval between
y and z does not intersect with pf U p,f, which implies that p; < pj is not true anywhere
strictly between x and y or x and z. Thus, x, y, and z are the only points in pf, pf, and p,f,
respectively, in the segment between y and z; and z —x = x — y.

Using an appropriate affine transformation, we may assume that 0 € p(’):, 1e pf, and
—1e p2£. Then 0 is the left pg U po-neighbour of 1 and belongs to pos. By the reasoning above,
we obtain that the right pg L po-neighbour of 1 is equal to 2 and belongs to p3; moreover, the
interval (1,2) does not contain points from p§Up{ U py. Similarly, we have that —2 € py and
(=2, 1) does not intersect with p§ U py U ps.

By induction, one can now show that p§ U pf Ups = Z, and k € pf iff k = i (mod 3).

(<) Let J be a model satisfying (74). Then Base(po, p1,p2) is clearly satisfied in J, and
so in every £ ~ 7. a

In any model satisfying (74) we can now define the following analogues of the temporal
‘next-time’ operators simulating the functions ‘+1’ and ‘—1":

Oo = [ |(i = (pier Spier M), O 'o = [ | — (pie1 S pic1 No)).
<3 1<3
and set
OV = o, OFtly = O0OFp, Ok 1y = Oflofkgo, for all k € N.
We immediately obtain:

Lemma 36. Let J € D satisfy (74). Then for all k € Z and x € p3 U pj U p3,

ze (OF)? iff z+ke.

34



To fix the origin and orientation of our model, we take a fresh variable p and set
Ori(p) = J(poMp—-O~"p) M V(p — Op).

Then, for a model 3 € D, (74) and Ori(p) imply p” N (pd Upi Up3) = {k,k +1,...}, for
some k € Z, k = 0(mod 3). We call a model J standard if 3 € R, (74) holds, and p° = N.
Thus, every model in R satisfying Base(pg, p1, p2) and Ori(p) is affine isomorphic to a standard
model. Note that {0} is defined by p M —O~!p in a standard model.

Step 2. Let J be a standard model. As the representation of [ in J we use the subset
{kl | k € Z} of 3. However, subsets of the form {kl + j | k € Z} with 0 < j < [ will also be
required in Step 3. To define these we introduce our next term.

To simplify notation, we denote lists of the form pg, p1,p2 by p, and terms of the form
po LU p1 Ups by ps. Take fresh atomic terms qq, g1, g2, and define Seq(q) to be the term

V(ge = ps) M |_| V(g — (=1 M =Ois1 M (gic1 S ¢ig1))) M (g NpN (1 S qi Mp)).
i<3
This term is supposed to describe the following structure:
a1 Q2 q0 q a2

— e e +——eo e o ———

0

That is, qo, q1, g2 are subsets of Z, their points are periodically placed within equal distances
greater than one, and the least non-negative g.-point belongs to qg.
Indeed, similarly to the proof of Lemma 35 one can show the following;:

Lemma 37. Let J be a standard model. Then Seq(q) is satisfied in J iff there exist j and l
with 1 > 3j >0 and ! > 1 such that

¢ = {lk+j|k=1i(mod3)}, i<S3. (75)

If (75) holds, we say that q encodes in J the number [ with indent j. If j = 0, then we
say that this encoding is standard.

Let q and q’ encode in J some numbers [ and I, respectively. If these encodings are
standard, then the relations <, =, and > between [ and [’ are easily expressed; for example
the term

V(=p = (@1 Np) = (¢4 M p)))

ensures that [ < [’. Thus, it remains to understand how to express [ = I’ when the encodings
are not necessarily standard. First, observe that [ is equal to [’ iff the sets defined by ¢, and
q. either coincide or are strictly alternating. More precisely, if [,1’, j,j' € Z satisfy

El+j < kl+5 < (k+1)l+j, keZ, (76)

then [ =1". Now, let Alt(q,q’) denote the term

[17( (6 = (s = a0 1 (6 = aie1) 1 (@ = (@ = dhor) () = ai91))) ).
1<3
Lemma 38. Let J be a standard model. Suppose that q and ' encode in I some numbers |

and I with indents j and j', respectively. Then T satisfies Alt(q,q’) iff (76) holds.
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Proof. Assume that J satisfies Alt(q,q’) and consider j' € (¢})”. By the second conjunct of
Alt(q,q’), we have

V45 <ki4+j < < k+Dl4+5 < U'+7§
for some kl + j € q3, i