
More on the Data Complexity of Answering
Ontology-Mediated Queries with a Covering Axiom

O. Gerasimova1, S. Kikot2, V. Podolskii3,1, and M. Zakharyaschev2

1 National Research University Higher School of Economics, Moscow, Russia
2 Birkbeck, University of London, U.K.

3 Steklov Mathematical Institute, Moscow, Russia

Abstract. We report on our recent results in the ongoing attempts to classify con-
junctive queries (CQs) q according to the data complexity of answering ontology-
mediated queries of the form ({A v F t T}, q). In particular, we present new
families of path CQs for which this problem is NL-, P- or CONP-complete.

1 Introduction

Ontology-based query answering [19, 15, 5, 6] is a way of organising access to data
where, instead of the schemas of data sources, the user is provided with an ontology
that serves two purposes: (i) it gives a familiar and convenient vocabulary for for-
mulating end-user queries (e.g., standard geological terms for geologists who want to
query a company’s databases) and (ii) enriches the data with background knowledge.
The key notion in this case is ontology-mediated query (OMQ), a pair of the form
Q = (T , q(x)), where T is an ontology and q(x) a query. The schema of the data is
related to the terms in T by means of mappings, M (say, in R2RML). Now, given a
data instanceA, we say that a tuple a of constants fromA is a certain answer toQ over
A if q(a) holds true in every model of T andM(A). Whether finding certain answers
to OMQs is feasible in practice depends on the languages of T and q. Thus, if T is an
OWL 2 QL 4 ontology and q a conjunctive query (CQ), then answering Q can be done
in AC0 for data complexity; in other words, there is a first-order query Φ(x), called
an FO-rewriting of Q, answers to which over A are precisely the certain answers to Q
over A [7, 3]. Classifying OMQs according to data complexity has become one of the
hottest topics in the area of ontology-based data access [17, 20, 8, 12, 14].

A systematic investigation of this problem was launched in [5], which, in particular,
connected it to constraint satisfaction problems. As shown in [13], answering CQs with
basic schema.org ontologies and CQs of qvar-size≤ 2 is in P for combined complexity,
where q is of qvar-size n if the restriction of q to its quantified variables is a disjoint
union of CQs with at most n variables each. Moreover, FO- and datalog-rewritability
of OMQs of the form (T ,u), where T is a schema.org ontology and u is a UCQ,
are decidable in NEXPTIME. It has also been recently established in [9] that checking
FO-rewritability of OMQs with ontologies formulated in any description logic between

4 https://www.w3.org/TR/owl2-profiles/

ALCI and SHI is 2NEXPTIME-complete. Datalog rewritability of OMQs with on-
tologies given in disjunctive datalog has been investigated in [14]. An AC0/NL/P tri-
chotomy of OMQs with EL ontologies and atomic queries has been established in [18].

In this paper, we report on our ongoing attempts to obtain a complete classification
of OMQs of the form Q = (DisA, q), where DisA = {A v F t T} and q is a CQ.
Ontologies with covering axioms such as A v F t T (saying that, in every model of
DisA, the class A is covered by the union of the classes F and T) are very common
in practice: for example, Animal v Male t Female. The simple examples collected in
the table below show how minor tweaks to q can drastically affect the complexity of
Q = (DisA, q) [10]. In the table and elsewhere in the paper, we represent CQs by
diagrams. For example, the first CQ below represents ∃x, y (F (x) ∧ R(x, y)) and the
second one ∃x, y (F (x)∧R(x, y)∧R(y, x)∧T (y)).5 (Binary predicates different from
R will be shown in diagrams explicitly.)

Complexity CQ q Explanation
AC0 F if q has only F but no T ,

then the F can be ignored
checks undirected reachability:

L
F T

F T

the answer toQ is ‘yes’
checks directed reachability:

NL F T F T

the answer toQ is ‘yes’

P T
F

T evaluates monotone circuits

coNP
F F T T

checks CNF satisfiability

The plan of the paper is as follows. Having introduced in Section 2 the basic notions
we need in what follows, in Section 3 we use the AC0/NL/P trichotomy from [18] to
establish a similar trichotomy for the OMQs (DisA, q) whose CQ q is tree-shaped and
the only solitary F -atom in it is at the root. In Section 4, we show that the AC0-criterion
for path CQs from [10] collapses for CQs with loops. In Section 5, we present a few
classes of path CQs q with a single solitary F , for which answering (DisA, q) is NL-
complete and P-complete. Finally, in Section 6, we give a class of path CQs for which
this problem is CONP-complete.

5 The OMQ Q = (Dis>, q) with this CQ q can be interpreted as follows, assuming that F
stands for ‘female’, T for ‘male’, > for all the individuals of the domain in question, and R
for the ‘follows’ relation: given a graph of Twitter users, in which the gender may be specified
for some nodes and missing for the other ones, check whether there certainly exist two people
(nodes) in the graph of different gender who follow each other.

2 Preliminaries

By a conjunctive query (CQ) we mean in this paper any FO-formula q(x) = ∃y ϕ(x,y),
where ϕ is a conjunction of unary or binary atoms P (z) with z ⊆ x ∪ y. Given a data
instance—or an ABox, in the description logic parlance—A, we denote by ind(A) the
set of individual names that occur in A. A tuple a ⊆ ind(A) is a certain answer to
the OMQ Q = (DisA, q(x)) over A if I |= q(a), for every model I of DisA ∪ A;
in this case we write DisA,A |= q(a). If the set x of answer variables is empty, a
certain answer toQ overD is ‘yes’ if I |= q, for every model I ofDisA ∪A, and ‘no’
otherwise. OMQs and CQs without answer variables x are called Boolean. We often
regard CQs as sets of their atoms. For the purposes of this paper, it is enough to assume
that all CQs q are Boolean and connected (in the sense that any two distinct variables
in q are connected by a not necessarily directed path of binary atoms from q).

By answering a given OMQ Q = (DisA, q(x)), we understand the problem of
checking, given an ABox A and a tuple a ⊆ ind(A), whether DisA,A |= q(a). It is
easy to see that this problem is always in CONP. It is in the complexity class AC0 if
there is an FO-formula q′(x), called an FO-rewriting ofQ, such that DisA,A |= q(a)
iff q′(a) holds in the interpretation given by A, for any ABox A and any a ⊆ ind(A).

A datalog program, Π , is a finite set of rules ∀z (γ0 ← γ1 ∧ · · · ∧ γm), where each
γi is an atom Q(y) with y ⊆ z or an equality (z = z′) with z, z′ ∈ z. (As usual, we
omit the prefix ∀z.) The atom γ0 is the head of the rule, and γ1, . . . , γm its body. All
the variables in the head must occur in the body, and = can only occur in the body. The
predicates in the head of rules are IDB predicates, the rest EDB predicates.

A datalog query is a pair (Π,G(x)), where Π is a datalog program and G(x) an
atom. A tuple a ⊆ ind(A) is an answer to (Π,G(x)) over an ABox A if G(a) holds
in the FO-structure with domain ind(A) obtained by closing A under the rules in Π , in
which case we write Π,A |= G(a). A datalog query (Π,G(x)) is a datalog rewriting
of an OMQ Q = (Dis, q(x)) in case Dis,A |= q(a) iff Π,A |= G(a), for any ABox
A and any a ⊆ ind(A). The evaluation problem for (Π,G(x))—i.e., checking, given
an ABox A and a tuple a ⊆ ind(A), whether Π,A |= G(a)—is known to be in P.
Evaluation of a datalog query with a linear program, where the body of any rule has
at most one IDB predicate, can be done in NL; see [11] and references therein. The
NL upper bound also holds for datalog queries with linear-stratified programs that are
defined as follows. A stratified program [1] is a sequenceΠ = (Π0, . . . ,Πn) of datalog
programs, called the strata of Π , such that each predicate in Π can occur in the head of
a rule only in one stratum Πi and can occur in the body of a rule only in strata Πj with
j ≥ i. If, additionally, the body of each rule in Π contains at most one occurrence of
a head predicate from the same stratum, we call Π linear-stratified. It is shown in [2]
that every linear-stratified program (called there piecewise linear) can be converted in
an equivalent linear datalog program.

3 AC0/NL/P Trichotomy for F -Tree OMQs

By a solitary occurrence of F in a CQ q we mean any occurrence of F (x) in q, for
some variable x, such that T (x) /∈ q; likewise, a solitary occurrence of T in q is any

occurrence T (x) ∈ q such that F (x) /∈ q. An F -tree CQ is a CQ q with a single
solitary F (x) such that the binary atoms in q form a directed tree with root x.

Our first observation is that answering any OMQ Q = (DisA, q) with an F -tree
CQ q is either in AC0 or NL-complete or P-complete. We obtain this trichotomy using
a recent result of Lutz and Sabellek [18] establishing such a trichotomy for OMQs of
the form (T , G(x)), where T is an ontology formulated in the description logic EL [4]
and G is a concept name (unary predicate).

Theorem 1. Answering any OMQ Q = (DisA, q) with an F -tree CQ q is either in
AC0 or NL-complete or P-complete.

Proof. Let ΠQ be the datalog program with the following rules:

G← F (x) ∧ q̃′(x, y1, . . . , yn) ∧ P (y1) ∧ · · · ∧ P (yn),
P (x)← T (x),
P (x)← A(x) ∧ q̃′(x, y1, . . . , yn) ∧ P (y1) ∧ · · · ∧ P (yn),

where q′ is obtained from q by removing all of its solitary occurrences of T - and F -
atoms and q̃′ is the result of omitting all the ∃ from q′. As shown in [10, Theorem 7],
for any ABox A, we have DisA,A |= q iff ΠQ,A |= G.

Denote by TQ the EL TBox with two concept inclusions:

T v P, A u Cq v P,

where Cq is an EL-concept representing q \ {F (x)}. For example, for

q = F (x) ∧R1(x, y1) ∧ F (y1) ∧ T (y1) ∧R2(x, y2) ∧R3(y2, y3) ∧ T (y3),

we have
Cq = ∃R1.(F u T) u ∃R2.∃R3.T.

It is readily seen that, for any ABox A and any a ∈ ind(A), we have ΠQ,A |= P (a)
iff TQ,A |= P (a).

Finally, we observe that (i) answering Q is in AC0 iff answering (TQ, P (x)) is
in AC0; (ii) answering Q is NL-complete iff answering (TQ, P (x)) is NL-complete;
(iii) answeringQ is P-complete iff answering (TQ, P (x)) is P-complete.

Note that [18] gives an EXPTIME algorithm for checking which of the three com-
plexity classes a given EL-OMQ of the form (T , G(x)) falls into. However, applying
this algorithm in our case is tricky because the input ontology TQ must first be con-
verted to a normal form. In particular, it does not give clear syntactic criteria on the
shape of the CQ q that would guarantee that the OMQ (DisA, q) belongs to the desired
complexity class (see examples below). Note also that the reduction in the proof above
does not work for CQs that are not F -trees.

4 AC0

As shown in [10], answering any CQ Q = (DisA, q) is in AC0 if the CQ q does
not have solitary occurrences of F (or T). This sufficient condition becomes also a
necessary one if q is a path CQ, that is, the variables x0, . . . , xn in q are ordered so that

– the binary atoms in q form a chain R1(x0, x1), . . . , Rn(xn−1, xn);
– the unary atoms in q are of the form T (xi) and F (xj), for some i and j with
0 ≤ i, j ≤ n.

In fact, we have the following AC0/NL-dichotomy for OMQs Q = (DisA, q) with a
path CQ q [10]:

– either q does not contain a solitary F or a solitary T , and answeringQ is in AC0,
– or q contains both solitary F and T , and answeringQ is NL-hard.

Here, we give an example showing that this dichotomy collapses for path CQs with
loops of the form R(x, x).

Proposition 1. Answering the OMQ (DisA, q), where q is the CQ with a solitary F
and a solitary T shown in the picture below, is in AC0 for data complexity.

FT

R

T F FT

SR R S S

Proof. It suffices to show that DisA,A |= q iff A |= q. The implication (⇐) is trivial.
(⇒) SupposeA 6|= q. Let x1, . . . , x5 be the consecutive variables in q. We construct

a model I of DisA with I 6|= q. Consider the following subsets of ind(A):

BR = {a ∈ ind(A) | R(a, a) ∈ A, F (a) ∈ A, T (a) ∈ A},
BS = {a ∈ ind(A) | S(a, a) ∈ A, F (a) ∈ A, T (a) ∈ A},
X = {a ∈ ind(A) | R(b, a) for some b ∈ BR},
Y = {a ∈ ind(A) | S(a, b) for some b ∈ BS}.

Note that sinceA 6|= q, the setsX and Y do not intersect. Indeed, if b ∈ X∩Y , thenBR
contains some element a such that R(a, b) ∈ A, BS contains some c with S(b, c) ∈ A,
and the map h given by h(x1) = h(x2) = a, h(x3) = b and h(x4) = h(x5) = c is a
homomorphism from q to A. Define a model I of DisA by extending A with

– F (a), for all a ∈ X;
– T (a), for all a ∈ ind(A) \X .

We claim that I 6|= q. Indeed, suppose there is a homomorphism h : q → I. Clearly,
h(x1) ∈ BR and h(x5) ∈ BS . It follows that h(x2) ∈ X and h(x4) ∈ Y . Since
T (x2) ∈ q, we have h(x2) ∈ T I , and so T (h(x2)) ∈ A. Similarly, F (x4) ∈ A. It
follows that h is a homomorphism from q to A, contrary to our assumption.

Note that the CQ q above is minimal (not equivalent to any of its proper sub-CQs).

5 NL vs. P

A path CQ q is called an F -path CQ if q has a single solitary occurrence of F at its
root; in other words, q is both a path CQ and an F -tree CQ. We represent such a q as
shown in the picture below, which indicates all the solitary occurrences of F and T :

q =
F

x

T

y1

T

yi

T

ym ym+1

.

We know from [10] that

– answering OMQs (DisA, q) with F -path CQs can be done in P;
– if x, y1, . . . , ym are all the variables in q, then answering (DisA, q) is NL-complete.

There is also a table in [10] with quite a few odd examples of CQs of both kinds. Our
next result sheds some light on the left column of this table.

We require the following sub-CQs of the F -path CQ q shown above:

– qi is the suffix of q that starts at yi, but without T (yi), for 1 ≤ i ≤ m;
– q∗i is the prefix of q that ends at yi, but without F (x) and T (yi), for 1 ≤ i ≤ m;
– q∗m+1 is q without F (x).

We write fi : qi � q if fi is a homomorphism from qi into q with fi(yi) = x.

Theorem 2. If there exist fi : qi � q, for 1 ≤ i ≤ m, then (DisA, q) is NL-complete.

Proof. Let Π be a linear datalog program with the following rules:

G← F (x) ∧ q̃∗m+1, (r1)
G← F (x) ∧ q̃∗i ∧ P (yi), for 1 ≤ i ≤ m, (r2)

P (x)← A(x) ∧ q̃∗m+1, (r3)
P (x)← A(x) ∧ q̃∗i ∧ P (yi), for 1 ≤ i ≤ m. (r4)

It suffices to show that, for any ABox A, we have DisA,A |= q iff Π,A |= G.
(⇒) Suppose DisA,A |= q. Let VP = {a ∈ ind(A) | Π,A |= P (a)}. Define an

interpretation I with domain ind(A) by taking

T I = {a | T (a) ∈ A} ∪ {a ∈ VP | A(a) ∈ A, F (a) /∈ A},
F I = {a | F (a) ∈ A} ∪ {a /∈ VP | A(a) ∈ A, T (a) /∈ A}.

Clearly, I |= DisA, and so there is a homomorphism h : q → I. We show now that
Π,A |= G. Note that we have both a ∈ F I and a ∈ T I only if F (a), T (a) ∈ A.

Case 1: T (h(yi)) ∈ A, for 1 ≤ i ≤ m. Then Π,A |= G by (r1) since h(x) ∈ F I
can only be because F (h(x)) ∈ A (if this is not the case, then A(h(x)) ∈ A and we
have h(x) ∈ VP by (r3), which is a contradiction).

Case 2: T (h(yi)) /∈ A, for some i (1 ≤ i ≤ m). Let i be minimal with this property.
By the definition of I, we then have h(yi) ∈ VP and A(h(yi)) ∈ A. Then Π,A |= G
by (r2) since h(x) ∈ F I can only be because F (h(x)) ∈ A (if this is not the case, then
A(h(x)) ∈ A and we have h(x) ∈ VP by (r4), which is a contradiction).

(⇐) Suppose there is a derivation of G from Π and A. Then there exist a sequence
of homomorphisms

h1 : q
∗
m+1 → A, h2 : q

∗
i → A, . . . , hk : q

∗
j → A,

for some i, . . . , j ≤ m, with h1(x) = h2(yi), . . . , hk−1(x) = h2(yj), F (hk(x)) ∈ A
and A(hn(x)) ∈ A, for 1 ≤ n ≤ k− 1. Now, consider any model I of DisA extending
A and show that I |= q. If h1(x) ∈ F I , then h1 is a homomorphism from q to I.
So, let h1(x) ∈ T I . Then the homomorphisms h2 and fi give us a homomorphism
h′2 : q

∗
m+1 → I such that h′2(x) = h3(yl). Again, if h′2(x) ∈ F I , then h′2 is a homo-

morphism from q to I. Otherwise, we combine h′2 with fl, and so on. As hk(x) ∈ F I ,
sooner or later we must obtain a homomorphism from q to I.

Example 1. By Theorem 2, the following CQs q give NL-complete OMQs (DisA, q):

F FT FT T T

F FT FT T T T

F T T T

Denote by qTnT , for n ≥ 0, the CQ shown in the picture below, where all the binary
predicates are R and the n variables without labels do not occur in F - or T -atoms:

F T T

n

. . .

Clearly, Theorem 2 only applies to qT0T . Our next results show that, surprisingly,
(Dis>, qT1T) is NL-complete, (DisA, qT1T) is P-complete, and (Dis>, qTnT) is P-
complete, for every n ≥ 2 (where, as usual, > denotes the class of all domain individ-
uals).

Proposition 2. Answering the OMQ (Dis>, qT1T) is NL-complete.

Proof. The NL-hardness follows from [10, Theorem 4]. To establish the matching up-
per bound, consider the datalog program Π ′ with the following rules:

G← F (x) ∧R(x, y) ∧ P (y) ∧R(y, z) ∧R(z, u) ∧ P (u),
P (x)← T (x),

P (x)← R(x, y) ∧ P (y) ∧R(y, z) ∧R(z, u) ∧ P (u).

As shown in [10, Theorem 7], Dis>,A |= qT1T iff Π ′,A |= G. Now, consider a
program Π with the single rule

T (x)← R(x, y) ∧ T (y) ∧R(y, z) ∧R(z, u) ∧ T (u). (r)

It is not hard to see that if checking whether Π,A |= T (a), for any given a ∈ ind(A),
can be done in NL, then checking whether Π ′,A |= G can also be done in NL. Thus,
it suffices to show that checking whether Π,A |= T (a) can be done in NL.

Let Π† be the linear stratified datalog program with the following rules:

P (x)← R(x, y) ∧ T (y) ∧R(y, z) ∧R(z, v) ∧ T (v), (r1)
P (x)← R(x, y) ∧ T (y) ∧R(y, z) ∧R(z, v) ∧ P (v), (r1′)
Q(x)← R(x, y) ∧ P (y) ∧R(y, z) ∧R(z, v) ∧ T (v), (r2)
Q(x)← R(x, y) ∧ P (y) ∧R(y, z) ∧R(z, v) ∧ P (v), (r2′)
Q(x)← R(x, y) ∧Q(y), (r3)
G(x)← T (x), (r4)
G(x)← P (x), (r5)
G(x)← Q(x). (r6)

Checking whether Π†,A |= G(a) can be done in NL. We claim that Π†,A |= G(a) iff
Π,A |= T (a), for any ABox A and any a ∈ ind(A).

(⇒) Suppose Π†,A |= G(a). By (r4)–(r6), we have one of the following cases:

Case 1: Π†,A |= T (a). Then trivially Π,A |= T (a).
Case 2: Π†,A |= P (a). Then Π,A |= T (a) by (r1) and (r2).
Case 3: Π†,A |= Q(a). Then, by (r3)–(r4), there are a0, a1, . . . , an, an+1 such that

– a = a0;
– R(ai, ai+1) ∈ A, for 0 ≤ i ≤ n;
– Π†,A |= P (an+1);
– there are z′, v′ ∈ ind(A) withR(an+1, z

′), R(z′, v′) ∈ A andΠ†,A |= P (v′).

As in case 2, Π,A |= T (an+1) and Π,A |= T (v′), from which Π,A |= T (an). As
Π†,A |= P (an+1), there is an R-successor an+2 of an+1 with Π,A |= T (an+2). But
then (r) is applicable at an−1 (with y being an, z being an+1 and v being an+2). By
iteratively applying (r) for i = n− 1, n− 2, . . . , 0, we conclude that Π,A |= T (a0).

(⇐) SupposeΠ,A |= T (r). Then there is a finite 2-ary (derivation) tree T such that

– the vertices v of T are some elements from ind(A);
– r is the root of T;
– any vertex v of T either is a leaf or has 2 successors: ‘left’ v1 and ‘right’ v2 such

that A |= R(v, v1) ∧R(v1, w) ∧R(w, v2), for some w ∈ ind(A);
– if v is a leaf, then T (v) ∈ A.

We prove that Π†,A |= G(r) by induction on the depth of T. The basis of induction
(T of depth 0) is trivial. For the induction step, we define inductively a finite sequence
u0, d0, u1, d1, . . . , dn−1, un, where the ui are vertices of T and di ∈ {r, l}). First, we
set u0 = r. Now, suppose ui has been defined. If ui is a leaf of T, we stop and set n = i.
Otherwise, let v1 and v2 be, respectively, the left and right successors of ui in T. If v1
is not a leaf, we set di = l and ui+1 = v1. Otherwise, we set di = r and ui+1 = v2.
Note that

– dn−1 = r, if n ≥ 1;
– if di = r, there are y, w ∈ ind(A) with R(ui, y), T (y), R(y, w), R(w, ui+1) ∈ A.

Now, we have two cases depending on the sequence dir = d0, d1, . . . , dn−1.
Case 1: dir does not contain l. Then we can show by induction on i from n− 1 to 0

using (ii) that Π†,A |= P (ui), for 0 ≤ i ≤ n− 1. It follows that Π†,A |= G(r).
Case 2: dir contains at least one l. Let k be such that the last occurrence of l in

dir is between uk and uk+1. By (i), k + 1 < n, and so uk+2 is well defined. The
argument from case 1 shows that Π†,A |= P (uk+1). By IH, Π†,A |= G(y) for the
right successor y of uk. This means that either Π†,A |= Q(y) or Π†,A |= P (y) or
Π†,A |= T (y). In the first case, we obtain Π†,A |= Q(r) using (r3) and the fact
that y is accessible from r via R in A. In last two cases (using (r2) or (r2′)), we
have Π†,A |= Q(uk). By construction, uk is accessible from r via R in A, and so
Π†,A |= Q(r). It follows that Π†,A |= G(r).

Theorem 3. Answering any OMQ (Dis>, qTnT), for n ≥ 2, is P-complete.
F T T

Proof. We sketch a proof for qT2T shown in the picture above and leave the general
case to the reader. Let Π be the program with the single rule

T (x)← R(x, y) ∧ T (y) ∧R(y, z) ∧R(z, u) ∧R(z, v) ∧ T (v).

It suffices to show that checking whether Π,A |= T (a), for A and a ∈ ind(A), is
P-hard. Consider the following two ABoxes:

c

y

x

T

a

T z

T

b

A∧

c

T

a

T

b

A∨
It is routine to verify the following properties of these ABoxes:
∧-gadget Π,A∧ ∪ {T (a), T (b)} |= T (c),

Π,A∧ ∪ {T (a)} 6|= T (c),

Π,A∧ ∪ {T (b)} 6|= T (c),

Π,A∧ ∪ {T (a), T (b), R(c′, c)} 6|= T (c′);

∨-gadget Π,A∨ ∪ {T (a)} |= T (c),

Π,A∨ ∪ {T (b)} |= T (c),

Π,A∨ 6|= T (c),

Π,A∨ ∪ {T (a), T (b), R(c′, c)} 6|= T (c′).

Now, with any monotone Boolean circuit C with an output o and all gates having
exactly two inputs, we associate an ABox AC by replacing every AND-gate in C with
inputs a and b and output c by a fresh copy of A∧, and every OR-gate with inputs a
and b and output c by a fresh copy ofA∨. Given an input α for C, we place atoms T (a)
on the input gates a (which are also individuals of AC) with α(a) = 1, and denote the
resulting ABox by AαC . We claim that C outputs 1 under α iff AαC , Π |= T (o).

The implication (⇒) is proved by induction, using the properties of A∧ and A∨,
that if a gate g of C outputs 1 under α, then Π,AαC |= T (g).

(⇐) Suppose C outputs 0. Define an ABox A by extending AαC as follows. We add
atoms T (c) for all gates g that output 1 under α, atoms T (x) for those copies of A∧
that correspond to an AND-gate having 1 as its left input, and atoms T (y) and T (z)
for those copies of A∧ that correspond to an AND-gate having 1 as its right input. It is
readily checked that no rule in Π can be applied toA. Since C outputs 0, it follows that
Π,AαC 6|= T (o).

(The reader may want to figure out which part of the proof goes wrong for n = 1.)
On the other hand we have:

Proposition 3. Answering the OMQ (DisA, qT1T) is P-complete.

The proof is similar to that of Theorem 3 and uses the following gadgets A∧, A∨:
c
A

A
A

T

a

T
A

T

b

A∧

c
A

T

a

T

b

A∨
So far in this section we have considered OMQs with F -path CQs, thus excluding

path CQs such as q in the picture below
T F T

As shown in [10], answering the OMQ (DisA, q) with this q is P-complete; in fact, it
follows from the proof that (Dis>, q) is P-complete, too. This tempted us to conjecture
that having a solitary F in the middle of a path CQ with solitary T ’s on both sides
ensures P -hardness. To our surprise, there is a family of path CQs of this shape that are
NL-complete.

A path CQ qTF is called a TF -path CQ if it is of the form

qTF =
T

y0

F

x

T

y1

T

ym ym+1

.

where the T (yi) and F (x) are all the solitary occurrences of T and F in qTF . We
represent this CQ as

qTF = {T (y0)} ∪ q0 ∪ q,

where q0 is the sub-CQ of qTF between y0 and x with T (y0) removed and q is the
same as in Theorem 2 (and q∗m+1 is q without F (x)).

Theorem 4. If q satisfies the condition of Theorem 2 and there is a homomorphism
h : q∗m+1 → q0 such that h(x) = y0, then answering (DisA, qTF) is NL-complete.

Proof. We use the notations introduced for Theorem 2. Let Π be the following linear-
stratified datalog program:

G← F (x) ∧ P (x) ∧Q(x), (r1)
G← F (x) ∧Q(x) ∧ q̃∗m+1, (r2)

P (x)← A(x) ∧ q̃∗m+1, (r3)
P (x)← A(x) ∧ q̃∗i ∧ P (yi) ∧Q(yi), (r4)
Q(x)← T (y0) ∧ q̃0(y0, x), (r5)
Q(x)← A(y0) ∧Q(y0) ∧ q̃0(y0, x). (r6)

It suffices to prove that Π,A |= G iff DisA,A |= qTF , for all ABoxes A.
(⇐) Suppose DisA,A |= qTF . Let VP = {a ∈ ind(A) | Π,A |= P (a)} and

VQ = {a ∈ ind(A) | Π,A |= Q(a)}. Define an interpretation I with domain ind(A)
by taking

T I = {a | T (a) ∈ A} ∪ {a ∈ VP or a ∈ VQ | F (a) /∈ A},
F I = {a | F (a) ∈ A} ∪ {a /∈ VP and a /∈ VQ | T (a) /∈ A}.

Note that we have both a ∈ F I and a ∈ T I only if F (a), T (a) ∈ A. Clearly, I is a
model of (DisA,A), and so there is a homomorphism f : qTF → I. We show now that
Π,A |= G. First, we haveΠ,A |= Q(f(x)). Indeed, if T (f(y0)) ∈ A, then we can use
(r5). If A(f(y0)) ∈ A, then f(y0) ∈ VQ (using r6) and f(y0) ∈ T I follows from the
definition of I. So, f(x) ∈ VQ is again obtained by (r5). Second, there are two similar
cases. If T (f(yi)) ∈ A, for 1 ≤ i ≤ m, then Π,A |= G by (r2). Otherwise, we take
the smallest i such that T (f(yi)) 6∈ A. Then A(f(yi)) ∈ A and, by the definition of I,
we have f(yi) ∈ VP (using (r3) or (r4)) and f(yi) ∈ T I , and so again Π,A |= G by
(r1).

(⇒) Suppose there is a derivation of G from Π and A. Then DisA,A |= q and
there exists a sequence v0, v1, . . . , vn ∈ ind(A) such that:

– F (v0) ∈ A;
– A(vi) ∈ A and vi ∈ VP , for 1 ≤ i < n;
– for each i (0 ≤ i < n), we have q∗j (v

i, vi+1), for some j ∈ {1, . . . ,m};
– q∗m+1(v

n−1, vn) ∧ T (vn) ∈ A.

Moreover, there are also paths si0, s
i
1, . . . , s

i
ki

, where vi = siki and 0 ≤ i ≤ n, such that

– T (si0) ∈ A;
– A(sij) ∈ A and sij ∈ VQ, for 1 ≤ j ≤ ki;
– for each j (0 ≤ j < ki), we have q0(s

i
j , s

i
j+1) ∈ A;

– A(siki) ∈ A and siki ∈ VP or, if i = 0, then F (s0k0) ∈ A.

F

v0

A

v1

A

vn−2

A

vn−1

T

vn

A s01
T
s10 A sn−21

T
sn−10

T
s00

T
sn−20

q∗l . . .
q∗k q∗m+1

q0

q0 q0

q0

q0 q0

Let I be any interpretation based onA. Let i be the maximal number such that vi ∈ F I .
Case 1: sil ∈ T I , for 0 ≤ l < ki. In this case, there exists a homomorphism h1

from qTF to I such that h1(y0) = siki−1, h1(x) = vi and h1(yj) = vi+1, where j is
maximal with T (yj) /∈ A. Then DisA,A |= qTF , because q satisfies Theorem 2.

Case 2: otherwise. Let j be minimal with sij ∈ VQ and sij ∈ F I . Then there is a
homomorphism h2 from qTF to I such that h2(y0) = sij−1 and h2(x) = sij . We obtain
DisA,A |= qTF using the homomorphism h.

Example 2. By Theorem 4, the following CQs q give NL-complete OMQs (DisA, q):

T FT F T

T FT FT FT F FT T T

T FT FT F T T

6 CONP

As shown in [10] answering (DisA, q) with the CQ q
T T F F

is CONP-complete. Here, we generalise this observation. We say that a path CQ q is a
2-2-CQ if it has at least two solitary T , at least two solitary F all of which are located
after all the T , and every occurrence of T or F in q is solitary. We represent any given
2-2-CQ q as shown below

T

x

T

y

F

z

F

wp r s u v

where p, r, u and v do not contain F and T , while s may contain solitary occurrences
of both T and F (in other words, the T shown in the picture are the first two occurrences
of T in q and the F are the last two occurrences of F in q). Denote by qr the suffix of
q that starts from x but without T (x); similarly, qu is the suffix of q starting from z but
without F (z). Denote by q−r the prefix of q that ends at y but without T (y); similarly,
q−u is the prefix of q ending at w but without F (w).

Theorem 5. Answering any OMQ (DisA, q) with a 2-2-CQ q is CONP-complete pro-
vided the following conditions are satisfied:

– there is no homomorphism h1 : qu → qr with h1(z) = x;
– there is no homomorphism h2 : q

−
r → q−u with h2(y) = w.

Proof. We prove CONP-hardness by reduction of the NP-complete 3SAT. Given a
3CNF ψ, we construct an ABox Aψ as follows. First, for every literal ` whose proposi-
tional variable is present in ψ, we take the following `-gadget that contains sufficiently
many occurrences of A:

A

T

F

A

T

F

A

. . .

. . .

A

T

F r

s

u

r

s

u

r

s

u

p v

p

v

pv

p

v

`

One can show that, for every model of DisA extending this `-gadget, we have I 6|= q
iff the A-points in the gadget are all in T I or are all in F I .

Next, for every pair ` and ¬` of literals as above, we connect the corresponding
gadgets following the pattern in the picture below:

T T A A

A A

F F

p r s u v

p r s u v

` ¬`

Now, one can show that, for every model of DisA extending this new gadget, we have
I 6|= q iff either all A-points in the `-gadget are in T I and all A-points in the ¬`-gadget
are in F I or the other way round.

Finally, for every clause c = (`1 ∨ `2 ∨ `3) in ψ, we connect the ¬`1-, `2- and
`3-gadgets as shown below, always taking fresh A-points (by the construction, we have
a sufficient supply of them):

T A A A

p r s u v

¬`1 `2 `3

Denote the resulting structure by Aψ . We leave it to the reader to verify, using the
properties of the gadgets mentioned above, that ψ is satisfiable iff DisA,Aψ 6|= q.

We do not know yet whether this theorem holds for Dis> in place of DisA.

7 Conclusion

In this paper, we have obtained a few new results on the data complexity of answer-
ing a given ontology-mediated query (OMQ) that consists of a conjunctive query (CQ)
and a covering axiom similar to the one used in the variant [16, Example 7] of the
well-known ‘Andrea example’ [21]. We have observed that answering such OMQs is
often tractable, with the respective OMQs being rewritable into standard datalog queries
over the data. Sometimes we can even achieve rewritability into linear datalog, which
guarantees OMQ answering in NL. We have given a few necessary and sufficient con-
ditions for these phenomena. We have also discovered a few interesting counterexam-
ples, in particular, a minimal CQ with solitary occurrences of both T and F that is
FO-rewritable, a path CQ that is NL-complete for Dis> but P-complete for DisA, and
a path CQ with a solitary F in the middle and solitary T s on either side of it that is
NL-complete.

Acknowledgements. The work of O. Gerasimova and M. Zakharyaschev was carried
out at the National Research University Higher School of Economics and supported
by the Russian Science Foundation under grant 17-11-01294; the work of V. Podolskii
was supported by the Russian Academic Excellence Project ‘5-100’ and by grant MK-
7312.2016.1.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Afrati, F.N., Gergatsoulis, M., Toni, F.: Linearisability on datalog programs. Theor. Comput.

Sci. 308(1-3), 199–226 (2003), https://doi.org/10.1016/S0304-3975(02)
00730-2

3. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and re-
lations. Journal of Artificial Intelligence Research (JAIR) 36, 1–69 (2009)

4. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cam-
bridge University Press (2017)

5. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: A study through
disjunctive datalog, CSP, and MMSNP. ACM Transactions on Database Systems 39(4),
33:1–44 (2014)

6. Bienvenu, M., Ortiz, M.: Ontology-mediated query answering with data-tractable description
logics. In: Reasoning Web. Web Logic Rules - 11th International Summer School 2015,
Berlin, Germany, July 31 - August 4, 2015, Tutorial Lectures. pp. 218–307 (2015), https:
//doi.org/10.1007/978-3-319-21768-0_9

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: the DL-Lite family. Journal of Automated
Reasoning 39(3), 385–429 (2007)

8. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. Artif. Intell. 195, 335–360 (2013), https://doi.
org/10.1016/j.artint.2012.10.003

9. Feier, C., Kuusisto, A., Lutz, C.: Rewritability in monadic disjunctive datalog, MMSNP,
and expressive description logics. CoRR abs/1701.02231 (2017), http://arxiv.org/
abs/1701.02231

10. Gerasimova, O., Kikot, S., Podolskii, V., Zakharyaschev, M.: On the data complexity of
ontology-mediated queries with a covering axiom. In: Proceedings of the 30th International
Workshop on Description Logics (2017)

11. Gottlob, G., Papadimitriou, C.H.: On the complexity of single-rule datalog queries. Inf. Com-
put. 183(1), 104–122 (2003), http://dx.doi.org/10.1016/S0890-5401(03)
00012-9

12. Grau, B.C., Motik, B., Stoilos, G., Horrocks, I.: Computing datalog rewritings beyond
Horn ontologies. In: Rossi, F. (ed.) IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013. pp. 832–838. IJ-
CAI/AAAI (2013), http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/
paper/view/6318

13. Hernich, A., Lutz, C., Ozaki, A., Wolter, F.: Schema.org as a description logic. In: Calvanese,
D., Konev, B. (eds.) Proceedings of the 28th International Workshop on Description Logics,
Athens,Greece, June 7-10, 2015. CEUR Workshop Proceedings, vol. 1350. CEUR-WS.org
(2015), http://ceur-ws.org/Vol-1350/paper-24.pdf

14. Kaminski, M., Nenov, Y., Grau, B.C.: Datalog rewritability of disjunctive datalog programs
and non-Horn ontologies. Artif. Intell. 236, 90–118 (2016), http://dx.doi.org/10.
1016/j.artint.2016.03.006

15. Kontchakov, R., Rodriguez-Muro, M., Zakharyaschev, M.: Ontology-based data access
with databases: A short course. In: Reasoning Web. Semantic Technologies for Intelli-
gent Data Access - 9th International Summer School 2013, Mannheim, Germany, July 30
- August 2, 2013. Proceedings. pp. 194–229 (2013), https://doi.org/10.1007/
978-3-642-39784-4_5

16. Kontchakov, R., Zakharyaschev, M.: An introduction to description logics and query rewrit-
ing. In: Reasoning Web. Reasoning on the Web in the Big Data Era - 10th International
Summer School 2014, Athens, Greece, September 8-13, 2014. Proceedings. pp. 195–244
(2014), https://doi.org/10.1007/978-3-319-10587-1_5

17. Krisnadhi, A., Lutz, C.: Data complexity in the EL family of description logics. In: Logic for
Programming, Artificial Intelligence, and Reasoning, 14th International Conference, LPAR
2007, Yerevan, Armenia, October 15-19, 2007, Proceedings. pp. 333–347 (2007), https:
//doi.org/10.1007/978-3-540-75560-9_25

18. Lutz, C., Sabellek, L.: Ontology-mediated querying with EL: Trichotomy and linear datalog
rewritabvility. In: Proceedings of the 30th International Workshop on Description Logics
(2017)

19. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
data to ontologies. Journal on Data Semantics X, 133–173 (2008)

20. Rosati, R.: The limits of querying ontologies. In: Database Theory - ICDT 2007, 11th In-
ternational Conference, Barcelona, Spain, January 10-12, 2007, Proceedings. pp. 164–178
(2007), https://doi.org/10.1007/11965893_12

21. Schaerf, A.: On the complexity of the instance checking problem in concept languages with
existential quantification. J. of Intelligent Information Systems 2, 265–278 (1993)

