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Abstract

We investigate ontology-based data access to temporal data. We consider temporal ontologies given in linear temporal
logic LTL interpreted over discrete time (Z, <). Queries are given in LTL or MFO(<), monadic first-order logic with
a built-in linear order. Our concern is first-order rewritability of ontology-mediated queries (OMQs) consisting of a
temporal ontology and a query. By taking account of the temporal operators used in the ontology and distinguishing
between ontologies given in full LTL and its core, Krom and Horn fragments, we identify a hierarchy of OMQs with
atomic queries by proving rewritability into either FO(<), first-order logic with the built-in linear order, or FO(<,≡),
which extends FO(<) with the standard arithmetic predicates x ≡ 0 (mod n), for any fixed n > 1, or FO(RPR),
which extends FO(<) with relational primitive recursion. In terms of circuit complexity, FO(<,≡)- and FO(RPR)-
rewritability guarantee OMQ answering in uniform AC0 and, respectively, NC1.

We obtain similar hierarchies for more expressive types of queries: positive LTL-formulas, monotone MFO(<)-
and arbitrary MFO(<)-formulas. Our results are directly applicable if the temporal data to be accessed is one-
dimensional; moreover, they lay foundations for investigating ontology-based access using combinations of temporal
and description logics over two-dimensional temporal data.

Keywords: Linear temporal logic, description logic, ontology-based data access, first-order rewritability, data
complexity.

1. Introduction

Ontology-mediated query answering has recently become one of the most successful applications of description
logics (DLs) and semantic technologies. Its main aim is to facilitate user-friendly access to possibly heterogeneous,
distributed and incomplete data. To this end, an ontology is employed to provide (i) a convenient and uniform vo-
cabulary for formulating queries and (ii) a conceptual model of the domain for capturing background knowledge and
obtaining more complete answers. Thus, instead of querying data directly by means of convoluted database queries,
one can use ontology-mediated queries (OMQs, for short) of the form q = (O, ϕ), where O is an ontology and ϕ
a query formulated in the vocabulary of O. Under the standard certain answer semantics for OMQs, the answers
to q over a data instance A are exactly those tuples of individual names from A that satisfy ϕ in every model of O
andA. Because of this open-world semantics, answering OMQs can be computationally much harder than evaluating
standard database queries. For example, answering an atomic query A(x) using an ontology in the standard descrip-
tion logic ALC can be coNP-hard for data complexity—the complexity measure (adopted in this paper) that regards
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the OMQ as fixed and the data instance as the only input to the OMQ answering problem. For this reason, weaker
description logics (DLs) have been developed to enable not only tractable OMQ answering but even a reduction of
OMQ answering to evaluation of standard relational database queries directly over the data, which is in AC0 for data
complexity. In fact, the popular and very successful DL-Lite family of DLs was designed so as to ensure rewritability
of OMQs with conjunctive queries into first-order logic (FO) queries, and so to SQL. DL-Lite underpins the W3C
standard ontology language OWL 2 QL [1, 2]. For applications of OMQ answering with OWL 2 QL , the reader is
referred to [3, 4, 5, 6, 7, 8, 9, 10]; for a recent survey, consult [11].

DL-Lite and OWL 2 QL were designed to represent knowledge about static domains and are not suitable when
the data and the vocabulary the user is interested in are essentially temporal. To extend OMQ answering to temporal
domains, the ontology language needs to be extended by various temporal constructs studied in the context of temporal
representation and reasoning [12, 13, 14]. In fact, combinations of DLs with temporal formalisms have been widely
investigated since the pioneering work of Schmiedel [15] and Schild [16] in the early 1990s; we refer the reader
to [13, 17, 18, 19] for surveys and [20, 21, 22, 23, 24, 25] for more recent developments. However, the main reasoning
task targeted in this line of research has been knowledge base satisfiability rather than OMQ answering, with the
general aim of probing various combinations of temporal and DL constructs that ensure decidability of satisfiability
with acceptable combined complexity (which is the complexity measure that regards both the ontology and data
instance as input).

Motivated by the success of DL-Lite and the paradigm of FO-rewritability in OMQ answering over static domains,
our ultimate aim is the study of FO-rewritability of OMQs with temporal constructs in both ontologies and queries
over temporal databases. To lay the foundations for this project, in this article we consider the basic scenario of
querying timestamped ‘propositional’ data in a synchronous system with a centralised clock. We thus do not yet
consider general temporal relational data but focus on ‘non-relational’ pure temporal data. We use the standard
discrete time model with the (positive and negative) integers Z and the order < as precedence relation. The most
basic and fundamental temporal language for the discrete time model is the linear temporal logic LTL with the
temporal operators ©F (at the next moment of time), 3F (eventually), 2F (always in the future), U (until), and their
past-time counterparts ©P (at the previous moment), 3P (some time in the past), 2P (always in the past) and S (since);
see [26, 12, 14] and references therein. LTL and its fragments are particularly natural for our study of FO-rewritability
as, by the celebrated Kamp’s Theorem, LTL is expressively complete in the sense that anything that can be said in
MFO(<), monadic first-order logic with the precedence relation < over the discrete (in fact, any Dedekind complete)
model of time, and with reference to a single time point can also be expressed in LTL [27, 28].

Thus, in this article, we conduct an in-depth study of FO-rewritability and data complexity of OMQs with ontolo-
gies formulated in fragments of (propositional) LTL and queries given as LTL- or MFO(<)-formulas, assuming that
(i) ontology axioms hold at all times and (ii) data instances are finite sets of facts of the form A(a, `) saying that A is
true of the individual a at the time instant ` ∈ Z. To illustrate, suppose that data instances contain facts about the status
of a research article submitted to a journal using predicates for the events Submission, Notification, Accept, Reject,
Revise and Publication, and that temporal domain knowledge about these events is formulated in an ontology O as
follows:

Notification↔ Reject ∨ Accept ∨ Revise (1)

states that, at any moment of time, every notification is either a reject, accept or revision notification, and that it can
only be one of them:

Reject ∧ Accept→ ⊥, Revise ∧ Accept→ ⊥, Reject ∧ Revise→ ⊥. (2)

The ontology O says that any event P above, except Notification and Revise, can happen only once for any article:

P→ ¬3PP ∧ ¬3F P. (3)

It contains obvious necessary preconditions for publication and notification:

Publication→ 3PAccept, Notification→ 3PSubmission, (4)
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Figure 1: An example illustrating models ofA and O (implied information is shown in grey).

and also the post-conditions (eventual consequences) of acceptance, submission and a revision notification (for sim-
plicity, we assume that after a revision notification the authors always eventually receive a notification regarding a
revised version):

Accept→ 3FPublication, Submission→ 3FNotification, Revise→ 3FNotification. (5)

Finally, the ontology O states that acceptance and rejection notifications are final:

Accept ∨ Reject→ ¬3FNotification. (6)

Consider now the following setA of timestamped facts:

Notification(a, Oct2017), Revise(a, Oct2019), Publication(a, Dec2019).

Thus, according to A, the authors received a notification about their article a in October 2017, they received a revise
notification about a in October 2019, and article a was published in December 2019. In the context of this example, it
is natural to identify months in consecutive years with moments of time in the discrete time model (Z, <): for example,
October 2017 is 0, October 2019 is 24, etc.

To illustrate OMQ answering, consider first the (atomic) LTL-formula ϕ1 = Revise. By (1) and (6), the pairs
(a, Oct2017) and (a, Oct2019) are the certain answers to the OMQ q1 = (O, ϕ1); see Fig. 1. Now, consider the LTL-
formula ϕ2 = 3PSubmission, which we understand as a query asking for months when the article had been previously
submitted. Despite the fact that A contains no facts about predicate Submission, the axioms (4) in O imply that ϕ2 is
true for a at all points of the infinite interval [Oct2017,+∞) in every model of O and A, and so all pairs (a, n) with
n ∈ [Oct2017,+∞) might be regarded as certain answers to the OMQ q2 = (O, ϕ2). However, as usual in database
theory, we are only interested in finitely many answers from the active domain, which can be defined as the smallest
convex subset of Z containing all the timestamps from the data instance. Thus, the certain answers to q2 over A are
the pairs (a, n) with n in the closed interval [Oct2017,Dec2019], which is shown in Fig. 1 by shading.

First-order rewritability makes it possible to find certain answers to such OMQs without ontology reasoning,
simply by evaluating their FO-rewritings directly over the data instance (with built-in predicates such as < interpreted
over the active domain). For the two OMQs above, FO-rewritings are as follows: the FO-formula

Q1(x, t) = Revise(x, t) ∨
(
Notification(x, t) ∧ ∃s

(
(t < s) ∧ N(x, s)

))
,

where

N(x, s) = Notification(x, s) ∨ Accept(x, s) ∨ Reject(x, s) ∨ Revise(x, s), (7)

is an FO-rewriting of q1 in the sense that, for any given data instance A, the pair (a, n) with an article a in A and a
moment of time n from the active domain of A is a certain answer to q1 over A iff Q1(a, n) holds true in the finite
FO-structure given byA. Similarly,

Q2(x, t) = ∃s
(
(s < t)∧Submission(x, s)

)
∨ ∃s

(
(s ≤ t)∧N(x, s)

)
∨ ∃s

(
[(s ≤ t)∨ (s = t +1)]∧Publication(x, s)

)
,

where s ≤ t abbreviates ¬(t < s), s = (t + 1) stands for (t < s) ∧ ¬∃s′
(
(t < s′) ∧ (s′ < s)

)
and N(x, s) is given

again by (7), is an FO-rewriting of q2. (Note that we use the ‘strict’ semantics for 3P and other temporal operators,
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which does not include the current point.) Observe that, in addition to the symbols from the OMQs, these rewritings
use the precedence relation <, but no arithmetic operations. Also note that we always use a single variable, x, as the
answer variable for individuals, and that we do not quantify over individuals. Thus, we can (and will) drop x from all
rewritings and identify this target language for rewritings with FO(<), first-order logic with a built-in linear order.

We identify expressive fragments of LTL together with query languages for which every OMQ is rewritable into
FO(<). To illustrate one of our main results, let Prior-LTL denote the fragment of LTL containing all formulas
constructed using arbitrary Boolean connectives and temporal operators 2P, 3P, 2F and 3F . This language was one
of the first temporal logics developed and studied in philosophical logic, going back to Prior [29, 30, 31, 32]. The
ontology O above is given in Prior-LTL. We obtain the following rewritability result:

Theorem A. All OMQs with ontologies and queries in Prior-LTL are FO(<)-rewritable.

It follows that evaluating any such OMQ is in AC0 for data complexity, and that evaluating them can be delegated
to standard relational database management systems. Not all OMQs are FO(<)-rewritable. In particular, even very
simple Horn ontologies with operators ©F and ©P give rise to OMQs that fall outside the scope of FO(<). Consider, for
example, the ontology O2 with two axioms

Even→ ©FOdd, Odd→ ©FEven

saying, that every ‘even’ time point is always followed by an ‘odd’ one, and the other way round. Using the fact that
the set of even numbers cannot be defined in FO(<) [33, 34], one can show that the OMQ (O2,Even) has no rewriting
in FO(<). The even numbers can, however, be defined in the extension FO(<,≡) of FO(<) with the standard numeric
predicates t ≡ 0 (mod n), for any fixed n > 1. We identify fragments of LTL and query languages for which every
OMQ is rewritable in FO(<,≡). As a main example, let Krom-LTL be the fragment of LTL with the unary temporal
operators ©F , ©P, 2F , 2P, 3F and 3P, in which all axioms are binary, that is, contain at most two predicates (as in
Even→ ©FOdd or ©F A ∨ ©PB). We show the following:

Theorem B. All OMQs with Krom-LTL ontologies and atomic queries are FO(<,≡)-rewritable.

Note that any such OMQ is still in AC0 for data complexity and that, because of the standard support for basic
arithmetic, evaluating them can be delegated to relational database management systems. Not all OMQs are FO(<,≡)-
rewritable, however. Non-binary Horn ontologies with axioms such as ©F B ∧ A → C can express parity (the number
of time points n with A(n) in the active domain is even), which cannot be defined in FO(<) extended with arbitrary
arithmetic predicates [35].

Thus, our fine-grained classification of rewritability of LTL OMQs distinguishes between the different temporal
operators that can occur in ontology axioms and also takes account of the Boolean (non-temporal) structure of the
axioms by distinguishing between the core, Krom, Horn and full Boolean fragments1 of LTL. To provide a systematic
analysis, it is useful to work with fragments of LTL given in the clausal normal form

C1 ∧ · · · ∧Ck → Ck+1 ∨ · · · ∨Ck+m, (8)

where the Ci are predicate names, possibly prefixed with operators ©F , ©P, 2F and 2P. Suppose that o ∈ {2,©,2©} and
c ∈ {bool, horn, krom, core}. We denote by LTLo

c the temporal logic with clauses of the form (8), where the Ci can only
use the (future and past) operators indicated in o, and m ≤ 1 if c = horn; k + m ≤ 2 if c = krom; k + m ≤ 2 and m ≤ 1
if c = core; and arbitrary k, m if c = bool. It follows from [36] that every LTL-ontology can be converted (possibly
with a linear blowup and by introducing fresh predicates) in a canonical way into clausal normal form giving the same
answers to queries as the original one. Observe that Prior-LTL and Krom-LTL ontologies as introduced above can be
converted into LTL2

bool and, respectively, LTL2©

krom ontologies.
We consider the following hierarchy of queries in our OMQs. Atomic OMQs (OMAQs, for short) use queries

of the form A(t) with A a predicate.2 OMQs using arbitrary LTL formulas as queries are called ontology-mediated

1Such fragments have also proved to be useful for studying FO-rewritability and data complexity of OMQs in the DL-Lite family of description
logics [1, 2].

2Recall that we do not give the variable x ranging over the individuals in the database.
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OMAQs OMPIQs / quasi-positive MFO(<)-queries
c LTL2

c LTL©c and LTL2©
c LTL2

c LTL©c and LTL2©
c

bool

FO(<) [Th. 11]

FO(RPR), NC1-hard FO(RPR), NC1-hard [Th. 10] FO(RPR) [Th. 8, 27], NC1-hardkrom FO(<,≡) [Ths. 14, 16]

horn FO(RPR), NC1-hard [Th. 10] FO(<) [Th. 24, 31]

core FO(<,≡) FO(<,≡) [Th. 24, 31]

Table 1: Rewritability and data complexity of LTL OMQs.

instance queries (or OMIQs), and OMQs using only positive LTL formulas as queries are called ontology-mediated
positive instance queries (or OMPIQs). The queries introduced so far have exactly one (implicit) answer variable. To
generalise our results to queries of arbitrary arity, we introduce the language of OMQs with any MFO(<)-formulas
playing the role of queries, for example

ψ(t, t′) = Revise(t) ∧ Accept(t′) ∧ ∀s
(
(t < s < t′)→ ¬Revise(s)

)
,

asking for all pairs (t, t′) such that t is the last revision date before the acceptance date t′. We also consider OMQs
with quasi-positive MFO(<)-formulas as queries that are constructed using ∧, ∨, ∀, ∃, as well as guarded ∀ such as,
for example, in ∀s ((t < s < t′) → ϕ). We show that quasi-positive MFO(<)-formulas capture exactly the monotone
MFO(<)-formulas (that are preserved under adding time points to the extension of predicates). We also show that
OMQs with quasi-positive MFO(<)-formulas as queries behave in exactly the same way as OMPIQs. Our main result
about these expressive queries is as follows:

Theorem C. All OMQs with arbitrary MFO(<)-queries are FO(RPR)-rewritable. All OMQs with LTL2
horn or LTL2©

core
ontologies and quasi-positive MFO(<)-queries are FO(<)-rewritable or FO(<,≡)-rewritable, respectively.

We summarise our rewritability results in Table 1. It is to be noted that the FO(<)-rewritability result for OMQs
with Prior-LTL-ontologies and queries stated in Theorem A follows from the FO(<)-rewritability of all OMAQs using
LTL2

bool ontologies as answering a Prior-LTL query C can be reduced to answering an atomic query A by adding the
axiom C → A to the ontology. Using similar reductions, one can also extend other query languages given in Table 1
in the obvious way.

As Table 1 shows, all of our OMQs are rewritable into the extension FO(RPR) of FO(<) with relational primitive
recursion [37]. This implies that answering them is in NC1 ⊆ LogSpace for data complexity (and thus can be performed
by an efficient parallel algorithm [38]); it also means that answering OMQs can be done using finite automata [34]. In
terms of circuit complexity, both FO(<)- and FO(<,≡)-rewritability of a given OMQ mean that answering this OMQ
is in LogTime-uniform AC0 for data complexity [39]. Note that the SQL:1999 ISO standard contains a with recursive
construct that can represent various FO-queries with relational primitive recursion such as the query in Example 5
below, which cannot be expressed in FO without recursion.

It is known that under the open-world semantics of OMQs, answers to queries containing negation are often rather
uninformative. For example, if one uses the query Revise ∧ 2P¬Notification mediated by the publication ontology O
above to retrieve the date of the first revise notification for an article, then one will only receive an answer if the
submission date is just one time instant before the first revision notification. In classical OMQ answering, a way to
obtain more meaningful answers to FO-queries is to interpret negation under the epistemic semantics as proposed
by Calvanese et al. [40]. Under this semantics, we regard ¬A(t) as true if A(t) is not entailed. (The same semantics
is used in the standard query language SPARQL for RDF datasets when interpreted with OWL ontologies under the
entailment regimes [41].) To illustrate, the query ϕ3 = Revise(t) ∧ 2P¬Notification(t) will now return the time instant
of the first revise notification in the database. It is well known that extending the expressive power of a query language
in this way typically does not lead to an increase in data complexity. We confirm that this is the case for the query
languages considered in this article too.

The plan of the article is as follows. In Section 2, we introduce the syntax and semantics of our ontology and
query languages and define the basic notions that are required in the sequel. In Section 3, we show that OMQs with
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arbitrary LTL ontologies and queries are FO(RPR)-rewritable (and so also rewritable to monadic second-order logic
MSO(<)) and in NC1 for data complexity. We also establish NC1-hardness results. The next five sections are devoted
to the proofs of Theorems A, B and C formulated above. In Section 4, we use partially ordered automata [42] to
prove Theorem A. In Sections 5 and 6, we use unary automata [43] to prove Theorem B. In Sections 7 and 8, we
use canonical models to prove Theorem C for OMPIQs. We lift our results for LTL-queries to MFO(<)-queries in
Section 9. This completes the proof of Theorem C. We also show an analogue of Kamp’s Theorem for monotone
formulas. Finally, in Section 10, we briefly discuss the epistemic semantics for temporal queries. We conclude with a
summary of the obtained results and a discussion of future work.

1.1. Related Work

As mentioned above, our approach to ontology-mediated query answering over temporal data is motivated by the
success of the ontology-based data management paradigm for atemporal data using description logics or rule-based
languages [1, 44, 45, 46]. We first discuss the relationship between our results for ‘propositional’ temporal data and
the results obtained over the past 15 years for the rewritability and data complexity of ontology-mediated querying
using ‘atemporal’ description logics.

For standard DLs such asALCHI, one can prove the following dichotomy for the data complexity of answering
an OMQ with an atomic query: evaluating such an OMQ is either in AC0 or LogSpace-hard [47]. Thus, research has
focused on either the combined or parameterised complexity of OMQs that are in AC0 in data complexity [48, 49, 50]
or on classifying further the data complexity of OMQs that are known to be LogSpace-hard [47, 51]. For propositional
temporal data, the situation is rather different. Indeed, as AC0 ( NC1 ⊆ LogSpace [33, 38], the complexity class of
many of our OMQs does not play any role in standard atemporal ontology-mediated query answering.

We remind the reader that, in DL-Lite and standard extensions such as ALCHI, there is no need to distinguish
between different target languages for FO-rewritings. In fact, it is known that an OMQ with anALCHI ontology and
a union of conjunctive queries (UCQ) is FO-rewritable iff it is UCQ-rewritable [47, 52]. In contrast, for the temporal
data considered in this article and for LTL ontologies, we show that there is a difference between rewritability into the
first-order languages FO(<) and FO(<,≡).

Finally, we remind the reader that, in DL-Lite and other DLs, negation in queries results in non-tractable (often
undecidable) query evaluation [53, 54]. This is in contrast to the temporal case, where even OMQs with arbitrary
FO(<)-queries are in NC1 for data complexity.

Our article is closely related to the large body of work in temporal logic and automata for finite and infinite
words, in particular to the Büchi–Elgot–Trakhtenbrot Theorem [55, 56, 57], according to which monadic second-
order sentences over finite strict linear orders define exactly the class of regular languages. Our data complexity
results rely on the investigation of regular languages in terms of circuit and descriptive complexity [58, 37, 33, 39].
We also use a few more recent results on partially ordered and unary finite automata [43, 42, 59]. To study OMQs with
MFO(<)-queries, we employ Kamp’s Theorem [27, 28], according to which FO(<)-formulas with one free variable
have the same expressive power as LTL formulas over the integers (or any other Dedekind-complete linear order).

As discussed above, combinations of ontology languages with temporal formalisms have been widely investigated
since the beginning of the 1990s. We are not aware, however, of any previous work that focuses on the temporal
dimension only without assuming the presence of a non-propositional, relational, domain as well. Indeed, the focus of
existing work has been on adding a temporal dimension to an existing ontology language rather than on investigating
an existing temporal logic from the viewpoint of ontology-mediated querying. It is the latter what we do in this article.
We believe that this is worthwhile because (i) the single-dimensional temporal languages are of interest by themselves
and (ii) investigating them first allows one to investigate combined languages based on a good understanding of the
computational complexity and rewritability properties of their temporal components.

As the work on combining ontology and temporal languages is closely related to our research project, we give
a brief overview. Until the early 2010s, the main reasoning tasks investigated for the resulting logics were concept
subsumption (is an inclusion between concepts entailed by a temporal ontology?) and knowledge base satisfiability
(does a knowledge base consisting of a temporal data instance and a temporal ontology have a model?). Query an-
swering and its complexity were not on the research agenda yet. Discussing this work is beyond the scope of this
article, and so in the following we concentrate on briefly summarising recent research on combining ontology lan-
guages and temporal formalisms with the aim of ontology-mediated query answering over temporal data. We focus
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on the discrete-time point-based approach as this is the approach we consider in this article and as it is fundamental
for any other temporal data models. One can distinguish between formalisms in which temporal constructs are added
to both ontology and query languages (as in this article) and formalisms in which only the query language is tempo-
ralised while the ontology language is a standard atemporal language. We call the latter approach query-centric as no
temporal connectives are added to the ontology language. The advantage of keeping the ontology language atemporal
is that increases in the complexity of query answering compared to the atemporal case can only be caused by the new
temporal constructs in the queries. OMQ answering in this framework has been investigated in depth, in particular,
for the query language consisting of all LTL-CQs that are obtained from LTL formulas by replacing occurrences of
propositional variables by arbitrary conjunctive queries (CQs). Baader et al. [60, 61] analyse the data and combined
complexity of answering LTL-CQs with respect to ALC and SHQ ontologies with and without rigid concept and
role names (whose interpretation does not change over time). Borgwardt and Thost [62, 63] and Baader et al. [64]
investigate the complexity of answering LTL-CQs with respect to weaker ontology languages such as EL and mem-
bers of the DL-Lite family. In this context, Borgwardt et al. [65, 66] study the rewritability properties of LTL-CQs.
Bourgaux et al. [67] investigate the problem of querying inconsistent data, and Koopmann [68] proposes an extension
to probabilistic data.

As far as OMQ answering with temporal ontologies is concerned, related work has been done on querying temporal
data with respect to temporalised EL ontologies. In this case, since OMQ answering with atemporal EL ontologies is
already P-complete, a more expressive target language than FO(<) is required. Gutiérrez-Basulto et al. [69] consider
a temporal extension TEL of EL and investigate the complexity and rewritability of atomic queries. It is not known
whether query answering in the full language with rigid roles is decidable. However, it is P-complete for data and
PSpace-complete for combined complexity in its fragment without rigid roles, and PSpace-complete in data and in
ExpTime for combined complexity in the fragment where rigid roles can only occur on the left-hand side of concept
inclusions. It is also shown that, for acyclic ontologies, one obtains rewritability into the extension of FO(<) with +,
and that query answering is in P for combined complexity. Recent work of Borgwardt et al. [70] investigates temporal
ontology-mediated querying over sparse temporal data. A temporal extension of ELH⊥ is able to express different
types of rigid concepts, with OMQ answering for rooted CQs with guarded negation and metric temporal operators
under the minimal-world semantics being P-complete for data and ExpSpace-complete for combined complexity.

Extensions of datalog by constraints over an ordered domain representing time provide an alternative and well
investigated approach to querying temporal data [71, 72, 73]. In this approach, (possibly infinite) database relations
are represented using constraints, and datalog programs with constraints play the role of both the ontology and the
database query. A fundamental difference between datalog with constraints and our formalism is the arity of the
relation symbols: our formalism is essentially monadic in the sense that the temporal precedence relation is the only
non-unary relation symbol used, whereas datalog alone admits already arbitrary many relation symbols of arbitrary
arity. A systematic comparison of the expressive power of the respective datalog and LTL-based formalisms is beyond
the scope of this article, but would be of great interest. It would also be of interest to see in how far datalog with
constraints can be used as a target language for rewriting ontology-mediated temporal queries.

Our main target languages of query rewriting in this article are FO(<) and its extensions FO(<,≡) and FO(RPR).
An alternative approach that could be of interest when studying the succinctness of rewritings is to consider as target
languages LTL and its second-order extensions such as ETL (LTL with regular expressions) [74] and µLTL (LTL
with fixpoints) [75, 76].

2. Ontologies and Ontology-Mediated Queries in Linear Temporal Logic LTL

We begin by defining our temporal ontology and query languages as fragments of the classical linear temporal
logic LTL (aka propositional temporal logic PTL or PLTL); see [12, 13, 14] and references therein.

2.1. LTL Knowledge Bases

Having in mind the specific application area for these languages, which has been described in the introduction,
we somewhat modify the standard LTL terminology. For instance, instead of propositional variables, we prefer to
speak about atomic concepts that (similarly to concept names in Description Logic) are interpreted, in the temporal
context, as sets of time points. Data instances are then membership assertions stating that a moment of time ` ∈ Z
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is an instance of an atomic concept A. We construct complex temporal concepts by applying temporal and Boolean
operators to atomic ones. Finally, we define terminologies and capture background knowledge by means of ontology
axioms, which are clauses representing inclusions (implications) between concepts that are supposed to hold at every
moment of time.

Thus, in this article, we think of the alphabet of LTL as a countably infinite set of atomic concepts Ai, for i < ω.
Basic temporal concepts, C, are defined by the grammar

C ::= Ai | 2FC | 2PC | ©FC | ©PC (9)

with the temporal operators 2F (always in the future), 2P (always in the past), ©F (at the next moment) and ©P (at the
previous moment). A temporal ontology, O, is a finite set of clauses of the form

C1 ∧ · · · ∧Ck → Ck+1 ∨ · · · ∨Ck+m, (10)

where k,m ≥ 0 and the Ci are basic temporal concepts. We often refer to the clauses in O as (ontology) axioms. As
usual, we denote the empty ∧ by > and the empty ∨ by ⊥. We classify ontologies by the shape of their axioms and
the temporal operators that occur in them. Let c ∈ {bool, horn, krom, core} and o ∈ {2,©,2©}. By an LTLo

c-ontology
we mean any temporal ontology whose clauses satisfy the following restrictions on k and m in (10) indicated by c:

horn: m ≤ 1,

krom: k + m ≤ 2,

core: k + m ≤ 2 and m ≤ 1,

bool: any k,m ≥ 0,

and may only contain occurrences of the (future and past) temporal operators indicated in o (for example, o = 2 means
that only 2F and 2P may occur in the temporal concepts). Note that any LTLo

c-ontology may contain disjointness
axioms of the form C1 ∧ C2 → ⊥. Although both LTLo

krom- and LTLo
core-ontologies may only have binary clauses

as axioms (with at most two concepts), only the former are allowed to contain universal covering axioms such as
> → C1 ∨C2; in other words, core = krom ∩ horn.

The definition above identifies a rather restricted set of LTL-formulas as possible ontology axioms. For example,
it completely disallows the use of the standard temporal operators 3F (sometime in the future), 3P (sometime in the
past),U (until) and S (since). Whether or not these operators can be expressed in a fragment LTLo

c (in the context of
answering ontology-mediated queries) depends on c and o. We discuss this issue in Section 2.3.

A data instance, A, is a finite set of ground atoms of the form Ai(`), where ` ∈ Z. We denote by minA and
maxA the minimal and maximal integer numbers occurring in A. The active domain of a data instance A is the set
tem(A) =

{
n ∈ Z | minA ≤ n ≤ maxA

}
. To simplify constructions and without much loss of generality, we assume

that 0 = minA and 1 ≤ maxA, implicitly adding ‘dummies’ such as D(0) and D(1) if necessary, where D is a fresh
atomic concept (which will never be used in queries). An LTLo

c knowledge base (KB, for short) is a pair (O,A), where
O is an LTLo

c-ontology andA a data instance. The size |O| of an ontology O is the number of occurrences of symbols
in O.

We use the standard semantics for LTL over (Z, <) with the strict interpretation of temporal operators. A (tempo-
ral) interpretationM associates with every atomic concept A a subset AM ⊆ Z. The extension CM of a basic temporal
concept C inM is defined inductively as follows:

(2FC)M =
{
n ∈ Z | k ∈ CM, for all k > n

}
, (2PC)M =

{
n ∈ Z | k ∈ CM, for all k < n

}
, (11)

(©FC)M =
{
n ∈ Z | n + 1 ∈ CM

}
, (©PC)M =

{
n ∈ Z | n − 1 ∈ CM

}
. (12)

A clause of the form (10) is interpreted inM globally in the sense that it is regarded to be true inM if

CM1 ∩ · · · ∩CMk ⊆ CMk+1 ∪ · · · ∪CMk+m,

where the empty ∩ is Z and the empty ∪ is ∅. Given a clause α, we writeM |= α if α is true inM. We callM a model
of (O,A) and writeM |= (O,A) if

M |= α for all α ∈ O and ` ∈ AM for all A(`) ∈ A.

8



c LTL2
c LTL©c LTL2©

c

bool NP [30] PSpace [78]

krom NP NL∗ NP [77]

horn P [77] PSpace [79]

core NL [77] NL NP [77]

Table 2: Combined complexity of LTL KB satisfiability (∗the result follows from the proof of Theorem 1 in [77]).

We say that O is consistent (or satisfiable) if there is an interpretation M, called a model of O, such that M |= α, for
all α ∈ O; we also say that A is consistent with O (or that the KB (O,A) is satisfiable) if there is a model of (O,A).
A basic temporal concept C is consistent with O if there is a model M of O such that CM , ∅. For a clause α, we
write O |= α ifM |= α for every modelM of O.

The combined complexity of the satisfiability problem for LTLo
c KBs K is shown in Table 2. In those results,

we assume that the size of K is |O| plus the size of the encoding of A, and the numbers ` in A are assumed to be
encoded in unary. (It is to be noted that the LTL-based languages studied in [77, 21] are somewhat different from those
introduced in this article: in particular, the negative atoms in data instances [77] do not affect complexity, whereas
implications in data instances [21] change NL-hardness to NP-hardness.)

2.2. Ontology-Mediated Queries

We next define languages for querying temporal knowledge bases. In classical atemporal OMQ answering with
description logic ontologies, the standard language for retrieving data from KBs consists of conjunctive queries (CQs,
for short) or unions thereof (UCQs) [1]. In our present temporal setting, we consider significantly more expressive
queries: we start by investigating queries that are arbitrary LTL-formulas or, equivalently, by Kamp’s Theorem [27,
28], arbitrary monadic FO-formulas with a single free variable and a built-in linear order relation. In Section 9, we
lift our results to formulas in the monadic FO with multiple answer variables.

A temporal concept, κ, is an arbitrary LTL-formula defined by the grammar

κ ::= > | Ai | ¬κ | κ1 ∧ κ2 | κ1 ∨ κ2 | ©Fκ | 3Fκ | 2Fκ | κ1 U κ2

| ©Pκ | 3Pκ | 2Pκ | κ1 S κ2.

A positive temporal concept is a temporal concept without occurrences of ¬; note that positive temporal concepts κ
include all basic temporal concepts of the form (9). Let M be a temporal interpretation. The extension κM of a
temporal concept κ inM is given using (11)–(12) and the following:

>M = Z, (¬κ)M = Z \ κM,
(κ1 ∧ κ2)M = κM1 ∩ κM2 , (κ1 ∨ κ2)M = κM1 ∪ κM2 ,

(3Fκ)M =
{
n ∈ Z | there is k > n with k ∈ κM

}
, (3Pκ)M =

{
n ∈ Z | there is k < n with k ∈ κM

}
,

(κ1 U κ2)M =
{
n ∈ Z | there is k > n with k ∈ κM2 and m ∈ κM1 for n < m < k

}
,

(κ1 S κ2)M =
{
n ∈ Z | there is k < n with k ∈ κM2 and m ∈ κM1 for n > m > k

}
.

An LTLo
c ontology-mediated instance query (OMIQ, for short) is a pair of the form q = (O,κ), where O is an LTLo

c
ontology and κ a temporal concept (which may contain arbitrary temporal operators, not only those indicated in o).
If κ is a positive temporal concept, then we refer to q as an ontology-mediated positive instance query (OMPIQ).
Finally, if κ is an atomic concept, we call q an ontology-mediated atomic query (OMAQ).

A certain answer to an OMIQ q = (O,κ) over a data instanceA is any number ` ∈ tem(A) such that ` ∈ κM for
every modelM of (O,A). The set of all certain answers to q over A is denoted by ans(q,A). As a technical tool in
our constructions, we also require ‘certain answers’ ` that range over the whole Z rather than only the active temporal
domain tem(A); we denote the set of such certain answers overA and Z by ansZ(q,A).
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Example 1. Suppose O = {©PA→ B, ©PB→ A } andA = { A(0) }. Then 2n+1 ∈ BM, for any n ≥ 0 and any modelM
of (O,A). It follows that, for q = (O,©F©F B), we have ansZ(q,A) = { 2n − 1 | n ≥ 0 }, while ans(q,A) = {1} because
tem(A) = {0, 1}, as agreed in Section 2.1.

By the OMIQ answering problem for LTLo
c we understand the decision problem for the set ans(q,A), where q is

an LTLo
c OMIQ and A a data instance, that is, given any ` ∈ tem(A), decide whether ` ∈ ans(q,A). By restricting

OMIQs to OMPIQs or OMAQs, we obtain the OMPIQ or, respectively, OMAQ answering problem for LTLo
c.

The success of the classical ontology-based data management paradigm [11] has been largely underpinned by
the fact that, for suitable ontology and query languages such as DL-Lite and CQs, answering OMQs can be uni-
formly reduced to evaluating first-order queries (or standard SQL queries) directly over the data instance. Such
‘FO-rewritability’ of OMQs implies that answering each of them can be done in AC0 for data complexity, that is,
under the assumption that the ontology and query are fixed and the data instance is the only input.

Our main aim in this article is to investigate rewritability of LTLo
c OMIQs, OMPIQs and OMAQs into various

types of first-order queries. With this in mind, we think of any data instanceA as a finite first-order structure SA with
domain tem(A) ordered by <, in which

SA |= A(`) iff A(`) ∈ A,

for any atomic concept A and any ` ∈ tem(A). The structure SA represents a temporal database over which we
can evaluate various types of first-order formulas (queries). The smallest target language for rewritings comprises
FO(<)-formulas, that is, arbitrary first-order formulas with one built-in binary predicate <. A more expressive target
language FO(<,≡) extends FO(<) with the standard unary numeric predicates t ≡ 0 (mod n), for n > 1, defined
by taking SA |= ` ≡ 0 (mod n) iff ` is divisible by n. Evaluation of both FO(<)- and FO(<,≡)-formulas can be
done in LogTime-uniform AC0 for data complexity [39], one of the smallest complexity classes. It is to be noted that
even though FO(<) and FO(<,≡) lie in the same complexity class, their expressive power differs substantially; see
Example 4 and Remark 7 below.

Our most expressive target language for rewritings is FO(RPR) that extends FO with the successor relation and
relational primitive recursion (RPR, for short). (Note that we do not require the predicate bit or, equivalently, the
predicates plus and times in this language; cf. [37].) Evaluation of FO(RPR)-formulas is known to be NC1-complete
for data complexity [37], with AC0 ( NC1 ⊆ LogSpace. We remind the reader that, using RPR, we can construct
formulas such as

Φ(z, z1, . . . , zn) =

 Q1(z1, t) ≡ Θ1
(
z1, t,Q1(z1, t − 1), . . . ,Qn(zn, t − 1)

)
. . .
Qn(zn, t) ≡ Θn

(
zn, t,Q1(z1, t − 1), . . . ,Qn(zn, t − 1)

)
 Ψ(z, z1, . . . , zn),

where the part of Φ within [. . . ] defines recursively, via the FO(RPR)-formulas Θi, the interpretations of the predi-
cates Qi in the FO(RPR)-formula Ψ (see Example 5 for an illustration). Note that the recursion starts at t = 0 and
assumes that Qi(zi,−1) is false for all Qi and all zi, with 1 ≤ i ≤ n. Thus, the truth value of Qi(zi, 0) is computed
by substituting falsehood ⊥ for all Qi(zi,−1). For t = 1, 2, . . . , the recursion is then applied in the obvious way.
We assume that the relation variables Qi can only occur in one recursive definition [. . . ], so it makes sense to write
SA |= Qi(ni, k), for any tuple ni in tem(A) and k ∈ tem(A), if the computed value is ‘true’. Using thus defined truth-
values, we compute inductively the truth-relation SA |= Ψ(n, n1, . . . , nn), and so SA |= Φ(n, n1, . . . , nn), as usual in
first-order logic.

We are now in a position to introduce the central notion of the paper that reduces answering OMIQs over data
instancesA to evaluation of first-order queries over SA, which can be carried out by standard temporal databases.

Definition 2. Let L be one of the three classes of FO-formulas introduced above: FO(<), FO(<,≡) or FO(RPR). Let
q = (O,κ) be an OMIQ and Q(t) a constant-free L-formula with a single free variable t. We call Q(t) an L-rewriting
of q if, for any data instanceA, we have ans(q,A) = { ` ∈ tem(A) | SA |= Q(`) }. We say that q is L-rewritable if it
has an L-rewriting.

Answering both FO(<)- and FO(<,≡)-rewritable OMIQs is clearly in AC0 for data complexity, while answering
FO(RPR)-rewritable OMIQs is in NC1 for data complexity.
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Remark 3. (i) In the definition above, we allowed no constants (numbers) from Z in rewritings. Note, however, that
the FO(<)-formulas ¬∃t′ (t′ < t) and ¬∃t′ (t′ > t) define the minimal and maximal numbers that occur in any given
data instance. In view of this, we can use the constants 0 (or, min) and max in FO(<)-rewritings as syntactic sugar.
We also use the following FO(<) abbreviations defined by induction on a > 0:

(t = t′ + a) =

(t > t′) ∧ ¬∃s (t′ < s < t), if a = 1,
∃t′′

(
(t = t′′ + (a − 1)) ∧ (t′′ = t′ + 1)

)
, if a > 1,

where t′ < s < t stands for (t′ < s) ∧ (s < t); formula (t = t′ + a) is also a shortcut for (t′ = t + (−a)) if a < 0 and
for (t = t′) if a = 0.

(ii) In FO(<,≡)-rewritings, we require formulas that express membership in arithmetic progressions, that is, sets
of the form

a + bN =
{
a + bk | k ≥ 0

}
, for a, b ≥ 0,

where N denotes the set of natural numbers (including 0). So, for individual variables t and t′, we write t− t′ ∈ a + bN
to abbreviate (t = t′ + a) if b = 0, and ∃t′′

[
(t′′ = t′ + a) ∧ (t′′ ≤ t)] if b = 1; otherwise, that is, for b > 1, the formula

t − t′ ∈ a + bN stands for

∃t′′
[
(t′′ = t′ + a) ∧ (t ≥ t′′) ∧

∨
0≤c<b

(
(t ≡ c (mod b)) ∧ (t′′ ≡ c (mod b))

)]
,

where t ≡ c (mod b) with 0 ≤ c < b is an abbreviation for ∃s
[(

(s = t + (−c)) ∨ (s = t + (b − c))
)
∧

(
s ≡ 0 (mod b)

)]
.

(iii) Observe that FO(RPR) does not explicitly have the predicate < because it can easily be expressed using RPR;
see [37, Proposition 4.1]. Therefore, every FO(<)-formula is expressible in FO(RPR). Similarly, every formula in
FO(<,≡) is expressible in FO(RPR): indeed,

Q0(t) ≡ ((t = 0) ∨ Qb−1(t − 1))
Qb−1(t) ≡ Qb−2(t − 1),

. . .
Q1(t) ≡ Q0(t − 1)

 Q0(s),

expresses s ≡ 0 (mod b), for b ≥ 1.

We illustrate the given definitions by a few examples.

Example 4. Consider the OMAQ q = (O, A), where O is the same as in Example 1. It is not hard to see that

Q(t) = ∃s
(
A(s) ∧ (t − s ∈ 0 + 2N)

)
∨ ∃s

(
B(s) ∧ (t − s ∈ 1 + 2N)

)
is an FO(<,≡)-rewriting of q. Note, however, that q is not FO(<)-rewritable since properties such as ‘t is even’ are
not definable by FO(<)-formulas, which can be established using a standard Ehrenfeucht-Fraı̈ssé argument [33, 34].

Example 5. Next, consider the OMAQ q = (O, B0), where O consists of the axioms

©PBk ∧ A0 → Bk and ©PB1−k ∧ A1 → Bk, for k = 0, 1.

For any binary word e = (e1, . . . , en) ∈ {0, 1}n, we take the data instance Ae = { B0(0) } ∪ { Aei (i) | 0 < i ≤ n }. It is
not hard to check that n is a certain answer to q over Ae iff the number of 1s in e is even (Parity): intuitively, the
word is processed starting from the minimal timestamp and moving towards the maximal one, and the first axiom
preserves Bi if the current symbol is 0, whereas the second axiom toggles Bi if the current symbol is 1. As Parity is
not in AC0 [35], it follows that q is not FO-rewritable even if arbitrary numeric predicates are allowed in rewritings.
However, it can be rewritten to the following FO(RPR)-formula:

Q(t) =

[
Q0(t) ≡ Θ0
Q1(t) ≡ Θ1

]
Q0(t),
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where

Θk(t,Q0(t − 1),Q1(t − 1)) = Bk(t) ∨
(
Qk(t − 1) ∧ A0(t)

)
∨

(
Q1−k(t − 1) ∧ A1(t)

)
, for k = 0, 1.

As noted above, the recursion starts from the minimal timestamp 0 in the data instance (with Qi(−1) regarded false)
and proceeds to the maximal one.

As a technical tool in our constructions of FO(<)- and FO(<,≡)-rewritings, we also use infinite first-order struc-
tures SZ

A
with domain Z that are defined in the same way as SA but over the whole Z. If in Definition 2 we replace

SA with SZ
A

, then we can speak of FOZ(<) -or FOZ(<,≡)-rewritings Q(t) of q.

Example 6. Suppose q = (O,κ), where O = { A→ ©2
F A, B→ ©3

F B }, κ = 3F(A ∧ B) and ©k
F is a sequence of k-many

operators ©F . Then

∃s
[
(t < s) ∧ ∃u

(
A(u) ∧ (s − u ∈ 0 + 2N)

)
∧ ∃v

(
B(v) ∧ (s − v ∈ 0 + 3N)

)]
is an FOZ(<,≡)-rewriting of the OMPIQ q, but not an FO(<,≡)-rewriting because although u and v always belong to
the active temporal domain tem(A) ofA, s can be outside tem(A). Interestingly, ∃u, v

[
A(u)∧B(v)

]
is both an FO(<)-

and FOZ(<)-rewriting of q.

We conclude this section by discussing the expressive power of the most important languages LTLo
c in comparison

with full LTL.

2.3. Remarks on Expressivity

We are interested in expressive power modulo the introduction of fresh symbols (atomic concepts). By the signa-
ture of an ontology we mean the set of atomic concepts that occur in it. An ontology O′ is called a model conservative
extension of an ontology O if O′ |= O, the signature of O is contained in the signature of O′, and every model of O can
be expanded to a model of O′ by providing an interpretation of the fresh symbols of O′ but leaving the domain and
the interpretation of the symbols in O unchanged. Observe that if q = (O,κ) is an OMIQ and O′ a model conservative
extension of O, then the certain answers to q over a data instance A in the signature of O coincide with the certain
answers to q′ = (O′,κ) overA. Thus, any rewriting of q′ is also a rewriting of q.

Observe first that, if arbitrary LTL-formulas are used as axioms of an ontology O, then one can construct an
LTL2©

bool ontology O′ that is a model conservative extension of O [80, 77]. We do not repeat the proof here but indicate
a few important steps. First, we note that A→ ©F B is equivalent to ©PA→ B and 3PA→ B is equivalent to A→ 2F B.
Then the implication A→ 3F B can be simulated by two krom clauses with 2F and a fresh atomic concept C: namely,
A ∧ 2FC → ⊥ and > → C ∨ B. To simulate A → BU C, we use the well-known fixed-point unfolding of BU C as
©FC ∨ (©F B ∧ ©F(BU C)), which gives rise to four clauses A → U, U → ©FC ∨ ©F B, U → ©FC ∨ ©FU and A → 3FC
with a fresh U (the 3F in the last clause can be replaced with 2F as described above). The implication BU C → A
can be replaced with ©FC → U, ©FU ∧ ©F B→ U and U → A, for a fresh U.

We now discuss in more detail the clausal form fragments corresponding to the languages Prior-LTL and Krom-LTL
used in Theorems A and B.

Recall that Prior-LTL denotes the set of LTL-formulas constructed using arbitrary Boolean connectives, 2P, 2F , 3P

and 3F . By employing the equivalent rewritings of formulas with 3P or 3F from the previous paragraph, it is easy to
see that, for every ontology O in Prior-LTL, there exists an LTL2

bool ontology O′ that is a model conservative extension
of O. It follows that any FO-rewritability result for OMIQs with ontologies given in LTL2

bool holds for OMIQs with
ontologies in Prior-LTL.

Also recall that by Krom-LTL we denote the set of all LTL-formulas constructed using arbitrary Boolean operators
from at most two LTL atomic concepts prefixed with any sequence of unary operators from 2P, ©P, 3P, 2F , ©F and 3F .
Then, using the transformations introduced above, one can construct for every Krom-LTL ontology O an LTL2©

krom-
ontology O′ that is a model conservative extension of O.

Denote by Horn-LTL the set of implications κ1 → κ2, where κ1 is constructed using ∧, 2P, 2F , 3P, 3F , and κ2
is constructed using ∧, 2P and 2F . Then, for every ontology O consisting of formulas in Horn-LTL, there exists an
LTL2

horn ontology O′ that is a model conservative extension of O.
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The following observation, also based on model conservative extensions, will be required in Section 5. It is not
hard to see that, for any LTLo

c ontology O, one can construct an LTLo
c ontology O′, possibly using some fresh atomic

concepts, such that O′ contains no nested temporal operators, and O′ is a model conservative extension of O. For
example, 2F©PA → B in O can be replaced with two clauses ©PA → C and 2FC → B, for a fresh atomic concept C.
Thus, in what follows and where convenient, we can assume without loss of generality that our ontologies do not
contain nested temporal operators.

3. Rewriting LTL2©

bool
OMIQs into FO(RPR)

It follows from Example 5 that the languages FO(<) and FO(<,≡) are not sufficiently expressive as target lan-
guages for rewritings of arbitrary OMIQs. In the next theorem, we show, however, that all of them can be rewritten
into FO(RPR). As follows from [37, Proposition 4.3], this means that we can also rewrite OMIQs into the language
MSO(<) of monadic second-order formulas that are built from atoms of the form A(t) and t < t′ using the Booleans,
first-order quantifiers ∀t and ∃t, and second-order quantifiers ∀A and ∃A [55]. (An LTL2©

bool OMIQ q = (O,κ) is said
to be MSO(<)-rewritable if there is an MSO(<)-formula Q(t) such that ans(q,A) = { ` ∈ tem(A) | SA |= Q(`) }, for
any data instanceA.)

Remark 7. It is worth reminding the reader (see [33, 81, 82] for details) that, by the Büchi–Elgot–Trakhtenbrot The-
orem [55, 56, 57], MSO(<)-sentences define exactly the class of regular languages, FO(<,≡)-sentences define exactly
the class of regular languages in (non-uniform) AC0, and FO(<)-sentences define the class of star-free regular lan-
guages. FO(RPR), extended with the predicates plus and times or, equivalently, with one predicate bit [39], captures
exactly the languages in NC1 (which are not necessarily regular) [37]. On the other hand, a close connection between
LTL and finite automata has been known in formal verification (model checking) since the 1980s [83].

Theorem 8. All LTL2©

bool OMIQs are FO(RPR)- and MSO(<)-rewritable, and so answering such OMIQs is in NC1 for
data complexity.

Proof. Let q = (O,κ0) be an LTL2©

bool OMIQ. Denote by subq the set of subconcepts of temporal concepts in O and κ0
together with their negations. A type for q is a maximal subset τ of subq consistent with O. Let T = {τ1, . . . , τn} be
the set of all such types for q. Given a modelM of O and any k ∈ Z, we denote by τM(k) = {κ ∈ subq | k ∈ κM } the
type of k in M. We write suc(τ, τ′) to say that there exist a model M of O and a number k ∈ Z such that τ = τM(k)
and τ′ = τM(k + 1). Given a data instance A and ` ∈ tem(A), we denote A|≤` = { A(k) ∈ A | k ≤ ` } and
A|≥` = { A(k) ∈ A | k ≥ ` }. Note that tem(A|≤`) = { 0, . . . , ` }, while tem(A|≥`) = tem(A) = { 0, . . . ,max(A) }.

For every type τ for q, we construct two FO(RPR)-formulas ϕτ(t0) and ψτ(t0) by taking:

ϕτ(t0) =

 Rτ1 (t) ≡ ϑτ1

. . .
Rτn (t) ≡ ϑτn

 Rτ(t0), ψτ(t0) =

 Qτ1 (t0, t) ≡ ηττ1

. . .
Qτn (t0, t) ≡ ηττn

 ∨
τi∈T

Qτi (t0,max),

where Rτi (t) and Qτi (t0, t), for τi ∈ T, are relation variables and

ϑτi (t,Rτ1 (t − 1), . . . ,Rτn (t − 1)) = typeτi
(t) ∧

(
(t = 0) ∨

∨
τ′∈T, suc(τ′,τi)

Rτ′ (t − 1)
)
,

ηττi
(t0, t,Qτ1 (t0, t − 1), . . . ,Qτn (t0, t − 1)) =


typeτi

(t) ∧
(
(t = t0) ∨

∨
τ′∈T, suc(τ′,τi)

Qτ′ (t0, t − 1)
)
, if τi = τ;

typeτi
(t) ∧

∨
τ′∈T, suc(τ′,τi)

Qτ′ (t0, t − 1), if τi , τ,

and typeτ(t) is the conjunction of all ¬A(t) with ¬A ∈ τ. We require the following auxiliary lemma.

Lemma 9. For any data instanceA and any ` ∈ tem(A),

(i) SA |= ϕτ(`) iff there is a modelM of O andA|≤` such that τ = τM(`);
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(ii) SA |= ψτ(`) iff there is a modelM of O andA|≥` such that τ = τM(`);

(iii) SA |= ϕτ(`) ∧ ψτ(`) iff there is a modelM of O andA such that τ = τM(`).

Proof. (i) We proceed by induction on `. Suppose ` = minA = 0. If SA |= Rτ(0), then A(0) ∈ A implies A ∈ τ, and
so, since τ is consistent with O (which means that O is satisfiable in some modelM with τM(0) = τ), there is a model
M of O and A|≤0 with τ = τM(0). Conversely, let M be a model of O and A|≤0, and τ = τM(0). It follows from the
structure of ϑτ that SA |= typeτ(t) ∧ (t = 0), and so SA |= Rτ(0) and SA |= ϕτ(0).

Assume now that (i) holds for ` − 1 ≥ 0. Suppose SA |= Rτ(`). Then there is τ′ such that suc(τ′, τ) and
SA |= typeτ(`)∧Rτ′ (`−1). By the induction hypothesis, there is a modelM′ of O andA|≤`−1 such that τ′ = τM′ (`−1).
As suc(τ′, τ) holds, there is a model M′′ of O with τ′ = τM′′ (` − 1) and τ = τM′′ (`). The required model M of O
andA|≤` is obtained by taking, for any atomic concept A,

AM =
{
k < ` | k ∈ AM

′ }
∪

{
k ≥ ` | k ∈ AM

′′ }
. (13)

The converse implication is straightforward by the induction hypothesis.
(ii) Suppose SA |= ψτ(`). We claim that there are types τ`, τ`+1, . . . , τmax(A) for q such that τ` = τ, suc(τ j, τ j+1),

for ` ≤ j < max(A), and

SA |= typeτ` (`) ∧ typeτ`+1
(` + 1) ∧ · · · ∧ typeτmax(A)

(max(A)).

Assuming that this claim holds, the remainder of the proof for (ii) is similar to that for (i).
To prove the claim, observe first that there is a type τmax(A) with SA |= Qτmax(A) (`,max(A)). Because of ηττmax(A)

,
we immediately obtain SA |= typeτmax(A)

(max(A)). Moreover, if max(A) > `, then there is a type τmax(A)−1 such that
suc(τmax(A)−1, τmax(A)),SA |= typeτmax(A)−1

(max(A)−1) andSA |= Qτmax(A)−1 (`,max(A)−1). If max(A)−1 > `, we can
find τmax(A)−2 with the properties required by the claim. We proceed in this way until we find the required sequence.
Now, it remains to check that τ` = τ. Observe thatSA 6|= Qτ′ (`, `′) for all `′ < ` and τ′ ∈ T. Therefore,SA |= Qτ` (`, `)
implies by ηττ` that τ = τ`. The converse implication is straightforward.

(iii) We take the models M′ and M′′ provided by (i) and (ii), respectively, and construct the required model M
using (13). This completes the proof of the lemma. q

It follows immediately from Lemma 9 that the formula

Q(t0) = ¬
∨

τ∈T, κ0<τ

(ϕτ(t0) ∧ ψτ(t0)).

is an FO(RPR)-rewriting of q = (O,κ0). It can be transformed into an MSO(<)-rewriting in the same way as in the
proof of [37, Proposition 4.3]. It is, however, instructive to compute the MSO(<)-rewriting directly from the OMIQ q.
To this end, for every κ in subq, we take a fresh unary predicate κ∗(t) with the intuitive meaning ‘κ is true at t’.
Let Ξ(t) be the conjunction of the following FO(<)-formulas:

A(t)→ A∗(t), for every atomic A ∈ subq,

(¬κ)∗(t)↔ ¬κ∗(t), for every ¬κ ∈ subq,

(κ1 ∧ κ2)∗(t)↔ κ∗1(t) ∧ κ∗2(t), for every κ1 ∧ κ2 ∈ subq,

(t < max)→
(
(©Fκ)∗(t)↔ κ∗(t + 1)

)
, for every ©Fκ ∈ subq,

(t < max)→
(
(2Fκ)∗(t)↔ κ∗(t + 1) ∧ (2Fκ)∗(t + 1)

)
, for every 2Fκ ∈ subq,

(t < max)→
(
(3Fκ)∗(t)↔ κ∗(t + 1) ∨ (3Fκ)∗(t + 1)

)
, for every 3Fκ ∈ subq,

(t < max)→
(
(κ1 U κ2)∗(t)↔ κ∗2(t + 1) ∨ (κ∗1(t + 1) ∧ (κ1 U κ2)∗(t + 1))

)
, for every κ1 U κ2 ∈ subq,

and the corresponding formulas for ©P, 2P, 3P, and S in which (t < max) and (t + 1) are replaced by (min < t) and
(t − 1), respectively. Let T be the set of all types for q. The following formula is an MSO(<)-rewriting of q:

Q(t0) = ∀κ∗κ∗κ∗
(
∀t

(
Ξ(t) ∧

∨
τ∈T

∧
κ∈τ

κ∗(t)
)
→ κ∗0(t0)

)
,
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where κ∗κ∗κ∗ is a list of all predicate names κ∗ for κ ∈ subq. To show this, consider a data instanceA and ` ∈ tem(A).
Suppose first that ` < ans(q,A). Take a model M of (O,A) with ` < κM0 . Interpret the predicates κ∗ with

κ ∈ subq in SA by setting a(κ∗) = κM ∩ tem(A). Then SA |=a ∀t
[
Ξ(t) ∧

∨
τ∈T

∧
κ∈τ κ∗(t)

]
but SA 6|=a κ∗0(`), and so

SA 6|= Q(`).
Conversely, suppose SA 6|= Q(`). Let a be an interpretation of the predicates κ∗ with κ ∈ subq in SA such that

SA |=
a ∀t

[
Ξ(t) ∧

∨
τ∈T

∧
κ∈τ κ∗(t)

]
and SA 6|=a κ∗0(`). Since every τ ∈ T is consistent with O, there are modelsMmin

andMmax of O that correspond to the types selected by the disjunction in Q(t0) at minA and maxA: for all κ ∈ subq,

minA ∈ κMmin iff minA ∈ a(κ∗) and maxA ∈ κMmax iff maxA ∈ a(κ∗).

Define an interpretation M by ‘stitching’ together Mmin, SA with a and Mmax: for k < minA, we set k ∈ AM iff
k ∈ AMmin ; for k ∈ tem(A), we set k ∈ AM iff k ∈ a(A∗); and for k > maxA, we set k ∈ AM iff k ∈ AMmax . ThenM is a
model of (O,A) but ` < κM0 , and so ` < ans(q,A). q

The next theorem establishes a matching NC1 lower bound for LTL©horn OMAQs as well as LTL2
krom and LTL©krom

OMPIQs by generalising Example 5 and using the fact that there are NC1-complete regular languages [58].

Theorem 10. There exist (i) an LTL©horn OMAQ and (ii) LTL2
krom and LTL©krom OMPIQs, the answering problem for

which is NC1-hard for data complexity.

Proof. Let A be a DFA with a tape alphabet Γ, a set of states Q, an initial state q0 ∈ Q, an accepting state q1 ∈ Q and a
transition function→: we write q→e q′ if A moves to a state q′ ∈ Q from a state q ∈ Q while reading e ∈ Γ. (Without
loss of generality we assume that A has only one accepting state.) We take atomic concepts Ae for tape symbols e ∈ Γ

and atomic concepts Bq for states q ∈ Q, and consider the OMAQ q = (O, Bq1 ), where

O =
{
©PBq ∧ Ae → Bq′ | q→e q′

}
.

For any input word e = (e1 . . . en) ∈ Γ∗, we set

Ae =
{

Bq0 (0)
}
∪

{
Aei (i) | 0 < i ≤ n

}
.

It is easy to see that A accepts e iff max(Ae) ∈ ans(q,Ae). Thus, we obtain (i). For (ii), we take q′ = (O′,κ′) with

O′ =
{

Bq ∧ Bq → ⊥, > → Bq ∨ Bq | q ∈ Q
}
, κ′ =

[ ∨
q→eq′

3+
P (©PBq ∧ Ae ∧ Bq′ )

]
∨ Bq1 ,

where 3+

P C is an abbreviation for C ∨ 3PC. (Intuitively, Bq represents the complement of Bq, and κ′ is equivalent
to formula

[∧
q→eq′ 2

+
P (©PBq ∧ Ae → Bq′ )

]
→ Bq1 , where 2+

P C is an abbreviation for C ∧ 2PC.) It follows that A
accepts e iff max(Ae) ∈ ans(q′,Ae). q

We now establish the FO(<)- and FO(<,+)-rewritability results in Table 1 for various subsets of LTL2©

bool OMPIQs.
We begin with ontology-mediated atomic queries (OMAQs) and describe two types of automata-based constructions
of FO(<)- and FO(<,≡)-rewritings.

4. LTL2
bool OMAQs: Partially Ordered Automata

Our first rewriting technique for OMAQs is based on the NFA construction by Vardi and Wolper [83]. Consider
an LTL2©

bool ontology O. We define an NFA AO that recognises data instances A such that (O,A) is consistent. The
data instances are represented as words of the form XminA, XminA+1, . . . , XmaxA, where

Xi =
{

B | B(i) ∈ A and B occurs in O
}
, for i ∈ tem(A).

Thus, the alphabet of AO comprises all the subsets of atomic concepts B that occur in O. To define its states, denote
by subO the set of subconcepts of O and their negations. Then the set T of states of the automaton AO is the set of
types for O, that is, maximal subsets τ of subO consistent with O. Note that every τ ∈ T contains either B or ¬B, for

15



each atomic concept B in O. Finally, for any states τ, τ′ ∈ T and an alphabet symbol X, the NFA AO has a transition
τ→X τ

′ just in case the following conditions hold:

X ⊆ τ′, (14)
©FC ∈ τ iff C ∈ τ′, ©PC ∈ τ′ iff C ∈ τ, (15)
2FC ∈ τ iff C,2FC ∈ τ′, 2PC ∈ τ′ iff C,2PC ∈ τ. (16)

Clearly, τ →X τ′ implies τ →∅ τ′, for all X, and so we omit the ∅ subscript in →∅ in the sequel. Since all τ in T
are consistent with O, every state in AO has a →-predecessor and a →-successor, and all states in AO are initial and
accepting. We say that a sequence

π = τ0 → τ1 → . . .→ τm−1 → τm (17)

of states in AO (also called a path) accepts a word X0, X1, . . . , Xm if Xi ⊆ τi, for all i with 0 ≤ i ≤ m, which means that
the NFA AO contains a path τ−1 →X0 τ0 →X1 τ1 →X2 . . .→Xm−1 τm−1 →Xm τm, for some τ−1 ∈ T.

Let q = (O, A) be an LTL2©

bool OMAQ, for an atomic concept A that occurs in O. It should be clear now that, for
any data instance A with minA = 0 represented as X0, X1, . . . , Xm and any `, 0 ≤ ` ≤ m, we have ` < ans(q,A) iff
there exists a path τ0 → . . . → τm in AO accepting X0, X1, . . . , Xm with A < τ` (which is just another way of saying
that there is a model of (O,A) where A does not hold at `). This criterion can be encoded by an infinite FO-expression

Ψ(t) = ¬
[ ∨
τ0→...→τm

is a path in AO

( ∧
0≤i≤m

typeτi
(i) ∧

∨
0≤i≤m
A<τi

(t = i)
)]
,

where the disjunction is over all (possibly infinitely many) paths, and typeτ(t) is a conjunction of all ¬B(t) with B < τ,
for atomic concepts B in O: the first conjunct in Ψ(t) ensures, by contraposition, that any B from Xi also belongs to τi,
for all i, and so the path τ0 → . . . → τm accepts X0, . . . , Xm, while the second conjunct guarantees that A < τ` in
case ` = t. Needless to say that, for some OMAQs q, the infinitary ‘FO-rewriting’ above cannot be made finite.

We now show that, for every LTL2
bool ontology O, the NFA AO constructed above can be converted into an equiv-

alent partially ordered NFA A◦
O

, that is, an NFA whose transition relation contains no cycles other than trivial self-
loops [42], which will allow us to finitely represent the infinitary ‘rewriting’ Ψ(t).

Theorem 11. All LTL2
bool OMAQs are FO(<)-rewritable.

Proof. Let q = (O, A) be an LTL2
bool OMAQ and AO the NFA constructed above. Define an equivalence relation ∼

on the set T of states of AO by taking τ ∼ τ′ iff τ = τ′ or AO has a cycle through both τ and τ′. Denote by [τ]
the ∼-equivalence class of τ ∈ T. It is readily seen that, if τ ∼ τ′, then τ and τ′ contain the same boxed concepts:

2FC ∈ τ iff 2FC ∈ τ′ and 2PC ∈ τ iff 2PC ∈ τ′.

Moreover, if 2FC ∈ τ (or, equivalently, 2PC ∈ τ) and AO contains a cycle through elements of [τ] (equivalently, if [τ]
has at least two elements), then C ∈ τ′ for all τ′ ∼ τ. It follows that

τ1 →X τ2 iff τ′1 →X τ2, for all τ1 ∼ τ
′
1, (18)

and, as observed above, if AO contains a cycle through [τ], then τ→X τ iff τ′ →X τ, for any τ′ ∼ τ. Denote by A◦
O

an
NFA with the states [τ], for τ ∈ T, and transitions

[τ1]→X [τ2] iff τ′1 →X τ
′
2, for some τ′1 ∼ τ1 and τ′2 ∼ τ2.

Again, all states in A◦
O

are initial and accepting. Clearly, the NFA A◦
O

is partially ordered and accepts the same
language as AO: for any path π of the form (17) in AO accepting X0, X1, . . . , Xm, the sequence

[π] = [τ0]→ [τ1]→ . . .→ [τm−1]→ [τm] (19)

of states is a path in A◦
O

accepting the same word X0, X1, . . . , Xm; the converse is due to (18).
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Figure 2: The NFA A◦
O

in Example 12.

Given a path [π] of the form (19), we now select the longest possible sequence of indexes

0 = s0 < s1 < · · · < sd−1 < sd = m,

where each si, for i < m, is the smallest j with τ j ∼ τsi . The respective sequence [τs0 ]→ [τs1 ]→ . . .→ [τsd−1 ]→ [τsd ]
of states, by (18), is also a path in A◦

O
(we could, equivalently, remove from [π] all [τ j] for which there is j′ < j

with τ j′ ∼ τ j). Observe that, for any 2PC ∈ subO, if 2PC,¬C ∈ τi in a path of the form (19), then 2PC,C ∈ τ j for
all j < i, and 2PC < τ j for all j > i; and symmetrically for 2FC. On the other hand, given two states τ and τ′, if
either 2C,C ∈ τ, τ′ or 2C < τ, τ′, for each 2C ∈ subO, 2 ∈ {2P,2F}, then there is a cycle through τ and τ′. Indeed,
by (16), we have τ → τ′ and τ′ → τ, and so τ ∼ τ′; we call such an equivalence class [τ] a loop. Therefore, [π]
comprises at most |O| equivalence classes, each containing a pair of the form 2C,¬C, possibly separated by repeated
loops: more precisely, for all i with 0 ≤ i < d, we have

τ j → τsi and τsi → τ j, for all j with si < j < si+1. (20)

Thus, by selecting the indexes s0, s1, . . . , sd−1, we eliminate loop repetitions; the resulting paths will be called stutter-
free. In stutter-free paths, the number of distinct loops does not exceed |O| + 1 and the number of non-loops is at
most |O|, and so we obtain d ≤ 2|O| + 1.

Example 12. SupposeO = {C → 2PB, 2PB→ A } and q = (O, A). Consider an input {A,C}, {A, B}, {C}, ∅, {B}, ∅, ∅, {A}
and one of the paths in the NFA AO accepting the input:

π = {A, B,C,2PB} → {A, B,2PB} → {A, B,C,2PB} → {A,C,2PB} → {A, B} → {A} → ∅ → {A, B},

where a set X represents the type comprising all B ∈ X and all ¬B, for B ∈ subO \ X. The NFAs AO and A◦
O

are shown
in Fig. 2: the 8 states of AO are smaller light-gray nodes, and the 3 states of A◦

O
are larger dark-gray nodes. An arrow

labelled by X denotes a set of transitions, each of which corresponds to reading any subset of X. As we mentioned
above, all the states are initial and accepting; only positive literals are shown in the labels of states, and some labels
on the transitions of AO are not shown to avoid clutter. The respective path in A◦

O
accepting the input is

[π] = [A, B,2PB]→ [A, B,2PB]→ [A, B,2PB]→ [A,C,2PB]→ [∅]→ [∅]→ [∅]→ [∅].

By removing repeated loops (underlined above), we obtain a stutter-free path [A, B,2PB]→ [A,C,2PB]→ [∅]→ [∅]
(note that the last loop occurs twice because sd is always m). In fact, every stutter-free accepting path in A◦

O
is a

subsequence of either this path or [A, B,2PB]→ [A,2PB]→ [∅]→ [∅].
Consider now an extension O′ of O with D → 2F E and 2F E → F. It should be clear that the correspond-

ing NFA AO′ contains 64 states. The stutter-free accepting paths in A◦
O′

will now have to choose whether a state
with 2PB,¬B occurs (i) before, (ii) at the same moment or (iii) after a state with 2F E,¬E, which gives rise to stutter-
free accepting paths of length not exceeding 6: for example,

[A, B,2PB]→ [A,C,2PB]→ [∅]→ [F,2F E]→ [E, F,2F E]→ [E, F,2F E].

We return to the proof of Theorem 11 now. The criterion for certain answers given above in terms of AO can be
reformulated in terms of A◦

O
by using the observation that all accepting paths in A◦

O
have a ‘bounded’ representation:
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each accepting path in A◦
O

is determined by a stutter-free path in A◦
O

and a corresponding sequence of indexes 0 =

s0 < s1 < · · · < sd−1 < sd = m because the path elements between the chosen indexes are given by (20). It should
be clear that, in fact, we can consider all paths in A◦

O
of length not exceeding 2|O| + 1 (rather than stutter-free paths

only); moreover, it will be convenient to include an additional type for the time instant `. So, for any data instanceA
and any ` ∈ tem(A), we have ` < ans(q,A) iff there are d ≤ 2|O| + 2, a path [τ0] → [τ1] → . . . → [τd] in A◦

O
and a

sequence minA = s0 < s1 < · · · < sd−1 < sd = maxA satisfying the following conditions:

Xsi ⊆ τ, for some τ ∼ τi, for 0 ≤ i ≤ d; (21)
X j ⊆ τ, for some τ with τ→ τi and τi → τ, for si < j < si+1 and 0 ≤ i < d; (22)
` = si for some 0 ≤ i ≤ d and some τ ∼ τi with A < τ. (23)

Conditions (21) and (22) ensure that X0, . . . , Xm is accepted by the path obtained from [τ0] → [τ1] → . . . → [τd] by
placing each [τi] at position si and filling in the gaps according to (20); condition (22) guarantees, in particular, that
any [τi] that needs to be repeated is a loop. Finally, condition (23) says that the type at position `, which must be one
of the si, does not contain A. We now encode the new criterion by an FO(<)-formula: let

Q(t) = ¬
[ ∨
d≤2|O|+2

∨
[τ0]→...→[τd]
is a path in A◦

O

∃t0, . . . , td
(
path[τ0]→...→[τd](t0, . . . , td) ∧

∨
0≤i≤d

A<τ for some τ∼τi

(t = ti)
)]
,

where the formula path[τ0]→...→[τd] encodes conditions (21) and (22):

path[τ0]→...→[τd](t0, . . . , td) = (min = t0) ∧
∧

0≤i<d

(ti < ti+1) ∧ (td = max) ∧∧
0≤i≤d

∨
τ∼τi

typeτ(ti) ∧
∧

0≤i<d

∀t
(
(ti < t < ti+1) →

∨
τ→τi→τ

typeτ(t)
)
.

Observe the similarity of this rewriting to the infinitary ‘rewriting’ Ψ(t) constructed above. q

We illustrate the construction of Q(t) by the following example.

Example 13. In the context of Example 12, the accepting path [π] can be decomposed into a stutter-free path [π]◦

and a sequence of indexes in the following way:

[π] = [A, B,2PB]→ [A, B,2PB]→ [A, B,2PB]→ [A,C,2PB]→ [∅]→ [∅]→ [∅]→ [∅],
[π]◦ = [A, B,2PB]→ [A,C,2PB]→ [∅]→ [∅],

s0 = 0 < s1 = 3 < s2 = 4 < s3 = 7.

Note that [A,C,2PB] is not a loop, whereas [A, B,2PB] and [∅] are loops. So, if ` is one of these si, then we can use

path[π]◦ (t0, t1, t2, t3) = (min = t0) ∧ (t0 < t1) ∧ (t1 < t2) ∧ (t2 < t3) ∧ (t3 = max) ∧
type[AB2PB](t0) ∧ type[AC2PB](t1) ∧ type[∅](t2) ∧ type[∅](t3) ∧

∀t
(
(t0 < t < t1)→ type[AB2PB](t)

)
∧ ∀t¬(t1 < t < t2) ∧ ∀t

(
(t2 < t < t3)→ type[∅](t)

)
,

where type[X] abbreviates
∨
τ∼X typeτ. If ` is not one of the selected si, then we decompose [π] into a (non-stutter-

free) path and a sequence of indexes with 5 elements, which effectively means that either the extra state [A, B,2PB] is
inserted into [π]◦ between indexes 0 and 3, or the extra state [∅] is inserted into [π]◦ between indexes 4 and 7. Since
the paths in A◦

O
we need to consider have at most 5 states, formula Q(t) is an FO(<)-rewriting of the OMAQ.

5. LTL©krom OMAQs: Unary Automata and Arithmetic Progressions

We use unary NFAs, that is, automata with a single-letter alphabet, to construct rewritings for LTL©krom OMAQs.
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Figure 3: NFAs AB,A and AE,A in Example 15.

Theorem 14. All LTL©krom OMAQs are FO(<,≡)-rewritable.

Proof. Suppose q = (O, A) is an LTL©krom OMAQ such that A occurs in O. As observed in Section 2.3, without loss
of generality, we can assume that O does not contain nested ©F and ©P. A simple literal, L, for O is an atomic concept
from O or its negation; we set ¬¬L = L. We also use ©nL to abbreviate ©n

F L if n > 0, L if n = 0, and ©−n
P L if n < 0.

It is known that checking satisfiability of a 2CNF (a propositional Krom formula) boils down to finding cycles
in a directed graph whose nodes are literals and edges represent clauses (see, e.g., [84, Lemma 8.3.1]). To deal with
LTL©krom, we need an infinite graph with timestamped literals. More precisely, denote by GO the infinite directed
graph whose vertices are pairs (L, n), for a simple literal L for O and n ∈ Z, and which contains an edge from (L, n)
to (L′, n + k), for k ∈ {−1, 0, 1}, iff O |= L → ©kL′. We write (L1, n1) ; (L2, n2) iff GO has a (possibly empty) path
from (L1, n1) to (L2, n2). In other words, ; is the reflexive and transitive closure of the edge relation in GO. It is
readily seen that (L1, n1) ; (L2, n2) is another way of saying that O |= ©n1 L1 → ©n2 L2. We require the following key
properties distinguishing LTL©krom (cf. [21, Theorem 5.1]): if O is consistent, then, for any data instanceA,

(i) ifA is consistent with O, then ` ∈ ansZ(q,A) iff (B, n) ; (A, `), for some B(n) ∈ A;

(ii) A is inconsistent with O iff (B, n) ; (¬B′, n′), for some B(n), B′(n′) ∈ A.

(Observe that, if O |= > → A, then GO contains an edge to (A, `) from any (B, n), and so the right-hand side of (i) is
trivially satisfied because data instances A are nonempty.) We leave the proof of these properties to the reader as an
exercise (see also the proof of a more general Lemma 17).

Given literals L and L′, let AL,L′ be an NFA whose tape alphabet is {0}, states are the simple literals, with L initial
and L′ accepting, and there is a transition L1 →0 L2 iff O |= L1 → ©F L2 (as we agreed at the end of Section 2.3, O
does not contain nested temporal operators). It is easy to see that, for any distinct n, n′ ∈ Z,

(L, n) ; (L′, n′) iff

AL,L′ accepts 0n′−n, for n < n′,
A¬L′,¬L accepts 0n−n′ , for n > n′;

the latter is the case because (L, n) ; (L′, n′) iff (¬L′, n′) ; (¬L, n). We can now use the results on the normal form
of unary finite automata [43, 59], according to which, for every unary NFA AL,L′ , there are N = O(|AL,L′ |

2) arithmetic
progressions ai + biN =

{
ai + bi · m | m ≥ 0

}
, 1 ≤ i ≤ N, such that 0 ≤ ai, bi ≤ |AL,L′ | and

AL,L′ accepts 0n (n > 0) iff n ∈ ai + biN for some 1 ≤ i ≤ N.

Example 15. Suppose q = (O, A) and

O =
{

A→ ©F B, B→ ©FC, C → ©F D, D→ ©F A, D→ ©F E, E → ©F D
}
.

The NFAAB,A (the states reachable from B, to be more precise) is shown in Fig. 3a. (For L ∈ {A,C,D, E}, the NFAAL,A

is obtained from AB,A by shifting the initial state to L; see Fig. 3b for L = E.) It is readily seen that AB,A accepts 0n iff
n ∈ 3 + 2N, which means that all certain answers to (O, A) satisfy the formula ∃s

(
B(s) ∧

(
t − s ∈ 3 + 2N

))
. Similarly,

for AE,A, we need ∃s
(
E(s) ∧

(
t − s ∈ 2 + 2N

))
. (In general, more than one progression is required to characterise the

NFAs AL,L′ .)
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Returning to the proof of Theorem 14, let

entailsL,L′ (s, t) = entails>0
L,L′ (s, t) ∨ entails0

L,L′ (s, t) ∨ entails>0
¬L′,¬L(t, s),

where entails0
L,L′ (s, t) is (s = t) if O |= L → L′ and ⊥ otherwise, and entails>0

L,L′ (s, t) denotes the disjunction of all
formulas t− s ∈ ai + biN, for arithmetic progressions ai + biN associated with AL,L′ . Now, conditions (i) and (ii) can be
encoded as an FO(<,≡)-formula Q(t), which is> ifO is inconsistent (this condition can be checked in NLogSpace [84],
independently of the data instance), and otherwise the following formula:

Q(t) =
∨

B occurs in O

∃s
(
B(s) ∧ entailsB,A(s, t)

)
∨

∨
B,B′ occur in O

∃s, s′
(
B(s) ∧ B′(s′) ∧ entailsB,¬B′ (s, s′)

)
.

It follows immediately that Q(t) is an FO(<,≡)-rewriting of q. q

6. LTL2©
krom OMAQs: Unary Automata with Stutter-Free Sequences of Types

We now combine the ideas of the two previous sections to obtain an FO(<,≡)-rewritability result for LTL2©

krom
OMAQs: we separate reasoning with 2-operators (as in Theorem 11) from reasoning with ©-operators (as in Theo-
rem 14); see also a similar separation idea in the proof of [21, Theorem 5.1].

Theorem 16. All LTL2©

krom OMAQs are FO(<,≡)-rewritable.

Proof. Let q = (O, A) be an LTL2©

krom OMAQ such that A occurs in O, the ontology O has no nested occurrences of
temporal operators and contains the axioms ©B→ A©B and A©B → ©B, for every ©B in O and © ∈ {©F ,©P}.

As before, a type τ is a maximal subset of subO consistent with O. We write τ→2 τ′ if τ and τ′ satisfy (16); note,
however, that such τ and τ′ do not have to satisfy (15). Using an argument similar to the observation on stutter-free
paths in the proof of Theorem 11, one can show the following: given any path τ0 → τ1 → . . . → τm−1 → τm in the
NFA AO corresponding to O, we can extract a subsequence

τs0 →
2 τs1 →

2 . . .→2 τsd−1 →
2 τsd

such that 0 = s0 < s1 < · · · < sd−1 < sd = m for d ≤ 2|O| + 1 and, for all i < d,

either 2C,C ∈ τsi , τ j or 2C < τsi , τ j, for all 2C ∈ subO,2 ∈ {2P,2F}, and all j with si < j < si+1. (24)

Observe that the last condition plays the same role as (20), but, because of the ©-operators, the NFA AO for O does
not necessarily contains a cycle through τ j and τsi . We deal with ©-operators by means of unary NFAs, as in the proof
of Theorem 14. Let Õ be the LTL©krom ontology obtained from O by first extending it with the following axioms:

2PC → ©P2PC and 2PC → ©PC, for all 2PC ∈ subO, 2FC → ©F2FC and 2FC → ©FC, for all 2FC ∈ subO, (25)

which are obvious LTL2©

krom tautologies, and then replacing every 2PC and 2FC with its surrogate, which is a fresh
atomic concept. Let GÕ be the directed graph for Õ defined in the proof of Theorem 14. As before, we write
(L1, n1) ; (L2, n2) iff GÕ has a (possibly empty) path from (L1, n1) to (L2, n2). Note, however, that the Li can contain
surrogates, and we slightly abuse notation and write, for example, L ∈ τ in case L is the surrogate for 2PC and type τ
contains 2PC. The following lemma generalises (i) and (ii) in the proof of Theorem 14 (cf. conditions (21)–(23) in
the proof of Theorem 11):

Lemma 17. For any data instance A and any ` ∈ tem(A), we have ` < ans(q,A) iff there are d ≤ 2|O| + 2, a
sequence τ0 →

2 τ1 →
2 . . . →2 τd of types for O and a sequence minA = s0 < s1 < · · · < sd−1 < sd = maxA of

indexes satisfying the following conditions:

B ∈ τi, for each B(si) ∈ A, for 1 ≤ i ≤ d; (21′)
(B, n) 6; (¬B′, n′), for si < n, n′ < si+1 with B(n), B′(n′) ∈ A, for 1 ≤ i < d; (22′1)
(L, si) 6; (¬B′, n′), for L ∈ τi and si < n′ < si+1 with B′(n′) ∈ A, for 1 ≤ i < d; (22′2)
(B, n) 6; (¬L′, si+1), for si < n < si+1 with B(n) ∈ A and L′ ∈ τi+1, for 1 ≤ i < d; (22′3)
(L, si) 6; (¬L′, si+1), for L ∈ τi and L′ ∈ τi+1, for 1 ≤ i < d; (22′4)
` = si, for some i with 0 ≤ i ≤ d such that A < τi. (23′)
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Proof. (⇐) Suppose ` < ans(q,A). Then there is a modelM of O andA such that ` < AM. We consider the sequence
τ̄0 → τ̄1 → . . .→ τ̄m−1 → τ̄m of types for O given byM, where 0 = minA and m = maxA. As argued above, we can
find subsequences of types and respective indexes between minA and maxA whose length does not exceed 2|O| + 1.
We add τ̄` to obtain the sequences satisfying conditions (21′)–(23′).

(⇒) Suppose we have a sequence τ0 →
2 τ1 →

2 · · · →2 τd of types for O and a sequence minA = s0 < s1 <
· · · < sd = maxA of indexes satisfying conditions (21′)–(23′). We construct a model M of O and A with ` < AM.
The model is defined as a sequence of types τ̄n, for n ∈ Z. We begin by setting τ̄si = τi, for 0 ≤ i ≤ d. Then, since
τ̄minA = τ0 is consistent with O, there is a modelMmin of Owith type τ0 at minA, and so we take the types τ̄n given by
Mmin for n < minA. Similarly, the types τ̄n, for n > maxA, are provided by a model of O with τ̄max = τd at maxA.
Now, let 1 ≤ i < d. We show how to construct the τ̄ j, for si < j < si+1, in a step-by-step manner.

Step 0: for all j with si < j < si+1, set τ̄ j =
{

B | B( j) ∈ A
}
.

Step 1: for all k with si ≤ k ≤ si+1 and all j with si < j < si+1, if L ∈ τ̄k and (L, k) ; (L′, j), then add L′ to τ̄ j.

Step m > 1: pick τ̄k, for si < k < si+1, and a literal L with L,¬L < τ̄k, terminating the construction if there are none.
Add L to τ̄k, and, for all j with si < j < si+1, if (L, k) ; (L′, j), then add L′ to τ̄ j.

Note that τ̄k could also be extended with ¬L—either choice is consistent with the previously constructed types τ̄ j.
By induction on m, we show that the τ̄k constructed in Step m is conflict-free in the sense that there is no k,

si < k < si+1, and no literal L0 with L0,¬L0 ∈ τ̄k, which is obvious for m = 0. Suppose that τ̄k is not conflict-free after
Step 1. Then one of the following six cases has happened in Step 1 (we assume si < n, n′ < si+1, if relevant, below):

– if L, L′ ∈ τ̄si , (L, si) ; (L0, k), (L′, si) ; (¬L0, k), then (L, si) ; (¬L′, si), contrary to consistency of τi with O;

– if L, L′ ∈ τ̄si+1 , (L, si+1) ; (L0, k), (L′, si+1) ; (¬L0, k), then (L, si+1) ; (¬L′, si+1), which is also impossible;

– if B(n), B′(n′) ∈ A with (B, n) ; (L0, k), (B′, n′) ; (¬L0, k), then (B, n) ; (¬B′, n′), contrary to (22′1);

– if L ∈ τ̄si , (L, si) ; (L0, k) and B′(n′) ∈ A, (B′, n′) ; (¬L0, k), then (L, si) ; (¬B′, n′), contrary to (22′2);

– if B(n) ∈ A, (B, n) ; (L0, k) and L′ ∈ τ̄si+1 , (L′, si+1) ; (¬L0, k), then (B, n) ; (¬L′, si+1), contrary to (22′3);

– if L ∈ τ̄si , (L, si) ; (L0, k) and L′ ∈ τ̄si+1 , (L′, si+1) ; (¬L0, k), then (L, si) ; (¬L′, si+1), contrary to (22′4).

Thus, the τ̄k constructed in Step 1 are conflict-free. Suppose now that all of the τ̄k are conflict-free after Step m, m ≥ 1,
while some τ̄ j after Step m + 1 is not. It follows that some τ̄k is extended with L in Step m + 1, (L, k) ; (L′, j), but τ̄ j

contained ¬L′ (at least) since Step m. Now, as (¬L′, j) ; (¬L, k), the type τ̄k already contained ¬L in Step m, and
so L could not be added in Step m + 1.

Let τ̄n, n ∈ Z, be the resulting sequence of types for O. Define an interpretationM by taking n ∈ BM iff B ∈ τ̄n, for
every atomic concept B in O. In view of (21′) and Step 0, we haveM |= A but ` < AM. We showM |= O. Since the τ̄n

are conflict-free, and thus consistent with Õ, and since L1 ∈ τ̄n implies L2 ∈ τ̄n if Õ contains L1 → L2, and L1 ∈ τ̄n

implies L2 < τ̄n if Õ contains L1 ∧ L2 → ⊥, it is sufficient to prove that

A©F B ∈ τ̄n iff B ∈ τ̄n+1 and 2FC ∈ τ̄n iff C ∈ τ̄k for all k > n,

and the past counterparts of these equivalences. We readily obtain the first equivalence since (A©F B, n) ; (B, n + 1)
and (B, n + 1) ; (A©F B, n), and similarly for ©P. It thus remains to show the second equivalence. For all n ≥ maxA,
the claim is immediate from the choice of the τ̄k for k ≥ sd = maxA. We then proceed by induction on i from d − 1
to 0 assuming that the claim holds for all n ≥ si+1. We consider the following three options. If 2FC ∈ τ̄si , then,
by (16), we have 2FC,C ∈ τ̄si+1 , and the claim for all n ≥ si follows from the fact that Õ contains inclusions (25). If
2FC < τ̄si , then, by (16), either 2FC < τ̄si+1 or C < τ̄si+1 ; in either case, the claim for all n ≥ si is immediate from the
induction hypothesis and the fact that Õ contains inclusions (25). This finishes the inductive argument, and the claim
for n < s0 then follows from the choice of the τ̄k for k ≤ s0 = minA. A symmetric argument shows that 2PC ∈ τ̄n

iff L ∈ τ̄k for all k < n. This completes the proof of Lemma 17. q
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Returning to the proof of Theorem 16, we are now in a position to define an FO(<,≡)-rewriting Q(t) of the OMAQ
q = (O, A) by encoding the conditions of Lemma 17 as follows:

Q(t) = ¬
[ ∨
d≤2|O|+2

∨
τ0→

2...→2τd

∃t0, . . . , td
(
pathτ0→

2...→2τd
(t0, . . . , td) ∧

∨
0≤i≤d
A<τi

(t = ti)
)]
,

where

pathτ0→
2...→2τd

(t0, . . . , td) = (t0 = min) ∧
∧

0≤i<d

(ti < ti+1) ∧ (td = max) ∧
∧

0≤i≤d

typeτi
(ti) ∧

∧
0≤i<d

intervalτi,τi+1 (ti, ti+1),

the formulas typeτ are given at the beginning of Section 3, the formulas entailsL,L′ are from the proof of Theorem 14
(but for Õ rather than O alone) and

intervalτiτi+1 (ti, ti+1) =
∧

B,B′ occur in O

∀t, t′
(
(ti < t < ti+1) ∧ B(t) ∧ (ti < t′ < ti+1) ∧ B′(t′)→ ¬entailsB,¬B′ (t, t′)

)
∧∧

L∈τi and B′ occurs in O

∀t′
(
(ti < t′ < ti+1) ∧ B′(t′)→ ¬entailsL,¬B′ (ti, t′)

)
∧∧

B occurs in O and L′∈τi+1

∀t
(
(ti < t < ti+1) ∧ B(t)→ ¬entailsB,¬L′ (t, ti+1)

)
∧∧

L∈τi and L′∈τi+1

¬entailsL,¬L′ (ti, ti+1).

Note that, if O is inconsistent, then the disjunctions over sequences of types τ0 →
2 . . . →2 τd for O are empty, and

the rewriting Q(t) is ¬⊥, that is, >. q

7. Canonical Models for OMPIQs with Horn Ontologies

We next use Theorems 11 and 14 to construct FO(<)-rewritings for LTL2
horn OMPIQs and FO(<,≡)-rewritings

for LTL2©
core OMPIQs, thereby completing Table 1 for OMPIQs. First, for any LTL2©

horn ontology O and any data
instanceA consistent with O, we define an interpretation CO,A, called the canonical model of O andA, that gives the
certain answers to all OMPIQs of the form (O,κ).

The canonical model is defined by transfinite recursion [85, 86] (examples illustrating why infinite ordinals are
required in the construction of the model are given after the definition). Let Λ be a countable set of atoms of the form⊥
and C(n), where C is a basic temporal concept and n ∈ Z. Denote by clO(Λ) the result of applying non-recursively the
following rules to Λ:

(mp) if O contains C1 ∧ · · · ∧Cm → C and Ci(n) ∈ Λ for all i, 1 ≤ i ≤ m, then we add C(n) to Λ;

(cls) if O contains C1 ∧ · · · ∧Cm → ⊥ and Ci(n) ∈ Λ for all i, 1 ≤ i ≤ m, then we add ⊥;

(2→F ) if 2FC(n) ∈ Λ, then we add all C(k) with k > n;

(2←F ) if C(k) ∈ Λ for all k > n, then we add 2FC(n);

(©→F ) if ©FC(n) ∈ Λ, then we add C(n + 1);

(©←F ) if C(n + 1) ∈ Λ, then we add ©FC(n);

and symmetric rules (2→P ), (2←P ), (©→P ) and (©←P ) for the corresponding past-time operators. Note that the concepts
introduced in some of the rules above do not necessarily occur in O: for example, repeated applications of clO to Λ

containing C(n) will extend it with (infinitely many) atoms of the form ©k
F C(n − k) and ©k

P C(n + k), for k > 0. Note
also that the rules for the 2-operators are infinitary.
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Now, starting with cl0
O

(Λ) = Λ, we then set, for any successor ordinal ξ + 1 and any limit ordinal ζ,

clξ+1
O

(Λ) = clO(clξ
O

(Λ)) and clζ
O

(Λ) =
⋃

ξ<ζ
clξ
O

(Λ). (26)

Let CO,A = clω1
O

(Λ), whereω1 is the first uncountable ordinal. Note that, as clω1
O

(Λ) is countable (because its cardinality
does not exceed the cardinality of Z × N), there is an ordinal α < ω1 such that clα

O
(Λ) = clβ

O
(Λ), for all β ≥ α. For

example, to derive 2F A(n) from A(n) and A→ ©F A, one needs ω+ 1 steps of the recursion; so deriving B(n) from A(n)
and O = { A→ ©F A, 2F A→ B } requires ω + 2 steps.

In the sequel, we regard CO,A as both a set of atoms of the form ⊥ and C(n), and an interpretation where, for any
atomic concept A (but not ⊥), we have ACO,A = { n ∈ Z | A(n) ∈ CO,A }.

Theorem 18. Let O be an LTL2©

horn ontology andA a data instance. Then the following hold:

(i) for any basic temporal concept C and any n ∈ Z, we have CCO,A = { n ∈ Z | C(n) ∈ CO,A };

(ii) for any modelM of O andA, any basic temporal concept C and any n ∈ Z, if C(n) ∈ CO,A then n ∈ CM;

(iii) if ⊥ ∈ CO,A, then O andA are inconsistent; otherwise, CO,A is a model of O andA;

(iv) if O andA are consistent, then, for any OMPIQ q = (O,κ), we have ansZ(q,A) = κCO,A .

Proof. Claim (i) is proved by induction on the construction of C. The basis is immediate from the definition of CO,A.
For C = 2F D, suppose first that n ∈ (2F D)CO,A . Then k ∈ DCO,A for all k > n, whence, by the induction hypothesis,
we have D(k) ∈ CO,A, and so, by (2←F ), we obtain 2F D(n) ∈ CO,A. Conversely, if 2F D(n) ∈ CO,A then, by (2→F ), we
have D(k) ∈ CO,A for all k > n. By the induction hypothesis, k ∈ DCO,A for all k > n, and so n ∈ (2F D)CO,A . The other
temporal operators, 2P, ©F and ©P, are treated similarly.

Claim (ii) is proved by transfinite induction on the construction of CO,A. If ξ = 0, then the claim holds because
cl0
O

(A) = A, and so C(n) ∈ cl0
O

(A) implies n ∈ CM for every model M of A. Now, suppose C(n) ∈ clξ
O

(A) implies
n ∈ CM, for all n ∈ Z and all ordinals ξ < ζ. If ζ is a limit ordinal, then clζ

O
(A) =

⋃
ξ<ζ clξ

O
(A), and so we are done. If

ζ = ξ + 1, then clξ+1
O

(A) = clO(clξ
O

(A)), and the claim follows from the induction hypothesis and the fact that M is a
model of O, for rules (mp) and (cls), and definitions (11) and (12) of CM, for the remaining rules.

To show (iii), assume first that ⊥ ∈ CO,A. Then there exist an axiom C1 ∧ · · · ∧ Cm → ⊥ in O and n ∈ Z such that
Ci(n) ∈ CO,A for all i (1 ≤ i ≤ m). If there were a model M of O and A, then, by (ii), we would have n ∈ CMi for all
i, which is impossible. It follows that there is no model of O and A, that is, they are inconsistent. If ⊥ < CO,A, then
CO,A is a model of O by (i) as it is closed under rules (mp) and (cls); CO,A is a model ofA by definition.

To show (iv), observe first that, for any interpretations M and M′, if AM ⊆ AM
′

for all atomic concepts A, then
κM ⊆ κM′ for all positive temporal concepts κ. Now, that n ∈ ansZ(q,A) implies n ∈ κCO,A follows by (iii) from the
fact that CO,A is a model of O andA, while the converse direction follows from (ii) and the observation above. q

IfA is consistent with O, then, by Theorem 18 (ii) and (iii), for any C in O andA and any n ∈ Z,

n ∈ CCO,A iff n ∈ CM for all modelsM of O andA. (27)

Denote by τO,A(n) the set of all C ∈ subO with n ∈ CCO,A . It is known that every satisfiable LTL-formula is satisfied in
an ultimately periodic model [78]. Since CO,A is a ‘minimal’ model in the sense of (27), it is also ultimately periodic,
which is formalised in the next two lemmas. This periodic structure will be used in defining our FO-rewritings below.

Lemma 19. (i) For any LTL2©
horn ontology O and any A consistent with O, there are positive integers sO,A ≤ 2|O| and

pO,A ≤ 22|O| such that

τO,A(n) = τO,A(n− pO,A), for n ≤ minA− sO,A, and τO,A(n) = τO,A(n + pO,A), for n ≥ maxA+ sO,A. (28)

(ii) For any LTL2
horn ontology O and any A consistent with O, there is a positive integer sO,A ≤ |O| such that (28)

holds with pO,A = 1.
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Figure 4: The canonical model in Example 20 (i): sO,A = 3 and pO,A = 1.
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Figure 5: The canonical model in Example 20 (ii): sO = 3 and pO = 6.

Proof. (i) Take the minimal number k > maxA such that τO,A(k) = τO,A(k′), for some k′ with maxA < k′ < k, and
set sF = k′ −maxA and pF = k − k′. As the number of distinct τO,A(n), for n < tem(A), does not exceed 2|O|, we have
sF , pF ≤ 2|O|. By using a symmetric construction, we obtain sP and pP and set sO,A = max(sF , sP) and pO,A = pF × pP.

To show (28), consider the interpretationM1 where, for any atomic concept A occurring in O orA and any n ∈ Z,
we have n ∈ AM iff A ∈ τO,A(n), for n < k′, and n ∈ AM1 iff A ∈ τO,A(n + pO,A), for n ≥ k′. (Intuitively, M1 is
obtained by cutting out the fragment τO,A(k′), . . . , τO,A(k − 1) of length pO,A from CO,A.) Denote by τ1(n) the set of
basic temporal concepts C from O and A such that n ∈ CM1 . By induction on the construction of C, it is not hard to
see that τ1(n) = τO,A(n), for n < k′, and τ1(n) = τO,A(n + pO,A), for n ≥ k′. It follows thatM1 is a model of O andA.
In view of (27), we obtain τO,A(n) ⊆ τO,A(n + pO,A), for every n ≥ maxA + sO,A.

For the converse inclusion, considerM2 obtained by replacing the fragment τO,A(k′), . . . , τO,A(k−1) of length pO,A
in CO,A with the doubled sequence τO,A(k′), . . . , τO,A(k − 1), τO,A(k′), . . . , τO,A(k − 1). Again, M2 is a model of O
and A, but now, for any n ≥ maxA + sO,A, the set of all C in O and A with n + pO,A ∈ CM2 coincides with τO,A(n).
By (27), we obtain τO,A(n + pO,A) ⊆ τO,A(n).

This proves the second claim in (28); a similar argument establishes the first one.
(ii) Observe that 2FC ∈ τO,A(k′) implies 2FC ∈ τO,A(k), and 2PC ∈ τO,A(k) implies 2PC ∈ τO,A(k′), for any

k′ < k, and that if τO,A(k′) and τO,A(k), for maxA < k′ < k or minA > k′ > k, have the same boxed concepts,
then τO,A(k′) = τO,A(k). To show the latter, consider the interpretation M obtained from CO,A by setting n ∈ AM if
A ∈

⋂
k′≤n≤k τO,A(n), for k′ ≤ n ≤ k. It is readily seen that M satisfies the same boxed concepts as CO,A at every

n ∈ Z, and so it is a model of O and A. Thus, by (27), all the τO,A(n) must coincide, for k′ ≤ n ≤ k. The case k′ > k
is symmetric. Now (ii) follows from the observation that there are at most |O|-many τO,A(n) having distinct boxed
concepts and the proof of (i). q

Example 20. We illustrate Lemma 19 by two examples. (i) The periodic structure of the canonical model of the
LTL2

core ontology O =
{

B→ 2PB, 2PB→ C, 2PC → D
}

and the data instanceA = { B(1) } is shown in Fig. 4.
(ii) Consider now the LTL©core ontology O =

{
A → ©2

F A, B → ©3
F B

}
and the data instances A1 = { A(0) } and

A2 = { B(1) }. It is readily seen that sO,A1 = 1 and pO,A1 = 2, while sO,A2 = 1 and pO,A2 = 3; see Fig. 5. On the other
hand, we can also take sO,A1 = sO,A2 = 1 and pO,A1 = pO,A2 = 6.

In fact, as we shall see in Lemma 21 below, these numbers can always be chosen independently of the data
instance: sO is the maximum of the lengths of prefixes, and pO is the least common multiple of all possible periods.
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Figure 6: The two cases in the proof of Lemma 22.

Lemma 21. (i) For any LTL2©
horn ontology O, there are positive integers sO ≤ 2|O| and pO ≤ 22|O|·2|O| such that, for any

data instanceA consistent with O,

τO,A(n) = τO,A(n − pO), for n ≤ minA− sO, and τO,A(n) = τO,A(n + pO), for n ≥ maxA + sO. (29)

(ii) For any LTL2
horn ontology O, there is a positive integer sO ≤ |O| such that (29) holds with pO = 1, for any A

consistent with O.

Proof. Observe that the numbers sO,A and pO,A provided by Lemma 19 depend only on the ‘types’ τO,A(minA) and
τO,A(maxA). It follows that we can take sO to be the maximum over the sO,A for all such types, and pO to be the
product of all, at most 2|O|-many, numbers pO,A. q

Note that, for the ontology O in Example 20 (ii), a single data instanceA3 = A1 ∪A2 gives rise to the period of 6
(the canonical model for O and A3 has no shorter period). In general, however, there may be no single data instance
with the minimal period of pO. Indeed, consider an extension O′ of O with A ∧ B→ ©F A: it can be seen that pO′ = 6,
but the canonical models of all individual data instances have also shorter periods.

Given a positive temporal concept κ, we denote by lκ the number of temporal operators in κ (thus, lA = 0 for an
atomic concept A).

Lemma 22. For any LTL2©

horn ontologyO, any data instanceA consistent withO and any positive temporal concept κ,

n ∈ κCO,A iff n + pO ∈ κCO,A , for n ≥ maxA + sO + lκ pO,

n ∈ κCO,A iff n − pO ∈ κCO,A , for n ≤ minA− (sO + lκ pO).

Proof. The proof is by induction on the construction of κ. The basis of induction follows from Lemma 21.
Suppose κ = κ1 S κ2 and n ∈ κCO,A for some n ≥ maxA + sO + lκ pO. Then there is k < n such that k ∈ κCO,A2

and m ∈ κCO,A1 for all m with k < m < n. Two cases are possible; see Fig. 6.
If k ≥ maxA+ sO + (lκ − 1)pO, then, since lκ1 , lκ2 ≤ lκ − 1, we have, by the induction hypothesis, k + pO ∈ κCO,A2

and m ∈ κCO,A1 for all m with k + pO < m < n + pO. It follows that n + pO ∈ κCO,A , as required.
Otherwise, k < maxA + sO + (lκ − 1)pO, and we have m′ ∈ κCO,A1 for all m′ such that maxA + sO + (lκ − 1)pO <

m′ ≤ maxA + sO + lκ pO. Since lκ1 ≤ lκ − 1, by the repeated application of the induction hypothesis, we obtain
m′ ∈ κCO,A1 for all m′ > maxA + sO + (lκ − 1)pO. Therefore, n + pO ∈ κCO,A as well.

The converse direction and other temporal operators are treated analogously. The claim for n ≤ minA− sO− lκ pO
is proved by a symmetric argument. q
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8. From OMAQs to OMPIQs with Horn Ontologies: Phantoms and Rewritings

It remains to put together the results on the periodic structure of canonical models CO,A with the FO-rewritings
for LTL2

horn and LTL2©
core OMAQs constructed in Theorems 11 and 16. As follows from Lemma 22, when constructing

rewritings for OMPIQs, for example, of the form (O,3F A), we have to consider time instants beyond the active
temporal domain tem(A). For this purpose, we require the following definition.

Definition 23. Let L be one of FO(<), FO(<,≡) or FO(RPR). Given an OMAQ q = (O, A), L-phantoms of q are
L-sentences Φk, for k , 0, such that, for every data instanceA consistent with O,

SA |= Φk iff σA(k) ∈ ansZ(q,A), where σA(k) =

maxA + k, if k > 0,
minA + k, if k < 0.

FO(<)-phantoms Φk of an LTL2
horn OMAQ q = (O, A) can be constructed as follows. Suppose k > 0. For a state

[τ] from the proof of Theorem 11, we write [τ] →k [τ′] to say that [τ′] can be reached from [τ] in A◦
O

by k-many
transitions→. It is readily seen that

Φk = ¬
[ ∨
d≤2|O|+1

∨
[τ0]→...→[τd]
is a path in A◦

O

∨
[τd]→k[τ] with A<τ

∃t0, . . . , td path[τ0]→...→[τd](t0, . . . , td)
]

is as required (note that in this case there is no need to include an extra type to account for the answer `). The case
of k < 0 is symmetric and left to the reader.

FO(<,≡)-phantoms Φk of an LTL2©
core OMAQ q = (O, A) can be constructed as follows. Suppose k > 0. Given a

type τ for O, we write τ→k τ′ to say that τ′ can be reached from τ in AO by k-many transitions→ (in other words, if
there is a model M of O such that τ and τ′ comprise the literals that are true in M at 0 and k, respectively). It is not
hard to see that

Φk = ¬
[ ∨
d≤2|O|+1

∨
τ0→

2...→2τd

∨
τd→

kτ with A<τ

∃t0, . . . , td pathτ0→
2...→2τd

(t0, . . . , td)
]

is as required. The case of k < 0 is symmetric.
Equipped with these constructions, we are now in a position to prove the following:

Theorem 24. All LTL2©
core OMPIQs are FO(<,≡)-rewritable, and all LTL2

horn OMPIQs are FO(<)-rewritable.

Proof. Suppose q = (O,κ) is an LTL2©
core OMPIQ. By induction on the construction of κ, we define an FO(<,≡)-

rewriting Q(t) of q and FO(<,≡)-phantoms Φk of q for k , 0. For an LTL2
horn OMPIQ, we define an FO(<)-rewriting

and FO(<)-phantoms. As the only difference between these two cases is in the basis of induction, we simply refer to
a rewriting and phantoms. The basis (for rewritings of OMAQs) was established in Sections 6 and 4, respectively.

Suppose now that κ = κ1 S κ2 and, for both qi = (O,κi), i = 1, 2, we have the required rewriting Qi(t) and
phantoms Φk

i for k , 0. We claim that

Q(t) = ∃s
[
(s < t) ∧ Q2(s) ∧ ∀r

(
(s < r < t)→ Q1(r)

)]
∨

[
∀s

(
(s < t)→ Q1(s)

)
∧

∨
−sO−(lκ2 +1)pO<k<0

(
Φk

2 ∧
∧

k<i<0

Φi
1
)]

is a rewriting of q: for any data instance A and any n ∈ tem(A), we have n ∈ ans(q,A) iff SA |= Q(n). Indeed,
suppose first that n ∈ ans(q,A). If A is inconsistent with O then, by the induction hypothesis, SA |= Qi(n) for all
n ∈ tem(A), and SA |= Φk

i for all k , 0, whence SA |= Q(n) for all n ∈ tem(A). Otherwise, A is consistent with O
and then, by Theorem 18 (iv), n ∈ κCO,A , which means that there is some k < n such that k |= κCO,A2 and m |= κCO,A1
for k < m < n. If k ≥ minA, then, by the induction hypothesis, the first disjunct of Q holds at n. If k < minA, then,
by Lemma 22, we can always find such a k with −sO − (lκ2 + 1)pO < k < 0, and so, by the induction hypothesis,
the second disjunct of Q holds at n. Conversely, suppose SA |= Q(n). If the first disjunct of Q holds at n, then there
is k ∈ tem(A) with k < n such that SA |= Q2(k) and SA |= Q1(m) for k < m < n. By the induction hypothesis,
k ∈ ans(q2,A) and m ∈ ans(q1,A) for all k < m < n, whence, by Theorem 18 (iv), k ∈ κCO,A2 and m ∈ κCO,A1 for
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all k < m < n, and therefore n ∈ κCO,A and n ∈ ans(q,A). The case when the second disjunct of Q holds at n is
considered analogously.

By Lemma 22, Theorem 18 (iv) and the induction hypothesis, we can define the phantoms Φk, for k > 0, by taking

Φk =
∨

0<i<k

(
Φi

2 ∧
∧

i< j<k

Φ
j
1
)
∨ ∃s

[
Q2(s) ∧ ∀r

(
(s < r)→ Q1(r)

)
∧

∧
0<i<k

Φi
1
]
∨

[ ∨
−sO−(lκ2 +1)pO<i<0

(
Φi

2 ∧
∧

i< j<0

Φ
j
1
)
∧ ∀s Q1(s) ∧

∧
0<i<k

Φi
1

]
.

Observe that, by Lemma 22, the sentence Φk+pO is equivalent to Φk, for all k ≥ sO+ lκ pO, and so there are only finitely
many non-equivalent phantoms of q. For k < 0, the phantoms are constructed in a symmetric way.

The cases of other temporal operators are left to the reader. For κ = κ1 ∧κ2, the rewriting of κ is the conjunction
of the rewritings for κ1 and κ2, and each phantom for κ is the conjunction of the corresponding phantoms for κ1
and κ2. It is analogous for κ = κ1 ∨ κ2. q

9. OMQs with MFO(<)-Queries

So far we have considered temporal queries given entirely in the language of LTL and having one implicit ‘an-
swer variable’. It follows that, in this language, one cannot formulate Boolean queries (queries without any answer
variables) nor queries with multiple answer variables. For example, in the article submission scenario from the intro-
duction, we might want to ask whether the article is accepted at all rather than when it is accepted, or we might want
to retrieve all pairs of time points consisting of the last revision date of the article and its acceptance date. To over-
come this deficiency, we now extend our query language to monadic FO(<)-formulas with arbitrarily many answer
variables and show that all of our rewritability results can be generalised to the extended language in a natural way
using variants of Kamp’s Theorem.

Denote by MFO(<) the set of first-order formulas that are built from atoms of the form A(t), (t < t′) and abbrevi-
ations (t = t′) and (t = t′ + 1). By an LTLo

c ontology-mediated query (OMQ, for short) we mean a pair q = (O, ψ(t)),
where O is an LTLo

c ontology and ψ(t) an MFO(<)-formula with free variables t = (t1, . . . , tm). The free variables t in
ψ(t) are called the answer variables of q. If t is empty (m = 0), then q is called a Boolean OMQ.

Example 25. We return to the article submission scenario from the introduction and formulate the informal queries
from above: ∃t Accept(t) asks whether the article in question is accepted and

ψ(t, t′) = Revise(t) ∧ Accept(t′) ∧ ∀s
(
(t < s < t′)→ ¬Revise(s)

)
retrieves all pairs (t, t′) such that t is the last revision date before the acceptance date t′.

The MFO(<)-formula ψ(t) in an OMQ q = (O, ψ(t)) is interpreted in models M of O and any data instance A
as usual in first-order logic. Now, assuming that t = (t1, . . . , tm) is nonempty, we call a tuple ` = (`1, . . . , `m) of
timestamps `i from tem(A) a certain answer to q overA ifM |= ψ(`), for every modelM of (O,A). If q is a Boolean
OMQ, then we say that q is entailed overA ifM |= ψ, for every modelM of (O,A).

Let L be one of the three classes of FO-formulas introduced above: FO(<), FO(<,≡) or FO(RPR). An OMQ
q = (O, ψ(t)) is L-rewritable if there is an L-formula Q(t) such that, for any data instanceA, an m-tuple ` in tem(A)
is a certain answer to q over A iff SA |= Q(`). In the case of Boolean q, we need an L-sentence Q such that q is
entailed over any given data instanceA iff SA |= Q.

To extend our rewritability results to the newly introduced OMQs, we employ [28, Proposition 4.3] from Rabi-
novich’s ‘simple proof’ of the celebrated Kamp’s Theorem. For the reader’s convenience, we formulate it below:
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Lemma 26 ([28]). Any MFO(<)-formula ψ(t) with free variables t = (t1, . . . , tm), m ≥ 1, is equivalent over (Z, <) to
a disjunction ϕ(t) =

∨k
l=1 ϕl(t), in which the disjuncts ϕl(t) take the form

ϕl(t) = ∃x1, . . . , xn

[ m∧
i=1

(ti = x ji ) ∧
n−1∧
i=1

(xi < xi+1) ∧
n∧

i=1

αi(xi) ∧

∀y
(
(y < x1) → β0(y)

)
∧

n−1∧
i=1

∀y
(
(xi < y < xi+1) → βi(y)

)
∧ ∀y

(
(xn < y) → βn(y)

)]
, (30)

for some sets of variables {x1, . . . , xn} ⊇ {x j1 , . . . , x jm } and Boolean combinations αi(xi) and βi(y) of unary atoms with
one free variable xi and y, respectively (all of which depend on l).

We begin by extending Theorem 8 to OMQs.

Theorem 27. All LTL2©

bool OMQs are FO(RPR)-, and so MSO(<)-rewritable.

Proof. Let q = (O, ψ(t)) be an LTL2©

bool OMQ. If ψ has one answer variable, then we use Kamp’s Theorem, according
to which ψ is equivalent to an LTL-formula, and apply Theorem 8 to the latter. If ψ is a sentence (that is, q is Boolean),
then we set ψ′(t) = ψ ∧ (t = t) and take any rewriting Q′(t) of the OMQ q′ = (O, ψ′(t)) with one answer variable; it
should be clear that Q = ∀t Q′(t) is a rewriting of q.

Suppose now that there are at least two variables in t = (t1, . . . , tm). It is not hard to see using Lemma 26 that ψ(t)
is equivalent over (Z, <) to a disjunction of formulas of the form

ϕ(t) = ord(t) ∧
l∨

j=1

( m∧
i=1

α
j
i (ti) ∧

∧
t≺t′

δ j(t, t′)
)
, (31)

where

– ord(t) is a conjunction of atoms of the form (t = t′) and (t < t′), for t, t′ ∈ t, defining a total order on t;

– the total orders given by distinct disjuncts ϕ(t), if any, are inconsistent with each other;

– t ≺ t′ means that t is the immediate predecessor of t′ in the order ord(t), and δ j(t, t′) takes the form

δ j(t, t′) = ∃x1, . . . , xn

[
(t = x1 < · · · < xn = t′) ∧

n−1∧
i=2

γi(xi) ∧
n−1∧
i=1

∀y
(
(xi < y < xi+1)→ βi(y)

)]
; (32)

– the α j
i , γi and βi are FO(<)-formulas with one free variable (γ1 subsumes α1 and the conjunct with β0 from

(30)).

In fact, by adding, if necessary, disjuncts of the form ϕ(t) = ord(t) ∧ ⊥ to ψ(t), we can make sure that every total
order ord(t) on t corresponds to exactly one disjunct ϕ(t) of ψ(t). By Kamp’s Theorem, each of the α j

i , βi and γi is
equivalent to an LTL-formula, so we think of them as such when convenient. Let subq comprise all subformulas of
the LTL-formulas occurring in O and all of the α j

i , βi and γi, together with their negations. By a type for q we mean
any maximal consistent subset τ ⊆ subq. For any temporal interpretationM and ` ∈ Z, we denote by τM(`) the type
for q defined byM at `.

Let A be a data instance and ` = (`1, . . . , `m) an m-tuple from tem(A). We say that ord(t) respects ` if ti 7→ `i is
an isomorphism from the total order defined by ord(t) onto the natural total order on `. Then ` is not a certain answer
to q over A iff either ord(t) respects ` and ord(t) ∧ ⊥ is in ψ(t) or there is a model M of O and A such that, for the
disjunct ϕ(t) whose ord(t) respects `, we have the following, for every j, 1 ≤ j ≤ l:

– either α j
i < τM(`i), for some i, 1 ≤ i ≤ m,

– orM 6|= δ j(`, `′), for some ` ≺ `′ in the given total order of `.
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Let ϕ(t) respect `. To avoid clutter and without loss of generality, we assume that ord(t) is t1 < t2 < · · · < tm−1 < tm.
Let T be the set of all distinct (up to variable renaming) formulas δ j(t, t′) occurring in ϕ(t) and let S ⊆ T . Suppose
that, for any such S and any types τ and τ′, we have an FO(RPR)-formula πτS τ′ (t, t′) with the following property:

(?) SA |= πτS τ′ (`, `′) just in case there is a model M of O and the intersection A|≥` ∩ A|≤`′ such that τM(`) = τ,
τM(`′) = τ′, andM |= δ j(`, `′) iff δ j(t, t′) ∈ S .

Consider the FO(RPR)-formula

ϕ′(t) =
∨

τ1S 1τ2...τm−1S m−1τm

( m−1∧
i=1

πτiS iτi+1 (ti, ti+1) ∧
l∧

j=1

( m∨
i=1

α
j
i < τi ∨

m−1∨
i=1

δ j < S i
))
,

where α j
i < τi is > if the type τi does not contain α j

i and ⊥ otherwise, and similarly for δ j < S i. If ϕ(t) = ord(t) ∧ ⊥,
we set ϕ′(t) = >. Then it is not hard to verify (as we did it in the proof of Theorem 8) that SA |= ϕ′(`) iff there exists
a model M of O and A with M 6|= ϕ(`). It follows that a conjunction of ord(t) → ¬ϕ′(t), for all orders ord(t), is an
FO(RPR)-rewriting of q.

In the remainder of the proof, we define the required πτS τ′ (t, t′) in FO(RPR). First, we represent every formula
δ ∈ T of the form (32), by the LTL-formula

δ̃ = β1 U (γ2 ∧ (β2 . . . βn−2 U (γn−1 ∧ βn−1 U M) . . . )),

for a fresh atomic concept M for ‘marker’ (which never occurs in data instances). Intuitively, for any i < j ∈ Z and
any model M of O with MM = ∅, we have M |= δ(i, j) iff i ∈ δ̃N, where N is M extended with MN = { j}. Let un(δ̃)
be the set of subformulas of the form βU β′ in δ̃. An extended type, σ, is any maximal consistent subset of the set
comprising subq, all subformulas of δ̃, for δ ∈ T , and negations thereof. Let σ1, . . . , σk be the set of all extended
types.

To explain the intuition behind our FO(RPR)-formulas, we assume, as in Section 4, that a data instanceA is given
as a sequenceA0, . . . ,An withAi = { A | A(i) ∈ A }. Consider an NFA A (similar to the one in Section 4) with states
σi, 1 ≤ i ≤ k, and the transition relation σ →Ai σ

′ iff suc(σ,σ′) and Ai ⊆ σ
′ (see the proof of Theorem 8). Then

there is a run σ j−1 , σ j0 , . . . , σ jn of A onA with M < σ ji , for all i, 0 ≤ i < n, and {M} ∪ {¬κ | κ ∈ un(δ̃), δ ∈ T } ⊆ σ jn
iff there exists a model M of O and A such that M |= δ(0, n) for all δ̃ ∈ σ j0 and M 6|= δ(0, n) for all δ̃ < σ j0 . The
formula πτS τ′ (t0, t1) below encodes the existence of such a run of A onA similarly to the proof of Theorem 8:

πτS τ′ (t0, t1) =
∨

σ ⊇ τ ∪ { δ̃ | δ∈S } ∪ { ¬δ̃ | δ∈T\S }

ψσ,τ′ (t0, t1),

ψσ,τ′ (t0, t1) =

 Qσ1 (t0, t) ≡ ησσ1

. . .
Qσk (t0, t) ≡ η

σ
σk

 ∨
suc(σi,σ

′),
σ′ ⊇ {M} ∪ τ′ ∪ {¬κ |κ∈un(δ̃), δ∈T }

(
Qσi (t0, t1 − 1) ∧ typeσ′ (t1)

)
,

where

ησσi
(t0, t,Qσ1 (t0, t − 1), . . . ,Qσk (t0, t − 1)) =


⊥, if M ∈ σi ∪ σ;
typeσi

(t) ∧
(
(t = t0) ∨

∨
suc(σ′,σi)

Qσ′ (t0, t − 1)
)
, if σi = σ;

typeσi
(t) ∧

∨
suc(σ′,σi)

Qσ′ (t0, t − 1), if σi , σ.

It is not hard to show that πτS τ′ (t, t′) satisfies (?). q

Our next aim is to extend our FO(<)- and FO(<,≡)-rewritability results for OMPIQs with Horn ontologies to
MFO(<)-queries with multiple answer variables. To this end, we have to generalise the notion of positive temporal
concept to first-order logic. As an obvious natural candidate, one could take the set of MFO(<)-formulas constructed
from the usual atoms with the help of the connectives ∧, ∨ and quantifiers ∀, ∃. This, however, would not cover all
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positive temporal concepts as the binary operators S andU are not expressible in this language. To include them in a
natural way, we define our second query language.

A quasi-positive MFO(<)-formula is built (inductively) from atoms of the form A(t), (t < t′), (t = t′) and (t = t′+1)
using ∧, ∨, ∀, ∃ as well as the guarded universal quantification of the form

∀y
(
(x < y < z)→ ϕ

)
, ∀y

(
(x < y)→ ϕ

)
, ∀y

(
(y < z)→ ϕ

)
,

where ϕ is a quasi-positive MFO(<)-formula. A quasi-positive LTLo
c OMQ is then a pair q = (O, ψ(t)) where O is an

LTLo
c ontology and ψ(t) a quasi-positive MFO(<)-formula.

We now prove a transparent semantic characterisation of quasi-positive MFO(<)-formulas. Given temporal inter-
pretations M1 and M2, we write M1 � M2 if AM1 ⊆ AM2 , for every atomic concept A. An MFO(<)-formula ψ(t) is
called monotone ifM1 |= ψ(n) andM1 � M2 implyM2 |= ψ(n), for any tuple n in Z.

Theorem 28. An MFO(<)-formula is monotone iff it is equivalent over (Z, <) to a quasi-positive MFO(<)-formula.

Proof. (⇒) Suppose a monotone MFO(<)-formula ψ(t) with t = (t1, . . . , tm) and m > 0 is given. By Lemma 26, we
may assume that ψ(t) is in fact a disjunction ϕ(t) =

∨k
l=1 ϕl(t), where each ϕl(t) takes the form (30) and the αi(xi)

and βi(y) are Boolean combinations of unary atoms with one free variable xi and y, respectively. Let γ(z) be any
of these Boolean combinations all of whose atoms are among A1(z), . . . , As(z). Denote by γ′(z) a formula in DNF
that contains a disjunct Ai1 (z) ∧ · · · ∧ Aip (z) iff γ(z) is true as a propositional Boolean formula under the valuation
v : {A1(z), . . . , As(z)} → {0, 1} such that v(Ai(z)) = 1 for i ∈ {i1, . . . , ip} and v(Ai(z)) = 0 for the remaining i. (We
remind the reader that an empty disjunction is ⊥, which is a quasi-positive MFO(<)-formula.) Clearly, γ(z) → γ′(z)
is a tautology.

Denote by ϕ′(t) and ϕ′l(t) the results of replacing the αi(xi) and βi(y) in ϕ(t) and, respectively, ϕl(t) by their primed
versions α′i(xi) and β′i(y). We claim that ϕ(t) and ϕ′(t) are equivalent. Clearly, we have M |=a ϕ(t) → ϕ′(t), for any
temporal interpretation M and assignment a. Suppose M 6|=a ϕ′(t) → ϕ(t). Denote by ϕ̂l and ϕ̂′l the matrices (that
is, the quantifier-free parts) of ϕl and, respectively, ϕ′l . Then there is an assignment b : {x1, . . . , xn} → Z such that
M |=b ϕ′r, for some r ∈ {1, . . . , k}, andM 6|=b ϕl, for all l ∈ {1, . . . , k}. Consider any z ∈ Z. Let γ(z) be β0(z) if z < b(x1),
α1(z) if z = b(x1), β1(z) if b(x1) < z < b(x2), α2(z) if z = b(x2), etc. Then we have M |=b γ′(z) for all z ∈ Z. If
M 6|=b γ(z), we do the following. The interpretationM gives a valuation v for the atoms A1(z), . . . , As(z) in γ such that
v(γ(z)) = 0 while v(γ′(z)) = 1. Suppose a disjunct Ai1 (z) ∧ · · · ∧ Aip (z) in γ′(z) is true under v. Then we remove from
M all atoms in the set {A1(z), . . . , As(z)} \ {Ai1 (z), . . . , Aip (z)}. We do the same for all z ∈ Z withM 6|=b γ(z) and denote
the resulting interpretation byM′. Obviously,M′ � M. Since ψ = ϕ is monotone, we must haveM′ 6|=a ϕ(t). On the
other hand, by the definition of γ′, we must haveM |=b ϕr, which is impossible.

Thus, ϕ is equivalent over (Z, <) to ϕ′, which is, by construction, a quasi-positive MFO(<)-formula. The case
m = 0 is treated in the same way as in the proof of Theorem 27.

The implication (⇐) is readily shown by induction on the construction of quasi-positive formulas. q

The following is an immediate consequence of the proof of Theorem 28:

Corollary 29. Every OMQ q = (O, ψ(t)) with a monotone MFO(<)-query ψ(t) is equivalent to a quasi-positive OMQ
q′ = (O, ψ′(t)), where ψ′(t) is a disjunction of formulas of the form

ϕl(t) = ∃x1, . . . , xn

[ m∧
i=1

(ti = x ji ) ∧
n−1∧
i=1

(xi < xi+1) ∧
n∧

i=1

αi(xi) ∧
n−1∧
i=1

∀y
(
(xi < y < xi+1)→ βi(y)

)]
, (33)

where the first conjunction contains (ti = x1) and (t j = xn) with free variables ti, t j ∈ t, and the αi and βi are
MFO(<)-formulas with one free variable.

Corollary 30 (Monotone Kamp Theorem). Every monotone MFO(<)-formula with one free variable is equivalent
over (Z, <) either to a positive temporal concept or to ⊥.

Proof. In this case, the quasi-positive formula ϕ′l of the form (30) defined in the proof of Theorem 28 has one free
variable. If one of the α′i(xi) and β′i(y) is ⊥, then ϕ′l is equivalent to ⊥. Otherwise, since the α′i(xi) and β′i(y) in ϕ′l are
positive, we can transform ϕ′l into an equivalent positive LTL concept in exactly the same way as in the proof of [28,
Proposition 3.5]. q
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We are now in a position to prove a generalisation of Theorem 24 to quasi-positive OMQs with multiple answer
variables.

Theorem 31. All quasi-positive LTL2©
core OMQs are FO(<,≡)-rewritable, and all quasi-positive LTL2

horn OMQs are
FO(<)-rewritable.

Proof. Let q = (O, ψ(t)) be a quasi-positive OMQ in LTL2©
core or LTL2

horn with t = (t1, . . . , tm). If m = 0, then we set
ψ′(t) = ψ ∧ (t = t) and take any rewriting Q′(t) of q′ = (O, ψ′(t)), which gives us the rewriting Q(t) = ∀t Q′(t) of q.

Suppose m ≥ 1 and ψ(t) takes the form specified in Corollary 29. Since ψ(t) is monotone, for everyA consistent
with O and every tuple ` = (`1, . . . , `m) in tem(A), we have:

` ∈ ans(q,A) iff CO,A |= ψ(`). (34)

The implication (⇒) follows from Theorem 18 (iii). To prove (⇐), observe that, by Theorem 18 (ii), CO,A � M
for every model M of (O,A), and so, by monotonicity, CO,A |= ψ(`) implies M |= ψ(`). Next, observe that, by
Theorem 18 (iii), there exists an FO-formula Q⊥(t) such that SA |= ∃t Q⊥(t) iff (O,A) is inconsistent. Indeed, it is
sufficient to take as Q⊥(t) the FO-rewriting provided by Theorem 24 for the OMPIQ q⊥ =

(
O,κ⊥), where κ⊥ is a

disjunction of all

3P3F(C1 ∧ · · · ∧Cn), for C1 ∧ · · · ∧Cn → ⊥ in O.

Recall that ψ(t) is equivalent to
∨k

l=1 ϕl(t), where each ϕl(t) takes the form (33). Let κi and λi be positive
temporal concepts equivalent to αi and, respectively, βi (see (33)) that are different from ⊥. Let Q′i(t) and Q′′i (t) be
the FO-rewritings of the OMPIQs (O,κi) and, respectively, (O, λi) provided by Theorem 24; if αi or βi is ⊥, then we
set Q′i(t) = ⊥ or, respectively, Q′′i (t) = ⊥. In each ϕl, we substitute every αi by Q′i and every βi by Q′′i . Let ϕ′l be the
result of the substitution and let Q(t) =

∨k
l=1 ϕ

′
l(t). By (34), Q(t) ∨ ∃t Q⊥(t) is an FO-rewriting of q. Moreover, by

Theorem 24, this rewriting is an FO(<,≡)-formula if q is an LTL2©
core OMQ, and an FO(<)-formula if q is an LTL2

horn
OMQ. q

10. OMQs with FO(<)-Queries under the Epistemic Semantics

Instead of generalising LTL-queries in OMQs to MFO(<)-queries using the standard open-world semantics for
ontology-mediated query answering, one can increase the expressive power of OMQs by using LTL-queries as build-
ing blocks for first-order queries under a closed-world semantics. We sketch an implementation of this idea following
the approach of Calvanese et al. [40] and inspired by the SPARQL 1.1 entailment regimes [41]. An epistemic temporal
ontology-mediated query (EOMQ, for short) is a pair q = (O, ψ(t)), in which O is an ontology and ψ(t) a first-order
formula built from atoms of the form κ(t), (t < t′) and abbreviations (t = t′) and (t = t′ + 1), where κ is a positive
temporal concept and the tuple t of the free variables in ψ(t) comprises the answer variables of q. Given a data
instance A, the FO-component of the EOMQ q is evaluated over the structure GO,A with domain tem(A). Let a be
an assignment that maps variables to elements of tem(A). The relation GO,A |=a ψ (‘ψ is true in GO,A under a’) is
formally defined as follows:

GO,A |=
a κ(t) iff a(t) ∈ ans(O,κ,A),

GO,A |=
a t < t′ iff a(t) < a(t′),

and the standard clauses for the Boolean connectives and first-order quantifiers over tem(A). Let t = (t1, . . . , tm) be
the free variables of ψ. We say that ` = (`1, . . . , `m) is an answer to the OMQ q = (O, ψ(t)) overA if GO,A |= ψ(`).

Thus, similarly to the SPARQL 1.1 entailment regimes, we interpret the (implicit quantifiers in the) LTL formulas
of EOMQs in arbitrary temporal models over Z, while the temporal variables of EOMQs range over the active domain
only. The first-order constructs in ψ are interpreted under the epistemic semantics [40].

Example 32. Consider the OMQ q = (O, ψ(t)), where O is the ontology defined in the introduction and

ψ(t) = Submission(t) ∧ ¬3F

(
Accept ∨ Reject

)
(t).

Then q retrieves the submission date of the article if no accept or reject decision has yet been made according to the
database and for which no publication date is in the database.
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Let L be one of the three classes FO(<), FO(<,≡) or FO(RPR). An EOMQ q = (O, ψ(t)) is called L-rewritable
if there is an L-formula Q(t) such that, for any data instance A and any tuple ` in tem(A), ` is an answer to q over
A iff SA |= Q(`). It is readily seen that to construct an FO-rewriting of q one can replace all occurrences of OMPIQs
in ψ with their FO-rewritings (if any). Thus we obtain the following variant of a result from [40]:

Theorem 33. Let L be one of FO(<), FO(<,≡) or FO(RPR). If all constituent OMPIQs of an EOMQ q are L-
rewritable, then so is q.

11. Conclusions and Future Work

The main contributions of this article are as follows. Aiming to extend the well-developed theory of ontology-
based data access (OBDA) to temporal data, we introduced, motivated and systematically investigated the problem of
FO-rewritability for temporal ontology-mediated queries based on linear temporal logic LTL . We classified the OMQs
by the shape of their ontology axioms (core, horn, krom or bool) and also by the temporal operators that can occur
in the ontology axioms. We then identified the classes whose OMQs are FO(<)-, FO(<,≡)- or FO(RPR)-rewritable
by establishing a connection of OMQ answering to various types of finite automata and investigating the structure of
temporal models.

While we believe that the results obtained in this article are of interest in themselves, our second main aim was
to lay the foundations for studying ontology-mediated query answering over not only propositional but also relational
timestamped data using two-dimensional OMQs, in which the temporal component is captured by LTL and the domain
component by a description logic from the DL-Lite family. In fact, in a subsequent article we are going to present
a novel technique that allows us to lift the rewritability results obtained above to two-dimensional (DL-Lite + LTL)
OMQs with Horn role inclusions. In particular, we show FO(<)-rewritability results for suitable combinations of
DL-Litecore with LTL2

core and FO(<,≡)-rewritability results for suitable combinations of DL-Litecore with LTL2©
core, in

both cases by using results presented in this article.
Many interesting and challenging open research questions, both theoretical and practical, are arising in the con-

text of the results obtained in this article. Below, we briefly mention some of them. The classical OBDA theory
has recently investigated the fine-grained combined and parameterised complexities of OMQ answering and the suc-
cinctness problem for FO-rewritings [50, 49, 48]. These problems are of great importance for the temporal case, too
(in particular, because the presented rewritings are far from optimal). Another development in the classical OBDA
theory is the classification of single ontologies and even OMQs according to their data complexity and rewritabil-
ity [87, 51, 52]. Extending this approach to temporal OMQs will most probably require totally different methods
because of the linearly ordered temporal domain.

On the practical side, more real-world use cases are needed to understand which temporal constructs are required
to specify relevant temporal events and evaluate the performance of OMQ rewritings; for some activities in this
direction, we refer the reader to [88, 89, 90, 91].
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[17] F. Baader, R. Küsters, F. Wolter, Extensions to description logics, in: The Description Logic Handbook, Cambridge University Press, 2003,

pp. 219–261.
[18] A. Artale, E. Franconi, Temporal description logics, in: Handbook of Temporal Reasoning in Artificial Intelligence, volume 1 of Foundations

of Artificial Intelligence, Elsevier, 2005, pp. 375–388.
[19] C. Lutz, F. Wolter, M. Zakharyaschev, Temporal description logics: A survey, in: Proc. of the 15th Int. Symposium on Temporal Represen-

tation and Reasoning, TIME’08, IEEE Computer Society, 2008, pp. 3–14.
[20] F. Pagliarecci, L. Spalazzi, G. Taccari, Reasoning with temporal ABoxes: Combining DL-Litecore with CTL, in: Proc. of the 26th Int.

Workshop on Description Logics, DL’13, CEUR-WS, 2013, pp. 885–897.
[21] A. Artale, R. Kontchakov, V. Ryzhikov, M. Zakharyaschev, A cookbook for temporal conceptual data modelling with description logics,

ACM Trans. Comput. Log. 15 (2014) 25:1–25:50.
[22] V. Gutiérrez-Basulto, J. C. Jung, T. Schneider, Lightweight description logics and branching time: A troublesome marriage, in: Proc. of the

14th Int. Conf. on Principles of Knowledge Representation and Reasoning, KR’14, AAAI Press, 2014, pp. 278–287.
[23] V. Gutiérrez-Basulto, J. C. Jung, T. Schneider, Lightweight temporal description logics with rigid roles and restricted TBoxes, in: Proc. of

the 24th Int. Joint Conf. on Artificial Intelligence, IJCAI 2015, IJCAI/AAAI, 2015, pp. 3015–3021.
[24] V. Gutiérrez-Basulto, J. C. Jung, A. Ozaki, On metric temporal description logics, in: Proc. of the 22nd European Conf. on Artificial

Intelligence, ECAI 2016, volume 285 of FAIA, IOS Press, 2016, pp. 837–845.
[25] F. Baader, S. Borgwardt, P. Koopmann, A. Ozaki, V. Thost, Metric temporal description logics with interval-rigid names (extended abstract),

in: Proc. of the 30th Int. Workshop on Description Logics, DL’17, volume 1879, CEUR-WS, 2017.
[26] Z. Manna, A. Pnueli, The temporal logic of reactive and concurrent systems - specification, Springer, 1992.
[27] H. W. Kamp, Tense Logic and the Theory of Linear Order, PhD thesis, Computer Science Department, University of California at Los Angeles,

USA, 1968.
[28] A. Rabinovich, A proof of Kamp’s theorem, Logical Methods in Computer Science 10 (2014).
[29] A. Prior, Time and Modality, Oxford University Press, 1956.
[30] H. Ono, A. Nakamura, On the size of refutation Kripke models for some linear modal and tense logics, Studia Logica (1980) 325–333.
[31] J. P. Burgess, Basic tense logic, in: Handbook of Philosophical Logic: Volume II: Extensions of Classical Logic, Reidel, Dordrecht, 1984,

pp. 89–133.
[32] M. Y. Vardi, From Church and Prior to PSL, in: 25 Years of Model Checking - History, Achievements, Perspectives, volume 5000 of Lecture

Notes in Computer Science, Springer, 2008, pp. 150–171.
[33] H. Straubing, Finite Automata, Formal Logic, and Circuit Complexity, Birkhauser Verlag, 1994.
[34] L. Libkin, Elements Of Finite Model Theory, Springer, 2004.
[35] M. L. Furst, J. B. Saxe, M. Sipser, Parity, circuits, and the polynomial-time hierarchy, Mathematical Systems Theory 17 (1984) 13–27.
[36] M. Fisher, A normal form for temporal logics and its applications in theorem-proving and execution, J. Log. Comput. 7 (1997) 429–456.
[37] K. J. Compton, C. Laflamme, An algebra and a logic for NC1, Inf. Comput. 87 (1990) 240–262.
[38] S. Arora, B. Barak, Computational Complexity: A Modern Approach, 1st ed., Cambridge University Press, New York, USA, 2009.
[39] N. Immerman, Descriptive Complexity, Springer, 1999.
[40] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, EQL-Lite: Effective first-order query processing in description logics, in:

Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2007), 2007, pp. 274–279.
[41] B. Glimm, C. Ogbuji, SPARQL 1.1 entailment regimes, W3C Recommendation, 2013. URL: http://www.w3.org/TR/

sparql11-entailment.
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[84] E. Börger, E. Grädel, Y. Gurevich, The Classical Decision Problem, Perspectives in Mathematical Logic, Springer, 1997.
[85] T. Jech, Set theory, Second Edition, Perspectives in Mathematical Logic, Springer, 1997.
[86] A. Hajnal, P. Hamburger, Set Theory (London Mathematical Society Student Texts), Cambridge: Cambridge University Press, 1999.
[87] C. Lutz, F. Wolter, The data complexity of description logic ontologies, Logical Methods in Computer Science 13 (2017).
[88] H. Beck, M. Dao-Tran, T. Eiter, M. Fink, LARS: a logic-based framework for analyzing reasoning over streams, in: Proc. of the 29th AAAI

Conf. on Artificial Intelligence, AAAI 2015, 2015, pp. 1431–1438.
[89] E. Kharlamov, G. Mehdi, O. Savkovic, G. Xiao, E. G. Kalayci, M. Roshchin, Semantically-enhanced rule-based diagnostics for industrial

Internet of Things: The SDRL language and case study for Siemens trains and turbines, J. Web Semant. 56 (2019) 11–29.
[90] S. Brandt, E. G. Kalayci, V. Ryzhikov, G. Xiao, M. Zakharyaschev, Querying log data with metric temporal logic, J. Artif. Intell. Res. 62

(2018) 829–877.
[91] S. Brandt, D. Calvanese, E. G. Kalaycı, R. Kontchakov, B. Mörzinger, V. Ryzhikov, G. Xiao, M. Zakharyaschev, Two-dimensional rule

language for querying sensor log data: a framework and use cases, in: Proc. of the 26th Int. Symposium on Temporal Representation and
Reasoning, TIME 19, volume 147, Dagstuhl Publishing, 2019, pp. 7:1–7:15.

35


	Introduction
	Related Work

	Ontologies and Ontology-Mediated Queries in Linear Temporal Logic LTL
	LTL Knowledge Bases
	Ontology-Mediated Queries
	Remarks on Expressivity

	Rewriting LTLbool OMIQs into FO(RPR)
	LTLbool OMAQs: Partially Ordered Automata
	LTLkrom OMAQs: Unary Automata and Arithmetic Progressions
	LTLkrom OMAQs: Unary Automata with Stutter-Free Sequences of Types
	Canonical Models for OMPIQs with Horn Ontologies
	From OMAQs to OMPIQs with Horn Ontologies: Phantoms and Rewritings
	OMQs with MFO(<)-Queries
	OMQs with FO(<)-Queries under the Epistemic Semantics
	Conclusions and Future Work

