
DL-Lite in the light of first-order logic

Authors

March 30, 2007

Abstract

The use of ontologies in various application domains, such as Data Integration, the
Semantic Web, or ontology-based data management, where ontologies provide the access
to large amounts of data, is posing challenging requirements w.r.t. the trade-off between
the expressive power of a DL and the efficiency of reasoning. The logics of the DL-Lite

family were specifically designed to meet such requirements and optimized w.r.t. the data
complexity of answering complex types of queries. In this paper we propose DL-Litebool, an
extension of DL-Lite with full Booleans and number restrictions, and study the complexity
of reasoning in DL-Litebool and its significant sub-logics. We obtain our results, together
with useful insights into the properties of the studied logics, by a novel reduction to
the one-variable fragment of first-order logic. We study the computational complexity of
satisfiability and subsumption, and the data complexity of answering positive existential
queries (which extend unions of conjunctive queries). Notably, we extend the LogSpace

upper bound for the data complexity of answering unions of conjunctive queries in DL-

Lite to positive queries and to the possibility of expressing also number restrictions, and
hence local functionality in the TBox.

1 Introduction

Description Logics (DLs) provide the formal foundation for ontologies (http://owl1_1.cs.
manchester.ac.uk/), and the tasks related to the use of ontologies in various application do-
mains are posing new and challenging requirements w.r.t. the trade-off between the expressive
power of a DL and the efficiency of reasoning over knowledge bases (KBs) expressed in the DL.
On the one hand, it is expected that the DL provides the ability to express TBoxes without
limitations. On the other hand, tractable reasoning is essential in a context where ontologies
become large and/or are used to access large amounts of data. This is a scenario emerg-
ing, e.g., in Data Integration [17], the Semantic Web [15], P2P data management [5, 11, 14],
ontology-based data access [7, 9], and biological data management. These new requirements
have led to the proposal of novel DLs with PTime algorithms for reasoning over KBs (com-
posed of a TBox storing intensional information, and an ABox representing the extensional
data), such as those of the EL-family [4, 3] and of the DL-Lite family [8, 10].

The logics of the DL-Lite family, in addition to having inference that is polynomial in
the size of the whole KB, have been designed with the aim of providing efficient access
to large data repositories. The data that need to be accessed are assumed to be stored in a
standard relational database (RDB), and one is interested in expressing, through the ontology,
sufficiently complex queries to such data that go beyond the simple instance checking case
(i.e., asking for instances of single concepts and roles). The logics of the DL-Lite family
are tailored towards such a task, in other words, they are specifically optimized w.r.t. data

1

complexity. More precisely, for the various versions of DL-Lite, answering conjunctive queries
or their union (UCQs) [1] can be done in LogSpace in data complexity [8]. Indeed, the aim
of the original line of research on the DL-Lite family was precisely to establish the maximal
subset of DLs constructs for which the data complexity of query answering stays within
LogSpace. For such DLs one can then devise query answering techniques that leverage on
RDB technology, and thus guarantee performance and scalability.

In this paper, we pursue a similar objective and aim at providing useful insights for the
investigation of the computational properties of the logics in the DL-Lite family. We extend
the basic DL-Lite with full Booleans and number restrictions, obtaining the logic we call
DL-Litebool, and we introduce two sublanguages of it, DL-Litekrom and DL-Litehorn. Notably,
the latter DL strictly extends basic DL-Lite with number restrictions, and hence local (as
opposed to global) functionality. We then characterize the first-order logic nature of this class
of newly introduced DLs by showing their strong connection with the one variable fragment
QL1 of first-order logic. The gained understanding allows us also to derive novel results on
the computational complexity of inference for the newly introduced variants of DL-Lite.

We show that KB satisfiability (or subsumption w.r.t. a KB) is NLogSpace-complete
for DL-Litekrom, P-complete for DL-Litehorn, and NP-complete (resp. coNP-complete) for
DL-Litebool. We prove that data complexity of both satisfiability and instance checking is
LogSpace for DL-Litebool. We then look into the data complexity of answering positive
existential queries, which extend the well-known class of UCQs by allowing for an unrestricted
interaction of conjunction and disjunction. We extend the LogSpace upper bound already
known for UCQs in DL-Lite to positive existential queries in DL-Litehorn. Note that already
for DL-Litekrom, and hence also for DL-Litebool, it directly follows from previous results that
the problem is coNP-complete [12, 10, 18].

The rest of the paper is structured as follows. In the next section we introduce the
three variants of DL-Lite mentioned above, exhibit the translation to QL1 and derive the
complexity results for satisfiability and subsumption. We proceed with the analysis of data
complexity, and conclude with techniques and data complexity results for answering positive
existential queries.

2 The DL-Lite family

We begin by considering the following extension DL-Litebool of the description logic DL-Lite
introduced in [8, 10]. The language of DL-Litebool contains object names a0, a1, . . . , atomic
concept names A0, A1, . . . , and atomic role names P0, P1, Complex roles R and concepts
C of DL-Litebool are defined as follows:

R ::= Pi | P−
i ,

B ::= ⊥ | Ai | ≥ q R,

C ::= B | ¬C | C1 ⊓ C2,

where q ≥ 1. Concepts of the form B will be called basic. A DL-Litebool TBox, T , consists of
axioms of the form

C1 ⊑ C2,

and an ABox, A, of assertions of the form

Ak(ai), Pk(ai, aj).

2

Together T and A constitute the DL-Litebool knowledge base K = (T ,A). (Note that asser-
tions involving complex concepts C(ai) and inverse roles P−

k (ai, aj) can be expressed as

AC(ai), AC ⊑ C and Pk(aj , ai),

respectively, where AC is a fresh atomic concept.)
A DL-Litebool interpretation is a structure of the form

I =
(

∆, aI0 , a
I
1 , . . . , A

I
0 , A

I
1 , . . . , P

I
0 , P

I
1 , . . .

)

, (1)

where ∆ is a nonempty set, aIi ∈ ∆, AI
i ⊆ ∆, P I

i ⊆ ∆ × ∆, and

(una) aIi 6= aIj , for all i 6= j.

The role and concept constructors are interpreted in I as usual:

(P−
i)I = {(y, x) ∈ ∆ × ∆ | (x, y) ∈ P I

i },

⊥I = ∅,

(≥q R)I = {x ∈ ∆ | ∃y1, . . . , yq ∈ ∆ such that (x, yi) ∈ RI and yi 6= yj, for i 6= j},

(¬C)I = ∆ \ CI ,

(C1 ⊓ C2)
I = CI

1 ∩ CI
2 .

The standard abbreviations ⊤ := ¬⊥, ∃R := (≥ 1R) and ≤ q R := ¬(≥ q + 1R) we need in
what follows are self-explanatory and correspond to the intended semantics.

The satisfaction relation |= is also defined in the standard way:

I |= C1 ⊑ C2 iff CI
1 ⊆ CI

2 ,

I |= Ak(ai) iff aIi ∈ AI
k ,

I |= Pk(ai, aj) iff (aIi , a
I
j) ∈ P I

k .

A knowledge base K = (T ,A) is satisfiable if there is a model satisfying all the members of
T and A.

We also consider two sublanguages of DL-Litebool: the Krom fragment, DL-Litekrom, and
the Horn fragment, DL-Litehorn.

(Krom) A TBox of a DL-Litekrom KB only contains axioms of the following form (where the
Bi are basic concepts):

B1 ⊑ B2 or B1 ⊑ ¬B2 or ¬B1 ⊑ B2.

KBs with such TBoxes will be called Krom KBs.

(Horn) A TBox of a DL-Litehorn KB only contains axioms of the form

l

k

Bk ⊑ B.

KBs with such TBoxes will be called Horn KBs.

3

Note that the restricted negation of the original variants of DL-Lite [8, 10] can only
express disjointness of basic concepts, while full negation in DL-Litebool allows one to define a
concept as the complement of another one. In DL-Litehorn we can express disjointness of basic
concepts by using ⊥ in the right-hand side of axioms. Also, the explicit functionality assertions
of DL-Lite (and DL-LiteF ,⊓ in [10]) stating that some roles R are globally functional can be
expressed in DL-Litebool and its sublanguages DL-Litehorn and DL-Litekrom as ≥ 2R ⊑ ⊥.
Moreover, local functionality of a role, i.e., functionality restricted to a (basic) concept B,
can be expressed in DL-Litebool and DL-Litekrom as B ⊑ ¬(≥ 2R), and in DL-Litehorn as
B ⊓ ≥ 2R ⊑ ⊥. Thus, DL-Litehorn strictly extends DL-Lite and DL-LiteF ,⊓ with local
functionality of roles and, more generally, with number restrictions.

3 Embedding DL-Litebool into the one-variable fragment of

first-order logic

Our main aim in this section is to show that the satisfiability problem for DL-Litebool knowl-
edge bases can be polynomially reduced to the satisfiability problem for the one-variable
fragment QL1 of first-order logic without equality. (Recall that the satisfiability problem for
QL1-formulas is NP-complete; see, e.g., [6].)

Let K = (T ,A) be a DL-Litebool knowledge base. Denote by role(K) the set of atomic
roles occurring in T and A, by role±(K) the set {Pk, P

−
k | Pk ∈ role(K)}, and by ob(A) the

set of object names in A. Let qT be the maximum numerical parameter in T . Note that if
the functionality axiom (≥ 2R ⊑ ⊥) is present in T then qT ≥ 2.

With every object name ai ∈ ob(A) we associate the individual constant ai of QL1 and
with every concept name Ai the unary predicate Ai(x) from the signature of QL1. For each
role R ∈ role±(K), we also introduce qT fresh unary predicates

EqR(x), for 1 ≤ q ≤ qT .

The intended meaning of these predicates is as follows: for a role name Pk,

• E1Pk(x) and E1P
−
k (x) represent the domain and range of Pk, respectively; in other

words, E1Pk(x) and E1P
−
k (x) are the sets of points with at least one Pk-successor and

at least one Pk-predecessor, respectively;

• EqPk(x) and EqP
−
k (x) represent the sets of points with at least q distinct Pk-successors

and at least q distinct Pk-predecessors, respectively.

Additionally, for every pair of roles Pk, P
−
k ∈ role±(K), we take two fresh individual constants

dpk and dp−k

of QL1 which will serve as ‘representatives’ of the points from the domains of Pk and P−
k ,

respectively (provided that they are not empty). Furthermore, for each pair of object names
ai, aj ∈ ob(A) and each role R ∈ role±(K), we take a fresh propositional variable Raiaj of
QL1 to encode R(ai, aj).

By induction on the construction of a DL-Litebool concept C we define the QL1-formula
C∗:

⊥∗ = ⊥, (Ai)
∗ = Ai(x), (≥q R)∗ = EqR(x),

(¬C)∗ = ¬C∗(x), (C1 ⊓C2)
∗ = C∗

1 (x) ∧ C∗
2 (x),

4

where Ai is an atomic concept name and R is a role. Then a DL-Litebool TBox T corresponds
to the QL1-sentence

T ∗ =
∧

C1⊑C2∈T

∀x
(

C∗
1 (x) → C∗

2 (x)
)

. (2)

It should be also clear how to translate a DL-Litebool ABox A into QL1:

A† =
∧

A(ai)∈A

A(ai) ∧
∧

P (ai,aj)∈A

Paiaj. (3)

The following formulas express some natural properties of the role domains and ranges.
Let K = (T ,A). For every role R ∈ role±(K), we need two QL1-sentences:

ε(R) = ∀x
(

E1R(x) → inv(E1R)(inv(dr))
)

, (4)

δ(R) =

qT −1
∧

q=1

∀x
(

Eq+1R(x) → EqR(x)
)

, (5)

where

inv(EqR) =

{

EqP
−
k , if R = Pk,

EqPk, if R = P−
k ,

and inv(dr) =

{

dp−k , if R = Pk,

dpk, if R = P−
k .

Sentence (4) says that if the domain of R is not empty then its range is not empty either: it
contains the representative inv(dr). The meaning of (5) should be obvious.

We also need formulas representing the relation of the Raiaj with the unary predicates
for the role domain and range. For a role R ∈ role±(K), let R† be the conjunction of the
QL1-sentences

qT
∧

q=1

∧

am∈ob(A)
aj1

,...,ajq∈ob(A)

ji 6=ji′ for i6=i′

(

q
∧

i=1

Ramaji
→ EqR(am)

)

, (6)

∧

ai,aj∈ob(A)

(

Raiaj → inv(R)ajai

)

, (7)

where inv(R)ajai is the propositional variable P−
k ajai if R = Pk and Pkajai if R = P−

k .
Finally, for the DL-Litebool knowledge base K = (T ,A), we set

K† =
[

T ∗ ∧
∧

R∈role
±(K)

(

ε(R) ∧ δ(R)
)

]

∧
[

A† ∧
∧

R∈role
±(K)

R†
]

.

It is worth noting that all the conjuncts of K† are universal sentences.

Theorem 1. A DL-Litebool knowledge base K = (T ,A) is satisfiable iff the QL1-sentence K†

is satisfiable.

Proof. (⇐) Let M be an Herbrand model (in the signature of K†) satisfying K†; for details
see, e.g., [13, 20]. We denote the domain of M by D (it consists of all the constants occurring

5

in K†) and the interpretations of (unary) predicates R, propositional variables p and constants
a of QL1 in M by RM, pM and aM, respectively.

Now we construct inductively a DL-Litebool model I based on some domain ∆ ⊇ D. This
domain ∆ will be (inductively) defined as the union

∆ =
∞
⋃

m=0

Wm, where W0 = D.

The interpretations of the object names a in I are given by their interpretations in M,
namely, aI = aM ∈ W0. Each set Wm+1, for m ≥ 0, is constructed by adding to Wm some
new elements that are fresh copies of certain elements from W0. If such a new element w′ is
a copy of w ∈ W0 then we write cp(w′) = w, while for w ∈ W0 we let cp(w) = w (thus, cp
is a function from ∆ onto W0). The set Wm \Wm−1, for m ≥ 0, will be denoted by Vm (for
convenience, let W−1 = ∅ so that V0 = D).

The interpretations AI of concept names A in I are defined by taking

AI =
{

w ∈ ∆ | M |= A∗[cp(w)]
}

. (8)

The interpretation P I
k of an atomic role Pk in I will be defined inductively as the union

P I
k =

∞
⋃

m=0

Pm
k , where Pm

k ⊆Wm ×Wm,

along with the construction of ∆. First, for a role R ∈ role±(K), we define the required R-rank
r(R, d) of a point d ∈ D by taking

r(R, d) =

0, if M |= ¬E1R[d],

q, if M |= EqR ∧ ¬Eq+1R[d], for 1 ≤ q < qT ,

qT , if M |= EqT R[d].

It follows from (5) that r(R, d) is a function and that if d ∈ D and r(R, d) = q then we have
M |= Eq′R[d] whenever 1 ≤ q′ ≤ q, and M |= ¬Eq′R[d] whenever q < q′ ≤ qT .

We also define the actual R-rank rm(R,w) of a point w ∈ ∆ at step m by taking

rm(R,w) =

{

q, if w ∈ ≥q Rm.Wm \ ≥q + 1Rm.Wm, for 0 ≤ q < qT ,

qT , if w ∈ ≥ qT R
m.Wm,

where Rm = Pm
k if R = Pk and Rm = (Pm

k)− if R = P−
k , (Pm

k)− = {(w′, w) | (w,w′) ∈ Pm
k }

and, for W ⊆ ∆, R ⊆ ∆ × ∆ and 0 ≤ q ≤ qT ,

≥q R.W =
{

w ∈W | ∃w1, . . . , wq ∈W with (w,wi) ∈ R and wi 6= wj for i 6= j
}

.

For the basis of induction we set, for each atomic role Pk ∈ role(K),

P 0
k =

{

(aM
i , a

M
j) ∈W0 ×W0 | M |= Pkaiaj

}

. (9)

Observe that, by (7) and (6), we have, for all R ∈ role±(K) and w ∈W0,

r0(R,w) ≤ r(R, cp(w)). (10)

6

Suppose now that Wm and the Pm
k , for m ≥ 0, have already been defined. If we had

rm(R,w) = r(R, cp(w)), for all roles R ∈ role±(K) and points w ∈ Wm, then the model
I we need would be constructed. However, in general this is not the case because there may
be some ‘defects’ in the sense that the actual rank of some points is smaller than the required
rank. For an atomic role Pk ∈ role(K), consider the following two sets of defects in Pm

k :

Λm
k =

{

w ∈ Vm | rm(Pk, w) < r(Pk, cp(w))
}

,

Λm−
k =

{

w ∈ Vm | rm(P−
k , w) < r(P−

k , cp(w))
}

.

The purpose of, say, Λm
k is to identify those ‘defective’ points w ∈ Vm from which precisely

r(Pk, cp(w)) distinct Pk-arrows should start (according to M), but some arrows are still
missing (only rm(Pk, w) many arrows exist). To ‘cure’ these defects, we extend Wm+1 and
Pm+1

k according to the following rules:

(Λm
k) Let w ∈ Λm

k , q = r(Pk, cp(w)) − rm(Pk, w) and d = cp(w). We have M |= Eq′Pk[d] for
some q′ ≥ q > 0. Then, by (5), M |= E1Pk[d] and, by (4), M |= E1P

−
k [dp−k].1 In this

case we take q fresh copies w′
1, . . . , w

′
q of dp−k (and set cp(w′

i) = dp−k , for 1 ≤ i ≤ q), add

them to Wm+1 and add the pairs (w,w′
i), 1 ≤ i ≤ q, to Pm+1

k .

(Λm−
k) Let w ∈ Λm−

k , q = r(P−
k , cp(w))− rm(P−

k , w) and d = cp(w). We have M |= Eq′P
−
k [d]

for some q′ ≥ q > 0. Then, by (5), M |= E1P
−
k [d] and, by (4), M |= E1Pk[dpk]. In this

case we take q fresh copies w′
1, . . . , w

′
q of dpk (and set cp(w′

i) = dpk, for 1 ≤ i ≤ q), add

them to Wm+1 and add the pairs (w′
i, w), 1 ≤ i ≤ q, to Pm+1

k .

The reader can find a concrete example illustrating this construction in Fig. 1.
Observe the following important property of the construction: for all m0 ≥ 0, w ∈ Vm0

and every role R ∈ role±(K),

rm(R,w) =

0, if m < m0,

q, if m = m0, for some q ≤ r(R, cp(w)),

r(R, cp(w)), if m > m0.

(11)

To prove this property, consider all possible cases:

• If m < m0 then the point w has not been added to Wm yet, i.e., w /∈ Wm, and so we
have rm(R,w) = 0.

• If m = m0 and m0 = 0 then rm(R,w) ≤ r(R, cp(w)) follows from (10).

• If m = m0 and m0 > 0 then w was added at step m0 to cure a defect of some point
w′ ∈ Wm0−1. This means that there is Pk ∈ role(K) such that either (w′, w) ∈ Pm0

k

and w′ ∈ Λm0−1
k or (w,w′) ∈ Pm0

k and w′ ∈ Λ
(m0−1)−
k . Consider the former case. We

have cp(w) = dp−k . Since fresh witnesses are picked up every time the rule (Λm0−1
k) is

applied, rm0
(P−

k , w) = 1, rm0
(Pk, w) = 0 and rm0

(R,w) = 0, for every R 6= Pk, P
−
k . So

it suffices to show that r(P−
k , dp

−
k) ≥ 1. Indeed, as M |= EqPk[cp(w′)] for some q ≥ 1,

we have, by (5), M |= E1Pk[cp(w′)], and so, by (4), M |= E1P
−
k [dp−k]. By the definition

of r, we have r(P−
k , dp

−
k) ≥ 1. The latter case is considered analogously.

1Here and below we slightly abuse notation and write dp−

k instead of (dp−

k)M .

7

.

.

a1

a′1

a2

dp1

dp−1

dp2

dp−2

V0

V1 V2 V3

Figure 1: The lower half of the figure shows part of the constructed model for K1 = (T1,A1)
with T1 = {A1 ⊑ ∃P1, A1 ⊑ ∃P−

1 ,⊤ ⊑ ≤ 1P1,⊤ ⊑ ≤ 1P−
1 ,∃P1 ⊑ A1,∃P

−
1 ⊑ A1} and

A1 = {A1(a1), A1(a
′
1), P1(a1, a

′
1)}. The upper half shows part of the model for K2 = (T2,A2)

with T2 = {A2 ⊑ ∃P−
2 , A2 ⊑ ≥ 2P2,⊤ ⊑ ≤ 1P−

2 ,∃P2 ⊑ A2,∃P
−
2 ⊑ A2} and A2 = {A2(a2)}.

The full model for K1 ∪ K2 consists of three isomorphic copies of the depicted part: one
(depicted) is built around the ai, and the other two are built around the dpi and the dp−i ,
respectively.

• If m = m0 + 1 then, for each role name Pk, all defects of w are cured at step m0 + 1 by
applying the rules (Λm0

k) and (Λm0−
k). Therefore, rm0+1(R,w) = r(R, cp(w)).

• If m > m0 + 1 then (11) follows from the observation that new arrows involving w can
only be added at step m0 + 1, that is, for all m ≥ 0, and each role name Pk ∈ role(K),

Pm+1
k \ Pm

k ⊆ Vm × Vm+1 ∪ Vm+1 × Vm. (12)

It follows that we have, for each R ∈ role±(K) and all 1 ≤ q ≤ qT , w ∈ ∆,

M |= EqR[cp(w)] iff w ∈ ≥ q RI .∆. (13)

Indeed, if M |= EqR[cp(w)] then, by definition, r(R, cp(w)) ≥ q. Let w ∈ Vm0
. Then, by (11),

rm(R,w) = r(R, cp(w)) ≥ q, for all m > m0. It follows from the definition of rm(R,w) and
RI that w ∈ (≥ q RI .∆). Conversely, let w ∈ (≥ q RI .∆) and w ∈ Vm0

. Then, by (11),
q ≤ rm(R,w) = r(R, cp(w)), for all m > m0. So, by the definition of r(R, cp(w)) and (5),
M |= EqR[cp(w)].

Now we show by induction on the construction of concepts C in K that, for every w ∈ ∆,
we have

M |= C∗[cp(w)] iff w ∈ CI . (14)

The basis of induction is trivial for B = ⊥ and follows from (8) for B = Ai and from (13) for
B = ≥ q R. The induction step for the Booleans (C = ¬C1 and C = C1 ⊓ C2) follows from
the induction hypothesis.

8

Finally, we show that for each statement ψ ∈ T ∪A,

M |= ψ† iff I |= ψ. (15)

The case ψ = C1 ⊑ C2 follows from (14) and ψ = Ak(ai) from the definition of AI
k . For

ψ = Pk(ai, aj), we have (aIi , a
I
j) ∈ P I

k iff, by (12), (aIi , a
I
j) ∈ P 0

k iff, by (9), M |= Pkaiaj.

Therefore I |= K.

(⇒) Let I be an interpretation of the form (1) such that I |= K. We construct a model
M for K† based on the same domain ∆ as I. For every ai ∈ ob(A), we let aM

i = aIi and,
for every R ∈ role±(K), we take some d ∈ (≥ 1R)I if (≥ 1R)I 6= ∅ and an arbitrary element
d ∈ ∆ otherwise, and let

drM = d.

Next, for every concept name Ai, we let AM
i = AI

i and, for every role R ∈ role±(K), we put

EqR
M = (≥ q R)I .

Finally, for every role name Pk ∈ role(K) and every pair of objects ai, aj ∈ ob(A), we define
(Pkaiaj)

M to be true iff I |= Pk(ai, aj).
It is readily checked that M |= K†.

The translation K† of K is obviously too lengthy to provide us with reasonably low com-
plexity results. However, it follows from the proof above that in fact a lot of information in
this translation is redundant and can be safely omitted.

Let us now define a more concise translation of K = (T ,A) into QL1. For R ∈ role±(K),
let QR

T be the set of natural numbers containing 1 and all the numerical parameters q for which
the concept ≥ q R occurs in T (recall that the ABox does not contain numerical parameters).
Then we set

K♭ =
[

T ∗ ∧
∧

R∈role
±(K)

(

ε(R) ∧ δ♭(R)
)

]

∧ A♭,

where ε(R) is as before (see (4)),

δ♭(R) =
∧

q,q′∈QR
T

q′>q
q′>q′′>q for no q′′∈QR

T

∀x
(

Eq′R(x) → EqR(x)
)

, (16)

(cf. (5)), and

A♭ =
∧

A(ai)∈A

A(ai) ∧
∧

R∈role
±(K)

a∈ob(A)

EqR,a
R(a), (17)

where qR,a is the maximum number from QR
T such that there are qR,a many distinct ai with

Pk(a, ai) ∈ A, for R = Pk, and Pk(ai, a) ∈ A, for R = P−
k . Now both the size of A♭ and the

size of K♭ are linear in the size of A and K, respectively, no matter whether the numerical
parameters are coded in unary or in binary.

Corollary 2. A DL-Litebool knowledge base K is satisfiable iff the QL1-sentence K♭ is satis-
fiable.

9

Proof. Follows from the fact that K† is satisfiable iff K♭ is satisfiable. Indeed, if M |= K† then
clearly M |= K♭. Conversely, if M |= K♭ then one can construct a new model M′ based on
the same domain D as M by taking

• AM′

= AM, for all concept names A;

• EqR
M′

= Eq′R
M, for all R ∈ role±(K) and 1 ≤ q ≤ qT , where q′ is the maximum

number from QR
T with q′ ≤ q;

• Raiaj to be true in M′ iff R(ai, aj) ∈ A or inv(R)(aj , ai) ∈ A;

• aM′

= aM, for all a ∈ ob(A);

• drM′

= drM, for all R ∈ role±(K).

It follows immediately from the definition that we have M′ |= K†. (For example, M′ |= T ∗

follows from the fact that for every concept (≥ q R) from T we have EqR
M′

= EqR
M.)

Remark 3. Note that the cardinality (and functionality) constraints from K♭ are only checked
for the named objects. Since K♭ only contains unary predicates and, unlike K†, does not
contain propositional variables Raiaj , the actual connections between named objects (stated
in the ABox) are of no importance at all; what really matters is the unary ‘types’ of named
objects a ∈ ob(A), that is, the sets of all concepts C from K such that K |= C(a). This
information is enough to restore the relations between the named objects required by K.

As an immediate consequence of Corollary 2 and the fact that the satisfiability problem
for QL1-formulas is NP-complete (and that DL-Litebool contains the Booleans, and so can
encode full propositional classical logic), we obtain the following:

Theorem 4. The satisfiability problem for DL-Litebool knowledge bases is NP-complete.

Let us now observe that if K is a Krom KB then K♭ belongs to the Krom fragment2 of
QL1. As the satisfiability problem for Krom formulas with the prefix of the form ∀x (as in
K♭) is NLogSpace-complete (see, e.g., [6, Exercise 8.3.7]), we obtain the following:

Theorem 5. The satisfiability problem for Krom knowledge bases is NLogSpace-complete.

If K is a Horn KB then K♭ belongs to the universal Horn fragment of QL1.

Theorem 6. The satisfiability problem for Horn knowledge bases is P-complete.

Proof. As QL1 contains no function symbols and K♭ is universal, satisfiability of K♭ is polyno-
mially reducible to satisfiability of a set of propositional Horn formulas, namely, the formulas
that are obtained from K♭ by replacing x with each of the constants occurring in K♭. It re-
mains to recall that the satisfiability problem for propositional Horn formulas is P-complete
(see, e.g., [19]).

2The Krom fragment consists of all formulas in prenex normal form whose quantifier-free part is a conjunc-
tion of binary clauses.

10

As is well known, many other reasoning tasks for description logics are reducible to the
satisfiability problem. Consider, for example, the subsumption problem: given a knowledge
base K = (T ,A) and two concepts C and D, decide whether K |= C ⊑ D, that is, we have
CI ⊆ DI for every model I of K. To reduce this problem to satisfiability, we take some fresh
atomic concept A, an object name a, and set

K′ = (T ′,A′), where T ′ = T ∪ {A ⊑ C, A ⊑ ¬D}, A′ = A∪ {A(a)}.

It is easy to see that K |= C ⊑ D iff K′ is not satisfiable. It follows that the subsumption
problem for DL-Litebool knowledge bases is coNP-complete. In the case of Krom knowledge
bases we should assume that C ⊑ D belongs to the Krom fragment, and so T ′ is a Krom
KB as well. By the Immerman–Szelepcsényi theorem, NLogSpace = coNLogSpace, and
so the subsumption problem for Krom KBs is NLogSpace-complete. For Horn KBs, C ⊑ D
should be a Horn subsumption of the form

dn
k=1Bk ⊑ B. In this case we slightly change the

reduction above by taking

T ′ = T ∪ {A ⊑ B1, . . . , A ⊑ Bn, A ⊓B ⊑ ⊥}, A′ = A ∪ {A(a)}.

Again we have K |= C ⊑ D iff K′ is not satisfiable. This means that the subsumption problem
for Horn KBs is P-complete. Other reasoning tasks are analysed in the same way (a reduction
for the instance checking problem can be found in the next section, and query answering will
be considered in Section 5).

So far we have assumed the whole knowledge base K = (T ,A) to be the input for the
satisfiability problem (together with the concepts C and D in the case of the subsumption
problem). According to the classification suggested by Vardi [22], we have been considering
the combined complexity of the satisfiability problem. Two other types of complexity for
knowledge bases are

• the program (or TBox) complexity, where only the TBox T is regarded to be the input,
while the ABox A is assumed to be fixed, and

• the data (or ABox) complexity, where the knowledge in the TBox T is fixed, while the
input data ABox A can vary.

It is easy to see that the program complexity of the satisfiability and subsumption problems
for DL-Litebool and its fragments considered above coincides with the corresponding combined
complexity.

Let us consider first the data complexity.

4 Data complexity

In this section we show that as far as data complexity is concerned, reasoning problems for
DL-Litebool knowledge bases can be solved using only logarithmic space in the size of the
ABox. We remind the reader (for more details see, e.g., [16]) that a problem belongs to the
complexity class LogSpace if there is a two-tape Turing machine M such that, starting with
an input of length n written on the read-only input tape, M stops in an accepting or rejecting
state having used at most log n cells of the (initially blank) read/write work tape.

11

In what follows, without loss of generality, we assume that all role names of a given
knowledge base K = (T ,A) occur in its TBox and write role±(T) instead of role±(K). Let

Σ(T) = {E1R(dr) | R ∈ role±(T)},

and, for Σ0 ⊆ Σ(T), let

coreΣ0
(T) =

∧

E1R(dr)∈Σ0

E1R(dr) ∧
∧

R∈role
±(T)

(

T ∗[dr] ∧
∧

R′∈role
±(T)

(

ε(R′)[dr] ∧ δ♭(R′)[dr]
)

)

, (18)

projΣ0
(K, a) =

∧

inv(E1R)(inv(dr))∈Σ(T)\Σ0

¬E1R(a) ∧ T ∗[a] ∧
∧

R′∈role
±(T)

δ♭(R′)[a] ∧ A♭(a), (19)

where T ∗[c], ε(R′)[c] and δ♭(R′)[c] are instantiations of the universal quantifier in the respec-
tive formulas with the constant c, and A♭(a) is the maximal subformula of A♭ containing only
occurrences of predicates with a as their parameter.

Lemma 7. K♭ is satisfiable iff there is a subset Σ0 of Σ(T) such that

• coreΣ0
(T) is satisfiable;

• projΣ0
(K, a) is satisfiable for every a ∈ ob(A).

Proof. (⇒) If there is M such that M |= K♭, then we take

Σ0 = {E1R(dr) | R ∈ role±(T), M |= E1R[dr]}.

It should be clear that we have M |= coreΣ0
(T) and M |= projΣ0

(K, a), for all a ∈ ob(A).
(⇐) Conversely, let MΣ0

be an Herbrand model of coreΣ0
(T) and let Ma be an Herbrand

model of projΣ0
(K, a), for a ∈ ob(A). By definition, the domain of MΣ0

consists of |role±(T)|
elements and the domains of the Ma are singletons. It should be clear that

• MΣ0
|= T ∗ and MΣ0

|= ε(R) ∧ δ♭(R), for every R ∈ role±(T);

• for every a ∈ ob(A), we have Ma |= T ∗ and Ma |= δ♭(R) for every R ∈ role±(T).

We construct a model M by taking the disjoint union of MΣ0
with all of the Ma. Let us show

that M |= K♭. Indeed,

• We have M |= T ∗ because T ∗ is universal, does not contain constants and is true in
every component model.

• By the same argument we have M |= δ♭(R), for each role R ∈ role±(T).

• Consider now ε(R) = ∀xψ(x), where ψ(x) = (E1R(x) → inv(E1R)(inv(dr))). We show
that, for every d in the domain of M, we have M |= ψ[d]. If d is of the form dr′M, for some
role R′ ∈ role±(T), then clearly M |= ψ[d], since MΣ0

|= ε(R). If d is of the form aM,
for a ∈ ob(A), then it trivially holds if Ma 6|= E1R(a). Otherwise, Ma |= E1R(a), and
so inv(E1R)(inv(dr)) /∈ Σ(T) \ Σ0. Therefore, M |= inv(E1R)(inv(dr)) and M |= ψ[d].

• Finally, A♭ holds true because every conjunct B∗(a) of it is true in the respective
component model Ma, and so in M as well.

12

This completes the proof of the lemma.

Note that coreΣ0
(T) and the projΣ0

(K, a), for a ∈ ob(A), are in essence propositional
Boolean formulas and their size does not depend on the size of A. This is clearly the case for
coreΣ0

(T) and the first three conjuncts of projΣ0
(K, a). As for the last conjunct of projΣ0

(K, a),
its length does not exceed the number of concept names in T plus qT ·|role

±(T)| and, therefore,
only depends on the structure of T .

The above lemma states that satisfiability of a DL-Litebool KB can be checked locally:
first, for the elements dr representing the domains and ranges of all roles, and second, for
every object name in its ABox. This observation suggests a high degree of parallelism in the
satisfiability check.

Theorem 8. The data complexity of the satisfiability and instance checking problems for
DL-Litebool knowledge bases is in LogSpace.

Proof. The instance checking problem is reducible to the (un)satisfiability problem: an object
a is an instance of an atomic concept B in every model of K = (T ,A) iff the knowledge base

(

T ∪ {A¬B ⊑ ¬B}, A ∪ {A¬B(a)}
)

is not satisfiable, where A¬B is a fresh concept name.
The following deterministic algorithm checks whether a knowledge base K = (T ,A) is

satisfiable:

• for every subset Σ0 of Σ(T), we do the following:

(c) compute coreΣ0
(T) and check whether it is satisfiable;

(p) for every object name a ∈ ob(A),

∗ compute the qR,a, for R ∈ role±(T),

∗ compute projΣ0
(K, a) and check whether it is satisfiable.

The above deterministic algorithm requires space bounded by a logarithmic function in the
size |A| of ABox. Indeed, in order to enumerate all subsets Σ0 of Σ(T) one needs |role±(T)|
cells of the work tape—this does not depend on |A|. At step (c), the size of coreΣ0

(T) does not
depend on |A| either, and whether this formula is satisfiable can be checked deterministically
(though in time exponential and in space linear in the length of the formula). At step (p) we
enumerate all elements of ob(A), and this requires log |A| cells on the working tape. Next,
the qR,a, for R ∈ role±(T), can be computed using

qT · log |A|

of extra space: for every role R ∈ role±(T) and every q, 1 ≤ q ≤ qT , one enumerates all
q-tuples (ai1 , . . . , aiq) of distinct objects in ob(A) and checks whether, for every 1 ≤ j ≤ q,
Pk(a, aij) ∈ A, if R = Pk, and Pk(aij , a) ∈ A, if R = P−

k . The maximum such q is the
required number qR,a (cf. (17)). Finally, for each a ∈ ob(A), the size of projΣ0

(K, a) does not
depend on |A| and its satisfiability can be checked deterministically.

The above calculations show that the algorithm needs const · log |A| cells on the working
tape, where const does not depend on |A|.

In fact, the algorithm provided in the proof above shows that the satisfiability and instance
checking problems for DL-Litebool knowledge bases belong to the parallel complexity class AC0

(see, e.g., [19]).

13

5 Query answering

By a positive existential query q(x1, . . . , xn) we mean any first-order formula

ϕ(x1, . . . , xn) (20)

constructed by means of conjunction, disjunction and existential quantification form atoms
of the from A(t) and P (t1, t2), where A is a concept name, P a role name, and t, t1, t2 are
terms taken from the list of variables y0, y1, . . . and the list of object names a0, a1, More
precisely,

t ::= yi | ai,

ϕ ::= Ai(t) | Pi(t1, t2) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∃yi ϕ.

The free variables of ϕ are called distinguished variables of q and the bound ones are non-
distinguished variables of q. We write q(x1, . . . , xn) for a query with distinguished variables
x1, . . . , xn.

A conjunctive query is a positive existential query which contains no disjunction (that is,
it is constructed from atoms by means of conjunction and existential quantification).

Given a query q(~x) = ϕ(~x) with ~x = x1, . . . , xn and an n-tuple ~a of object names, we
write q(~a) for the result of replacing every occurrence of xi in ϕ(~x) with the ith member of
~a. Queries containing no distinguished variables will be called ground (sentences).

Let I be a DL-Litebool interpretation of the form (1). An assignment a in ∆ (for the
query q(~x)) is a function associating with every non-distinguished variable y an element a(y)
of ∆. We will use the following notation: aI,a

i = aIi and yI,a = a(y). Next, we define the
satisfaction relation for positive existential formulas with respect to a given assignment a:

I |=a A(t) iff tI,a ∈ AI ,

I |=a P (t1, t2) iff (tI,a
1 , tI,a

2) ∈ P I ,

I |=a ϕ1 ∧ ϕ2 iff I |=a ϕ1 and I |=a ϕ2,

I |=a ϕ1 ∨ ϕ2 iff I |=a ϕ1 or I |=a ϕ2,

I |=a ∃yi ϕ1 iff I |=b ϕ1, for some assignment b in ∆ that may differ from a on yi.

For a ground query q(~a) = ϕ(~a), we write K |= q(~a) if I |=a ϕ(~a), for every model I of K
(with domain ∆) and every (some) assignment a in ∆.

Given a knowledge base K = (T ,A), we say that a tuple ~a of object names from ob(A)
is an answer to q(~x) and write K |= q(~a) if I |= q(~a) whenever I |= K. The answer to the
query q(~x) with respect to K is the set

{

~a = (ai1 , . . . , ain) ∈ (ob(A))n | K |= q(~a)
}

.

The query answering problem we analyse in this section is formulated as follows: given a
DL-Litebool knowledge base K = (T ,A), a query q(~x), and a tuple ~a of object names from
ob(A), decide whether K |= q(~a). Another variant of the query answering problem ‘list all the
answers ~a to q(~x) with respect to K’ is known to be logspace equivalent to previous one; see,
e.g., [1, Exercise 16.13]. We distinguish between two cases of the query answering problem:
the general case of positive existential queries and the case of conjunctive queries. Here we
are interested in the data complexity of the query answering problem, that is, the TBox T
and the query q(~x) are assumed to be fixed.

Let us begin with the following well-known result:

14

Theorem 9 ([12]). The conjunctive query answering problem for Krom knowledge bases is
data-hard for coNP.

Proof. We reduce the complement of the NP-complete satisfiability problem for 2+2 CNFs to
the query answering in Krom knowledge bases (see [21]). Let x1, . . . , xk be Boolean variables
and f be a 2+2 CNF, that is, a formula of the form

∧n
j=1Dj , where Dj = xi1j

∨xi2j
∨¬xi3j

∨¬xi4j

(1 ≤ i1j , i
2
j , i

3
j , i

4
j ≤ k), for all 1 ≤ j ≤ n. Denote the following ABox by Af :

{

S1(dj , xi1j
), S2(dj , xi2j

), S3(dj , xi3j
), S4(dj , xi4j

) | 1 ≤ j ≤ n
}

.

Let T = {T ⊑ ¬F, ¬F ⊑ T}. Then f is unsatisfiable iff the query

∃y
(

∃y1 (S1(y, y1) ∧ F (y1)) ∧ ∃y2 (S2(y, y2) ∧ F (y2)) ∧

∃y3 (S3(y, y3) ∧ T (y3)) ∧ ∃y4 (S1(y, y4) ∧ T (y4))
)

has an answer with respect to (T ,Af).

The matching upper bound follows from Theorem 14 below.

Theorem 10. The data complexity of the positive existential query answering problem for
Horn knowledge bases is in LogSpace.

Proof. The plan of the proof is as follows:

• First, we show in Lemma 11 how to construct a single, but possibly infinite, model
I0 which provides all answers to all positive existential queries with respect to a given
Horn knowledge base T .

• Second, we show in Lemma 12 and Corollary 13 that, actually, to find all answers to
a given query it is enough to consider some finite part of I0 the size of which does
not depend on the given ABox (but only on the number of distinguished, ~x, and non-
distinguished, ~y, variables in the given query as well as the size of T).

• The LogSpace query answering algorithm will consider then all proper possible as-
signments of elements in that finite part of I0 to the variables ~x, ~y, compute the cor-
responding types (the concepts that contain these elements), and, finally, evaluate the
query.

Suppose that we have a consistent Horn knowledge base K = (T ,A) (with all its concept
and role names occurring in the TBox T) and a positive existential query q(~x) of the form (20).
Let M0 be the minimal Herbrand model for K♭. We remind the reader (for details consult,
e.g., [2, 20]) that M0 can be constructed by taking the intersection of all Herbrand models
for K♭, that is, of all models based on the domain Λ0 which consists of all constant symbols
from K♭, i.e.,

Λ0 = ob(A) ∪ {dr | R ∈ role±(T)}.

Another way of constructing M0 is to apply the following procedure to K♭. Let β(T) be the
set of atomic concept names in T together with the ≥ q R, for q ∈ QR

T and R ∈ role±(T)
(cf. concepts of the form B on p. 2). Then the set of all predicates in K♭ is {B∗ | B ∈ β(T)}.
Denote by ΣK the set of all conjuncts of K♭, that is, the set of all subformulas of K♭ of the
form ∀x

(

B∗
1(x)∧ · · · ∧B∗

k(x) → B∗(x)
)

, ∀x
(

B∗
1(x)∧ · · · ∧B∗

k(x) → ⊥
)

, ∀x
(

B∗
1(x) → B∗(dr)

)

and B∗(c), where B1, . . . , Bk, B ∈ β(T), dr ∈ Λ0 for R ∈ role±(T) and c ∈ Λ0.

15

Step 0. For every c ∈ Λ0, set

t
0(c) =

{

B ∈ β(T) | B∗(c) ∈ ΣK

}

.

Step n+ 1. Suppose we have already defined t
n(c) for all c ∈ Λ0 and n ≥ 0. Then we set

t
n+1(c) = t

n(c)

∪
{

B ∈ β(T) | ∀x (B∗
1(x) ∧ · · · ∧B∗

k(x) → B∗(x)) ∈ ΣK

and B1, . . . , Bk ∈ t
n(c)

}

∪
{

B ∈ β(T) | ∀x (B∗
1(x) → B∗(c)) ∈ ΣK and B1 ∈ t

n(c′) for some c′ ∈ Λ0

}

.

Clearly, t
n(c) ⊆ t

n+1(c), for each c ∈ Λ0. Moreover, after finitely many, say m, steps we will
have t

m(c) = t
m+1(c). Denote this maximal t

m(c) by t
M0(c). Finally, for each B ∈ β(T),

we set (B∗)M0 =
{

c ∈ Λ0 | B ∈ t
M0(c)

}

. Recall that we have assumed K (and so K♭) to be

consistent. This means that all conjuncts of K♭ of the form ∀x (B∗
1(x) ∧ · · · ∧ B∗

k(x) → ⊥)
are automatically satisfied in M0. Therefore, M0 |= K♭ for the resulting model M0, which is
obviously the minimal Herbrand model for K♭.

Now we convert M0 into the model for K† as in the proof of Corollary 2, and then apply
to it the unravelling procedure described in the proof of Theorem 1. Let I0 be the resulting
model of K with the domain ∆0. Given a model J and a point w in its domain, we let

t
J (w) = {B ∈ β(T) | w ∈ BJ }.

The properties of the model I0 we need in this proof are as follows: for every model J of K
with domain Γ, we have:

(exta) for every a ∈ ob(A), t
I0(aI0) ⊆ t

J (aJ);

(extdr) for every w ∈ ∆0 \ {a
I0 | a ∈ ob(A)},

• if w ∈ (≥ 1R)I0 , for some role R ∈ role±(T), then t
I0(w) ⊆ t

J (w′), for every
w′ ∈ (≥ 1R)J ;

• otherwise, t
I0(w) ⊆ t

J (w′) for every w′ ∈ Γ;

(ext-edr) for each role R ∈ role±(T), if (≥ 1R)I0 6= ∅ then (≥ 1R)J 6= ∅.

These properties follow immediately from the fact that M0 is the minimal Herbrand model
for K♭.

Lemma 11. For every positive existential sentence ψ, K |= ψ iff I0 |= ψ.

Proof. The implication (⇒) is trivial. To show (⇐), consider an arbitrary model J of K
based on some domain Γ. We have to prove that

J |= ψ whenever I0 |= ψ.

As ψ is a positive existential sentence, it is enough to construct a homomorphism f : I0 → J .
We do this by induction on the construction of ∆0 =

⋃∞
m=0Wm (see the proof of Theorem 1).

More precisely, f is defined as the union of fm, m ≥ 0, where each fm has the following
properties:

16

(a) for every w ∈Wm, if w ∈ BI0 then fm(w) ∈ BJ , for each B ∈ β(T),

(b) for all w, u ∈Wm, if (w, u) ∈ RI0 then (fm(w), fm(u)) ∈ RJ , for each R ∈ role±(T).

For the basis of induction, recall that W0 = Λ0 consists of the interpretations of all constants
in K†. So we have two cases:

• If w = aI0 , for a ∈ ob(A), then set f0(w) = aJ .

• Otherwise, w ∈W0 \ {a
I0 | a ∈ ob(A)} and

– if w ∈ (≥ 1R)I0 , for some R ∈ role±(T), then we can select, by (ext-edr), some
w′ ∈ (≥ 1R)J and set f0(w) = w′;

– otherwise, we take an arbitrary w′ ∈ Γ and set f0(w) = w′.

Then (a) follows immediately from (exta) and (extdr). In order to show (b) note that, for
each role R ∈ role±(T) and all w, u ∈ W0, if (w, u) ∈ RI0 then (aI0

i , a
I0

j) ∈ RI0 for some

ai, aj ∈ ob(A) such that w = aI0

i and u = aI0

j . Therefore, R(ai, aj) ∈ A or inv(R)(aj , ai) ∈ A.

In either case we have (aJi , a
J
j) ∈ RJ , and so (f0(w), f0(u)) ∈ RJ .

For the induction step, suppose that fm has already been defined for Wm, m ≥ 0. Set
fm+1(w) = fm(w) for all w ∈ Wm. Now consider an arbitrary u ∈ Wm+1 \Wm. According
to the unravelling construction, there is some w0 ∈ Wm such that either (w0, u) ∈ Pm+1

k or
(u,w0) ∈ Pm+1

k (a defect of w0 is cured at step m + 1). Let R = Pk in the former case and
R = P−

k in the latter. Then we have w0 ∈ (≥ 1R)I0 , and so, by (a), fm(w0) ∈ (≥ 1R)J .
Therefore, there exists a point u′ ∈ Γ such that (fm(w0), u

′) ∈ RJ . Set fm+1(u) = u′. By
definition, we have (b). Recall also that u ∈ (≥ 1 inv(R))I0 and u′ ∈ (≥ 1 inv(R))J , and so
we obtain (a) by (extinv(dr)).

As f is a homomorphism, I0 |= ψ, and ψ is a positive existential sentence, we must have
J |= ψ as well.

Given a (possibly empty) set D ⊆ ob(A) and some k ≥ 0, we define the k-neighbourhood
δk(D) of D as the minimal subset of ∆0 satisfying the following conditions:

• {aI0 | a ∈ D} ⊆ δk(D);

• W0 \ {a
I0 | a ∈ ob(A)} ⊆ δk(D);

• if u ∈ δk(D), w ∈Wk and (u,w) ∈ RI0 for some R ∈ role±(T), then w ∈ δk(D).

Note that |δk(D)| ≤ |D| · (|role±(T)| · qT)k+1; more importantly, the size of δk(D) does not
depend on the size of A.

Lemma 12. Let ∃~y ψ(~y) be a positive existential sentence in prenex form, ~y = y1, . . . , yk and
let D be the set of all constants occurring in ψ. Then I0 |= ∃~y ψ(~y) iff there is an assignment
a0 in ∆0 such that I0 |=a0 ψ(~y) and a0(yi) ∈ δk(D), 1 ≤ i ≤ k.

Proof. The implication (⇐) is trivial. To show (⇒) consider an assignment a in ∆0 such
that I0 |=a ψ. Suppose that there is i0, 1 ≤ i0 ≤ k, with a(yi0) /∈ δk(D). (If such an i0
does not exist, we are done.) Set Y 0 = {yi0}. We iteratively extend this set to include all
those variables that are (directly and indirectly) connected to yi0. More precisely, suppose
that Y n, n ≥ 0, has been constructed. Let Y n+1 be the union of Y n with the set of all those

17

yi, 1 ≤ i ≤ k, such that either P (yi, yj) or P (yj, yi) is a subformula of ψ, for some yj ∈ Y n.
Denote the maximum of the Y n by Y .

Let m the minimum number such that a(yi) ∈ Wm, for yi ∈ Y . Clearly, m > 0 as the
cardinality of Y does not exceed k and the P I0 connect only adjacent layers (i.e., Vn and Vn+1).
For the same reason ψ has no subformulas of the form P (a, y) or P (y, a), for a ∈ ob(A) and
y ∈ Y . Now, for every yi ∈ Y , we have a(yi) = wi ∈ Vmi

for some m ≤ mi ≤ mi+k. It follows
from the procedure of unravelling M0 to I0 that, for each yi ∈ Y , one can find ui ∈ Vmi−m

such that cp(wi) = cp(ui); moreover, for every pair yi, yj ∈ Y , we have (ui, uj) ∈ RI0 iff
(wi, wj) ∈ RI0, for each R ∈ role±(T). We define a new assignment aY by taking

aY (yi) =

{

a(y), y /∈ Y,

ui, yi ∈ Y.

It follows that (i) I0 |=a ψ(~y) iff I0 |=aY ψ(~y) and (ii) aY (yi) ∈ δk(D), for each yi ∈ Y .
The above process can be now repeated to cure possible defects of aY . After sufficiently

many repetitions we obtain an assignment a0 as required by the lemma.

As an immediate consequence of the above two lemmas we obtain the following:

Corollary 13. Let q(~x) = ∃~y ϕ(~x, ~y) be a positive existential query in prenex form with
~y = y1, . . . , yk. Then, for every ~a = a1, . . . , an, we have K |= q(~a) iff I0 |=a ϕ(~a, ~y), for some
assignment a in ∆0 such that a(yi) ∈ δk(D), for each 1 ≤ i ≤ k, where

D =
{

a1, . . . , an

}

∪
{

a ∈ ob(A) | a(yi) = aI0 , 1 ≤ i ≤ k
}

.

We are now in a position to formulate our query answering algorithm for the given Horn
knowledge base K = (T ,A) and the positive existential query q(~x) = ∃~y ϕ(~x, ~y) in prenex
form with ~x = x1, . . . , xn and ~y = y1, . . . , yk.

The query answering algorithm:

1. First we check whether K is consistent. If it is inconsistent, then every ~a = a1, . . . , an

with ai ∈ ob(A) is an answer. Otherwise we go to step 2.

2. For every (n + k)-tuple (a1, . . . , an, c1, . . . , ck) with ai ∈ ob(A) and ci ∈ ob(A) ∪ {λ},
where λ is a special marker meaning ‘unnamed object’ (i.e., some object that cannot
be fixed at this stage since it may not belong to ob(A); this partial assignment (i.e., λ
stands for unassigned yet variable) will be extended to a full assignment at the very last
step by enumerating all elements of δk(D)), do:

• set D = {ai | 1 ≤ i ≤ n} ∪ {ci | ci 6= λ, 1 ≤ i ≤ k};

• for each R ∈ role±(T), set t
•(dr) = ∅;

• for each a ∈ ob(A), compute its ‘minimal type’ as follows:

– set t
0(a) =

{

B | B∗(a) ∈ ΣK

}

– repeat

∗ t
n+1(a) = t

n(a)
∪

{

B | ∀x (B∗
1 ∧ · · · ∧B∗

k → B∗) ∈ ΣK and B1, . . . , Bk ∈ t
n(a)

}

– until t
n(a) = t

n+1(a);

18

– for each R ∈ role±(T)

∗ if (≥ 1 inv(R)) ∈ t
n(a) then set t

•(dr) := t
•(dr) ∪ {≥ 1R};

– save t
n(a) as t(a) whenever a ∈ D;

• for all R ∈ role±(T), compute the minimal types of the dr (simultaneously):

– for each R ∈ role±(T), set t
0(dr) = t

•(dr) ∪
{

B | B∗(dr) ∈ ΣK

}

– repeat

∗ for each R ∈ role±(T), set t
n+1(dr) = t

n(dr)
∪

{

B | ∀x (B∗
1 ∧ · · · ∧B∗

k → B∗) ∈ ΣK and B1, . . . , Bk ∈ t
n(dr)

}

;

∗ for all R,R′ ∈ role±(T)
· if (≥ 1 inv(R)) ∈ t

n(dr′) then set t
n+1(dr) := t

n+1(dr) ∪
{

≥ 1R
}

;

– until t
n(dr) = t

n+1(dr), for each R ∈ role±(T);

– for each R ∈ role±(T), save t
n(dr) as t(dr);

• construct the part ID of the model I0 that is based on δk(D) as its domain (note
that all the required types are among the t(a), for a ∈ D, and the t(dr), for
R ∈ role±(T));

• for each k-tuple (c′1, . . . , c
′
k) such that c′i ∈ δk(D) if ci = λ and c′i = ci otherwise,

i.e., if ci ∈ D, 1 ≤ i ≤ k, do:

– construct an assignment a by taking a(yi) = c′i, 1 ≤ i ≤ k;

– evaluate ID |=a ϕ(~a, ~y), where ~a = a1, . . . , an;

– output ~a if the above relation holds.

This (deterministic) algorithm requires at most logarithmic space in the size of the ABox A.
Indeed, by Theorem 8, the consistency check at step 1 can be performed in logarithmic space
in the size of A. Then the space we need to enumerate the tuples (a1, . . . , an, c1, . . . , ck) and
to store the current one is bounded by

(n+ k) ·
(

log |A| + 1
)

.

Next, we need extra space of size 2 · |D| · |β(T)| to compute and store the required types t
n(a)

and t
n+1(a), for a ∈ D, plus 2 · |role±(T)| · |β(T)| to compute and store the types t

n(dr) and
t
n+1(dr), for R ∈ role±(T). At the next step the model ID reuses those types and contains

only δk(D) points; recall that

|δk(D)| ≤ |D| · (|role±(T)| · qT)k+1

(and so the size of ID does not depend on |A|). Finally, the check at the last step involves the
enumeration of all k-tuples of δk(D), which requires space of size k · log |δk(D)| (which again
does not depend on the size of A), and the actual evaluation of ϕ in ID under the assignment
a does not depend on the size of A either. These calculations show that the overall space
used by this deterministic algorithm is of the size logarithmic in the size of A.

It is not hard to see that the algorithm above belongs to the parallel complexity class
AC0.

If we deal with arbitrary, not necessarily Horn, knowledge bases T , then Lemma 11 does
not hold, and we have to consider basically all possible models for T . It is not hard to
prove, however, that if ~a is not an answer to the given positive existential query q(~x), then,

19

similarly to Corollary 13, this fact can be established by means of some finite part of some
(possibly infinite) model the size of which is linear in the size of the ABox. This observation
provides us with a coNP query answering algorithm: to check that ~a is not an answer to
q(~x) with respect to T , we guess such a finite part and analyse all possible assignments to
non-distinguished variables in it.

Theorem 14. The data complexity of the positive existential query answering problem for
DL-Litebool knowledge bases bases is in coNP.

Theorem 9 shows that this upper bound is optimal.

6 Conclusion

The LogSpace data complexity result for query answering provides the basis for the devel-
opment of algorithms that operate on a KB whose ABox is stored in a relational database
(RDB), and that evaluate a query by relying on the query answering capabilities of a RDB
management system, cf. [8]. The known algorithms for DL-Lite are based on rewriting the
original query using the TBox axioms. We aim at developing a similar technique also for
answering positive existential queries in DL-Litehorn.

We are further investigating the complexity of logics obtained by adding further con-
structs to DL-Lite. Preliminary results show that already by adding role inclusion axioms to
DL-Litebool the combined complexity raises to ExpTime. Furthermore, as already done for
DL-Lite, we are currently investigating the expressive power of the DL-Litebool family in the
conceptual modeling (e.g., UML and EER) realm.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] K. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics, pages 493–574. 1990.

[3] F. Baader, C. Lutz, and B. Suntisrivaraporn. Is tractable reasoning in extensions of the
description logic EL useful in practice? In Proc. of the Methods for Modalities Workshop
(M4M 2005), 2005.

[4] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of IJCAI 2005,
pages 364–369, 2005.

[5] Ph. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini, and
I. Zaihrayeu. Data management for peer-to-peer computing: A vision. In Proc. of
WebDB 2002, 2002.

[6] E. Börger, E. Grädel, and Yu. Gurevich. The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, 1997.

[7] A. Borgida, R. Brachman, D. McGuinness, and L. Alperin Resnick. CLASSIC: A struc-
tural data model for objects. In Proc. of ACM SIGMOD, pages 59–67, 1989.

20

[8] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:
Tractable description logics for ontologies. In Proc. of AAAI 2005, pages 602–607, 2005.

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tailoring OWL for
data intensive ontologies. In Proc. of the Workshop on OWL: Experiences and Directions
(OWLED 2005), 2005.

[10] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity
of query answering in description logics. In Proc. of KR 2006, pages 260–270, 2006.

[11] D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Logical foundations of
peer-to-peer data integration. In Proc. of PODS 2004, pages 241–251, 2004.

[12] F. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Deduction in concept languages:
From subsumption to instance checking. Journal of Logic and Computation, 4(4):423–
452, 1994.

[13] H. Enderton. A Mathematical Introduction to Logic. Academic Press, New York, 2nd
edition, 2001.

[14] E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu. Queries and updates in the
coDB peer to peer database system. In Proc. of VLDB 2004, pages 1277–1280, 2004.

[15] J. Heflin and J. Hendler. A portrait of the Semantic Web in action. IEEE Intelligent
Systems, 16(2):54–59, 2001.

[16] D. Kozen. Theory of Computation. Springer, 2006.

[17] M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS 2002, pages
233–246, 2002.

[18] M. Magdalena Ortiz, D. Calvanese, and T. Eiter. Characterizing data complexity for
conjunctive query answering in expressive description logics. In Proc. of AAAI 2006,
2006.

[19] Ch. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[20] W. Rautenberg. A Concise Introduction to Mathematical Logic. Springer, 2006.

[21] A. Schaerf. On the complexity of the instance checking problem in concept languages
with existential quantification. Journal of Intelligent Information Systems, 2:265–278,
1993.

[22] M. Vardi. The complexity of relational query languages (extended abstract). In Proceed-
ings of the Fourteenth Annual ACM Symposium on Theory of Computing (STOC), 5–7
May 1982, San Francisco, California, USA, pages 137–146. ACM, 1982.

21

