\mathbf{Alt}_n in a Strictly Positive Context

Stanislav Kikot¹, Agi Kurucz², Frank Wolter³, and Michael Zakharyaschev¹

¹Birkbeck, University of London, ²King's College London, ³University of Liverpool, U.K.

A strictly positive term (or \mathcal{SP} -term) is a modal formula constructed from propositional variables p_0, p_1, \ldots , constants \top and \bot , conjunction \land , and the unary diamond operator \diamondsuit . An \mathcal{SP} -implication takes the form $\sigma \to \tau$, where σ , τ are \mathcal{SP} -terms, and an \mathcal{SP} -logic is a set of \mathcal{SP} -implications. (An \mathcal{SP} -implication $\sigma \to \tau$ can be regarded as an algebraic equation $\sigma \land \tau \equiv \sigma$, while $\sigma \equiv \tau$ as a shorthand for ' $\sigma \to \tau$ and $\tau \to \sigma$ '.) In various contexts, \mathcal{SP} -logics were investigated in [3, 7, 2, 1, 8, 6, 5, 4].

We consider two consequence relations. For an \mathcal{SP} -logic \mathcal{L} and \mathcal{SP} -implication φ , we write $\mathcal{L} \models_{\mathsf{KL}} \varphi$ if φ is valid in all Kripke frames for \mathcal{L} , and we write $\mathcal{L} \models_{\mathsf{SLO}} \varphi$ if φ is valid in all bounded meet-semilattices with normal monotone operators (or SLOs) that validate \mathcal{L} . We call \mathcal{L} (Kripke) complete in case $\mathcal{L} \models_{\mathsf{KL}} \varphi$ iff $\mathcal{L} \models_{\mathsf{SLO}} \varphi$, for all φ . Since \mathcal{SP} -implications are Sahlqvist formulas, $\mathcal{L} \models_{\mathsf{KL}} \varphi$ iff $\mathcal{L} \models_{\mathsf{BAO}} \varphi$, where BAO stands for Boolean algebras with operators. Thus, completeness is equivalent to (purely algebraic) conservativity of \models_{BAO} over \models_{SLO} . Completeness of an \mathcal{SP} -logic \mathcal{L} also means that its \mathcal{SP} -implications axiomatise the \mathcal{SP} -fragment of \mathcal{L} regarded as a standard modal logic. A simple example of an incomplete \mathcal{SP} -logic is $\mathcal{L} = \{ \Diamond p \to p \}$; indeed, for $\varphi = (p \land \Diamond \top \to \Diamond p)$, we have $\mathcal{L} \models_{\mathsf{KL}} \varphi$ and $\mathcal{L} \not\models_{\mathsf{SLO}} \varphi$.

A classical method of showing completeness of a modal logic \mathcal{L} is to prove its canonicity, which can be done by establishing that every BAO for \mathcal{L} is embeddable into the full complex BAO \mathfrak{F}^+ of some Kripke frame \mathfrak{F} for \mathcal{L} . We call an \mathcal{SP} -theory \mathcal{L} complex if every SLO for \mathcal{L} is embeddable into the SLO-type reduct of \mathfrak{F}^+ of some Kripke frame \mathfrak{F} for \mathcal{L} . Examples of complex, and so complete \mathcal{SP} -logics include $\{p \to \Diamond p\}$ (reflexivity), $\{\Diamond \Diamond p \to \Diamond p\}$ (transitivity), $\{q \land \Diamond p \to \Diamond (p \land \Diamond q)\}$ (symmetry), $\{\Diamond p \land \Diamond q \to \Diamond (p \land q)\}$ (functionality), and their unions. By Sahlqvist's theorem, all \mathcal{SP} -logics have first-order correspondents. A number of general results linking complexity of \mathcal{SP} -logics to the form of their correspondents have been obtained in [4].

On the other hand, there are many \mathcal{SP} -logics that define standard frame properties, but are not complex. In this note, we aim to develop a new method for proving completeness of such logics. First, we axiomatise the \mathcal{SP} -fragment of the (Kripke complete) modal logic \mathbf{Alt}_n whose Kripke frames are n-functional, i.e., satisfy $\forall x, y_0, \ldots, y_n \ (\bigwedge_{i \leq n} R(x, y_i) \to \bigvee_{i \neq j} (y_i = y_j))$. We set $\mathbf{Alt}_n^+ = \{\varphi_{fun}^n\}$, where $P = \{p_0, \ldots, p_n\}$ and

$$\varphi_{\mathit{fun}}^n \ = \bigl(\bigwedge_{Q\subseteq P, \, |Q|=n} \diamondsuit \bigwedge Q \ \to \ \diamondsuit \bigwedge P\bigr).$$

Note that Kripke frames for φ_{fun}^n are exactly *n*-functional frames. Here we sketch the proof of **Theorem 1.** For any $n \geq 1$, the \mathcal{SP} -logic \mathbf{Alt}_n^+ is complete, though not complex if $n \geq 2$.

To prove that \mathbf{Alt}_n^+ $(n \geq 2)$ is not complex, one can show that the SLO on the right (where $\diamondsuit \top = \top, \diamondsuit \bot = \bot$, and the arrows define \diamondsuit in other cases) validates φ_{fun}^n but is not embeddable into \mathfrak{F}^+ , for any *n*-functional \mathfrak{F} .

To show completeness, we require n-terms that are defined by induction: (i) all propositional variables, \bot and \top are n-terms; (ii) if τ_1, \ldots, τ_n are n-terms, then so is $\diamondsuit(\tau_1 \land \cdots \land \tau_n)$.

Lemma 2. For any SP-term ϱ , there is conjunction ϱ' of n-terms with $Alt_n^+ \models_{SLO} (\varrho \equiv \varrho')$.

The proof is by induction on the modal depth d of ϱ . The basis d=0 is trivial. Suppose now that ϱ is of depth d>0. Then $\varrho=\bigwedge P_{\varrho}\wedge\Diamond\varrho_1\wedge\cdots\wedge\Diamond\varrho_k$, where P_{ϱ} is a set of

propositional variables, \bot and \top , and each ϱ_i is of depth $\le d-1$. By IH, $\mathbf{Alt}_n^+ \models_{\mathsf{SLO}} (\varrho_i \equiv \bigwedge A_i)$, for some set A_i of n-terms. Then $\mathbf{Alt}_n^+ \models_{\mathsf{SLO}} (\varrho \equiv (\bigwedge P_\varrho \land \bigwedge_{i=1}^k \diamondsuit \bigwedge A_i))$. If $|A_i| \le n$, then we are done. So fix some i and suppose that $|A_i| = k > n$. Then we always have $\models_{\mathsf{SLO}} ((\diamondsuit \bigwedge A_i) \to (\bigwedge_{Q \subseteq A_i, |Q| = n} \diamondsuit \bigwedge Q))$. We show that

$$\mathbf{Alt}_{n}^{+} \models_{\mathsf{SLO}} \left(\bigwedge_{Q \subseteq A_{i}, |Q| = n} \Diamond \bigwedge Q \to \Diamond \bigwedge A_{i} \right). \tag{1}$$

Indeed, by a syntactic argument, we have $\mathbf{Alt}_n^+ \models_{\mathsf{SLO}} \varphi_{fun}^m$, for every m > n, from which we obtain (1) as a substitution instance of φ_{fun}^k .

Lemma 3. For any SP-term σ and any n-term τ , $Alt_n^+ \models_{\mathsf{Kr}} \sigma \to \tau$ implies $\models_{\mathsf{Kr}} \sigma \to \tau$.

The proof is by induction on the modal depth d of τ . The basis is again trivial. Now assume inductively that the lemma holds for d and the depth of τ is d+1. Let $\sigma = \bigwedge P_{\sigma} \wedge \Diamond \sigma_{1} \wedge \ldots \wedge \Diamond \sigma_{k}$, where P_{σ} is some set of propositional variables, \bot , \top , and each σ_{i} is an \mathcal{SP} -term. Suppose $\tau = \Diamond (\tau_{1} \wedge \ldots \wedge \tau_{n})$, where each τ_{i} is either a variable, \top , \bot , or of the form $\Diamond (\tau_{1}^{i} \wedge \cdots \wedge \tau_{n}^{i})$.

Suppose $\not\models_{\mathsf{Kr}} \sigma \to \tau$. Then, for every j $(1 \leq j \leq k)$, there is i $(1 \leq i \leq n)$ such that $\not\models_{\mathsf{Kr}} \sigma_j \to \tau_i$, and so $\bigcup_{i=1}^n K_i = \{1, \ldots, k\}$, for $K_i = \{1 \leq j \leq k \mid \not\models_{\mathsf{SLO}} \sigma_j \to \tau_i\}$. It is not hard to see that, for any i with $K_i \neq \emptyset$, we have $\not\models_{\mathsf{Kr}} (\bigwedge_{j \in K_i} \sigma_j) \to \tau_i$. By IH, for any such i, there is a Kripke model \mathfrak{M}_i based on an n-functional frame with root r_i where $\bigwedge_{j \in K_i} \sigma_j$ holds, but τ_i does not. Now take a fresh node r, make $\bigwedge P_\sigma$ true in r, and connect r to r_i of each \mathfrak{M}_i . The constructed model is based on an n-functional frame and refutes $\sigma \to \tau$ at r, showing that $\mathbf{Alt}_n^+ \not\models_{\mathsf{Kr}} \sigma \to \tau$ as required. That \mathbf{Alt}_n^+ is complete follows now from Lemmas 2, 3 and the completeness of the empty \mathcal{SP} -logic [7].

Using a similar (but more involved) technique, we can also show (see [4] for details) that the \mathcal{SP} -logic $\mathbf{S4.3}^+ = \{p \to \Diamond p, \Diamond \Diamond p \to \Diamond p, \Diamond (p \land q) \land \Diamond (p \land r) \to \Diamond (p \land \Diamond q \land \Diamond r)\}$ is complete, has exactly the same frames as $\mathbf{S4.3}$, and is decidable in polynomial time. However, this does not generalise to $\mathbf{K4.3}$ whose class of Kripke frames is not \mathcal{SP} -definable [4]. Svyatlovski has recently shown that the \mathcal{SP} -logic $\mathcal{L}_s = \{\Diamond \Diamond p \to \Diamond p, \Diamond (p \land \Diamond q) \land \Diamond (p \land \Diamond r) \to \Diamond (p \land \Diamond q \land \Diamond r)\}$ is complete, tractable, and, for any \mathcal{SP} -implication φ , we have $\mathcal{L}_s \models \varphi$ iff φ is valid in all frames for $\mathbf{K4.3}$ (although \mathcal{L}_s has non- $\mathbf{K4.3}$ frames).

References

- [1] L. Beklemishev. Positive provability logic for uniform reflection principles. Ann. Pure Appl. Logic, 165:82–105, 2014.
- [2] E. Dashkov. On the positive fragment of the polymodal provability logic **GLP**. *Mathematical Notes*, 91:318–333, 2012.
- [3] M. Jackson. Semilattices with closure. Algebra Universalis, 52:1–37, 2004.
- [4] S. Kikot, A. Kurucz, Y. Tanaka, F. Wolter, and M. Zakharyaschev. Kripke completeness of strictly positive modal logics over meet-semilattices with operators. Submitted, 2017.
- [5] A. Kurucz, Y. Tanaka, F. Wolter, and M. Zakharyaschev. Conservativity of boolean algebras with operators over semilattices with operators. In *Proceeding of TACL 2011*. Marseille, 2011.
- [6] A. Kurucz, F. Wolter, and M. Zakharyaschev. Islands of tractability for relational constraints: towards dichotomy results for the description logic \mathcal{EL} . In AiML 8. College Publications, 2010.
- [7] V. Sofronie-Stokkermans. Locality and subsumption testing in \mathcal{EL} and some of its extensions. In AiML 7. College Publications, 2008.
- [8] M. Svyatlovski. Positive fragments of modal logics. BSc Thesis (in Russian), 2014.