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Abstract. The notion of comparative similarity ‘X is more similar or
closer to Y than to Z’ has been investigated in both foundational and
applied areas of knowledge representation and reasoning, e.g., in concept
formation, similarity-based reasoning and areas of bioinformatics such as
protein sequence alignment. In this paper we analyse the computational
behaviour of the ‘propositional’ logic with the binary operator ‘closer to
a set τ1 than to a set τ2’ and nominals interpreted over various classes
of distance (or similarity) spaces. In particular, using a reduction to the
emptiness problem for certain tree automata, we show that the satisfi-
ability problem for this logic is ExpTime-complete for the classes of all
finite symmetric and all finite (possibly non-symmetric) distance spaces.
For finite subspaces of the real line (and higher dimensional Euclidean
spaces) we prove the undecidability of satisfiability by a reduction of the
solvability problem for Diophantine equations. As our ‘closer’ operator
has the same expressive power as the standard operator > of conditional
logic, these results may have interesting implications for conditional logic
as well.

1 Introduction

There are two main approaches to defining and classifying concepts in computer
science and artificial intelligence. One of them is logic based. It uses formalisms
like description logics to define concepts by establishing relationships between
them, for example,

Mother ≡ Woman u ∃hasChild.Person

The main tool for analysing and using such definitions (e.g., to compute the
concept hierarchy based on the subsumption relation) is reasoning.



Another approach is based on similarity.1 Using various techniques (such as
alignment algorithms) we compute suitable similarity measures on (part of) the
application domain and then define concepts in terms of similarity, for example,

Reddish ≡ {Red} ⇔ {Green, . . . ,Black}

which reads ‘a colour is reddish iff it is more similar (with respect to the RGB,
HSL or some other explicit or implicit colour model) to the prototypical colour
Red than to the prototypical colours Green, . . . , Black.’ The established tools
for dealing with concepts of this sort are numerical computations (say, with the
help of Voronoi tessellations, nearest neighbour or clustering algorithms).

As more and more application areas—like bioinformatics and linguistics—use
both of these ways of defining concepts, we are facing the problem of integrating
them. In particular, we need formalisms that are capable of reasoning about
concepts defined in terms of (explicit or implicit) similarity in the same way as
this is done in description logic (DL).

In [6, 16, 8, 17] we presented and investigated rudimentary DL-like formalisms
for reasoning about concepts and similarity with concept constructors of the
form ∃<aτ , that is, ‘in the a-neighbourhood of τ ,’ where a ∈ Q≥0. The apparent
limitation of these languages is that they can only operate with concrete degrees
of similarity a ∈ Q≥0, and so require substantial expert knowledge in order to
define concepts.

In this paper we propose a purely qualitative logic CSL for knowledge repre-
sentation and reasoning about comparative similarity. Its main ingredients are
the binary closer operator ⇔ as in the example above and individual constants
(nominals) for representing prototypical objects (we refer the reader to [7, 15]
for a discussion of relations like ‘X more similar to Y than to Z’). The logic is
interpreted in various natural classes of distance (or similarity) spaces such as
finite metric spaces, finite metric spaces without symmetry (see, e.g., [13] for an
argumentation that similarity measures are not necessarily symmetric) as well
as the finite subspaces of the Euclidean space Rn, n ≥ 1 (natural similarity
measures for weight, length, etc.).

The computational behaviour of CSL over the class of finite metric spaces
(with or without symmetry) turns out be similar to the behaviour of standard
description logics: the satisfiability problem is ExpTime-complete which can be
established by a reduction to the emptiness problem for certain tree automata.
However, it was a great surprise for us to discover that over finite subspaces of
the real line R (as well as any higher dimensional Euclidean space or any Zn)
the logic turns out to be undecidable. This result is proved by a reduction of the
solvability problem for Diophantine equations.

1 “There is nothing more basic to thought and language than our sense of similarity;
our sorting of things into kinds.” Quine (1969)



2 The logic of comparative similarity

The logic CSL of comparative similarity we consider in this paper is based on
the following language:

τ ::= pi | {`i} | ¬τ | τ1 u τ2 | τ1 ⇔ τ2

where the pi are atomic terms, the `i are object names, and ⇔ is the closer
operator. We call {`i} a nominal and τ a CSL-term or simply a term.

The intended models for CSL are based on distance (or rather similarity)
spaces D = (∆, d), where ∆ is a nonempty set and d is a map from ∆ × ∆ to
the set R≥0 of nonnegative real numbers such that, for all x, y ∈ ∆, we have
d(x, y) = 0 iff x = y. If the distance function d satisfies two additional properties

d(x, y) = d(y, x) (sym)
d(x, z) ≤ d(x, y) + d(y, z) (tr)

then D is a standard metric space. The distance d(X,Y ) between two nonempty
sets X and Y of ∆ is defined by taking

d(X,Y ) = inf{d(x, y) | x ∈ X, y ∈ Y }.

If one of X, Y is empty then d(X,Y ) = ∞. Finally, if we actually have

d(X,Y ) = min{d(x, y) | x ∈ X, y ∈ Y } (min)

for any nonempty X and Y , then the distance space D is called a min-space.
Every finite distance space is clearly a min-space.

CSL-models are structures of the form

I =
(
∆I, dI, `I1 , `

I
2 , . . . , p

I
1 , p

I
2 , . . .

)
, (1)

where
(
∆I, dI

)
is a distance space, the pI

i are subsets of ∆I, and `Ii ∈ ∆I for
every i. We call such models min-models, symmetric or satisfying the triangle
inequality if the underlying distance space satisfies (min), (sym) or (tr), respec-
tively. If both (sym) and (tr) are satisfied then I is called a metric CSL-model.

The interpretation of the Boolean operators ¬ and u in I is as usual (we will
use t, →, ⊥ (for ∅), and > (for the whole space) as standard abbreviations),
{`}I = {`I}, and

(τ1 ⇔ τ2)I = {x ∈ ∆I | dI(x, τI
1 ) < dI(x, τI

2 )}. (2)

A term τ is satisfied in I if τI 6= ∅; τ is satisfiable in a class C of models if it
is satisfied in some model from C. Finally, τ is valid in I if τI = ∆I.

The seemingly simple logic CSL turns out to be quite expressive. First, the
operator ∃τ = (τ ⇔ ⊥) is interpreted by the existential modality (in the sense
that ∃τ is the whole space iff τ is not empty); its dual, the universal modality, will



be denoted by ∀. Thus the term ∀(τ1 → τ2) expresses in CSL the subsumption
relation τ1 v τ2 which is usually used in description logic knowledge bases.

Second, in metric models the operator 2 defined by taking 2τ = (> ⇔ ¬τ)
is actually interpreted by the interior operator of the induced topology. Thus,
CSL contains the full logic S4u of topological spaces, and so can be used for
spatial representation and reasoning (see, e.g., [1]). The topological aspects of
CSL will be considered elsewhere.

Finally, it is to be noted that the operator ⇔ is closely related to the ‘implica-
tion’ > of conditional logics. According to Lewis’ [7] semantics for conditionals,
propositions are interpreted in a set W of possible worlds that come together
with orderings �w ⊆ W ×W , for w ∈ W , which can be understood as follows:
w′ �w w′′ if w′ is more similar or closer to w than w′′. A formula ϕ > ψ is true at
w iff, for every �w-minimal v with v |= ϕ, we have v |= ψ. Various authors (see,
for example, [3, 10]) have considered the case where the relations �w are induced
by min-spaces (∆, d) (in conditional logic, the requirement (min) is often called
the limit assumption) by setting

w′ �w w′′ iff d(w,w′) ≤ d(w,w′′).

Under this interpretation the operators ⇔ and > have exactly the same expres-
sive power: for every min-model I =

(
∆I, dI, pI

1 , p
I
2 , . . .

)
we have

(p1 > p2)I =
(
(p1 ⇔ (p1 u ¬p2)) t ∀¬p1

)I

and, conversely,

(p1 ⇔ p2)I =
(
((p1 t p2) > p1) u (p1 > ¬p2) u ¬(p1 > ⊥)

)I
.

Relations �w induced by symmetric distance spaces have not been considered
in the conditional logic literature. According to the classification of [5], our
(nominal-free) logic of arbitrary min-spaces corresponds to the conditional logic
of frames satisfying the normality, reflexivity, strict centering, uniformity and
connectedness conditions.

3 Main results

In this paper, our main concern is the computational behaviour of CSL over
natural classes of min-models, in particular, finite models.

Theorem 1. Let C be the class of all min-models satisfying any combination of
the properties (sym) and (tr), in particular, neither of them. Then the satisfi-
ability problem for CSL-terms in C is ExpTime-complete. Moreover, a term is
satisfiable in C iff it is satisfiable in a finite model from C.

Remark 1. For the nominal-free fragment of CSL over arbitrary min-models,
Theorem 1 was essentially proved in [5] in the framework of conditional logic.
We provide a new proof here because it serves as a preparation for the much
more sophisticated proof for the class of symmetric min-models.



Remark 2. It is to be noted that in fact the language of CSL cannot distinguish
between models with and without (tr). To see this, let us suppose that τ is
satisfied in a model I of the form (1) which does not satisfy (tr). Take any
strictly monotonic function f : R≥0 → (9, 10), where (9, 10) is the open interval
between 9 and 10. Define a new model I′ which differs from I only in the distance
function: dI′

(x, y) = f(dI(x, y)) for all x 6= y and dI′
(x, x) = 0 for all x. Clearly,

I′ satisfies the triangle inequality. It is easily checked that τ is satisfied in I′.

Remark 3. On the other hand, CSL can distinguish between models with and
without (sym). Consider, for example the term

p u ∀
[
(p→ (q ⇔ r)) u (q → (r ⇔ p)) u (r → (p ⇔ q))

]
One can readily check that it is satisfiable in a three-point model without (sym),
say, in the one depicted below where the distance from x to y is the length of
the shortest directed path from x to y.

• •
•
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However, this term is not satisfiable in any symmetric min-model. On the other
hand, it can be satisfied in the following subspace of R which is not a min-space:
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Our second main result is quite surprising: CSL turns out to be undecidable
when interpreted in finite subspaces of R. More precisely, we are going to prove
the following:

Theorem 2. For each n ≥ 1, the satisfiability problem for CSL-terms is unde-
cidable in the following classes of models:

1. models based on finite subspaces of Rn,
2. models based on finite subspaces of Zn,
3. models based on min-subspaces of Rn,
4. models based on min-subspaces of Zn.

Theorem 1 will be proved in the next section: for the lower bound we use
a reduction of the global consequence relation for the modal logic K, while
the upper bound is established by reduction to the emptiness problem for tree
automata. Theorem 2 is proved in Section 5 by reduction of the solvability
problem for Diophantine equations (and, for n > 1, the Z× Z tiling problem).



4 Proof of Theorem 1

We begin by establishing the lower ExpTime bound. The proof is by reduction
of the global K-consequence relation that is known to be ExpTime-hard [11]. We
remind the reader that the language LK of modal logic K extends propositional
logic (with propositional variables p1, p2, . . . ) by means of one unary operator
3. LK is interpreted in models of the form

N =
(
W,R, pN

1 , p
N
2 , . . .

)
, (3)

where W is a nonempty set, S ⊆ W ×W and pN
i ⊆ W . The value ϕN ⊆ W of

an LK-formula ϕ in N is defined inductively as follows:

– (ϕ ∧ ψ)N = ϕN ∩ ψN;
– (¬ϕ)N = W \ ϕN;
– (3ϕ)N = {v ∈W | ∃w (vRw ∧ w ∈ ϕN)}.

Say that ϕ1 follows globally from ϕ2 and write ϕ2 ` ϕ1 if, for every model N,
ϕN

1 = W whenever ϕN
2 = W . The problem of deciding whether ϕ2 ` ϕ1 holds is

ExpTime-hard [11].

Lemma 1. The satisfiability problem for (nominal-free) CSL-terms in any class
C of models mentioned in Theorem 1 is ExpTime-hard.

Proof. We define inductively a translation # from LK into the set of CSL-terms.
Let κ0 = q0, κ1 = ¬q0 u q1, κ2 = ¬q0 u¬q1, for some fresh variables qi. Then we
set p#

i = pi, (¬ϕ)# = ¬ϕ#, (ϕ1 ∧ ϕ2)# = ϕ#
1 u ϕ

#
2 , and

(3ϕ)# =
⊔
i<3

(
κi u ∃κi⊕1 u

(
(κi⊕1 u ϕ#) � κi⊕1

))
,

where ⊕ is addition modulo 3 and � means ‘at the same distance,’ i.e.,

τ1 � τ2 = ¬(τ1 ⇔ τ2) u ¬(τ2 ⇔ τ1). (4)

We show now that, for any ϕ,ψ ∈ LK,

ϕ ` ψ iff ∀ϕ# → ψ# is valid in C.

Suppose first that ϕ 6` ψ. This means that there is a K-model N of the form (3)
such that ϕN = W and r /∈ ψN for some r ∈ W . As is well-known from modal
logic, without loss of generality we may assume that (W,R) is an irreflexive
intransitive tree with root r. Consider the tree metric model

I =
(
W,d, pN

1 , p
N
2 , . . . , q

I
0 , q

I
1

)
,

where d is the standard tree metric on (W,R) (that is, d(u, v) = d(v, u) is
the length of the shortest undirected path from u to v in (W,R)) and qI

0 and
qI
1 consist of all points u ∈ W such that d(u, r) = 3n for some n ∈ N and



d(u, r) = 3n+1 for some n ∈ N, respectively. Clearly, I is a min-model. Now, it is
easily checked by induction that, for every formula χ ∈ LK, we have χN = (χ#)I,
whence (ϕ#)I = W and r /∈ (ψ#)I, and so ∀ϕ# → ψ# is not valid in C.

Conversely, suppose that ∀ϕ# u ¬ψ# is satisfied in some model

I =
(
∆I, dI, pI

1 , p
I
2 , . . . , q

I
0 , q

I
1

)
from C. Consider a K-model

N =
(
∆I, RI, pI

1 , p
I
2 , . . .

)
where uRIv for u, v ∈ ∆I iff, for some i ≤ 2,

u ∈ κI
i , v ∈ κI

i⊕1, and dI(u, v) = dI(u, κI
i⊕1).

Again, it is easily checked by induction that, for every formula χ ∈ LK, we have
χN = (χ#)I. It follows that ϕ 6` ψ.

Our next task is to prove the ExpTime upper bound and the finite model
property with respect to the given class C of models. We will require a number
of definitions.

Given a term τ , denote by cl τ the closure under single negation of the set
consisting of all subterms of τ , the term ⊥, and the term ∃ρ = ρ ⇔ ⊥ for every
subterm ρ of τ . A type t for τ is a subset of cl τ such that ⊥ /∈ t and the following
Boolean closure conditions are satisfied:

– τ1 u τ2 ∈ t iff τ1, τ2 ∈ t, for every τ1 u τ2 ∈ cl τ ,
– ¬ρ ∈ t iff ρ /∈ t, for every ¬ρ ∈ cl τ .

Clearly, |cl τ | is a linear function of the length |τ | (say, the number of subterms)
of τ .

A ‘typical’ type is given by an element w ∈ ∆I from a model I of the form
(1), namely,

tI(w) = {ρ ∈ cl τ | w ∈ ρI}.

A τ -bouquet is a pair B = (TB,≤B), where TB is a set of types for τ such
that 2 ≤ |TB| ≤ |cl τ |, and ≤B is a transitive, reflexive, and connected relation
on TB with a unique minimal element tB ∈ TB for which the following conditions
hold:

– τ1 ⇔ τ2 ∈ tB iff there exists some t ∈ TB such that τ1 ∈ t and τ2 /∈ t′ for
any t′ ≤B t,

– ∃ρ ∈ t for some t ∈ TB iff ∃ρ ∈ t for all t ∈ TB.

We use the following notation:

t ∼B t′ iff t ≤B t′ and t′ ≤B t

t <B t′ iff t ≤B t′ and t 6∼B t′.



The intended meaning of a τ -bouquet B is to encode the local requirements in
order to realise the type tB. A ‘typical’ τ -bouquet can be obtained by taking a
point w from I above and then selecting, for every term τ1 ⇔ τ2 from tI(w), a
point w′ such that dI(w,w′) is minimal with w′ ∈ τI

1 . Denote by V the set of
all selected points. Clearly, |V | < |cl τ | and we can assume that tJ(w1) 6= tJ(w2)
for any two distinct w1, w2 from V . If |V | ≥ 1, then we define the τ -bouquet
(T I

V (w),≤w) induced by w and V in I by taking

T I
V (w) = {tI(w)} ∪ {tI(w′) | w′ ∈ V },
tI(w′) ≤w tI(w′′) iff dI(w,w′) ≤ dI(w,w′′).

Notice that if we require a certain type t satisfied in I to be a member of the
bouquet then we can add to V a point w′ such that d(w,w′) is minimal with
t = tI(w′) and form the bouquet induced by w and V ∪ {w′}. In particular,
if I satisfies at least two distinct types, then we can always find a set V such
that w and V induce a bouquet. In what follows we will only be working with
models satisfying at least two distinct types. This is the interesting case because
the problem of checking satisfiability in a model with only one type is clearly
decidable in NP.

4.1 Non-symmetric case

First we establish the finite model property and the ExpTime upper bound for
satisfiability in min-models that are not necessarily symmetric. Let N be the set
of nominals occurring in τ . A set B τ -bouquets is said to be nominal ready if
there is a set {t` | ` ∈ N} of types for τ such that whenever {`} ∈ t ∈ TB, for
some B ∈ B, then t = t`.

Let k = |cl τ |. We remind the reader that the full k-ary tree over the set
{1, . . . , k}∗ (of finite sequences of elements of {1, . . . , k}) contains the empty
sequence ε as its root, and the immediate successors (children) of each node α
are precisely the nodes αi, where 1 ≤ i ≤ k. Given some set L (of labels), a
function K : {1, . . . , k}∗ → L will be called an L-labelled tree over {1, . . . , k}∗.

A Hintikka tree satisfying τ is a B-labelled tree K over {1, . . . , k}∗, for some
nominal ready set B of τ -bouquets, such that the following conditions are satis-
fied (where, as before, tK(α) denotes the unique ≤K(α)-minimal element of the
set of types TK(α) in the bouquet K(α)):

– τ ∈ tK(ε),
– for every nominal ` ∈ N , there exists a type in K(ε) containing {`},
– for every α ∈ {1, . . . , k}∗, K(α) is a bouquet such that

TK(α) \ {tK(α)} = {tK(αi) | 1 ≤ i ≤ k}

and tK(α) ∈ TK(αi), for 1 ≤ i ≤ k.

Lemma 2. For every term τ , the following conditions are equivalent:



(a) τ is satisfiable in some min-model (with at least two distinct types);
(b) there exists a Hintikka tree satisfying τ over {1, . . . , k}∗, where k = |cl τ |;
(c) τ is satisfiable in a finite model (with at least two distinct types).

Proof. (a) ⇒ (b) Suppose that τI 6= ∅ in some model I ∈ C of the form (1) with
at least two distinct types. We define a Hintikka tree K satisfying τ by induction
as follows. First take some w ∈ τI and set

K(ε) = (T I
Vε

(w),≤w),

where (T I
Vε

(w),≤w) is a bouquet induced by w and a suitable set Vε ⊆ W

containing {`}I for all ` that occur in τ . Here and in what follows we assume
that we construct the underlying sets of the bouquet as described above in the
introduction of bouquets.

Suppose now that we have already defined K(α), for some α ∈ {1, . . . , k}∗:

K(α) = (T I
Vα

(wα),≤wα
),

where (T I
Vα

(wα),≤wα) is induced by wα and a suitable set Vα. Take some sur-
jective map s : {1, . . . , k} → Vα. For each j, 1 ≤ j ≤ k, let

K(αj) = (T J
Vαj

(s(j)),≤s(j))

where (T I
Vαj

(s(j)),≤s(j)) is the bouquet induced by s(j) and a suitable set Vαj

which contains a w′ such that tJ(w′) = tJ(wα).
It is easy to see that the resulting K is a Hintikka tree satisfying τ .

(b) ⇒ (c) Suppose that K : {1, . . . , k}∗ → B with

K(α) = (Tα,≤α)

is a Hintikka tree satisfying τ over a nominal ready set B of τ -bouquets. First
we define a distance space (∆0, d0) with the domain ∆0 = {1, . . . , k}∗ in the
following way. Take a finite subset I of the interval (0, 1) and, for each α ∈ ∆0,
a map

fα : (TK(α) \ {tK(α)}) → I

for which t <K(α) t
′ iff fα(t) < fα(t′). Now set

– d0(α, αi) = fα(tK(αi)) for all α ∈ ∆0 and 1 ≤ i ≤ k,
– d0(α, α) = 0 and,
– d0(α, β) = 1 for β /∈ {α, α1, . . . , αk}.

It is not difficult to see that (∆0, d0) is a (non-symmetric) min-space.
For every type t such that t = tK(α) for some α ∈ ∆0, we fix exactly one α

with this property. Let ∆ be the set of the selected α. Construct a finite distance
model from C

I = (∆, d, `I1 , . . . , p
I
1 , . . . )



by taking pI
i = {α ∈ ∆ | pi ∈ tK(α)}, `Ii = α for the unique α ∈ ∆ with

{`i} ∈ tK(α), and, for α, β ∈ ∆,

d(α, β) = d0(α, {β′ ∈ ∆0 | tK(β′) = tK(β)}).

Now, given a subterm ρ of τ , one can prove by induction on the construction of
ρ that α ∈ ρI iff ρ ∈ tK(α). Therefore, τ is satisfied in I.

The implication (c) ⇒ (a) is clear.

We are now in a position to prove the ExpTime upper bound by a reduction
to the emptiness problem for finite looping tree automata; see [14, 12]. Recall
that a finite looping tree automaton A for infinite k-ary trees is a quadruple
(Σ,Q, Γ,Q0), where

– Σ is a (nonempty) finite alphabet,
– Q is a (nonempty) finite set of states of the automaton,
– Γ ⊆ Σ ×Q×Qk is a transition relation,
– Q0 ⊆ Q is a (nonempty) set of start states of the automaton.

Let T be a Σ-labelled tree over {1, . . . , k}∗. A run of A on T is a function
R : {1, . . . , k}∗ → Q such that

– R(ε) ∈ Q0, and
–

(
T (α), R(α), (R(α1), . . . , R(αk))

)
∈ Γ for all nodes α of T .

A accepts T if there exists a runR ofA on T . The following emptiness problem for
looping automata is decidable in polynomial time [12]: given a looping automaton
for k-ary trees, decide whether the set of trees it accepts is empty.

To reduce the satisfiability problem for CSL-terms in C, we associate with
every term τ and every nominal ready set B of τ -bouquets a finite looping
automaton AB

τ = (Σ,Q, Γ,Q0) which is defined as follows:

– Σ is the set of types occurring in bouquets from B,
– Q = B,
– Q0 = {B ∈ B | τ ∈ tB, B contains a type containing `, for every ` in τ},
–

(
t,B0, (B1, . . . ,Bk)

)
∈ Γ iff tB0 = t, TB0 \ {tB0} coincides with the set

{tBi
| 1 ≤ i ≤ k}, and tB0 ∈ TBi

, for 1 ≤ i ≤ k.

It follows immediately from Lemma 2 and the given definitions that the runs of
AB

τ on Σ-labelled trees are exactly the B-labelled Hintikka-trees satisfying τ .

Lemma 3. A term τ is satisfiable in a min-model (with at least two types) iff
there exists a nominal ready set B such that AB

τ accepts at least one tree.

As there are only exponentially many different nominal ready sets B and as
AB

τ is only exponential in |cl τ |, the satisfiability problem in min- (and finite)
models is decidable in ExpTime.



4.2 Symmetric case

The construction is more involved if we deal with the class of symmetric CSL-
models. Suppose that B is a nominal ready set of τ -bouquets, |cl τ | = k, and
K : {1, . . . , k}∗ → B is a B-labelled Hintikka tree with K(α) = (Tα,≤α) and
tα = tK(α), for α ∈ {1, . . . , k}∗.

We ‘paint’ each node of K in one of three ‘colours:’ inc (for increasing), const
(for constant), and dec (for decreasing). The colour of a node α will be denoted
by c(α). It is defined by induction as follows. The root ε and its immediate
successors are painted with the same colour, say, c(ε) = c(1) = · · · = c(k) = inc.
Suppose now that we have already defined c(αi). Then, for 1 ≤ j ≤ k, we set

– c(αij) = const iff tαij ∼αi tα,
– c(αij) = dec iff tα >αi tαij ,
– c(αij) = inc iff tα <αi tαij .

Intuitively, the colours determine whether in the symmetric space (∆0, d0) to
be constructed from {1, . . . , k}∗ we have d0(α, αi) = d0(αi, αij) (the constant
case), d0(α, αi) < d0(αi, αij) (the increasing case), or d0(α, αi) > d0(αi, αij)
(the decreasing case).

We call K a min-tree if its every branch with infinitely many dec nodes also
contains infinitely many inc nodes.

We require two simple observations. First, we claim that the Hintikka tree
K constructed in the proof of Lemma 2 starting from a symmetric min-model I
is a min-tree. Indeed, suppose otherwise. Then we have an infinite branch ᾱ in
K starting from some α all of whose nodes are dec or const and such that dec
occurs infinitely many times in ᾱ. As the set {t | t = tβ , β ∈ ᾱ} is finite and
tγ 6= tγi, for any i, we must have two distinct types t, t′ for τ such that the set
of pairs

A =
{
(β, β′) ∈ ᾱ2 | β′ = βi, 1 ≤ i ≤ k, and (tβ , tβ′) = (t, t′)

}
is infinite. Take the points wβ ∈ ∆I, β ∈ ᾱ, which induce the nodes from ᾱ.
As I is symmetric and by the construction of bouquets, we have d(wβ , wβi) ≥
d(wβi, wβij) whenever c(βij) = const and d(wβ , wβi) > d(wβi, wβij) whenever
c(βij) = dec.

Now let T ⊆ ∆J and T ′ ⊆ ∆J be defined by

T = {wβ | (β, β′) ∈ A} and T ′ = {wβ′ | (β, β′) ∈ A}.

As I is a min-model, there are points u ∈ T and u′ ∈ T ′ such that dI(u, u′) =
dI(T, T ′). By the definition of bouquets induced by points of I, we may assume
that (u, u′) gives rise to a (β, β′) ∈ A. Now take some (γ, γ′) ∈ A that occurs in
the branch ᾱ later than (β, β′) and such that some dec node occurs between β′

and γ. Let v and v′ be the points from I inducing γ and γ′. Since all nodes in ᾱ
are dec or const and as there is at least one dec node between β′ and γ, we come
to the conclusion that dI(v, v′) < dI(u, u′) = dI(T, T ′), which is a contradiction.



Our second observation is that if there is a sequence α, αi1, . . . , αi1 · · · in+1

(for 1 ≤ ij ≤ k) of nodes of K such that

(K(α),K(αi1)) = (K(αi1 · · · in),K(αi1 · · · in+1))

then by ‘cutting off’ the nodes α, . . . , αi1 · · · in−1 we obtain again a B-labelled
Hintikka tree such that the colours of the (renamed) nodes do not change.

We are now in a position to prove a symmetric analogue of Lemma 2.

Lemma 4. For every term τ , the following conditions are equivalent:

(a) τ is satisfiable in some symmetric model (with at least two distinct types);
(b) there exists a Hintikka min-tree satisfying τ over {1, . . . , k}∗, where k =

|cl τ |;
(c) τ is satisfiable in a finite symmetric model (with at least two different types).

Proof. (a) ⇒ (b) is established in precisely the same way as in the proof of
Lemma 2 using the first observation above that if we start with a symmetric
model then the resulting Hintikka tree is a min-tree. (c) ⇒ (a) is again trivial.

(b) ⇒ (c) Suppose that K : {1, . . . , k}∗ → B is a Hintikka min-tree satisfying
τ with

K(α) = (Tα,≤α) and tα = tK(α).

By the second observation above, without loss of generality we may assume
that if no node in a path of the form α, αi1, . . . , αi1 · · · in is inc then no two
dec nodes βij and β′ij in it can have predecessors (β, βi) and (β′, β′j) such
that (K(β),K(βi)) = (K(β′),K(β′j)). It follows that there is a number nτ

(exponential in |cl τ |) which bounds the numbers of dec nodes in each such path.
Now we define a symmetric distance space (∆0, d0) with ∆0 = {1, . . . , k}∗

(symmetry means that d0(α, αi) = d0(αi, α) for α ∈ ∆0 and 1 ≤ i ≤ k). First
we take a set D ⊂ (9, 10) of cardinality nτ × |cl τ |. For all 1 ≤ i ≤ k we
define d0(ε, i) to be the maximal numbers in D such that we can satisfy the
constraint: d0(ε, i) < d0(ε, j) iff tK(i) <ε tK(j), for 1 ≤ i, j ≤ k. Suppose now
that d0(α, αi) ∈ D is defined. Then we define d0(αi, αij) to be the maximal
number in D such that we can satisfy the constraints

– d0(αi, αij) = d0(α, αi) for tK(αij) = tK(α) and
– d0(αi, αij) < d0(αi, αij′) iff tK(αij) <αi tK(αij′), for 1 ≤ j, j′ ≤ k.

Notice that this is possible by the definition of nτ . Finally, set d0(α, α) = 0 and
d0(α, β) = 10 for all remaining α 6= β.

Now construct a finite symmetric model I = (∆, d, pI
1 , . . . , `

I
1 , . . . ) as follows.

Let∼ be the equivalence relation on∆0 defined by taking α ∼ β iff tK(α) = tK(β).
Then we set

[α] = {β ∈ ∆0 | α ∼ β}, ∆ = {[α] | α ∈ {1, . . . , k}∗}, d([α], [β]) = d0([α], [β])

and [α] ∈ pi
i iff pi ∈ tK(α), and `Ii = [α] for the uniquely determined [α] such that

{`i} ∈ tK(α). We leave it to the reader to check that this model is as required.



A single complemented pair automaton A on infinite k-ary trees is a tuple
(Σ,Q, Γ,Q0, F ), where

– (Σ,Q, Γ,Q0) is a looping tree automaton as defined in Section 4.1,
– F is a pair of disjoint sets of states from Q; it will be convenient for us to

assume that F = (dec, inc) and dec, inc ⊆ Q.

A accepts a Σ-labelled tree T over {1, . . . , k}∗ iff there exists a run R of A on T
such that, for every path i0i1 . . . in T , if R(i0i1 . . . ij) ∈ dec for infinitely many
j, then R(i0i1 . . . ij) ∈ inc for infinitely many j as well.

As was shown in [4], the emptiness problem for single complemented pair
automata is decidable in polynomial time. We show now how to reduce the sat-
isfiability problem for CSL-terms in symmetric models to the emptiness problem
for these automata.

A coloured τ -bouquet is a pair (B, c) where B = (TB,≤B) is a τ -bouquet
and c is a function from TB to {dec, inc, const}.

With every term τ and every nominal ready set B of coloured τ -bouquets
we associate a single complemented pair automaton AB

τ = (Σ,Q,∆,Q0, F ) by
taking

– Σ to be the set of types occurring in coloured bouquets of B,
– Q = B,
– Q0 = {(B, c) ∈ B | τ ∈ tB, B contains a type with ` for every ` in τ},
– dec = {(B, c) ∈ B | c(tB) = dec},
– inc = {(B, c) ∈ B | c(tB) = inc},
–

(
t, (B0, c0), (B1, c1), . . . , (Bk, ck)) ∈ Γ iff tB0 = t,

TB0 \ {tB0} = {tBi
| 1 ≤ i ≤ k}

tB0 ∈ TBi\{tBi}, ci(tBi) = c0(tBi) for 1 ≤ i ≤ k, and for all t′ ∈ TBi\{tBi},
• ci(t′) = inc iff t <Bi

t′,
• ci(t′) = const iff t′ ∼Bi

t,
• ci(t′) = dec iff t′ <Bi

t.

It follows immediately from Lemma 4 and the given definitions that the runs
of AB

τ on Σ-labelled trees are exactly the B-labelled Hintikka-trees satisfying τ .

Lemma 5. A term τ is satisfiable in a symmetric min-model (with at least two
distinct types) iff there exists a nominal ready set B of coloured τ -bouquets such
that AB

τ accepts at least one tree.

As there are only exponentially many different nominal ready sets B of
coloured τ -bouquets and as AB

τ is only exponential in |cl τ |, the satisfiability
problem in symmetric min-models is decidable in ExpTime.

This completes the proof of Theorem 1.



5 Proof of Theorem 2

First we show that one can always deal with models based on one-dimensional
spaces. Suppose that a CSL-model I is based on Rn for n > 1, and that a, b are
object names. The term

({a} � {b}) u ∀¬({a} u {b})

is satisfied in I iff aI 6= bI, and so it defines in I an affine subspace of dimension
n− 1 (the mediating hyperplane for the line segment aIbI ). Now we can iterate
this construction: take distinct object names a0, b0, . . . , an−2, bn−2 and consider
the term l

i<n−1

(
{ai} � {bi}

)
u

l

i<n−1

∀¬
(
{ai} u {bi}

)
u

l

j<i<n−1

(
{ai} t {bi} →

(
{aj} � {bj}

))
.

Clearly, if this term is satisfied in I then it defines a one-dimensional subspace.
We show now how to prove the undecidability of the satisfiability problem for

CSL-terms in finite subspaces of R (in particular, those of the form {1, . . . ,m}
where m ≥ 1), and then discuss how to deal with other cases. Our proof is
by reduction of the decision problem for Diophantine equations (Hilbert’s 10th
problem) which was shown to be undecidable by Matiyasevich–Robinson–Davis–
Putnam; see [9, 2] and references therein. More precisely, we will use the following
(still undecidable) variant of this problem:

given arbitrary polynomials g and h with coefficients from N \ {0, 1}, decide
whether the equation g = h has a solution in the set N \ {0, 1}.

Denote by F the class of finite metric models I of the form (1) such that
(∆I, dI) is a finite subspace of (R, d), where d is the standard metric on R. Our
aim is to provide an algorithm that constructs, for every polynomial equation
g = h over N \ {0, 1}, a CSL-term which is satisfiable in F iff g = h is solvable
in N \ {0, 1}. It is easy to see that each polynomial equation can be rewritten
equivalently as a set of elementary equations of the form

x = y + z, x = y · z, x = y, x = n, (5)

where x, y, z are variables and n ∈ N \ {0, 1}. Thus, it suffices to encode satis-
fiability of such elementary equations via satisfiability of CSL-terms in F . This
will be done in three steps:

1. first we ensure that the underlying space of a given model coincides (modulo
an affine transformation) with {0, 1, . . . , n}, for some n ∈ N, and define the
operations ‘+1’ and ‘−1’ on this space;

2. then we define, in this model, sets of the form {j, l+ j, 2l+ j, . . . } with j < l
that are used to represent the (possibly unknown) number l;

3. finally, we encode addition and multiplication on such sets.



Step 1. Say that models I,L ∈ F are affine isomorphic and write I ' L if
there exists an affine transformation f(x) = ax+ b from ∆I onto ∆L such that
f(`I) = `L and x ∈ pI iff f(x) ∈ pL, for all x ∈ ∆I, nominals ` and atomic
terms p. In this case we clearly have f(τI) = τL for every term τ .

Take object names a, e, atomic terms p0, p1, p2, and set base(a, e; p0, p1, p2)
to be the following term:

∀
( l

i<j<3

¬(pi u pj) u
(
{a} → p0 u (p1 ⇔ p2)

)
u

l

i<3

(
pi u ¬{a} u ¬{e} → (pi�1 � pi�1)

)
u(

{e} → p2 u (p1 ⇔ p0)
))
,

where � and � denote + and − modulo 3.
A typical model from F satisfying base(a, e; p0, p1, p2) u ∀(p0 t p1 t p2) is

depicted below:

• • • . . . • • •
a =0 1 2 3n−3 3n−2 3n−1 = e

p0 p1 p2 p0 p1 p2
(6)

More precisely, we have the following:

Lemma 6. A model L ∈ F satisfies base(a, e; p0, p1, p2)u∀(p0tp1tp2) iff there
exist I ∈ F and n > 0 such that I ' L and

∆I = {0, 1, . . . , 3n− 1}, aI = 0, eI = 3n− 1,

pI
i = {3k + i | k ∈ N, k < n}, i < 3.

(7)

Proof. Given x ∈ ∆L and y ∈ Y ⊆ ∆L, we say that y is a Y -neighbour of x if
d(x, y) = d(x, Y ). In particular,

– for Y = {y ∈ ∆L | y < x}, we call y the left neighbour of x,
– for Y = {y ∈ ∆L | y > x}, y is called a right neighbour of x, and
– for Y = τL, we say that y is the τ -neighbour of x.

Clearly, the left and right neighbours of a given x are always unique.
(⇒) Suppose L satisfies base(a, e; p0, p1, p2) u ∀(p0 t p1 t p2). Then pL

0 , pL
1 ,

pL
2 are pairwise disjoint, and so the endpoints of ∆L cannot satisfy pi � pj for
i 6= j. It follows that {aL, eL} = {min∆L,max∆L}.

Let x be a p1-neighbour of aL. Then x 6∈ aL, and so there exist some I ∈ F
and an affine isomorphism f : L → I such that aI = 0 = min∆I, f(x) = 1, and
eI = max∆I.

Note that if i < 3, y ∈ pI
i \ {0, eI} and y−, y+ are, respectively, pi�1- and

pi�1-neighbours of y, then y− is the left neighbour of y, y+ its right neighbour,
and y+ − y = y − y−.

Suppose now that x′ is a p2-neighbour of 0. Then x′ > 1 and, therefore,
p1 ⇔ p2 holds everywhere (strictly) between 0 and 1. It follows that 0 and x′

are, respectively, the p0- and p2-neighbours of 1. As we saw above, this means
that x′ − 1 = 1− 0 (i.e., x′ = 2) and (0, 1) ∩∆I = (1, 2) ∩∆I = ∅ (as in (6)).



In exactly the same way we can show that if k ∈ N, k < eI and i = k mod 3,
then k ∈ pI

i , k+1 ∈ pI
i�1 and (k, k+1)∩∆I = ∅. Therefore, since eI = max∆I,

we have eI = max{y ∈ N | y < eI}+ 1, that is, eI ∈ N and eI ≡ 2(mod 3).
(⇐) Let I be a model defined by (7). Then the term base(a, e; p0, p1, p2) u

∀(p0 t p1 t p2) is clearly satisfied in I, and so in every L ' I.

Let In be the class of models from F satisfying (7). In what follows we will
only consider models of this form. Define the following analogues of the temporal
‘next-time’ operators simulating the functions ‘+1’ and ‘−1’:eρ =

⊔
i<3

(
¬{e} u pi u (pi�1 � (pi�1 u ρ))

)
,

e−1ρ =
⊔
i<3

(
¬{a} u pi u (pi�1 � (pi�1 u ρ))

)
and sete0ρ = ρ, ek+1ρ = e ekρ, e−k−1ρ = e−1 e−kϕ, for all k ∈ N.

One can readily check that we have the following:

Lemma 7. For all k ∈ N and x ∈ ∆In ,

x ∈ ( ekρ)In iff x < 3n−k and x+k ∈ ρIn ,

x ∈ ( e−kρ)In iff k ≤ x < 3n and x−k ∈ ρIn .

Step 2. Let I ∈ In for some n, and l ∈ N. As a ‘standard’ representation of l
in I we use the subset of I of the form {0, l, 2l, . . . }. However, ‘indented’ subsets
of the form {j, j + l, j + 2l} with j < l will also be required at Step 3. Our next
term defines subsets of this form.

To simplify notation, we denote lists like p0, p1, p2 by p, and terms of the
form p0 t p1 t p2 by p∗. Take fresh object names b, d, atomic terms q0, q1, q2,
and define seq(b, d;q) to be the term

∀
( l

i<j<3

(
qi → ¬qj u ¬ eqj) u

(
{b} → q0 u ({a} ⇔ q1) u (q1 ⇔ q2)

)
u

l

i<3

(
qi u ¬{b} u ¬{d} → (qi�1 � qi�1)

)
u⊔

i<3

(
{d} → qi u ({e} ⇔ qi�1) u (qi�1 ⇔ qi�2)

))
.

This term is supposed to describe the following structure:

• • • • . . . • • • •
a b d e

q0 q1 q2 qi�2 qi�1 qi

That is, points of the sets q0, q1, q2 are periodically placed within equal distances
(greater than one) between b and d, with d(a, b) and d(d, e) being smaller than
the distance between different points satisfying q∗. Indeed, similarly to the proof
of Lemma 6 one can easily show the following:



Lemma 8. Let I ∈ In. Then seq(b, d;q) is satisfied in I iff there exists j < l
such that, for all i < 3,

qI
i = {lk+ j | k ≡ i(mod 3), lk+ j < 3n}, bI = min qI

∗ , dI = max qI
∗ . (8)

If (8) holds, we say that the triple (b, d;q)—or just q—encodes in I the
number l with indent j. If j = 0, then we say that this encoding is standard.

Let q and q′ encode in I some numbers l and l′. If the encodings are standard,
then it is easy to express that l < l′ or l = l′ (take the terms ∀({a} → (q1 ⇔ q′1))
and ∀({a} → (q1 � q′1)), for example). Thus, it remains to understand how
to express l = l′ if, say, q′ encodes l′ with indent j′ 6= 0. Obviously, the sets
defined by q∗ and q′∗ must either coincide or have an empty intersection. And
this condition turns out to be sufficient as well, provided that the members of
these sets alternate within a sufficiently long segment:

Fact 1 Let l, l′ and j′ be integer numbers such that kl < kl′ + j′ < (k + 1)l for
every k < l. Then l = l′.

We show now how to ensure that 0 ≤ j < l ≤ l′+ j′ < 2l ≤ 2l′+ j′ < . . . and
l2 ≤ max∆I, for such l and l′. First, using Lemmas 7 and 8 we can express the
property that the common difference of one arithmetic progression is greater by
1 than the common difference of the other progression:

Lemma 9. Let I ∈ In, c̄ be an object name and q̄0, q̄1, q̄2 atomic terms. Then
the term

seq(a, c;q) u seq(a, c̄; q̄) u ∀({a} → (q̄1 � eq1))
is satisfied in I iff there exists l > 1 such that, for all i < 3,

qI
i = {lk | k ≡ i(mod 3), lk < 3n}, cI = max qI

∗ and

q̄I
i = {(l − 1)k | k ≡ i(mod 3), (l − 1)k < 3n}, c̄I = max q̄I

∗ .
(9)

Next, Lemma 9 and the fact that x = l(l− 1) is the least positive solution to

x ≡ 0(mod l) and x ≡ 0(mod (l − 1))

can be used to say that seq(a, c;q) defines a set with l2 < max∆I.

Lemma 10. The term

seq(a, c;q) u seq(a, c̄; q̄) u ∀({a} → (q̄1 � eq1)) u
∃(q∗ u q̄∗ u ¬{a} u ¬{c})

is satisfied in I ∈ In iff (9) holds for some l > 1 with l2 < 3n and all i < 3.

Further, let alt(a, c, b, d;q, r) denote the term

∀
l

i<3

(
({a} → (b ⇔ q1)) u
(qi u ¬{a} u ¬{c} → ¬(qi�1 ⇔ ri�1) u (ri ⇔ qi)) u

(ri u ¬{d} → (qi ⇔ ri�1) u ¬(ri�1 ⇔ qi))
)
.



Lemma 11. Suppose that seq(a, c;q)u seq(b, d; r) is satisfied in I ∈ In, and let
qI
∗ = {x0, . . . , xk}, rI

∗ = {y0, . . . , ym} be such that xi < xi+1 and yi < yi+1. Then
I satisfies alt(a, c, b, d;q, r) iff k − 1 ≤ m ≤ k and x0 ≤ y0 < x1 ≤ y1 < . . . .

Proof. Suppose I satisfies alt(a, c, b, d;q, r). Then, by the first conjunct of alt,
we obtain x0 ≤ y0 < x1. The third one yields y1 − y0 ≥ x1 − y0, i.e., x1 ≤ y1.
And using the second conjunct we obtain x2−x1 < y1−x1, i.e., y1 < x2. By the
same argument, we see that the sequence x0 ≤ y0 < x1 ≤ y1 < . . . terminates
either with xk−1 ≤ yk−1 < xk, cI = xk, dI = yk−1, or with yk−1 < xk ≤ yk,
cI = xk, dI = yk.

The other direction is straightforward and left to the reader.

We are now in a position to express that two tuples of terms represent the
same number. Let equ(a, c, b, d;q, r) be the term

alt(a, c, b, d;q, r) u
(
∀(q∗ ↔ r∗) t ∀(q∗ → ¬r∗)

)
.

Lemma 12. Suppose that I ∈ In, (a, c;q) encodes standardly some l with
l2 < 3n, and (b, d; r) encodes some l′. Then I satisfies equ(a, c, b, d;q, r) iff l = l′.

Proof. Let I satisfy equ(a, c, b, d;q, r). By the second conjunct of equ we know
that our sequences either coincide or are disjoint. In the former case we are done.
In the latter one it suffices to use Lemma 11 and Fact 1. The other direction is
clear.

Step 3. Now we encode addition and multiplication. Let (a, c;q), (a, c′, r),
(a, c′′, s) encode standardly some numbers u, v and w respectively. Suppose we
want to say that u = v+w. Consider first the case v < w, which can be expressed
as ∀({a} → (r1 ⇔ s1)). Take fresh (b, d; s′) and state:

seq(b, d; s′) u (b, d; s′) encodes
alt(a, c′, b, d; s, s′) u the number w
∀({a} → (r1 � s′0)) u with indent v,
∀({a} → (q1 � s′1)) and u = v + w.

The case v > w is a mirror image. And to say that v = w and u = v + v we can
use the term ∀

(
{a} → (r1 � s1)) u ∀({a} → (q1 � s2)

)
.

To encode multiplication we use the following observation.

Fact 2 Let v, w be integer numbers with 0 < v < w − 1. Then

1) u = vw is the least solution to u ≡ 0(mod w), u ≡ v(mod (w−1)).
2) u = (w−1)w is the least positive solution to u ≡ 0(mod w), u ≡ 0(mod (w−1)).
3) u = w2 is the least solution to u ≡ 0(mod w), u ≡ 1(mod (w−1)), x > w.

Suppose we want to say that u = v · w Consider first the case v < w − 1. Take
fresh (a, c̄; s̄), (b, d; ¯̄s) and state:

seq(a, c̄; s̄) u ∀({a} → (s̄1 � es1)) u (a, c̄; s̄) encodes standardly w − 1,
seq(b, d; ¯̄s) u alt(a, c̄, b, d; s̄, ¯̄s) u and ¯̄s encodes w − 1
∀({a} → (r1 � ¯̄s0)) with indent v. (10)



Then, in view of Fact 2 (1), term (10) means that v ·w is the least point satisfying
s∗ u ¯̄s∗. Therefore, ∀

(
{a} → (q1 � (s∗ u ¯̄s∗))

)
in conjunction with (10) ensures

that u = v · w.
The case v = w−1 is similar (we use Fact 2 (2)), and we can deal by symmetry

with w < v, w = v − 1. Assume now that v = w. Take fresh (b, d; s̄). The term

seq(b, d; s̄) u ∀({a} → ēs u (s̄1 � s1)) (11)

means that (b, d; s̄) encodes w − 1 with indent 1. Then, in view of Fact 2 (3),
term (11) implies that w and w2 are two smallest points satisfying s∗ u s̄∗. But
w2 also satisfies s0 ⇔ {a}, while w does not. Hence the term

∀
(
{a} →

(
q1 � (s∗ u s̄∗ u (s0 ⇔ {a}))

))
in conjunction with (11) ensures that u = w2.

Thus, we can encode elementary equations of the form (5), and so any poly-
nomial equation as well. This proves Theorem 2 (1,2).

Now we outline the proof Theorem 2 (3,4) for n = 1. Basically, we follow the
same scheme as before. However, some things can be simplified.
Step 1′. Let R be the class of models based on min-subspaces of R. Consider
the term

Base(p) = ∃p0 u ∃p1 u ∀
l

i<3

(
pi → ¬pi�1 u (pi�1 � pi�1)

)
.

Then Base(p) u ∀p∗ is satisfied in a model I ∈ R iff I ' Z, where Z has the
following structure:

∆Z = Z, pZ
i = {3k + i | k ∈ Z}, for all i < 3. (12)

The ‘next-time’ operator and its inverse are now defined in the following way:eρ =
⊔
i<3

(pi u (pi�1 � pi�1 u ρ)), e−1ρ =
⊔
i<3

(pi u (pi�1 � pi�1 u ρ)).

To fix the intended origin and orientation for our model, take a fresh variable p
and set

Orig(p) = ∃(p2 u ¬p u ep) u ∀(p→ ep).
Then a model Z of the form (12) satisfies Orig(p) iff pZ = {k, k+1, . . . }, for some
k ∈ Z, k ≡ 0(mod 3). In what follows, we assume that pZ = N. Thus p u e−1p
defines {0}.
Step 2′. The term

Seq(q0, q1, q2) = ∀
l

i<3

(
qi → (qi�1 � qi�1)

)
u ∃

(
q0 u p u (q2 ⇔ q2 u p)

)
is satisfied in Z iff there exists j < l in N such that qZ

i = {lk+ j | k ≡ i(mod 3)},
for all i < 3. Note that in this case j, j + l, j + 2l will be the nearest to 0



points satisfying q0 u p, q1 u p, q2 u p respectively. As before, a set of the form
{lk + j | k ∈ Z} is used to encode the number l. Further, we set

Alt(q,q′) = ∀
l

i<3

(
(qi → (q′i ⇔ qi�1)) u (q′i → (qi ⇔ q′i�1))

)
,

Equ(q,q′) = Alt(q,q′) u
(
∀(q∗ ↔ q′∗) t ∀(q∗ → ¬q′∗)

)
.

Then Z satisfies Seq(q) u Seq(q′) u Equ(q,q′) iff q and q′ represent the same
number in Z.

Step 3′. We encode the arithmetic operations using the same ideas as before.

It is to be noted that the undecidability for min-subspaces of Rn, n ≥ 2, can
be proved by reduction of the Z× Z tiling problem. To simulate the Z× Z grid
we use the term

τ0 = ∃p0 u ∃p1 u ∀
l {

pi → (pj � pi�1) | i, j < 7, j 6= i, i�1
}
,

where ⊕ is addition modulo 7. Let T be a model satisfying τ0 such that ∆T is a
subspace of R2, and let Pi = pT

i . Then one can show that P0 ∪ · · · ∪P6 forms an
infinite grid as in (13a).

a)

• •

• • •

• •

b)

• • •

• • • •

• • •

u6 x0 x1

u1 x2 x3 v4

x4 x5 v6
(13)

To encode tilings, we need to fix some concrete partition of this grid into the
sets P0, . . . , P6. First we note that, in fact, it suffices to fix such a partition for
a few points only. Indeed, suppose that x0 ∈ P0, . . . , x5 ∈ P5 are located as
in (13b). Then either v4 ∈ P4 and v6 ∈ P6, or v4 ∈ P6 and v6 ∈ P4, since x3

must have exactly one neighbour in each of the sets P0, . . . , P6. Using the same
argument inductively, we see that only one partition of the grid into the sets
P0, . . . , P6 can satisfy τ0 and realise the configuration in (13b) for certain points
x0 ∈ P0, . . . , x5 ∈ P5; it is shown in (14a).

a)

• • • •

• • • • •

• • • • •

• • • •

P4 P5 P6 P0

P6 P0 P1 P2 P3

P1 P2 P3 P4 P5

P4 P5 P6 P0

b)

• •
•

•

Pi Pk

µijk

Pj

(14)

To ensure that such x0, . . . , x5 exist, we set, for distinct i, j, k < 7,

µijk = (pi � pj) u (pj � pk) u
l
{pk ⇔ pl | l < 7, l 6= i, j, k}.



Then x belongs to µT
ijk iff there exist xi ∈ Pi, xj ∈ Pj , xk ∈ Pk that form a

small triangle in our grid with centre x; see (14b). Now set

τ1 = ∃
(
µ103 u

((
µ032 u

(
(µ325 u (µ254 � p5)) � p2

))
� p3

))
.

Then T satisfies τ1 iff, for some small triangles x1x0x3, x′0x
′
3x2, x′′3x

′
2x5, x′′2x

′
5x4

with centres x,w, v, u, respectively, we have:

– xi, x
′
i, x

′′
i ∈ Pi; x,w, v, u ∈ ∆T; and

– dT(x,w) = dT(x, x3), dT(w, v) = dT(w, x2), dT(v, u) = dT(v, x5).

Clearly, this is possible only if x0 = x′0, x3 = x′3 = x′′3 , x2 = x′2 = x′′2 , x5 = x′5,
which means that the points x0, . . . , x5 are located as in (13b). Therefore, in this
case, the structure of the grid will be as in (14a).

Thus, in any model T satisfying τ1 u τ2, we can interpret the structure of
Z × Z and the relations left–right, above–below: for a point x ∈ Pi, its nearest
point in Pi�1 (Pi�2) can be regarded as the right (upper) neighbour of x. Hence
Z× Z tilings can be encoded in T.

6 Outlook

In this paper, we have investigated the computational complexity of the basic
logic CSL for comparative similarity. The final verdict is that this logic be-
haves similarly to standard description logics (is ExpTime-complete) over gen-
eral classes of (finite or min-) distance spaces, but becomes undecidable when
interpreted over (finite or min-) subspaces of Euclidean spaces.

Starting from the positive results, one can now investigate combinations of
CSL with ‘quantitative’ similarity logics from [16, 8] as well as with descrip-
tion logics. On the other hand, it would be interesting to find out how one can
avoid the ‘negative’ results for subspaces of Rn. One promising route is to im-
pose restrictions on the interpretations of set variables. For example, in many
applications it seems natural to assume that variables are interpreted as in-
tervals in (subspaces of) R. In this case decidability would follow immediately.
Another related question is whether the computational behaviour of the logics
depends on the ‘crisp’ truth-conditions. Exploring more relaxed ‘non-punctual’
truth-conditions could be important as well in order to take into account un-
precise measurements, vagueness, and paradoxes of similarity such as the Sorites
paradox.
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