
Checking DL-Lite modularity with QBF solvers

R. Kontchakov1, V. Ryzhikov2, F. Wolter3, and M. Zakharyaschev1

1 School of Computer Science and Information Systems, Birkbeck College, London
{roman,michael}@dcs.bbk.ac.uk

2 Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
ryzhikov@inf.unibz.it

3 Department of Computer Science, University of Liverpool, U.K.,
frank@csc.liv.ac.uk

Abstract. We show how the reasoning tasks of checking various versions
of conservativity for the description logic DL-Litebool can be reduced to
satisfiability of quantified Boolean formulas and how off-the-shelf QBF
solvers perform on a number of typical DL-Litebool ontologies.

1 Introduction

Recently, the notion of conservative extension and variants thereof have been
identified as fundamental for developing, re-using and maintaining ontologies
[1–4]. Intuitively, an ontology T12 is a conservative extension of an ontology T1

w.r.t. a signature Σ if T12 ⊇ T1 and both T12 and T1 provide precisely the same
information about Σ in the sense that every ‘Σ-formula’ derivable from T12 is
derivable from T1 as well. If this happens to be the case, then

– an ontology engineer interested only in Σ can use T1 instead of the possibly
much larger T12, and

– an ontology engineer who has added T21 \ T1 to T1 can be certain that this
addition does not change (or ‘damage’) the meaning assigned to Σ by T1.

For further discussion and applications the reader is referred to [3, 5].
In the ‘definition’ of conservativity above, we did not specify the language

of Σ-formulas. In fact, different applications may require different languages:
one might be only interested in implications between concept names (concept
classification), implications between complex concepts, answers to queries when
the ontology is used to query databases, etc., which leads to different notions of
conservativity. In [6], several such notions were introduced and investigated for
the DL-Lite family of description logics. It was shown, in particular, that the
complexity of checking conservativity sits between coNP and Πp

2 , depending on
the member of the DL-Lite family and the type of Σ-formulas. Note that for
propositional logic deciding conservativity corresponds to deciding validity of
quantified Boolean formulas (QBFs) of the form ∀p∃qϕ, and the lower bounds
established in [6] follow from the corresponding lower bounds for QBFs.

The purpose of this paper is to report on (i) how the semantic conservativity
criteria found in [6] can be refined in such a way that one can use off-the-
shelf QBF solvers for deciding conservativity, and (ii) how different QBF solvers
perform on a number of ‘typical’ DL-Lite ontologies.

The paper is organised in the following way. In the next section we remind
the reader of the logic DL-Litebool , briefly discuss the conservativity notions from
[6] and illustrate them with an illuminative example. In Section 3 we provide a
semantic criterion of deductive conservativity, show how it can be encoded by
means of QBFs, and report on the results of our experiments with three standard
QBF solvers: sKizzo [7], 2clsQ [8] and Quaffle [9, 10]. Section 4 deals with query
conservativity, and in Section 5 we discuss the obtained results and future work.

2 Conservativity in DL-Litebool

Our main concern in this paper is the logic DL-Litebool [11] which covers most of
the members of the DL-Lite family [12, 13, 11]. The language of DL-Litebool has
object names a1, a2, . . . , concept names A1, A2, . . . , and role names P1, P2,
Complex roles R and concepts C are defined as follows:

R ::= Pi | P−i , B ::= ⊥ | Ai | ≥ q R,
C ::= B | ¬C | C1 u C2,

where q ≥ 1. (Other usual concept constructs like >, ∃R, ≤ q R and C1tC2 can
be used as standard abbreviations.) A concept inclusion is of the form C1 v C2,
where C1 and C2 are concepts; a DL-Litebool TBox is a finite set of concept
inclusions, and an ABox is a set of assertions of the form C(ai), R(ai, aj), where
C is a concept, R a role, and ai, aj are object names. A knowledge base (KB) is
a pair (T ,A) consisting of a TBox T and an ABox A.

The semantics of DL-Litebool is defined in the usual way using interpreta-
tions I = (∆I , AI1 , . . . , P

I
1 , . . . a

I
1 , . . .). An (essentially positive) existential query

q(x1, . . . , xn) is a first-order formula of the form

∃y1 . . . ∃ymϕ(x1, . . . , xn, y1, . . . , ym),

where ϕ is constructed, using only ∧ and ∨, from atoms of the form C(s) and
P (s1, s2), with C being a concept, P a role, and si either a variable from the list
x1, . . . , xn, y1, . . . , ym or an object name. Given a KB (T ,A) and a query q(x),
with x = x1, . . . , xn, we say that an n-tuple a of object names is an answer
to q(x) w.r.t. (T ,A) and write (T ,A) |= q(a) if, for every model I for (T ,A),
we have I |= q(a). The data complexity of the query answering problem for
DL-Litebool KBs is coNP-complete [11].

A signature Σ is a finite set of concept and role names. Given a concept
(role, TBox, ABox, query) E, we denote by sig(E) the signature of E, i.e., the
set of concept and role names that occur in E. Note that ⊥ and > are regarded
as logical symbols. A concept (role, TBox, ABox, query) E is a Σ-concept (role,
TBox, ABox, query, respectively) if sig(E) ⊆ Σ. Thus, P− is a Σ-role iff P ∈ Σ.

We now introduce four types of conservativity we deal with in this paper; for
further details and discussion we refer the reader to [6].

Definition 1. Let T1 ⊆ T12 be DL-Litebool TBoxes and Σ a signature.

– T12 is called a deductive conservative extension of T1 w.r.t. Σ if, for every
concept inclusion C1 v C2 with sig(C1 v C2) ⊆ Σ, we have T1 |= C1 v C2

whenever T12 |= C1 v C2.
– T12 is a query conservative extension of T1 w.r.t. Σ if, for every ABox A

with sig(A) ⊆ Σ, every query q with sig(q) ⊆ Σ, and every tuple a of object
names from A, we have (T1,A) |= q(a) whenever (T12,A) |= q(a).

– T12 is a strong deductive (query) conservative extension of T1 in w.r.t. Σ if
T12 ∪ T is a deductive (respectively, query) conservative extension of T1 ∪ T
w.r.t. Σ, for every TBox T with sig(T) ∩ sig(T12) ⊆ Σ.

Theorem 1 ([6]). For any two DL-Litebool TBoxes T1 ⊆ T12 and signature Σ,
T12 is a query conservative extension of T1 w.r.t. Σ iff T12 is a strong deductive
conservative extension of T1 w.r.t. Σ iff T12 is a strong query conservative exten-
sion of T1 w.r.t. Σ. Every query conservative extension is a deductive conserva-
tive extension, but not the other way round. The problems of deciding deductive
and query conservativity are both Πp

2 -complete.

We illustrate this theorem by an example which shows that checking conser-
vativity is a non-trivial task, even for a transparent ontology with 10 axioms.

Example 1. Let Σ = {teaches}, T1 contain the axioms

ResearchStaff u Visiting v ⊥, Academic v ∃teaches u ¬≥ 2 teaches,

∃teaches v Academic t ResearchStaff, ∃writes v Academic t ResearchStaff,

ResearchStaff v ∃worksIn, ∃worksIn− v Project,

Project v ∃manages−, ∃manages v Academic t Visiting,

and let T12 = T1∪{Visiting v ≥ 2 writes}. It is not hard to see that in T12 we can
derive new inclusions like Visiting v ∃teaches u ¬≥ 2 teaches, but nothing new
in the signature Σ. It follows that T12 is a deductive conservative extension of
T1 w.r.t. Σ. Consider now the ABox A = {teaches(a, b), teaches(a, c)} and the
query q = ∃x

(
(∃teaches)(x) ∧ (¬≥ 2 teaches)(x)

)
, that is, ‘is there anybody

who teaches precisely one module?’ Clearly, (T1,A) 6|= q because I |= (T1,A) and
I 6|= q, for I with domain {a, b, c, u, v} and AcademicI = ∅, ResearchStaffI = {a},
VisitingI = {v}, ProjectI = {u}, teachesI = {(a, b), (a, c)}, worksInI = {(a, u)},
managesI = {(v, u)}. On the other hand, (T12,A) |= q. Indeed, let I |= (T12,A).
Then a ∈ ResearchStaffI , and so there is u such that (a, u) ∈ worksInI and
u ∈ ProjectI . Then we have some v with (v, u) ∈ managesI and v ∈ (Academict
Visiting)I . Clearly, T12 |= Visiting v Academic, from which v ∈ AcademicI . It
follows that there is w such that (v, w) ∈ teachesI and that such a point is
unique. Therefore, T12 is not a query conservative extension of T1 w.r.t. Σ.

Note that the query q above contains the negated concept ¬≥ 2 teaches. This
is permitted by our definition of query conservativity, although one might argue
that most query languages used in DL only allow positive existential queries.
The reason we adopt a more ‘liberal’ definition is that it gives us a more robust

notion of conservativity, which is stable under the addition of ‘abbreviations’ to
an ontology (e.g., the addition of A ≡ ¬≥ 2 teaches to T1 and A to Σ should
not affect conservativity). For our definition of queries, this is trivially the case,
but it not so for any smaller class of queries.

By Theorem 1, T12 should not be a strong deductive conservative extension
of T1 w.r.t. Σ either. Indeed, let T = {∃teaches v ≥ 2 teaches}. Then T1∪T2∪T
is not a deductive conservative extension of T1 ∪ T w.r.t. Σ because ∃teaches is
not satisfiable w.r.t. T12 ∪ T , but is satisfiable w.r.t. T1 ∪ T .

3 Deductive conservativity

Let us fix TBoxes T1 ⊆ T12 and a signature Σ ⊆ Σ1 ⊆ Σ12, where Σ1 = sig(T1)
and Σ12 = sig(T12).4 Let m0 and mT be, respectively, the number of role names
in Σ and T , for T ∈ {T1, T12}. Denote by Q the set of all numerical parameters
(together with 1) that occur in T12.5

Without loss of generality we will assume that both T1 and T12 contain all
the axioms of the form ≥ q′R v ≥ q R, for all roles R in T and q, q′ ∈ Q such
that q is the immediate predecessor of q′. We will also assume that our TBoxes
contain only axioms of the form D1 v D2, where the Di are conjunctions of
concepts of the form B or ¬B from the definition of DL-Litebool concepts.

Let Σ0 ∈ {Σ,Σ1, Σ12}. A Σ0Q-concept is any concept of the form ⊥, Ai,
≥ q R, or its negation, for some Ai ∈ Σ0, Σ0-role R and q ∈ Q. A Σ0Q-type is a
set t of Σ0Q-concepts containing > and such that the following holds:

– for every Σ0Q-concept C, either C ∈ t or ¬C ∈ t (but not both),
– if q < q′ are both in Q and ≥ q′R ∈ t then ≥ q R ∈ t,
– if q < q′ are both in Q and ¬(≥ q R) ∈ t then ¬(≥ q′R) ∈ t.

For a type t, there is always an interpretation I and a point x in it such that
x ∈ CI , for all C ∈ t. In this case we say that t is realised at x in I.

Definition 2. A set Ξ of Σ0Q-types is T -realisable if there is a model for T
realising all types in Ξ. Ξ is precisely T -realisable if there is a model I for T
such that I realises all types in Ξ and every Σ0Q-type realised in I is in Ξ.

The following semantic conservativity criterion was proved in [6]:

Theorem 2. T12 is a deductive conservative extension of T1 w.r.t. Σ iff every
T1-realisable ΣQ-type is T12-realisable.

We now refine the criterion of Theorem 2 with the aim of encoding it by means
of QBFs. T -realisability of a type t means that there is a precisely T -realisable
set Ξ of types at least one of which expands t. And it turns out that one can
4 As shown in [6], DL-Litebool has the interpolation property and, therefore, we can

always assume that Σ ⊆ sig(T1).
5 In the QBF translations below, instead of Q we use the sets QR of numerical pa-

rameters, for each individual role R.

always find such a Ξ of size ≤ mT + 1. Moreover, we can order the types in Ξ in
such a way that its i’s type ti ‘takes care of the role Pi.’ To make this claim more
precise we need a definition. For a ΣQ-type t, a sequence ΘTt = t0, t1, . . . , tmT
of (not necessarily distinct) sig(T)Q-types is called a T -witness set for t if

(a1) t ⊆ t0;
(b1) each type in t0, t1, . . . , tmT is T -realisable;
(c1) ∃Pi ∈ tj , for some j, iff ∃Pi ∈ ti or ∃P−i ∈ ti, for each of the role names Pi

in T , 1 ≤ i ≤ mT .

Theorem 3. A ΣQ-type t is T -realisable iff there is a T -witness set for t. So
T12 is a deductive conservative extension of T1 w.r.t. Σ iff, for every ΣQ-type t,
whenever there is a T1-witness set for t then there is also a T12-witness set for t.

To translate the criterion of Theorem 3 into QBF, with each basic Σ0Q-
concept (different from ⊥) we associate a propositional variable. Fix some linear
order on the set of all DL-Litebool basic concepts, and let B1, . . . , Bn be the in-
duced list of Σ0Q-concepts. Then any vector t = (b1, . . . , bn) of distinct proposi-
tional variables bi can be used to encode Σ0Q-types: every classical assignment
a (of the truth values F and T to propositional variables) gives rise to the Σ0Q-
type ta(t) such that Bi ∈ ta(t) iff a(bi) = T (and so if a(bi) = F then ¬B ∈ ta(t)).
We will call t a Σ0Q-vector and ta(t) the Σ0Q-type of t under a. We also set
t(Bi) = bi and extend this map inductively to complex Σ0Q-concepts:

t(⊥) = ⊥, t(¬C) = ¬t(C), t(C1 u C2) = t(C1) ∧ t(C2).

We use concatenation t0 · t1 of types t0, t1 (when extending Σ0Q-types to Σ′0Q-
types, Σ0 ⊂ Σ′0) and projection t�{B1,...,Bk} = (t(B1), . . . , t(Bk)) (not a Σ0Q-
vector, in general). A sequence tn, . . . , tm of ΣQ0-vectors is denoted by tn..m.

Let t0
0 be a ΣQ-vector, t̂

0

1 a (Σ1 \ Σ)Q-vector, t
1..mT1
1 a sequence of Σ1Q-

vectors, t̂
0

12 a (Σ12 \ Σ)Q-vector, and t
1..mT12
12 a sequence of Σ12Q-vectors. By

Theorem 3, the condition ‘T12 is a deductive conservative extension of T1’ can
be represented by means of the following closed quantified Boolean formula

∀ t0
0

[
∃ t̂

0

1t
1..mT1
1 φT1(t0

0 ·t̂
0

1, t
1..mT1
1) → ∃ t̂

0

12t
1..mT12
12 φT12(t0

0 ·t̂
0

12, t
1..mT12
12)

]
, (1)

where, for a TBox T and N ≥ mT ,

φT (t0..N) =
N∧
j=0

θT (tj) ∧
mT∧
i=1

%Pi,i(t
0..N�{∃Pi,∃P−i }

),

θT (t) =
∧

D1vD2 ∈T

(
t(D1)→ t(D2)

)
,

%P,i(p0..N) =
(
pi(∃P)→

N∨
j=0

pj(∃P−)
)
∧

(
pi(∃P−)→

N∨
j=0

pj(∃P)
)

∧
(
¬pi(∃P) ∧ ¬pi(∃P−)→

N∧
j=0
j 6=i

¬pj(∃P) ∧
N∧
j=0
j 6=i

¬pj(∃P−)
)
.

Theorem 4. For each assignment a, we have a(φT (t0..N)) = T iff the set
{ta(t0), . . . , ta(tN)} of sig(T)Q-types is precisely T -realisable in a model I where
P Ii 6= ∅ iff a(ti(∃Pi)) = T or a(ti(∃P−i)) = T, for 1 ≤ i ≤ mT . In particular, T12

is a deductive conservative extension of T1 w.r.t. Σ iff QBF (1) is satisfiable.

There are different ways of transforming (1) into a prenex CNF, which is
a standard input to QBF solvers (see http://dcs.bbk.ac.uk/~roman/qbf for
some options). One of the versions we used in our experiments is of the form

∀ t0
0∀ t̂

0

1t
1..mT1
1 ∃ t̂

0

12t
1..mT12
12 ∃u1 . . .um1∃w0..mT1 ∃ p[

φ′T1(t0
0 · t̂

0

1, t
1..mT1
1 ,u1 . . .umT1 ,w

0..mT1 , p) ∧ φ′′T12(t0
0 · t̂

0

12, t
1..mT12
12 , p)

]
,

where u1, . . . ,um1 , w0..mT1 and p are K auxiliary variables, K = (mT1 +1)CT1 +
3mT1 + 1 and CT is the number of axioms in T . In total the prenex QBF has
(mT1 +1)WT1 universal and (mT12 +1)WT12−W0 +K existential variables, where
WT and W0 are the numbers of basic concepts in T and Σ, respectively. CNFs
φ′T (t0..N ,u1 . . .umT ,w

0..N , p) and φ′′T (t0..N , p) contain (N + 1)BT + 1 + (2N +
7)mT and (N + 1)(CT +B′T) + 2(N + 1)mT clauses, where BT and B′T are the
numbers of basic concepts in the left- and right-hand sides in T , respectively.

The order of the variables in the prefix has a strong impact on the solvers’
performance (as is well-known in the QBF community), and usually one can fine-
tune it depending on the solver. Another important parameter, which has not
been studied comprehensively yet by the QBF community, is the structure of the
prefix. For example, some of the existential quantifiers can be moved right after
the universal ones they depend on, which gives a prefix of the form ∀∃ . . . ∀∃. The
impact of this transformation is not completely clear. However, our experiments
show—especially for the more complex query conservativity—that the structure
of the prefix may become crucial for a solver to succeed.

3.1 Experimentation

We experimented with several variants of the above translation. As our bench-
marks, we considered three series of ‘3D’ instances of the form (Σ, T1, T12), with
Σ containing 1–10 roles and 5–52 basic concepts, T1 containing 8–25 roles, 47–
122 basic concepts, 59–154 axioms, and T12 9–30 roles, 49–147 basic concepts
and 74–198 axioms. In all instances of the first series, the NN-series, T12 is not a
deductive conservative extension of T1 w.r.t. Σ; in the YN-series, it is a deductive
but not a query conservative extension; and in the YY-series, T12 is a query con-
servative extension of T1 w.r.t. Σ. The reader can find the benchmarks (as both
LATEX and .qdimacs files, as well as a .qdimacs translator for LATEX files) at http:
//dcs.bbk.ac.uk/~roman/qbf. It is to be noted that our ontologies are not ran-
domly generated. On the contrary, we use ‘typical’ DL-Lite ontologies available
on the Web: extensions of DL-Litebool fragments of the standard ‘department
ontology’ (as in Example 1) as well as DL-Litebool representations of the ER dia-
grams used in the QuOnto system (http://www.dis.uniroma1.it/~quonto/).
The number of clauses in the prenex QBFs ranges over the interval 2000–18300;

Q
u
a
ffl

e
2
c
ls

Q
sK

iz
z
o

T 1
2

si
z
e

Y
Y

ti
m

e

0

20

40

60

80

100

120

140

160

50

60

70

80

90

100

110

a
x
io

m
s

12 17 21 30 |Σ|

Y
N

ti
m

e

0

20

40

60

80

100

120

140

160

60

80

100

120

140

160

180

a
x
io

m
s

14 18 33 43 |Σ|

N
N

ti
m

e

0

20

40

60

80

100

120

140

160

80

100

120

140

160

180

200

a
x
io

m
s

15 30 40 50 |Σ|

Fig. 1. Run-times for deductive conservativity.

the number of universal variables ranges over 340–3200, and the number of ex-
istential variables over 900–8600.

We checked conservativity for our benchmarks with the help of three state-
of-the-art QBF solvers: sKizzo [7], 2clsQ [8] and Quaffle [9, 10]. The tests were
conducted on a P4 3GHz machine with 2GB memory (in fact, ≤ 300MB was
required). The detailed results of the experiments are available at http://dcs.
bbk.ac.uk/~roman/qbf. Here we only give a very brief summary; see Fig. 1.

The only solver to cope with all 828 instances was Quaffle. In the most com-
plex cases, Quaffle needed 32.8 seconds to solve an NN instance with |Σ| = 52,
|T12| = 198 and 18277 clauses, 11809 variables in the translation (3172 universal
and 8585 existential); and 224.4 seconds to solve an YN instance with |Σ| = 45,
|T12| = 191 and 17424 clauses, 11374 variables in the translation (∀3000∃8329).
The big difference in the run-time for these two instances may be explained by
the fact that the former only required a counterexample, while the latter needed
an analysis of the whole search space. The overall performance of Quaffle was by
far the best in the case of deductive conservativity. On the YY series, sKizzo per-
formed much better than both Quaffle and 2clsQ (except two instances), while
on the NN and YN series sKizzo was rather poor.

4 Query conservativity

The worst-case complexity of query conservativity is the same as the complexity
of deductive conservativity: both are Πp

2 -complete. However, the query conser-

vativity criterion from [6] looks much more involved: unlike Theorem 2 dealing
with realisability of individual types, now we have to deal with sets of types.

Theorem 5 ([6]). T12 is a query conservative extension of T1 w.r.t. Σ iff every
precisely T1-realisable set of ΣQ-types is precisely T12-realisable.

To make this criterion more efficient, we observe first that a set Ξ of sig(T)Q-
types is precisely T -realisable iff every type in Ξ has a T -witness set within Ξ.
So the following conditions are equivalent:

– T12 is a query conservative extension of T1 w.r.t. Σ;
– for every T1-witness set ΘT1t for a ΣQ-type t, the set ΘT1t � Σ is precisely
T12-realisable, where ΘT1t �Σ is the set of restrictions of types in ΘT1t to Σ.

Intuitively, this result means that we do not have to consider arbitrary sets of
Σ1Q-types, but only those of size ≤ mT1 + 1 that are ‘generated’ by a ΣQ-
type t and ordered in such a way that a certain type ti in the ordering ‘takes
care of Pi.’ Now we extend the notion of a T -witness set as follows. For a T1-
witness set ΘT1t = t0, t1, . . . , tmT1 and M = mT12 −m0, call a sequence ΘT1T12t =
t̂0, t̂1, . . . , t̂mT1 , s1, . . . , sM of Σ12Q-types a T12-witness set for ΘT1t if

(a2) for each 1 ≤ i ≤ mT1 , ti �Σ ⊆ t̂i,
(a′2) for each 1 ≤ j ≤M , there is 1 ≤ k ≤ mT1 with tk �Σ ⊆ sj ,
(b2) each type in t̂0, t̂1, . . . , t̂mT1 , s1, . . . , sM is T12-realisable,
(c2) ∃Pi ∈ t̂j , for some 1 ≤ j ≤ mT1 , or ∃Pi ∈ sk, for some 1 ≤ k ≤ M , iff
∃Pi ∈ si or ∃P−i ∈ si, for each role name Pi in Σ12 \Σ, 1 ≤ i ≤M .

Theorem 6. T12 is a query conservative extension of T1 w.r.t. Σ iff, for every
T1-witness set ΘT1t for some ΣQ-type t, there is a T12-witness set for ΘT1t .

In the criterion of Theorem 3, we had to take a ΣQ-type t, (i) extend t to a
Σ1Q-type, (ii) check whether there are ‘witnesses’ for all the roles in that type
and the types providing those witnesses, and if this is the case, we finally had to
repeat steps (i) and (ii) again for Σ12 in place of Σ1. The criterion of Theorem 6
is much more complex not only because now we have to start with a set of
(mT1 + 1) Σ1Q-types rather than a single type. More importantly, now the T12

witnesses we choose for these types are not arbitrary but must have the same
Σ-restrictions as the original Σ1Q-types. This last condition makes the QBF
translation much more complex (see below) and, consequently, computationally
more costly.

Let M = mT12−m0, t
0..mT1
0 be ΣQ-vectors, t̂

0..mT1
1 (Σ1\Σ)Q-vectors, t̂

0..mT1
12 ,

s1..M
12 be (Σ12 \Σ)Q-vectors. By Theorem 6, the condition ‘T12 is a query con-

servative extension of T1’ can be expressed by the following closed QBF

∀ t
0..mT1
0

[
∃ t̂

0..mT1
1 φT1((t0 · t̂1)0..mT1) →

∃ t̂
0..mT1
12 ∃ s1..M

12 βT12(t0..mT1
0 , t̂

0..mT1
12 , s1..M

12)
]
, (2)

where βT12(t0..mT1
0 , t̂

0..mT1
12 , s1..M

12) is the formula

mT1∧
j=0

θT12(tj0 · t̂
j

12) ∧
M∧
j=1

mT1∨
k=0

θT12(tk0 · s
j
12)

∧
M∧
i=1

%Pm0+i,i((s
1..M
12)�{∃Pi,∃P−i }

, (t̂
0..mT1
12)�{∃Pi,∃P−i }

),

and φT , θT and %P,i are defined as before (here we assume that all concepts ∃R
for Σ-roles precede those for Σ12 \Σ-roles).

Theorem 7. T12 is a query conservative extension of T1 w.r.t. Σ iff (2) is
satisfiable.

It can be checked that (2) is equivalent to the prenex QBF

∀ t
0..mT1
0 ∃ t̂

0..mT1
12 ∃ s1..M

12 ∃ q0..mT1 ∃ p
∀ t̂

0

1∃w0 · · ·∀ t̂
mT1
1 ∃wmT1 ∃u1 . . .umT1[

φ′T1((t0
0 · t̂1)0..mT1 ,u1 . . .umT1 ,w

0..mT1 , p) ∧

β′′T12(t0..mT1
0 , t̂

0..mT1
12 , s1..M

12 , q0..mT1 , p)
]
,

where qj = (qj1, . . . , q
j
M), for 0 ≤ j ≤ mT1 , φT is as before and β′′T is a CNF

equivalent to (p→ βT). The latter CNF contains (M + 1)(N + 1)(CT +B′T) +
2M(M +N + 1) +M clauses, where N = mT1 , which is quadratic in mT12 , the
number of roles in Σ12 (unlike φ′′T12 , which is only linear in mT12).

4.1 Experimentation

We checked query conservativity of the same three series (NN, YN, YY) of
ontologies as in Section 3.1, where only in the YY series T12 was a query conser-
vative extension of T1 w.r.t. Σ. Thus, the 828 instances (Σ, T1, T12) are precisely
the same as before. However, their QBF translations are quite different in the
query conservativity case: now they have 9239–153497 clauses with 352–3172
universal and 1409–11098 existential variables. Unfortunately, not all of the in-
stances have been solved by the three solvers. For the detailed results of the tests
the reader is again referred to http://dcs.bbk.ac.uk/~roman/qbf, while here
we confine ourselves to a brief summary; see Fig. 2.

Quaffle, the deductive conservativity ‘champion,’ could not solve a single
query conservativity instance in 300 sec. 2clsQ showed a reasonable and, more
importantly, robust performance in the NN and YN cases. The most complex
YN instance it solved in 1172 sec. had the following parameters: |Σ| = 45,
|T12| = 176, 100360 clauses in the QBF translation with 2576 universal and
7654 existential variables. On the other hand, 2clsQ could not solve any YY
instances with timeout 300 sec. sKizzo’s performance was poor on both NN
and YN instances, where only very few instances were solved. However, quite
unexpectedly, for some variant of the translation, sKizzo managed to solve about
40% of YY instances, where the two other solvers completely failed.

Q
u
a
ffl

e
2
c
ls

Q
sK

iz
z
o

T 1
2

si
z
e

Y
Y

ti
m

e

0
100
200
300
400
500
600
700
800
900

1000

50

60

70

80

90

100

110

a
x
io

m
s

12 17 21 30 |Σ|

Y
N

ti
m

e

0
100
200
300
400
500
600
700
800
900

1000

60

80

100

120

140

160

180

a
x
io

m
s

14 18 33 43 |Σ|

N
N

ti
m

e

0
100
200
300
400
500
600
700
800
900

1000

80

100

120

140

160

180

200

a
x
io

m
s

15 30 40 50 |Σ|

Fig. 2. Run-times for query conservativity.

5 Conclusion

The empirical results presented above indicate that it is indeed possible to au-
tomatise conservativity checking for DL-Lite ontologies using off-the-shelf QBF
solvers. The main application area of the DL-Lite family of logics is concep-
tual data modelling and data integration, where typical DL-Lite ontologies do
not contain more than a few hundred axioms. We have seen that modern QBF
solvers can easily check deductive conservativity for ontologies of this size, even
without any strategies, variable orderings, or other techniques developed spe-
cially for this particular case. It turned out, however, that query conservativity
is usually more time demanding and would clearly benefit from some special
QBF techniques for quantifier ordering, variable elimination or BDD ordering.
(In fact, the QBF instances generated from our ontologies can form new and
unusual benchmarks for QBF solvers.) For example, we plan to experiment with
the AQME solver, which can inductively learn its solver selection strategy [14].
Other interesting directions for future research include the following:

– It was shown in [6] that for sub-Boolean variants of DL-Lite deciding conser-
vativity becomes ‘only’ coNP-complete. It would be of interest to consider
algorithms for this simpler case as well as other notions of conservativity.

– One can also consider sound but incomplete algorithms such as the locality-
based approach of [3]. Unfortunately, very few of the test cases considered

in this paper are in the scope of the locality-based approach, yet we believe
that new approximations can be developed.

– We plan to extend our results to the slightly more general case where T1 and
T12 are incomparable. Checking whether they have the same consequences
over a given signature can then be regarded as a logic-based generalisation
of the standard diff operator for different versions of texts.

– In applications, it is important not only to know that T12 is not a conservative
extension of T1, but also to have a corresponding counterexample. It remains
to be investigated how such counterexamples can be generated using the
algorithms presented in this paper.

Acknowledgements. We are grateful to Marco Benedetti for his help.

References

1. Grau, B.C., Parsia, B., Sirin, E., Kalyanpur, A.: Modularity and Web ontologies.
In: Proc. of KR. (2006) 198–209

2. Seidenberg, J., Rector, A.L.: Web ontology segmentation: analysis, classification
and use. In: WWW. (2006) 13–22

3. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modu-
larity of ontologies. In: Proc. of IJCAI. (2007) 298–303

4. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description
logics. In: Proc. of IJCAI. (2007) 453–458

5. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conser-
vative extensions in description logic. In: Proc. of KR. (2006) 187–197

6. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Modularity in DL-Lite. In: Proc.
of DL. (2007) 76–87

7. Benedetti, M.: sKizzo: A suite to evaluate and certify QBFs. In Nieuwenhuis, R.,
ed.: Proc. of CADE–20. Vol. 3632 of LNCS. (2005) 369–376

8. Samulowitz, H., Bacchus, F.: Binary clause reasoning in QBF. In Biere, A., Gomes,
C.P., eds.: Proc. of SAT. Vol. 4121 of LNCS. (2006) 353–367

9. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts
in quantified Boolean formula evaluation. In Hentenryck, P.V., ed.: Proc. of CP.
Vol. 2470 of LNCS. (2002) 200–215

10. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiabil-
ity solver. In Pileggi, L.T., Kuehlmann, A., eds.: Proc. of IEEE/ACM Conf. on
Computer-aided Design. (2002) 442–449

11. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the light
of first-order logic. In: Proc. of AAAI. (2007) 361–366

12. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite:
Tractable description logics for ontologies. In: Proc. of AAAI. (2005) 602–607

13. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. of KR. (2006) 260–270

14. Pulina, L., Tacchella, A.: A multi-engine solver for quantified Boolean formulas.
In Bessiere, C., ed.: Proc. of CP. Vol. 4741 of LNCS. (2007) 574–589

A Transformation into prenex CNF

A.1 Deductive conservativity

We transform (1) into a prenex CNF (which is the standard input of QBF solvers)
by using the following:

Proposition 1. For every pair of formulas ψ1 and ψ2,

ψ1 → ψ2 ≡ ∃ p ((ψ1 → p) ∧ (p→ ψ2)).

Then, for a TBox T and N ≥ mT , we take a fresh variable for each conjunct
of φT (t0..N) and thus we have(

φT (t0..N)→ p
)
≡ ∃u1 . . .umT ∃w0..N φ′T (t0..N ,u1 . . .umT ,w

0..N , p),

where

φ′T (t0..N ,u1 . . .umT ,w
0..N , p) =(N∧

j=0

∧
D1vD2 ∈T

wjD1,D2
∧

mT∧
i=1

(u0
i ∧ u1

i ∧ u2
i) → p

)

∧
N∧
j=0

θ′T (tj ,wj) ∧
mT∧
i=1

%′Pi,i(t
0..N�{∃Pi,∃P−i }

,ui),

where, for each 1 ≤ i ≤ mT , ui = (u1
i , u

2
i , u

3
i) and, for each 1 ≤ i ≤ N , wj

contains a variable wjD1,D2
, for each D1 v D2 in T , and

θ′T (t,w) =
∧

D1vD2 ∈T

((
t(D1)→ t(D2)

)
→ wD1,D2

)
,

%′P,i(p
0..N ,u) =

(N∨
j=0

pj(∃P−)→ u0
)
∧

(
¬pi(∃P)→ u0

)
∧

(N∨
j=0

pj(∃P)→ u1
)
∧

(
¬pi(∃P−)→ u1

)
∧

(
pi(∃P)→ u2

)
∧

(
pi(∃P−)→ u2

)
∧

(N∧
j=0
j 6=i

¬pj(∃P) ∧
N∧
j=0
j 6=i

¬pj(∃P−) → u2
)
,

which gives (N + 1)BT + 1 +mT (2(N + 1) + 5) clauses in CNF.
Here CT is the number of axioms in T ,

BT =
∑

Di
1vDi

2 ∈T

(|Di
1|+ 1) and B′T =

∑
Di

1vDi
2 ∈T

(|Di
2| − 1),

where |D| is defined as follows: |C1 uC2| = |C1|+ |C2|, |¬C| = |C| and |A| = 1,
| ≥ q R| = 1 and |⊥| = 0.

The formula
(
p → φT (t0..N)

)
can easily be transformed into an equivalent

CNF (without introducing any fresh variables) φ′′T (t0..N) containing (N+1)(CT +
B′T) +mT · 2N clauses.

A.2 Query conservativity

We again begin by introducing p. Then the formula
(
φT → p

)
is transformed

into CNF as in the previous section.
In order to transform the formula

(
p→ βT (t0..N , t̂

0..N
, s1..M)

)
into CNF, we

introduce fresh variables qj = (qj1, . . . , q
j
M), for 0 ≤ j ≤ N , and then

(p→ βT (t0..N , t̂
0..N

, s1..M)) = ∃ q0..N β′′T (t0..N , t̂
0..N

, s1..M , q0..N , p),

where β′′T (t0..N , t̂
0..N

, s1..M , q0..N , p) is the following formula:

N∧
j=0

(
p→ θT (tj0 · t̂

j
)
)

∧
M∧
j=1

(
p→

N∨
k=0

qjk
)
∧

M∧
j=1

N∧
k=0

(
qjk → θT (tk0 · sj)

)
∧

M∧
i=1

(
p→ %Pm0+i,i((s

1..M)�{∃Pi,∃P−i }
, (t̂

0..N
)�{∃Pi,∃P−i }

)
)
,

which gives (N + 1)(CT +B′T) +M +M(N + 1)(CT +B′T) + 2M(M +N + 1)
clauses.

B QBF variants: Unordered roles

We may start with an alternative definition of %P,i, which does not impose any
order on the roles:

ρP,i(p0..N) =
(((N∧

j=0

¬pj(∃P)
)
∨
(N∧
j=0

¬pj(∃P−)
))
→(N∧

j=0

¬pj(∃P) ∧
N∧
j=0

¬pj(∃P−)
))
.

Then, for φ′T , we take the following:

ρ′P,i(p
0..N ,u) =

N∧
j=0

(
pj(∃P−)→ u0

)
∧

N∧
j=0

(
pj(∃P)→ u1

)
∧
(
u0 ∧ u1 → u2

)
∧

((N∧
j=0

¬pj(∃P) ∧
N∧
j=0

¬pj(∃P−)
)
→ u2

)
,

which gives 2(N + 1) + 2 clauses per role (compare with 2(N + 1) + 5 for %′).
In order to convert

(
p→ φT (t0..N)

)
into CNF φ′′T (t0..N , p), we introduce mT

auxiliary existential variables e1, . . . , eT , and then we take

ρ′′P,i(p
0..N , p, ei) =

(
p→

(N∧
j=0

¬pj(∃P)→ ei
))

∧
(
p→

(N∧
j=0

¬pj(∃P−)→ ei
))

∧
(
ei →

N∧
j=0

¬pj(∃P) ∧
N∧
j=0

¬pj(∃P−)
)
,

which gives 2 + 2(N + 1) clauses per role (compare with 2(N + 1) for %′′).

