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Abstract
We present a formal framework for (minimal) mod-
ule extraction based on an abstract notion of in-
separability w.r.t. a signature between ontologies.
Two instances of this framework are discussed in
detail for DL-Lite ontologies: concept inseparabil-
ity, when ontologies imply the same complex con-
cept inclusions over the signature, and query in-
separability, when they give the same answers to
existential queries for any instance data over the
signature. We demonstrate that different types of
corresponding minimal modules for these insepara-
bility relations can be automatically extracted from
large-scale DL-Lite ontologies by composing the
tractable syntactic locality-based module extraction
algorithm with intractable extraction algorithms us-
ing the multi-engine QBF solver AQME. The ex-
tracted minimal modules are compared with those
obtained using non-logic-based approaches.

1 Introduction
In computer science, ontologies are used to provide a com-
mon vocabulary (used here synonymously with ‘signature’)
for a domain of interest, together with a description of the
relationships between terms built from the vocabulary. Mod-
ule extraction—the problem of finding a (minimal) subset of
a given ontology that provides the same description of the
relationships between terms over a given sub-vocabulary as
the whole ontology—has recently become an active research
topic in various ontology-related areas such as the semantic
web and description logic; see, e.g., the recent volume on on-
tology modularisation [Parent et al., 2009] and the WoMO
workshop series devoted to this problem [Haase et al., 2006;
Cuenca-Grau et al., 2007]. The reasons for this are manifold,
with one of the most important being ontology re-use. It is of-
ten impossible and not even desirable to develop an entirely
new ontology for every new application; a better methodol-
ogy is to re-use appropriate existing ontologies. However,
typically only a relatively small part of the vocabulary of a
possibly large ontology is required, that is, one only needs
a subset, or module, of the ontology that gives the same de-
scription of this sub-vocabulary. Extracting such a module is
the problem we are concerned with in this paper.

The phrase ‘gives the same description of the vocabu-
lary’ (formalised below as a family of equivalence rela-
tions, one for each signature, and called an inseparability
relation) is rather vague and has been interpreted in a va-
riety of different ways, ranging from structural approaches
[Noy and Musen, 2004; Seidenberg and Rector, 2006] to
logic-based approaches [Cuenca-Grau et al., 2006; 2008;
Konev et al., 2008]. While structural approaches use, and
depend on, the syntax of the axioms of ontologies and mostly
only take into account the induced is-a hierarchy, logic-based
approaches consider the consequences of ontologies and re-
quire these to be the same for the relevant vocabulary. Al-
though theoretically attractive and elegant, the logic-based
approaches suffer from the high computational complexity
of the problems to be solved: even checking whether two
ontologies imply the same concept inclusions over a given
signature is typically one exponential harder than standard
reasoning problems (e.g., for ALC ontologies this problem
is 2EXPTIME-complete [Ghilardi et al., 2006]). In [Cuenca-
Grau et al., 2008], this difficulty has been addressed by devel-
oping a tractable (even for SHIQ) syntactic locality-based
module extraction algorithm, the only disadvantage of which
is that the extracted modules are typically not minimal. The
only existing practical (and tractable) logic-based algorithm
capable of extracting minimal modules was developed for
acyclic EL-ontologies [Konev et al., 2008].

The main aim of this paper is to introduce a framework
for module extraction based on the notion of inseparability
between ontologies and to demonstrate that a purely logic-
based approach to minimal module extraction is feasible in
practice for large-scale DL-Litebool ontologies.

The DL-Lite family of description logics [Calvanese et al.,
2005; 2006] has been originally designed with the aim of pro-
viding query access to large amounts of data via a high level
conceptual (ontological) interface. Thus, the DL-Lite log-
ics resulted from various compromises between the necessity
of keeping the complexity of query answering low and the
desire of having the expressive means for representing vari-
ous constraints of data modelling formalisms such as the ER
model and UML class diagrams [Artale et al., 2007b]. For
example, the logic DL-Litebool [Artale et al., 2007a] (con-
taining many other DL-Lite logics) can express is-a hierar-
chies of concepts; disjointness and covering constraints for
concepts; domain, range and cardinality constraints for roles;



and multiplicity constraints for attributes. Therefore, stan-
dard reasoning in DL-Litebool (say, testing concept satisfia-
bility) is NP-complete and, similarly to ALC, the main rea-
soning tasks required for module extraction are even harder:
deciding whether two DL-Litebool ontologies imply the same
concept inclusions over a given signature or whether they give
the same answers to conjunctive queries for arbitrary ABoxes
over this signature is Πp

2-complete [Kontchakov et al., 2008].
The contribution of this paper is as follows. We present

generic algorithms extracting minimal logic-based modules
from DL-Litebool ontologies which call (quadratically often,
in the worst case) an oracle deciding whether an appropriate
inseparability relation holds between DL-Litebool ontologies.
In our experiments with two large-scale DL-Litebool ontolo-
gies, the oracle is realised using encodings into quantified
Boolean formulas (QBFs) and solving these with the self-
adaptive multi-engine QBF solver AQME [Pulina and Tac-
chella, 2009]. A significant speed-up is achieved by first
extracting the (typically non-minimal) locality-based module
and then applying to it the above mentioned algorithms. Fi-
nally, we provide a comparison of the sizes of the modules
extracted for various logic-based notions of modules as well
as existing structure-based notions of modules.

2 Inseparability modules
We begin by introducing an abstract notion of inseparabil-
ity between ontologies w.r.t. a given signature and by investi-
gating corresponding minimal module extraction algorithms.
This notion, as well as the algorithms, do not depend on the
underlying ontology language. However, to be precise, we
introduce it for ontologies given as DL-Litebool TBoxes only.
The language of DL-Litebool TBoxes is based on concept
names A1, A2, . . . and role names P1, P2, . . . , with complex
roles R and concepts C defined as follows:

R ::= Pi | P−i ,

B ::= ⊥ | > | Ai | ≥ q R,
C ::= B | ¬C | C1 u C2,

where q ≥ 1. (Other concept constructs like ∃R, ≤ q R and
C1 t C2 will be used as standard abbreviations.) As usual,
a concept inclusion is of the form C1 v C2, where C1 and
C2 are concepts, and a DL-Litebool TBox is a finite set of con-
cept inclusions. A signature is a finite set of concept and role
names. Given a concept, role, concept inclusion or TBox E,
we denote by sig(E) the signature of E, that is, the set of
concept and role names that occur in E.

An inseparability relation S = {≡S
Σ| Σ a signature} is a

family of equivalence relations ≡S
Σ on the set of DL-Litebool

TBoxes. Intuitively, T1 ≡S
Σ T2 means that T1 and T2 are

indistinguishable w.r.t. (or give the same description of) the
signature Σ. We call an inseparability relation S monotone
if it satisfies the following conditions, for all TBoxes T1, T2,
signatures Σ and ≡S

Σ in S:

(Msig) if T1 ≡S
Σ T2 then T1 ≡S

Σ′ T2, for every Σ′ ⊆ Σ;
(MT) if T1 ⊆ T2 ⊆ T3 and T1 ≡S

Σ T3, then T1 ≡S
Σ T2.

Condition (Msig) formalises the intuition that if two TBoxes
are indistinguishable w.r.t. a certain signature, then they are

indistinguishable w.r.t. any smaller signature; (MT) demands
that any TBox sandwiched between two indistinguishable
TBoxes should be indistinguishable from either of them.

We now introduce three distinct notions of modules in-
duced by an inseparability relation.

Definition 1 Let S be an inseparability relation, T a TBox,
M⊆ T , and Σ a signature. We say thatM is

– an SΣ-module of T ifM≡S
Σ T ;

– a self-contained SΣ-module of T ifM≡S
Σ∪sig(M) T ;

– a depleting SΣ-module of T if ∅ ≡S
Σ∪sig(M) T \M.

M is a minimal (self-contained, depleting) SΣ-module of T
ifM is a (self-contained, depleting) SΣ-module of T , but no
proper subset ofM is such an SΣ-module of T .

Clearly, every self-contained SΣ-module is an SΣ-module;
see below for concrete examples showing that no other inclu-
sion between these different types of modules holds in gen-
eral. We start our investigation by considering minimal SΣ-
modules. The following theorem presents a straightforward
algorithm extracting one minimal SΣ-module from a given
TBox, using an oracle deciding SΣ-inseparability.
Theorem 2 Let S be an inseparability relation satisfying
(MT), T a TBox, and Σ a signature. Then the following al-
gorithm computes a minimal SΣ-module of T :

input T ,Σ
M := T
repeat
M′ :=M
for each α ∈M′ do
if M\ {α} ≡S

Σ M then M :=M\ {α}
end for

until M′ =M
output M

Proof The algorithm computes an SΣ-moduleM of T such
thatM\{α} is not an SΣ-module of T , for any α ∈M. By
(MT), no proper subset ofM is an SΣ-module. q

Note that the minimal SΣ-module extracted by this algo-
rithm depends on the order of picking the axioms α. There
exist natural inseparability relations (see below) for which
there are exponentially many distinct minimal SΣ-modules.
Consider, e.g., an ontology {α1, β1, . . . , αn, βn}, where αi

and βi are syntactically different but SΣ-inseparable axioms.
Denote by |T | the size of T , that is, the number of occur-

rences of symbols in it. Then the algorithm runs in quadratic
time in |T | calling an oracle deciding ≡S

Σ at most |T |2 times.
Self-contained SΣ-modules are indistinguishable from the

original TBox not only w.r.t. Σ but also w.r.t. their own sig-
nature. To discuss depleting SΣ-modules, we require two ad-
ditional conditions on inseparability relations.

Definition 3 We say that an inseparability relation S is
• robust under replacement if, for all TBoxes T , T1, T2

and signatures Σ, we have T1 ∪ T ≡S
Σ T2 ∪ T whenever

T1 ≡S
Σ T2 and sig(T ) ∩ sig(T1 ∪ T2) ⊆ Σ;

• robust under vocabulary extensions if, for all TBoxes T1,
T2 and signatures Σ ⊆ Σ′ such that sig(T1∪T2)∩Σ′ ⊆ Σ
we have T1 ≡S

Σ′ T2 whenever T1 ≡S
Σ T2.



Robustness is fundamental for ontology re-use. Suppose an
ontology developer imports an SΣ-moduleM of a TBox T
into her own ontology O because she is interested in the
relations between terms over Σ defined by T . Then, if S
is robust under replacement and vocabulary extensions, we
have O ∪ T ≡S

Σ′ O ∪ M for every signature Σ′ such that
Σ′∩sig(T ) ⊆ Σ and sig(T )∩sig(O) ⊆ Σ′. Thus, these prop-
erties ensure that it does not make any difference whether she
imports T or some SΣ-moduleM of T intoO, and this does
not depend on O.

Proposition 4 If S is an inseparability relation that is robust
under replacement, then every depleting SΣ-module is a self-
contained SΣ-module.

Proof If T \M ≡S
Σ∪sig(M) ∅, robustness under replacement

implies T = (T \M) ∪M ≡S
Σ∪sig(M) ∅ ∪M =M. q

We will consider depleting SΣ-modules only if S is ro-
bust under replacement and, therefore, only if they are self-
contained modules as well.
Theorem 5 Let S be a monotone inseparability relation that
is robust under replacement, T a TBox, and Σ a signature.
Then there is a unique minimal depleting SΣ-module of T ,
which is computed by the following algorithm:

input T ,Σ
T ′ := T ; Γ := Σ; W := ∅
while T ′ \W 6= ∅ do
choose α ∈ T ′ \W
W :=W ∪ {α}
if W 6≡S

Γ ∅ then
T ′ := T ′ \ {α}; W := ∅; Γ := Γ ∪ sig(α)

endif
end while
output T \ T ′

Proof LetM be a minimal depleting SΣ-module of T . The
crucial observation for proving correctness of the algorithm
and uniqueness of M is that, if T0 ⊆ T is minimal with
T0 6≡S

Σ ∅, then T0 ⊆ M. Suppose this claim does not hold,
i.e., X ≡S

Σ ∅, where X = M ∩ T0. By robustness under
replacement, (T \ M) ∪ X ≡S

sig(M)∪Σ X . By (MT), ∅ ⊆
T0 ⊆ (T \ M) ∪ X implies T0 ≡S

sig(M)∪Σ X , and so, by
(Msig), T0 ≡S

Σ ∅, which is a contradiction. q

The algorithm above computes the minimal depleting SΣ-
module in quadratic time by calling the oracle deciding ≡S

Σ-
inseparability at most |T |2 times.

By the result above, minimal depleting modules have the
advantage of being uniquely determined (under mild condi-
tions), which sharply contrasts with the behaviour of the other
types of modules. Another advantage is that depleting mod-
ules support modular ontology development in the following
sense. SupposeM is a depleting SΣ-module of T and S is ro-
bust under replacement and vocabulary extensions. Then one
can import into the ontology T \M any moduleM′ such that
sig(M′)∩sig(T ) ⊆ Σ∪sig(M) and be sure that T \M does
not interfere withM′; i.e., (T \ M) ∪M′ ≡S

Σ′ M′ when-
ever Σ′ ∩ sig(T \M) ⊆ Σ∪ sig(M). The importance of this
property was first pointed out in [Cuenca-Grau et al., 2008]
in the context of conservative extensions and modularity.

3 Two inseparability relations in DL-Litebool

The framework and algorithms presented above can be in-
stantiated with ontologies in any standard DL and with nu-
merous different choices for inseparability relations. Here we
consider two inseparability relations between DL-Litebool on-
tologies which have both been introduced and investigated in
[Kontchakov et al., 2008]. To give precise definitions of these
relations, we require some notation. A DL-Litebool ABox A
is a set of assertions of the form C(ai), R(ai, aj), where C
is a concept, R a role, and ai, aj are object names from an
infinite list of object names a1, a2, . . . . A DL-Litebool knowl-
edge base (KB, for short) is a pair K = (T ,A) with a TBox
T and an ABoxA. The semantic notions of an interpretation,
I, a concept inclusion C1 v C2 being satisfied in I, and of
I being a model of a TBox, ABox and KB are standard and
can be found in [Kontchakov et al., 2008]. A concept inclu-
sion C1 v C2 follows from T , T |= C1 v C2 in symbols, if
every model of T satisfies C1 v C2. An essentially positive
existential query (simply a query) is a first-order formula

q(x1, . . . , xn) = ∃y1 . . . ∃ymϕ(x1, . . . , xn, y1, . . . , ym),

where ϕ is constructed from atoms of the form C(t) and
R(t1, t2), with C being an DL-Litebool-concept, R a role,
and ti being either an object name or a variable from the list
x1, . . . , xn, y1, . . . , ym, using only ∧ and ∨. Given a KB K
and a query q(x), x = x1, . . . , xn, we say that an n-tuple
a of object names is an answer to q(x) w.r.t. K and write
K |= q(a) if, for every model I of K, we have I |= q(a).

Given an ABox or query E, we denote by sig(E) the sig-
nature of E, that is, the set of concept and role names that
occur in E. A concept (role, concept inclusion, TBox, ABox,
query)E is called a Σ-concept (role, concept inclusion, TBox,
ABox, query, respectively) if sig(E) ⊆ Σ.

Definition 6 Let T1 and T2 be DL-Litebool TBoxes and Σ a
signature. We say that T1 and T2 are Σ-concept inseparable
and write T1 ≡c

Σ T2 if, for all Σ-concept inclusions C v D
in DL-Litebool, we have T2 |= C v D iff T1 |= C v D. The
corresponding inseparability relation will be denoted by Sc.
T1 and T2 are said to be Σ-query inseparable (T1 ≡q

Σ T2,
in symbols) if, for all Σ-ABoxes A, Σ-queries q(x) and tu-
ples a of object names from A, we have (T1,A) |= q(a) iff
(T2,A) |= q(a). The corresponding inseparability relation
will be denoted by Sq .

We believe that Sq , the inseparability relation which re-
gards ontologies as indistinguishable w.r.t. Σ if they give the
same answers to Σ-queries for any Σ-ABox A, is the most
appropriate inseparability relation for typical applications of
DL-Litebool ontologies: recall that the design goal of DL-
Lite was to provide a conceptual interface for querying in-
stance data. As the data is usually not known in advance and
may change, it is unrealistic to assume that the ABox is fixed
when extracting a module: that is why in our approach we
regard ABoxes as ‘black boxes.’ One could argue that in-
stead of existential queries one should consider the smaller
class of conjunctive queries when defining inseparability (and
thus obtain smaller minimal modules). However, as shown
in [Kontchakov et al., 2008], when considering conjunctive
queries instead of existential ones, one loses the robustness



(1) Publisher v ∃pubHasDistrib (8) Publisher v ∃pubAdmedBy (15) User v ¬Publisher

(2) ∃pubHasDistrib− v Distributor (9) ∃pubAdmedBy− v AdmUser t BookUser (16) Role v ¬User

(3) Publisher v ¬Distributor (10) AdmUser v User (17) User v ∃userAdmedBy

(4) ∃pubHasDistrib v Publisher (11) BookUser v User (18) ∃userAdmedBy− v AdmUser

(5) Publisher v ≤ 1 pubHasDistrib (12) User v ∃hasRole (19) ∃userAdmedBy v User

(6) Role v ¬Distributor (13) ∃hasRole− v Role (20) ∃pubAdmedBy v Publisher

(7) User v ¬Distributor (14) Role v ¬Publisher

Figure 1: ‘Publisher’ ontology T .

properties of the corresponding inseparability relation. The
next theorem follows from [Kontchakov et al., 2008].

Theorem 7 Sc and Sq are monotone and robust under voca-
bulary extensions; Sq is robust under replacement, Sc is not.

It follows from Proposition 4 that depleting Sq-modules
are self-contained Sq-modules. This implication fails for Sc:

Example 8 Let T = {A v ∃R, ∃R− v B, B v ⊥}, Σ =
{A,B} and M = {B v ⊥}. Then M is a depleting Sc

Σ-
module of T (because {A v ∃R, ∃R− v B} ≡c

Σ ∅), but it is
not a self-contained Sc

Σ-module of T (because T |= A v ⊥).

For this reason we will not consider depleting Sc-modules in
what follows. Note also that minimal depleting Sq

Σ-modules
are in general larger than self-contained Sq

Σ-modules. Take,
e.g., T = {A v B,A v B u B} and Σ = {A,B}. Then
M1 = {A v B} andM2 = {A v BuB} are self-contained
Sq

Σ-modules, but T itself is the only depleting Sq
Σ-module.

Example 9 Consider the DL-Litebool TBox T shown in
Fig. 1 (it is part of the larger Core ontology to be discussed in
the next section), and let Σ = {Publisher}. First observe that
the minimal Sc

Σ-module of T is empty, which is typical for
singleton signatures and Sc, as no interesting concept inclu-
sions over a singleton signature exist. In contrast, there are
three different minimal Sq

Σ-modules of T :
• MD containing axioms (1)–(3),
• MR containing axioms (8)–(14), and
• MU with axioms (8)–(11) and (15).

First, they are indeed Sq
Σ-modules of T , i.e., Σ-query in-

separable from T . This can be verified via the semantic
criterion [Kontchakov et al., 2008, Lemma A.4]. Second,
they are minimal: consider the ABox A = {Publisher(a)}
and the query q = ∃x¬Publisher(x). Clearly, we have
(T ,A) |= q, while (T ′,A) 6|= q, for any proper subset T ′
of MD, MR or MU . In contrast to this finding, the min-
imal depleting Sq

Σ-module of T is T itself. Consider now
Σ′ = {Publisher, pubHasDistrib}. Then the only minimal
Sc

Σ′ -module of T consists of axioms (1)–(5) and there are two
minimal Sq

Σ′ -modules: M+
R =MD ∪MR ∪ {(4), (5), (6)}

andM+
U =MD ∪MU ∪ {(4), (5), (7)}.

4 Practical Minimal Module Extraction
We have conducted experiments with three types of minimal
module extraction: for a DL-Litebool TBox T and a signa-
ture Σ, extract some minimal Sc

Σ-module (MCM) of T , some

minimal Sq
Σ-module (MQM), and the minimal depleting Sq

Σ-
module (MDQM) of T . In principle, these extraction prob-
lems can be solved using the algorithms presented in Theo-
rems 2 and 5 together with the ‘oracles’ from [Kontchakov
et al., 2008] capable of deciding the (Πp

2-complete) problems
‘T1 ≡c

Σ T2’ and ‘T1 ≡q
Σ T2.’ The oracles were realised by en-

coding these two problems as satisfiability problems for cer-
tain (∀∃) quantified Boolean formulas, and first experimental
results indicated that standard off-the-shelf QBF solvers such
as SKIZZO [Benedetti, 2005], 2CLSQ [Samulowitz and Bac-
chus, 2006] and QUBE [Giunchiglia et al., 2006] can be suc-
cessfully used to check satisfiability of the resulting QBFs.

Unfortunately, a naı̈ve implementation of this approach
turns out to be hopelessly inefficient. In a nutshell, the main
reasons are as follows. First, to extract a minimal module
from an ontology with 1K axioms, even for ‘typical’ real-
world examples the algorithm would call the oracle about
500K times. Second, as was discovered in [Kontchakov et
al., 2008], no existing QBF solver could cope alone with all
the inseparability tests and, even when the solver is success-
ful, the runtime is quite unpredictable and can range from a
few seconds to a few hours. The good news, however, is that
all the three solvers we used did solve about 99% of tests.
(Note that the QBF encodings of our tests below contain up
to 232,600 clauses, 710,000 literals and 23,300 variables.) To
deal with these problems we have implemented three ideas:

(1) To reduce the number of oracle calls, we optimised the
algorithms by checking a group of axioms rather than a single
axiom at a time (in practice, this reduced the number of calls
to 1–3K for a 1K ontology).

(2) To select ‘the best’ QBF solver for a given in-
stance, we used the self-adaptive multi-engine QBF solver
AQME [Pulina and Tacchella, 2009], a tool capable of choos-
ing a QBF engine with ‘more chances’ to solve a given input
and learning its engine-selection strategies.

(3) To reduce the size of the original ontology, we ‘pre-
processed’ it by means of a tractable syntactic locality-based
algorithm from [Cuenca-Grau et al., 2008] extracting the>⊥-
module (>⊥M), which contains all the minimal modules we
are interested in. In fact, we have the following inclusions

MCM ⊆ MQM ⊆ MDQM ⊆ >⊥M,
where the first one should be read as ‘every MQM contains
some MCM,’ the second as ‘every MQM is contained in the
MDQM,’ and the third as ‘the MDQM is contained in the
>⊥M.’ Thus we can use these inclusions by computing mod-
ules from right to left.



Ontologies. Our test ontologies are DL-Litebool encodings
of two real-world commercial software applications called
‘Core’ and ‘Umbrella.’ The Core ontology is based on
a supply-chain management system used by the bookstore
chain Ottakar’s, now rebranded as Waterstone’s. It contains
1283 axioms, 83 concept names and 77 role names, and fea-
tures numerous functionality constraints, covering and dis-
jointness constraints, and quite a few concepts of the form
≤ q R with q > 2. The Umbrella ontology is based on a spe-
cialised research data validation and processing system used
by the Intensive Care National Audit and Research Centre
(http://www.icnarc.org). It contains 1247 axioms,
79 concept names and 60 role names. Both ontologies are
representations of the relevant data structures and were con-
structed by analysing the data model, database schema and
application-level business logic. The Publisher ontology in
Fig. 1 is part of Core; full Core and Umbrella are available at
http://ijcai09.tripod.com/.

Using AQME. An important property of AQME is that it can
update its learned policies when the usage scenario changes
substantially, by using an adaptation schema called retrain-
ing. Prior to module extraction, AQME computed a selection
of syntactic features (characterising this particular problem)
from a pool of suitable QBF instances. In view of the find-
ings of [Kontchakov et al., 2008], we used only 3 engines out
of the usual 8: 2CLSQ, QUBE and SKIZZO. A typical run
of AQME is as follows. First, it leverages its inductive model
(built using 1-nearest-neighbour) to predict the best engine
for the given input QBF. If the engine solves the QBF, AQME
terminates and returns the answer. Otherwise, AQME starts its
self-adaptive mechanism. It calls a different engine to solve
the input formula. If it is successful, the retraining procedure
is called and the inductive model is updated. Which engine
is called for retraining and how much CPU time is granted
to each engine are critical points for AQME’s performance.
Our solver selection strategy, ALG, relies on the engine type,
which can be search-based, like in QUBE and 2CLSQ, or
Skolemisation-based, like in SKIZZO: the failed solver is re-
placed by a solver of a different type. Our CPU time strategy
is as follows: a fixed amount of CPU time is granted to the
predicted solver; if the solver fails, another engine is called,
using the ALG strategy, with a granted amount of CPU time
that increases in each iteration, until the solver solves the in-
put formula. In fact, this approach combines the TPE and
ITR techniques from [Pulina and Tacchella, 2009]. An im-
portant difference from the original version of AQME is the
new data management at the retraining phase. As AQME had
to deal with a huge number of instances, which could all be
used for training and therefore cause a substantial slowdown,
we bounded the number of entries in the training set: when
the bound is reached, the older entry is replaced by the newer
one.

Modules for |Σ| = 1. Our first experiment was to extract the
modules of all three types, for all singleton signatures, from
the full Core and Umbrella ontologies and from the corre-
sponding pre-computed >⊥Ms. For instance, the extracted
MCM, MQM, and MDQM of Core for Σ = {Publisher} are
given in Example 9 and contain 0, 3, and 20 axioms, respec-

tively, whereas the corresponding >⊥M has 228 axioms.
The following table summarises the results of the experi-

ments (on average per module) in terms of module sizes and
other relevant parameters, where the italicised numbers refer
to extraction from the full ontologies. It also contains the av-
erage sizes of the segments extracted using the approaches
described in [Seidenberg and Rector, 2006] (SR), [Noy and
Musen, 2004] (Prompt), and [Cuenca-Grau et al., 2006] (E-
conn). Since these approaches do not support role names in
the initial signature, we have only extracted modules for con-
cept names in these cases. Furthermore, SR and Prompt are
not logic-based and do not, in general, preserve entailments.
(The Publisher-segments for SR, Prompt, and E-conn contain
19, 189, and 349 axioms, respectively.)

Core (1283) Umbrella (1247)

>⊥M 226 69
MDQM 80 57

extraction time [s] 126 2233 60 2488
AQME calls 385 565 254 463
SKIZZO calls 14% 76% 4% 74%
2CLSQ calls 2% 17% 1% 14%
QUBE calls 84% 7% 95% 12%

MQM 5 5
MCM 2 2
SR-segment 37 14
Prompt segment 162 102
E-conn module 243 47

The distribution of calls to the QBF engines changes notably
if MDQMs are extracted from the whole ontology rather than
from the >⊥Ms: in the former case, the majority of calls is
issued to SKIZZO, while QUBE handles most of the calls in
the latter case. This complies with the observation that, in
general, QUBE tends to solve easy instances more quickly,
and SKIZZO performs more successfully on harder instances.

Modules for |Σ| = 10. For each of our ontologies, we ran-
domly generated 30 signatures of 10 concept names each and
extracted all possible modules; their average sizes are shown
in Fig. 2. MCMs and MQMs were extracted from MDQMs,
which in turn were extracted from >⊥Ms. Again, in most
of the AQME calls (1302/1694 for MDQMs and 152/181 for
MCMs, on average) QUBE was invoked. The average run-
time for MDQMs (MCMs) was around 30 (1.5) minutes.
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Figure 2: Module sizes for |Σ| = 10 and standard deviation.



It is to be noted that we have only been able to extract 17
MQMs for Umbrella and 8 MQMs for Core because the run-
time for certain instances increases to a couple of days. One
of the reasons is the growth of the QBF instances generated
whenever the algorithm needs to test inseparability between
module candidates and the original ontology. In the case of
MDQMs, a candidate’s complement needs to be compared
with the empty TBox, which can be done rather efficiently.
The case of MCMs and MQMs involves many comparisons
of two very similar TBoxes, which, for MQMs, leads to the
generation of QBF instances that are quadratic in the number
of roles involved (as opposed to linear for MCMs).

Modules for |Σ| = 5 + 5. A similar experiment was con-
ducted with 30 random signatures consisting of 5 concept
names and 5 role names. The results are summarised in Fig.3.
Due to performance issues, we have no MQMs available at all
here. For reasons mentioned above, we did not extract mod-
ule for SR, Prompt, and E-conn either.
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Figure 3: Module sizes for |Σ| = 5 + 5.

5 Conclusion
The main novel contributions of this paper are as follows:

(1) The definition of modules and reconstruction of their
properties based on an abstract notion of inseparability for-
malising the intuitive notion that ‘two ontologies give the
same description of a vocabulary.’ We believe that insepa-
rability can be used to systematise the huge variety of distinct
notions of modules in the literature.

(2) Experimental results demonstrating that, for
DL-Litebool ontologies (and so many other logics in the
DL-Lite family), minimal logic-based modules (in particular
MDQMs and MCMs) can be extracted in practice using the
multi-engine QBF solver AQME and locality-based module
extraction. The experiments also show that QBF solvers can
be used to solve complex real-world problems, though they
are not as stable and scalable yet as the existing SAT solvers.

Many open problems remain. For example, for MQMs the
performance of the tested extraction algorithms is still rather
unsatisfactory and further optimisations are required. Sec-
ond, it is straightforward to extend the framework and algo-
rithms to the case where modules are extracted for a given
signature and a seed set M of axioms to be included in the
module. One can thus combine different methodologies and,
say, compute the logically correct closure of non-logic based
modulesM. It would be interesting to evaluate this approach
in practice.
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