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abstract. We propose a framework for comparing the expressive power

and computational behaviour of modal logics designed for reasoning about
qualitative aspects of metric spaces. Within this framework we can compare

such well-known logics as S4 (for the topology induced by the metric), wK4

(for the derivation operator of the topology), variants of conditional logic,
as well as logics of comparative similarity. One of the main problems for

the new family of logics is to delimit the borders between ‘decidable’ and

‘undecidable.’ As a first step in this direction, we consider the modal logic
with the operator ‘closer to a set τ0 than to a set τ1’ interpreted in metric

spaces. This logic contains S4 with the universal modality and corresponds

to a very natural language within our framework. We prove that over
arbitrary metric spaces this logic is ExpTime-complete. Recall that over R,

Q, and Z, as well as their finite subspaces, this logic is undecidable.
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1 Introduction

Various ‘modal-like’ propositional logics have been introduced for reasoning
about qualitative aspects of metric spaces. Recall, for example, the modal
logic S4 whose diamond and box are interpreted as the closure and interior
operators of the induced topology [10], the modal logic wK4 whose box is
interpreted as the derivation operator on the topological space (see, e.g., [10,
2]), the extensions of these logics with the universal modality, conditional
logic with a binary operator comparing distances between points [8], and
the logics of comparative similarity [12]. In all of these cases, the truth
conditions for the modal operators correspond to certain simple quantifier
patterns of first-order logic:

• the interior IX of a set X is the set{
w | ∃a ∈ R>0 ∀v (d(w, v) < a→ v ∈ X)

}
,

• the universal box 2 is defined by

2X =
{
w | ∀a ∈ R>0 ∀v (d(w, v) < a→ v ∈ X)

}
,
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• the derived set ∂X of X is{
w | ∀a ∈ R>0 ∃v (v ∈ X ∧ 0 < d(w, v) < a)

}
,

• the ‘closer operator’ X ⇔ Y for ‘X is closer than Y ’ in the language
CSL of comparative similarity or distances [12] is defined by{

w | ∃a ∈ R>0 (∃v ∈ X d(w, v) < a ∧ ¬∃v ∈ Y d(w, v) < a)
}
,

• the interpretation of some variants of the conditional implication op-
erator X > Y [8] can be given by the formula (see, e.g., [1, 11])

(X ⇔ (X ∧ ¬Y )) ∨2¬X.

Of course, in the modal languages the quantifier patterns above are only
implicit and therefore ‘forgotten.’ This probably explains why the relation
between the first-order logic and different modal logics for metric spaces has
received very little attention from the modal community; see [6] for a brief
review of the available results.

In this paper, we first make the quantifier patterns above explicit by
introducing ‘modal’ operators of the form ∃<x, ∃>x, ∃=x, ∃<x

>0 (and their
duals ∀<x, ∀>x, etc.), where the variable x ranges over the positive real
numbers and can be bound by the quantifiers ∀x and ∃x. Intuitively, if x is
assigned a value a ∈ R>0, then ∃<xX denotes the set of all points that are
located at distance < a from at least one point in X. In this language the
intended meaning of the operators considered above can be represented in
a clear and concise manner:

Iτ = ∃x∀<xτ, (1)
2τ = ∀x∀<xτ, (2)
∂τ = ∀x∃<x

>0τ, (3)
τ1 ⇔ τ2 = ∃x(∃<xτ1 ∧ ¬∃<xτ2), (4)

τ1 > τ2 = ∃x
(
∃<xτ1 ∧ ¬∃<x(τ1 ∧ ¬τ2)

)
∨2¬τ1. (5)

We observe that the resulting modal language, called QMS (for quali-
tative metric system), has the same expressive power as the two-variable
fragment of a certain two-sorted first-order language for metric spaces, and
thereby obtain a first insight into the relation between first-order and (quali-
tative) modal languages for metric spaces. As follows from (1)–(3), the logics
wK4,S4 and S4u (that is, S4 enriched with the universal modalities) give
rise to CT L-like fragments of QMS with modal operators corresponding to
the quantifier pattern ‘a quantifier over the reals followed by a quantifier
over the space.’ These observations motivate the following general research
programme:

Classify and investigate fragments of QMS regarding their ex-
pressive power and computational behaviour.
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In this paper, we contribute to this programme by investigating the CT L+-
like extension of S4u which allows quantifier patterns of the following form:
a quantifier over the reals followed by a Boolean combination of quantifiers
∃<x over the space. A typical example is the closer operator ⇔ of CSL.

First we show that this language has indeed the same expressive power
over metric spaces as the the modal logic CSL with sole operator ⇔ (al-
though it might be exponentially more succinct). The computational prop-
erties of CSL over certain classes of metric spaces have already been in-
vestigated. We know from [12] that the satisfiability problem for CSL is
ExpTime-complete over metric spaces with the so-called min-condition:

d(X,Y ) = inf{d(x, y) | x ∈ X, y ∈ Y } = min{d(x, y) | x ∈ X, y ∈ Y },

for all sets X and Y . Moreover, in this case the logic enjoys the finite model
property. On the other hand, it has been shown in [12] that over (arbitrary
or arbitrary finite subspaces of) R, Q, and Z the logic CSL can simulate
arbitrary Diophantine equations, and so is undecidable. The major open
and technically challenging problem has been to investigate the behaviour
of CSL over arbitrary metric spaces, where already very simple formulas
like ¬(p ⇔ ¬p) u ¬(¬p ⇔ p) require infinite converging sequences. Here
we present a solution to this problem by proving that over arbitrary metric
spaces CSL is still ExpTime-complete.
CSL is closely related to certain conditional logics. In conditional logic,

the min-condition above is often called the limit assumption and spaces
are not required to be symmetric. It has been shown in [12] that over
possibly non-symmetric metric spaces with the min-condition, the closer
operator ⇔ has the same expressive power as the conditional implication
>. The resulting conditional logic is known as the logic of frames satisfying
the normality, reflexivity, strict centering, uniformity and connectedness
conditions [4]. In this paper, we do not consider distance spaces that are
more general than metric spaces. However, the reader can easily modify the
decidability proof given below for CSL over metric spaces in order to prove
the decidability of CSL over distance spaces without symmetry and/or the
triangle inequality.

2 The logic QMS
In the examples above, we needed only one variable x over distances. In
general, however, it is useful to have countably many distance variables
{x1, x2, . . . } and, in order to represent constraints on relations between
distances, an additional set Σ of formulas over these variables. As the
distance variables range over R>0 we can take, for example,

• the set Σ0 of inequalities xi < xj ,

• the set Σ1 of linear rational equalities a1x1 + · · ·+ anxn = an+1,

• the set Σ2 of linear rational inequalities a1x1 + · · ·+ anxn ≤ an+1.
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Suppose now that we have such a set Σ of constraints. Let {p1, p2, . . . } be
a countably infinite set of set variables. The QMS[Σ]-terms are defined
inductively as follows, where κ ∈ Σ:

τ ::= pi | κ | ¬τ | τ1 u τ2 |
∃xiτ | ∃<xiτ | ∃=xiτ | ∃>xiτ | ∃<xi

>xj
τ | ∃<xi

>0 τ.

The intended metric models for this language are structures of the form

I =
(
D, pI

1 , p
I
2 , . . .

)
(6)

where D = (∆, d) is a metric space and the pI
i are subsets of ∆.

To interpret QMS[Σ]-terms in metric models, we require assignments a
of positive real numbers a(xi) ∈ R>0 to the distance variables xi.1 Given
such an assignment a, we define the extension pI,a

i ⊆ ∆ of a set variable pi to
be pI

i . The extension κI,a ∈ {∅,∆} of κ ∈ Σ is defined by setting κI,a = ∆
iff (R>0, a) |= κ, and κI,a = ∅, otherwise.2 The inductive definition of the
extension τI,a ⊆ ∆ of a QMS[Σ]-term τ is now as usual for the Booleans
and as follows for the remaining operators:

(∃=xiτ)I,a = (∃=a(xi)τ)I, (∃<xiτ)I,a = (∃<a(xi)τ)I,

(∃>xiτ)I,a = (∃>a(xi)τ)I, (∃<xi
>xj

τ)I,a = (∃<a(xi)
>a(xj)

τ)I,

(∃xi τ)I,a =
⋃
{τI,b | b(xj) = a(xj), for xj 6= xi},

where, for a, b ∈ R>0,

(∃=aτ)I = {x ∈ ∆ | ∃y (d(x, y) = a ∧ y ∈ τI)},
(∃<aτ)I = {x ∈ ∆ | ∃y (d(x, y) < a ∧ y ∈ τI)},
(∃>aτ)I = {x ∈ ∆ | ∃y (d(x, y) > a ∧ y ∈ τI)},
(∃<b

>aτ)
I = {x ∈ ∆ | ∃y (a < d(x, y) < b ∧ y ∈ τI)}.

EXAMPLE 1. The sublanguage of QMS[Σ2] with expressions of the form
∃~x (κ ∧ τ), where κ is a conjunction of linear rational inequalities and
τ is a QMS[∅]-term containing only the operators ∃<xi and ∃≤xi and,
additionally, quantifiers ∃xi only directly in front of ∀<xi (as in the interior
operator) has been investigated in [13]. In particular, it was proved that
the satisfiability problem is decidable for this language.

To put this new language into a more familiar context, consider the fol-
lowing two-sorted first-order language FM[Σ]. Its terms of sort R≥0 are the

1We quantify over positive real numbers rather than non-negative ones in order to
obtain short and transparent definitions of standard topological operators; see (1). The
expressiveness of the language does not depend on this assumption.

2It is straightforward to give a more conventional truth-definition for formulas in Σ
by extending the language QMS with formulas and not regarding the members of Σ as
terms. The semantics given here is a bit more concise.
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individual variables x1, x2, . . . , and terms of sort object are the individual
variables w1, w2, . . . . The signature of FM also contains a countably infi-
nite set {P1, P2, . . . } of unary predicates, binary predicates < and =, and a
binary function symbol d. The FM[Σ]-formulas ϕ are defined inductively
as follows, where κ ∈ Σ:

ϕ ::= Pj(wi) | κ | d(wi, wj) < xk |
xk = 0 | ¬ϕ | ϕ1 ∧ ϕ2 | ∃xiϕ | ∃wiϕ.

FM[Σ] is interpreted in metric models I of the form (6) with the help of
two assignments (a, o), where a assigns a non-negative real number to each
xi, while o assigns an object from ∆ to each wi. The satisfaction relation
(I, a, o) |= ϕ is defined in the obvious way. Denote by FM2[Σ] the fragment
of FM[Σ] with only two variables of sort object.

The following expressive completeness result can be proved by an almost
straightforward extension of the proof of Theorem 2.2 from [7] to quantifiers
over distances. The succinctness result can be proved using the example and
technique from [3]; see also [9].

THEOREM 2. Let Σ ⊇ Σ0. Then the language QMS[Σ] is expressively
complete for the language FM2[Σ] over metric models. More precisely,
for each QMS[Σ]-term τ , one can construct an FM2[Σ]-formula ϕ with
a single free variable of sort object such that, for all metric models I with
assignments a and all o ∈ ∆,

o ∈ τI,a iff (I, a) |= ϕ[o], (7)

and conversely, for each FM2[Σ]-formula ϕ with exactly one free variable
of sort object, there exists a QMS[Σ]-term τ such that (7) holds for all
metric models I with assignments a and all o ∈ ∆.
FM2[Σ] is, however, exponentially more succinct than QMS[Σ].

To classify and investigate QMS[Σ] and its various can be regarded as an
interesting and challenging research programme, with possible applications
for reasoning about distances and similarity in various application domains.
At this early stage, however, there are more open problems than answers.
Here we mention just some of them (see also [6]). First, does the expres-
sive completeness result above hold for the language QMS[Σ] with Σ = ∅?
So far, the proof requires inequalities xi < xj to be available in both lan-
guages. Second, the fragments of QMS[Σ] discussed above contain only the
distance operators ∃<xi . Proofs of decidability results for those fragments
often employ a certain tree model property (formulated in terms of tree met-
ric spaces) as well as a technique that is close to standard unravelling (alias
bisimulation). Is it possible to define a natural notion of bisimulation on
metric spaces which could explain the ‘good’ behaviour of those fragments
of QMS[Σ]? Is there a natural characterisation of the fragment of FM[Σ]
which is invariant under such bisimulations? Finally, an interesting problem
is to find ‘maximal’ decidable fragments of QMS[Σ]. It is not difficult to
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see using the technique of [7] that satisfiability of QMS[Σ1]-terms is un-
decidable. But we conjecture that much weaker fragments are undecidable
already.

The contribution of this paper to the research programme above is an
analysis of the computational behaviour and the expressive power of the
fragment of QMS[Σ] known as the logic of comparative similarity first in-
troduced in [12].

3 The logic CSL
Let us consider the CT L+-like fragment of QMS[∅] where the role of branch
quantifiers is played by ∃x and ∀x, while instead of temporal operators we
have the quantifiers ∃<x and ∀<x. Thus, in this fragment we allow the
quantifiers ∃x to be applied to Boolean combinations of terms of the form
∃<xτ and atoms pi. More precisely, take a variable x and define the set
CLVopen of open terms σ and the set CLV of terms τ by induction as follows:

τ ::= pi | ¬τ | τ1 u τ2 | ∃xσ,
σ ::= τ | ¬σ | σ1 u σ2 | ∃<xτ.

Another language we consider in this section is called CSL (which stands
for the logic of comparative similarity) [12]. Its terms are defined by

τ ::= pi | ¬τ | τ1 u τ2 | τ1 ⇔ τ2,

where ⇔, the closer operator, is interpreted in a metric model I of the form
(6) as follows (this is equivalent to the definition of ⇔ in the introduction):

(τ1 ⇔ τ2)I = {x ∈ ∆ | d(x, τI
1 ) < d(x, τI

2 )} .

Here the distance d(x, Y ) from a point x ∈ ∆ to Y ⊆ ∆ is defined as usual:

d(x, Y ) =

{
inf{d(x, y) | y ∈ Y }, if Y 6= ∅
∞, if Y = ∅.

Two terms τ1 and τ2 are said to be equivalent, τ1 ≡ τ2 in symbols, if τI
1 = τI

2

for every metric model I. It is not hard to see that

τ1 ⇔ τ2 ≡ ∃x (∃<xτ1 ∧ ¬∃<xτ2).

Thus, CSL can be regarded as a sublanguage of CLV. Despite its apparent
simplicity, this language turns out to be quite expressive. In particular,
> ⇔ ¬τ is interpreted as the interior of τ in the topological space induced
by the metric, and > � τ as the closure of τ , where > is the whole space
(p1 t ¬p1) and

τ1 � τ2 = ¬(τ1 ⇔ τ2) u ¬(τ2 ⇔ τ1)
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is the set of points located at the same distance from τ1 and τ2. The
universal modalities can be also expressed via ⇔:

∃τ ≡ (τ ⇔ ⊥) and ∀τ ≡ ¬(¬τ ⇔ ⊥)

(here ⊥ stands for p1 u ¬p1). Thus, the logic CSL contains full S4u. We
now show that actually CSL is as expressive as full CLV.

THEOREM 3. For every CLV-term τ , there is a CSL-term τ∗ with τ ≡ τ∗.

Proof. Observe first that, for all CLV-terms τ1, . . . , τn and ρ, we have
n∧

i=1

∃x(∃<xτi u ¬∃<xρ) ≡ ∃x(
n∧

i=1

∃<xτi u ¬∃<xρ).

(For a proof of this observation use the fact that distances are taken from
the linearly ordered set R>0.)

Now the proof proceeds by induction on the construction of τ . The term
τ is a Boolean combination of terms of the form ∃xσ and atoms pi. As both
languages have the Boolean operators and the set variables pi, it is sufficient
to define the translation of a term of the form ∃xσ. We may assume that

∃xσ = ∃x
n∨

i=1

mi∧
j=1

ρj
i ,

where the ρj
i are negated or non-negated terms of the form ∃<xτ , pi, or

∃xσ′. Clearly

∃xσ ≡
n∨

i=1

∃x
mi∧
j=1

ρj
i .

As ¬∃<xτ1 u ¬∃<xτ2 ≡ ¬∃<x(τ1 t τ2), we obtain

∃xσ ≡
n∨

i=1

∃x
ki∧

j=1

(∃<xτij u ¬∃<xτi u βij),

where the βij are negated or non-negated terms of the form ∃xσ′ or pi. By
the observation above, we then have

∃xσ ≡
n∨

i=1

ki∧
j=1

(
∃x(∃<xτij u ¬∃<xτi) u βij

)
.

By the induction hypotheses, we have translations τ∗ij , τ
∗
i and β∗ij in CSL.

Then the translation we need can be obtained by taking

(∃xσ)∗ =
n∨

i=1

ki∧
j=1

(
(τ∗ij ⇔ τ∗i ) u β∗ij

)
,

which proves the theorem. q

Observe that the translation from CLV to CSL above introduces an ex-
ponential blow-up. The question whether CLV is indeed exponentially more
succinct than CSL remains open.
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4 Decidability of CSL
A typical decidability proof for a modal (temporal, dynamic, etc.) logic L
proceeds as follows. Given a formula ϕ, we take a proper ‘closure’ clϕ of
the set subϕ of subformulas of ϕ, introduce a syntactical notion of a ‘type’
approximating those subsets of clϕ that can be realised in models for L,
and then show how to construct an L-model for a given type t with ϕ ∈ t
by providing a ‘witness type’ for each 3ψ ∈ t, that is, a type t′ such that
ψ ∈ t′ and χ ∈ t′, for every 2χ ∈ t. This general scheme can be applied to
CSL as well. As usual, however, the devil (or God?) is in the details.

Let us figure out first what a CSL-type is. Throughout this section
we assume that we are given a CSL-term τ . Denote by sub τ the set of
subterms of τ . As we need to compare distances between types containing
certain subterms of τ , we introduce the set

com τ = {⊥,>} ∪ {ϕ | ϕ ⇔ ψ ∈ sub τ or ψ ⇔ ϕ ∈ sub τ, for some ψ}.

Finally, we define cl τ ⊇ sub τ , the closure of sub τ , to be the smallest set of
terms with the following properties:

• cl τ is closed under single negations, and

• cl τ contains ϕ ⇔ ψ, for every ϕ,ψ ∈ com τ .

Clearly, the size of cl τ is polynomial in the size |τ | of τ .
Suppose now that we have a metric model I of the form (6) and a point

x ∈ ∆I. Then the τ -type of x in I is the set

tI(x) = {ϕ ∈ cl τ | x ∈ ϕI}.

Clearly, this set is Boolean closed. Moreover, the model I determines a
natural linear quasi-order ≤tI(x) on com τ : for all ϕ,ψ ∈ com τ , we have

ϕ ≤tI(x) ψ iff d(x, ϕI) ≤ d(x, ψI) iff ¬(ψ ⇔ ϕ) ∈ tI(x).

Observe that

• ϕ is a ≤tI(x)-minimal element iff d(x, ϕI) = 0, i.e., x ∈ CϕI, and

• ϕ is a ≤tI(x)-maximal element iff d(x, ϕI) = ∞, i.e., ϕI = ∅.

This suggests the following syntactical approximation of the ‘real’ τ -types.
A subset t of cl τ is said to be Boolean closed if > ∈ t and the following

conditions are satisfied: (a) ϕ ∈ t iff ¬ϕ /∈ t, for all ¬ϕ ∈ cl τ , and (b)
ϕ u ψ ∈ t iff ϕ ∈ t ∧ ψ ∈ t, for all ϕ u ψ ∈ cl τ . With every Boolean closed
t ⊆ cl τ we associate the following binary relation ≤t on com τ :

≤t = {(ϕ,ψ) | ¬(ψ ⇔ ϕ) ∈ t}.

Now, a τ -type (or simply a type if τ is understood) is a Boolean closed
subset t of cl τ such that
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• ≤t is a linear quasi-order on com τ ,

• all terms in t ∩ com τ are ≤t-minimal elements,

• ⊥ is a ≤t-maximal element.

Denote by <t and 't the strict linear order and the equivalence relation
induced by ≤t, respectively. It is easy to see that

<t = {(ϕ,ψ) | (ϕ ⇔ ψ) ∈ t}.

Let min t denote the set of ≤t-minimal elements. It should be clear that
there are at most exponentially (2O(|τ |)) many τ -types.

Recall that ϕ � ψ = ¬(ϕ ⇔ ψ)u¬(ψ ⇔ ϕ). Clearly, > � ϕ is actually
equivalent to ¬(> ⇔ ϕ), while ⊥ � ϕ is equivalent to ¬(ϕ ⇔ ⊥).

Before we proceed to our next notion, let us consider an example explain-
ing an essential difference between CSL and standard modal logics.

EXAMPLE 4. To satisfy the term ¬p u (q ⇔ ⊥) u (p ⇔ q) u (p � >)

• we need, by the first conjunct, a point x from ¬p;

• by the second conjunct, we need a ‘witness’ y for q ⇔ ⊥, that is, a
point y that belongs to q;

• by the third conjunct, we need a witness z for p ⇔ q, that is, z belongs
to p, neither x nor z are in q, and x should be closer to z than to y;

• finally, the fourth conjunct says that x must be ‘infinitely close’ to
p, that is, we need an infinite sequence {zi | i ∈ ω} of points from
p converging to x. Note that, by the third conjunct, only a finite
number of the zi can be in q.

Thus, we require witnesses of two sorts: (i) those that are at some finite
distance from a given point x, and (ii) those that represent infinite sequences
converging to x (that the points of such a sequence can always be chosen
to be of the same type follows from Lemma 5 below).

Two important facts should also be observed in connection with the ex-
ample above. First, the concrete values of the distances d(x, y) and d(x, z)
are of no importance at all; what really matters is that they should sat-
isfy the inequalities d(x, y) > d(x, z) > 0. At the same time, the value
limi→∞ d(x, zi) must be zero. The logic of comparative similarity cannot
speak of any particular distance except 0.

The second important fact is that if a term requires some witnesses at a
positive distance, than a single witness—rather than an infinite sequence of
witnesses as in (ii) above—can always be enough.

LEMMA 5. Let I be a metric model.

(1) Suppose x ∈ ∆I and ϕI 6= ∅ for some ϕ ∈ com τ . Then there is a type
t with ϕ ∈ t such that d(x, ϕI) = d(x, tI), where tI = {y ∈ ∆I | tI(y) = t}.
Moreover, the pair of types (tI(x), t) satisfies the following conditions:
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• If > <tI(x) ϕ then ϕ <tI(x) ψ implies ϕ <t ψ, for all ψ ∈ com τ ,

• If ϕ 'tI(x) > then χ <tI(x) ψ implies χ <t ψ, for all ψ, χ ∈ com τ ,

(2) For all x, y ∈ ∆I and ψ ∈ com τ , we have ψ <tI(x) ⊥ iff ψ <tI(y) ⊥.

Proof. To show (2), it is enough to observe that ψ <tI(x) ⊥ iff ψI 6= ∅
iff ψ <tI(y) ⊥, for all x, y ∈ ∆I and ψ ∈ com τ .

Let us show (1) for the case ϕ 'tI(x) >. Since d(x, ϕI) = 0, either x ∈ ϕI

or there is an infinite sequence {zi ∈ ϕI | i ∈ ω} converging to x. In the
former case we set t = tI(x). In the latter one, since the number of types is
finite, there is an infinite subsequence {zij

} of {zi} whose points are of the
same type, and so we can set t = tI(zij

).
Let χ <tI(x) ψ for some ψ, χ ∈ com τ . Then ε = d(x, ψI)− d(x, χI) > 0.

Choose some y ∈ tI with d(x, y) < ε/2. By the triangle inequality we then
have d(y, ψI)− d(y, χI) ≥ ε− 2 d(x, y) > 0, which means χ <t ψ.

The case of > <tI(x) ϕ is considered analogously. q

We now define a notion of a ϕ-link using which we can provide witnesses
for terms from a given type. Let s, t be types and ϕ ∈ com τ . Two cases
are possible:

• Suppose that > <s ϕ <s ⊥. Then we say that the pair (s, t) is a
ϕ-link (of types) if ϕ ∈ t and, for all ψ ∈ com τ , we have

ψ <s ⊥ ↔ ψ <t ⊥ and ϕ <s ψ → ϕ <t ψ

(note that ϕ <t ψ is equivalent here to > <t ψ, since ϕ ∈ t).

• Suppose that ϕ 's >. Then we say that (s, t) is a ϕ-link (of types) if
ϕ ∈ t and, for all ψ, χ ∈ com τ , we have

ψ <s ⊥ ↔ ψ <t ⊥ and χ <s ψ → χ <t ψ

(note that the second implication is equivalent to <s ⊆ <t, and we
have min t ⊆ min s).

In the latter case we will also say that (s, t) is a short link, while in the
former the link will be called long. Clearly, a link (s, t) is short iff <s ⊆ <t.

Unfortunately, the notion of a link above does not take into account
a possible interaction of two (or more) short links. To be more specific,
consider the following situation. Suppose that t0 is a type and ϕ /∈ t0, for
some ϕ ∈ com τ such that ϕ ∈ min t0 (i.e., ϕ 't0 >). Then we need a
short ϕ-link (t0, t1). Assume further that ψ /∈ t1, for some ψ ∈ com τ with
ψ ∈ min t0. This means that we also need a (long or short) ψ-link (t1, t2).
But then, according to Lemma 6 below, (t0, t2) must be a short ψ-link,
which by no means follows from the definition of a link.
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LEMMA 6. Let I be a model, x ∈ ∆I, and let ϕ,ψ ∈ com τ be such that

d(x, ϕI) = d(x, ψI) = 0 and x /∈ ϕI.

Let s, t be types with ϕ ∈ s, ψ ∈ t, and let S ⊆ sI be such that

d(x, S) = d(x, ϕI) = 0 and d(y, tI) = d(y, ψI), for all y ∈ S.

Then d(x, tI) = d(x, ψI) = 0.

Proof. Take an arbitrary ε > 0. As d(x, S) = 0, there is y ∈ S with
d(x, y) < ε/2. Then d(y, tI) = d(y, ψI) ≤ d(y, x) + d(x, ψI) < ε/2, and so
d(x, tI) ≤ d(x, y) + d(y, ψI) < ε, i.e., d(x, tI) = 0, as ε > 0 is arbitrary. q

Thus we should be careful when constructing sequences of links starting
with a short one, in particular, we should remember some previous links in
the sequence. Let us consider possible scenarios when we start with a short
link (t0, t1).

1. Suppose that <t0 = <t1 and we need a ϕ-link (t1, t2) for some ϕ ∈ com τ .
In this case the types t0 and t1 contain precisely the same terms of the form
χ1 ⇔ χ2 and can only differ in Boolean terms. It follows that (t1, t2) is
a ϕ-link iff (t0, t2) is a ϕ-link. This means that the choice of t2 does not
depend on the link (t0, t1).

2. Suppose that <t0 ( <t1 and we need a ϕ-link (t1, t2) for some ϕ ∈ com τ .
As we have min t1 ⊆ min t0, three cases are possible.

2.1: ϕ ∈ min t1. Then for any ϕ-link (t1, t2) we have <t0 ⊂ <t1 ⊆ <t2 ,
and so (t0, t2) is also a short ϕ-link. Thus, no additional requirement
should be imposed on (t1, t2).

2.2: ϕ ∈ min t0 \min t1. In this case, when choosing a (long) ϕ-link (t1, t2),
we must also ensure that (t0, t2) is a short ϕ-link.

2.3: ϕ /∈ min t0, and so ϕ /∈ min t1. In this case (t0, t1) does not have any
influence on subsequent links at all.

3. Suppose that <t0 ( <t1 and (t1, t2) is a ϕ-link, for ϕ ∈ min t0 \min t1
(as in 2.2), and so (t0, t2) is a short ϕ-link with <t0 ⊂ <t2 . Suppose also
that we are looking for a ψ-link (t2, t3). As (t1, t2) is a long link, t1 has no
influence on the choice of t3. However, (t0, t2) should be taken into account.
We again have three cases.

3.1: ψ ∈ min t2. Then for any ψ-link (t2, t3) the pair (t0, t3) will automat-
ically be a ψ-link.

3.2: ϕ ∈ min t0 \ t2. Then, when choosing a long ϕ-link (t2, t3), we must
also ensure that (t0, t3) is a short ψ-link.

3.3: ϕ /∈ min t3. In this case no additional requirement is needed.
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This analysis suggests the following definitions. A sequence t = (t0, . . . , tn)
of τ -types is called a block if

<t0 ⊂ · · · ⊂ <tn−1 ⊆ <tn

(which means that all pairs (t0, t1), . . . , (tn−1, tn) are short links). We call tn
the type of t, while (t0, . . . , tn−1) is understood as its ‘history’ or ‘heredity.’
We say that t is realised in a model I of the form (6) if there exist subsets
X0 ⊆ tI0 , . . . , Xn ⊆ tIn such that d(xi, Xi+1) = 0 for all i < n and xi ∈ Xi.

It is easy to see that the size of com τ , and so the length of any block,
is bounded by |τ |. Therefore, the number of different blocks is at most
exponential in |τ |.

Now, for ϕ ∈ com τ , we introduce a notion of a ϕ-link of blocks, which
specialises the notion of a ϕ-link of types. Let s and t be blocks with
s = (s0, . . . , sm). Consider four cases.

• Suppose that ϕ /∈ min s0. Then (s, t) is called a ϕ-link (of blocks)
if t = (t) and (sm, t) is a ϕ-link of types. In this case the long link
(sm, t) allows us to ‘forget’ everything that happened before t.

• Suppose that ϕ ∈ min sn−1 \min sn, for some n ≤ m. Then (s, t) is
a ϕ-link (of blocks) if t = (s0, . . . , sn−1, t) and (sm, t) is a ϕ-link of
types. In this case (sn, t) is a long link, while (sn−1, t) is a short one,
and so sn−1 and its ‘heredity’ should be kept.

• Suppose that ϕ ∈ min sm \ sm and <sm−1 = <sm . Then (s, t) is a ϕ-
link (of blocks) if t = (s0, . . . , sm−1, t) and (sm, t) is a ϕ-link of types.
In this case sm−1 and sm carry the same information on ‘heredity’ of
t, so we can drop sm.

• Suppose that ϕ ∈ min sm \ sm and <sm−1 ⊂ <sm . Then (s, t) is a
ϕ-link (of blocks) if t = (s0, . . . , sm, t) and (sm, t) is a ϕ-link of types.

Let D be a set of blocks and T the set of all types occurring in blocks from
D. We call D a diagram if the following conditions hold:

there exists (t) ∈ D with τ ∈ t, (8)

for all s, t ∈ T and ϕ ∈ com τ , we have ϕ <s ⊥ iff ϕ <t ⊥, (9)

for all s = (s0, . . . , sn) ∈ D and ϕ <sn ⊥, ϕ /∈ sn, there exists t ∈ D
such that (s, t) is a ϕ-link.

(10)

The rather abstract notions of block, link and diagram for the given term
τ will become more transparent from the proofs of Lemmas 7 and 8.

LEMMA 7. Let I be a metric model where τI 6= ∅, and let D be the set of
blocks realised in I. Then D is a diagram.

Proof. Clearly, D satisfies (8) and (9). Let us prove (10). Suppose that
a block s = (s0, . . . , sm) is realised in I and X0 ⊆ sI

0 ,. . . ,Xm ⊆ sI
m are
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such that d(xi, Xi+1) = 0 for all i < m and all xi ∈ Xi. Let ϕ <sm
⊥,

ϕ /∈ sm. By Lemma 12 in the appendix, there exist a type t and subsets
Y0 ⊆ X0, . . . , Ym ⊆ Xm with the following properties:

d(y, tI) = d(y, ϕI), for all y ∈ Ym,

d(y, Yl+1) = 0, for all y ∈ Yl and l < m.

Note that the latter property implies that d(y, Yl′) = 0, for all y ∈ Yl and
l < l′ ≤ m. Four cases are now possible.

Case 1: ϕ /∈ min s0. Then the block t = (t) is realised in I, because
tI 6= ∅, and (s, t) is a ϕ-link by construction.

Case 2: ϕ ∈ min sn−1 \ min sn for some n ≤ m. Let us show that
t = (s0, . . . , sn−1, t) is a block realised in I. Take any u ∈ Yn−1 and v ∈ Ym.
Then d(u, ϕI) = 0 = d(u, Ym), while d(v, ϕI) = d(v, tI). Hence d(y, tI) = 0.
We obtain <sn−1 ⊆ <t, since u ∈ Yn−1 ⊆ sI

n−1. Thus t is a block. By
considering the sets Y0, . . . , Yn−1, t

I, we see that t is realised in I. Finally,
(s, t) is a ϕ-link by construction.

Case 3: ϕ ∈ min sm \ sm and <sm−1 = <sm . Similarly to the previous
case we obtain that d(u, tI) = 0 for all u ∈ Ym−1 and therefore <sm−1 ⊆ <t.
Thus, t = (s0 . . . , sm−1, t) is a block, t is realised in I (consider the sets
Y0, . . . , Ym−1, t

I), and (s, t) is a ϕ-link.
Case 4: ϕ ∈ min sm\sm and <sm−1 ⊂ <sm

. Then d(u, tI) = d(u, ϕI) = 0
for all u ∈ Ym. Therefore t = (s0 . . . , sm, t) is a block, t is realised in I
(consider the sets Y0, . . . , Ym, t

I), and (s, t) is a ϕ-link. q

LEMMA 8. Let D be a diagram. Then there exists a model I with τI 6= ∅.
Proof. Our first goal is to ‘unravel’ D into a certain tree that will serve
as the underlying set of the model we need.

Let T be the set of all types from blocks in D. Let ϕ0, . . . , ϕk−1 be all
different members of the set {ϕ ∈ com τ | ϕ <t ⊥ for all t ∈ T}. We are
going to unravel D into a tree ∆ ⊆ ({0, . . . , k−1}×ω)∗ together with three
labelling functions tp : ∆ → T , bl : ∆ → D and hr : ∆ → ∆∗ the intended
meaning of which is as follows.

For all α ∈ ∆, bl(α) is some block in D of the type tp(α), and tp(α)
should be the type of α in ∆ after we turn ∆ into a proper metric model.
And if α is a child of β, i.e., α = β(i, j), for some i < k and j ∈ ω, then
(bl(β), bl(α)) should be a ϕi-link of blocks; in particular, we should have
that (tp(α), tp(β)) is a ϕi-link of types, ϕi ∈ tp(β). Therefore, for α ∈ ∆,
we set that α(i, 0) belongs to ∆ iff ϕi does not belong to tp(α). Moreover,
nodes α(i, j) with j > 0 are included into ∆ iff ϕi belongs to min tp(α), i.e.,
α should be a limit point of all the α(i, j). Finally, if bl(α) = (t0, . . . , tn),
then hr(α) = (α0, . . . , αn−1), where αm is the node ‘responsible’ for the
presence of tm in bl(α).

We proceed by induction. First we choose some (t∗) ∈ D with τ ∈ t∗,
and set

λ ∈ ∆, tp(λ) = t∗, bl(λ) = (t∗), hr(λ) = λ
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(recall that λ denotes an empty sequence). Suppose now that α ∈ ∆ is
constructed and tp(α), bl(α), hr(α) are defined, say,

tp(α) = sm, bl(α) = (s0, . . . , sm), hr(α) = (α0, . . . , αm−1)

(i.e., hr(α) = λ when m = 0). Consider an arbitrary i < k. According
to (10), there exists some t = (t0, . . . , tn) in D such that (bl(α), t) is a
ϕi-link (note that n ≤ m+ 1). Three cases are now possible.
ϕi ∈ tp(α). Then we set α(i, j) /∈ ∆ for all j ∈ ω.
ϕi /∈ min tp(α). Set α(i, 0) ∈ ∆ and α(i, j) /∈ ∆ for all j > 0.
ϕi ∈ min tp(α) \ tp(α). Then we set α(i, j) ∈ ∆, for all j ∈ ω.

Now, for all j with α(i, j) ∈ ∆ we define:

tp(α(i, j)) = tn, bl(α(i, j)) = t, hr(α(i, j)) = (α0, . . . , αn−1),

where αm stands for α, if n = m+ 1. Clearly, we have the following:

LEMMA 9. Let α ∈ ∆ and hr(α) = (α0, . . . , αn−1) bl(α) = (t0, . . . , tn).
Then hr(αm) = (α0, . . . , αm−1) and bl(αm) = (t0, . . . , tm), for all m < n.

The next step is to convert ∆ into a metric space D = (∆, dD). By
the construction of ∆, if ϕ ∈ com τ and ϕ ∈ tp(β) for some β ∈ ∆, then
every α ∈ ∆ has a child α′ with ϕ ∈ tp(α′). The main idea behind the
construction of dD is to ensure that such an α′ can always be chosen in
such a way that it satisfies the property dD(α, α′) ≤ dD(α, β). We refer the
reader to Lemmas 16 and 17 in the appendix for the details. Define now a
model I = (D, pI

1 , p
I
2 , . . . ) by the following rule, for every atomic term pi:

pI
i = {α ∈ ∆ | pi ∈ tp(α)}.

LEMMA 10. For every α ∈ ∆ and ϕ ∈ cl τ , we have

α ∈ ϕI iff ϕ ∈ tp(α). (11)

Proof. We proceed by induction on the construction of ϕ ∈ cl τ . If ϕ
is an atomic term, then (11) holds by the definition of I. If ϕ = ¬ψ0 or
ϕ = ψ0 u ψ1, then (11) follows easily from the induction hypothesis.

So let now ϕ = ψ0 ⇔ ψ1. Recall thatD is the initial diagram, and T is the
set of types occurring in blocks from D. Suppose that ψ0 /∈ {ϕ0, . . . , ϕk−1}.
Then ψ0 't ⊥, for all t ∈ T . Hence, by the definition of a type, ψ0 /∈ t and
ψ0 ⇔ ψ1 /∈ t, for all t ∈ T . On the one hand, we obtain by the induction
hypothesis that ψI

0 = ∅, and so (ψ0 ⇔ ψ1)I = ∅. On the other hand, we see
that {α ∈ ∆ | ψ0 ⇔ ψ1 ∈ tp(α)} = ∅. Thus, (11) is satisfied in this case.

We therefore assume from now on that ψ0 ∈ {ϕ0, . . . , ϕk−1}. Then by
the construction of ∆, we have, for every α ∈ ∆, that either ψ0 ∈ tp(α), or
ψ0 ∈ tp(β) for some child β of α. Hence ψI

0 = {α ∈ ∆ | ψ0 ∈ tp(α)} 6= ∅
by the induction hypothesis. Suppose now that ψ1 /∈ {ϕ0, . . . , ϕk−1}. Then
ψI

1 = ∅ similarly to the above, and ψ1 't ⊥, hence ψ0 ⇔ ψ1 ∈ t, for all
t ∈ T . We obtain that ψ0 ⇔ ψI

1 = ∆, and {α ∈ ∆ | ψ0 ⇔ ψ1 ∈ tp(α)} = ∆,
i.e., (11) is satisfied in this case as well.
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Suppose finally that ψ1 ∈ {ϕ0, . . . , ϕk−1}, let ψ0 = ϕ0 and ψ1 = ϕ1 for
concreteness. Then ϕI

i = {α ∈ ∆ | ϕi ∈ tp(α)} 6= ∅, i = 0, 1, similarly to
the above. Therefore, by applying Lemma 17 and (14), we obtain for all
α ∈ ∆: α ∈ (ϕ0 ⇔ ϕ1)I ↔ dα(0) < dα(1) ↔ ϕ0 ⇔ ϕ1 ∈ tp(α). q

Thus, by Lemma 10, λ ∈ τI which completes the proof of Lemma 8. q

We can now prove the main result of this paper.

THEOREM 11. The satisfiability problem for CSL-terms in metric models
is ExpTime-complete.

Proof. The ExpTime-hardness of this problem was shown in [12]. Let
us prove the upper bound.

Given a term τ , let B be the set of all blocks for τ . As property (10) is
clearly preserved under set unions, B contains the largest subset D′ satisfy-
ing (10). It is not hard to see that D′ can be constructed using the following
elimination procedure (see, e.g., [5]).

Step 0: set D0 = B.
Step n + 1: suppose that Dn is constructed. For each s ∈ Dn and each

ϕ ∈ com τ such that ϕ <s ⊥ and ϕ /∈ s, where s is the type of s, we check
whether there is a ϕ-link (s, t) for some t ∈ Dn. If this is not the case then
we set Dn+1 = Dn \ s and go to the next step. Otherwise, we set D′ = Dn.

As |B| = 2O(|τ |), it should be clear that D′ can be constructed in expo-
nential time in |τ |.

Suppose now that (8) does not hold for D′. Then obviously no diagram
for τ exists, and so τ is not satisfiable by Lemma 7. So assume that (t) ∈ D′,
τ ∈ t and consider the set

D = {sn | ((t), s0), . . . , (sn−1, sn) are ϕ-links, for some s0, . . . , sn ∈ D′}.

Then D still satisfies (8) and (10), and by the definition of a link it satis-
fies (9) as well. Thus, D is a diagram and τ is satisfiable by Lemma 8.

It follows that τ is satisfiable iff D′ satisfies (8), with the latter being
verifiable in exponential time. q

Appendix

LEMMA 12. Suppose that a block s = (s0, . . . , sm) is realised in I, and
X0 ⊆ sI

0 ,. . . ,Xm ⊆ sI
m are such that d(xi, Xi+1) = 0 for all xi ∈ Xi and

i < m. Suppose also that ϕ <sm
⊥ and ϕ /∈ sm.

Then there exist a type t and subsets Y0 ⊆ X0, . . . , Ym ⊆ Xm with the
following properties:

d(y, tI) = d(y, ϕI), for all y ∈ Ym,

d(y, Yl+1) = 0, for all y ∈ Yl and l < m.
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Proof. Choose an arbitrary xλ ∈ X0. Since d(xi, Xi+1) = 0 for all
xi ∈ Xi and i < m, we can choose elements xα ∈ Xl, for all α ∈ ωl and
l ≤ m, so that

xα = lim
i→∞

x(α,i).

Now, for every α ∈ ωm, there exists a type tα such that ϕ ∈ tα and
d(xα, ϕ

I) = d(xα, t
I
α). Since the number of types is finite, we obtain a

partition ωm = A0 ∪ · · · ∪An, where tα = tα′ , for all α, α′ ∈ Ar, r ≤ n.
Say that a subset A ⊆ ωm is essential if we have

(∃∞a0) . . . (∃∞am−1) (a0, . . . , am−1) ∈ A, (12)

where ∃∞ means ‘there exist infinitely many.’

CLAIM 13. Ar is an essential subset of ωm for some r ≤ n.

Proof. We proceed by induction on m. Note first that, for m = 1, an
essential subset is simply an infinite subset. Therefore in this case Claim 13
is trivial.

Suppose that m > 1 and Claim 13 holds for m − 1. For A ⊆ ωm and
a ∈ ω, let A|a denote {α ∈ ωm−1 | (a, α) ∈ A}. Then, for every a ∈ ω,
we have ωm−1 = A0|a ∪ · · · ∪ An|a. Hence there exists r(a) ≤ n such that
Ar(a)|a is essential in ωm−1. As r(a) has only a finite number of possible
values, there exists r < m such that Ar|a is essential in ωm−1 for infinitely
many a ∈ ω. This means that Ar is essential in ωm. q

So let A = Ar be an essential subset of ωm for some r ∈ ωm. For every
l ≤ m, let

A(l) = {α ∈ ωl | (α, β) ∈ A for some β ∈ ωm−l}

(in particular, A(m) = X and A(0) = {λ}). Then the following property is
a straightforward consequence of the definition of essential sets:

for all l < m ≤ n and α ∈ A(l), there are infinitely many a ∈ ω
such that (α, a) ∈ A(l+1).

(13)

It remains to put Yl = {xα | α ∈ A(0)}, for all l ≤ m. q

Let us now turn to the construction of the distance function dD on ∆.
For this purpose we introduce a number of numerical parameters that will
be defined by simultaneous induction on α ∈ ∆. These parameters are:

• The distance dα = dD(α′, α), where α′ is the parent of α

• A sequence of numbers c(α) of the same length as bl(α). The distances
dβ , for all children β of α, will form several slots within the interval
(0, 1), and c(α) stores some information on the boundaries of these
slots.
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• We use the following notation, for all i < k:

dα(i) =

{
0, if ϕi ∈ min tp(α),
dα(i,0), if ϕi /∈ min tp(α).

• A ‘sufficiently small’ number ε(α) which is defined as follows. Suppose
c(α) = (c0, . . . , cn). Then

ε(α) = min
(
{dα(i)− dα(j) | i, j < k, dα(i) > dα(j)} ∪
{cm − dα(i) | m ≤ n, i < k, cm > dα(i)}

)
.

Roughly speaking, ε(α) measures the space available for ‘splitting’ the
values dα(i) = dα(j) with i 6= j.

We now list the principal conditions (14)–(19) that determine the choice of
distances:

1) For all γ ∈ ∆ and i, j < k,

dγ(i) < dγ(j) ↔ ϕi <tp(γ) ϕj . (14)

2) Let γ ∈ ∆ be such that hr(γ) = λ, bl(γ) = (t), c(γ) = (c). Then, for all
i < k, j ∈ ω,

2c/3 ≤ dγ(i) < c, if ϕi /∈ min t, (15)

0 < dγ(i,j) ≤ ε(γ)/2, if ϕi ∈ min t \ t. (16)

3) Let γ ∈ ∆ be such that hr(γ) = (γ0, . . . , γn−1), bl(γ) = (t0, . . . , tn),
c(γ) = (c0, . . . , cn), where n > 0. Then, for all i < k, j ∈ ω,

dγn−1(i) ≤ dγ(i) < dγn−1(i) + cn/3, if ϕi /∈ min tn−1, (17)
2cn/3 ≤ dγ(i) < cn, if ϕi ∈ min tn−1 \min tn, (18)

0 < dγ(i,j) ≤ ε(γ)/2, if ϕi ∈ min tn \ tn, (19)

And in the process of construction we will prove that the following property
is satisfied as well:

LEMMA 14. Let γ ∈ ∆ and hr(γ) = (γ0, . . . , γn−1), bl(γ) = (t0, . . . , tn),
c(γ) = (c0, . . . , cn). Then, for all m < n, we have

cm+1 ≤ ε(γm)/2, cm+1 ≤ cm/2, c(γm) = (c0, . . . , cm). (20)

Let us now turn to the construction. First, let c(λ) = (1) and dλ = 2/3
(the latter is defined simply for convenience). Suppose now that dα and
c(α) = (c0, . . . , cn) are defined for some α ∈ ∆, condition (20) is satisfied
for γ = α, and conditions (14)–(20) are satisfied if γ is any ancestor of α.
Let hr(α) = (α0, . . . , αn−1) and bl(α) = (t0, . . . , tn). Two cases are possible.
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Case 1: n = 0, i.e., hr(α) = λ, bl(α) = (t0), and c(α) = (c0). Then, for
all i < k with ϕi /∈ min t0, we can choose values dα(i) = dα(i,0) in such a
way that (14) and (15) are satisfied for γ = α. Now ε(α) is defined, and we
set dα(i,j) = ε(α)/(2j + 2), for all i < k with ϕi ∈ min t0 \ t0. Thus, (16) is
satisfied as well for γ = α, while (17)–(19) do not apply to the case γ = α.

Further, for all i < k, j ∈ ω we set:

c(α(i, 0)) = (c0/2), if ϕi /∈ min t0,

c(α(i, j)) = (c0, dα(i,j)), if ϕi ∈ min t0 \ t0.

This makes (20) satisfied on the children of α (recall that dα(i,j) ≤ ε(α)/2
and ε(α) ≤ cn by definition).

Case 2: n > 0, i.e., hr(α) is a nonempty sequence. Since (t0, . . . , tn) is a
block, we have <tn−1 ⊆ <tn

. And in view of (20) we have cn < dαn−1(i) for
all i < k with ϕi /∈ min tn−1. Therefore, for all i < k with ϕi /∈ min tn, we
can choose values dα(i) = dα(i,0) satisfying (14) and (17)–(18). Now ε(α) is
defined, and we set dα(i,j) = ε(α)/(2j+2), for all i < k with ϕi ∈ min tn\tn.
Thus, (19) is satisfied, while (15)–(16) do not apply to the case γ = α.

Further, consider any i < k with ϕi /∈ tn. We then have several possibil-
ities. First, let ϕi /∈ min t0. Then hr(α(i, 0)) = λ, and we set c(α(i, 0)) =
(c0/2). Clearly, (20) holds for γ = α(i, 0).

Let ϕi ∈ min tm−1 \ min tm for some 1 ≤ m ≤ n. Then hr(α(i, 0)) =
(α0, . . . , αm), and we set c(α(i, 0)) = (c0, . . . , cm−1, cm/2). Now (20) holds
for γ = α(i, 0) in view of the induction hypothesis.

Let ϕi ∈ min tn and <tn−1 = <tn
. Then hr(α(i, j)) = (α0, . . . , αn−1),

and we set c(α(i, j)) = (c0, . . . , cn−1, d
α(i,j)), for all j ∈ ω. Again, (20) holds

for γ = α(i, j) by the induction hypothesis.
Let finally ϕi ∈ min tn and<tn−1 ⊂ <tn

. Then hr(α(i, j)) = (α0, . . . , αn),
and we set c(α(i, j)) = (c0, . . . , cn, dα(i,j)), for all j ∈ ω. Recall that
dα(i,j) ≤ ε(α)/2 and ε(α) ≤ cn by definition. Therefore (20) holds for
γ = α(i, j) by the induction hypothesis.

Thus we define all the distances dβ = dD(α, β), where α is a parent of β.
Then we extend dD to the entire ∆ by setting

dD(α, α) = 0, for all α ∈ ∆,

dD(β, α) = dD(α, β), if α is a parent of β,

dD(α, β) = dD(α, α1) + · · · + dD(αn, β), if α, α1, . . . , αn, β is the
shortest path from α to β.

This distance function satisfies the following properties:

LEMMA 15. Let α ∈ ∆ and hr(α) = (α0, . . . , αn−1), bl(α) = (t0, . . . , tn),
c(α) = (c0, . . . , cn).

1) Let m < n. Then, for all i < k with ϕi /∈ min tm, we have

0 ≤ dα(i)− dαm(i) < (cm+1 + · · ·+ cn)/3 < 2cm+1/3. (21)
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2) For all i < k and 1 ≤ m ≤ n, we have

2c0/3 ≤ dα(i) < c0, if ϕi /∈ min t0,
2cm/3 ≤ dα(i) < cm, if ϕi ∈ min tm−1 \min tm,

(22)

Proof. Let us prove (21) first. Note that, by (20), we have,

cm+1 + · · ·+ cn < (1 + 1/2 + · · ·+ 1/2n−m−1) cm+1 < 2cm+1,

for any m < n. This proves the right-hand side inequality in (21). We then
proceed by induction on n−m.

For m = n − 1, (21) follows directly from (17). Let now m ≤ n − 2 and
ϕi /∈ tm, for some i < k. By Lemma 9 and (20), we have hr(αn−1) =
(α0, . . . , αn−2), bl(αn−1) = (t0, . . . , tn−1) and c(αn−1) = (c0, . . . , cn−1).
Therefore, by the induction hypothesis, we have

0 ≤ dαn−1(i)− dαm
(i) < (cm+1 + · · ·+ cn−1)/3.

Combining this with (17) we obtain the required inequalities.
We now prove (22). Let 1 ≤ m ≤ n and ϕi ∈ min tm−1\min tm, or m = 0

and ϕi /∈ min t0. By Lemma 9 and (20) we have hr(αm) = (α0, . . . , αm−1),
bl(αm) = (t0, . . . , tm) and c(αm) = (c0, . . . , cm). Therefore, by (18), we have
2cm/3 ≤ dαm

(i) < cm, and moreover dαm
(i) ≤ cm− ε(αm) by the definition

of ε(αm). But then, by applying (21) and (20), we obtain 2cm/3 ≤ dα(i) <
cm − ε(αm) + 2cm+1/3 < cm. q

LEMMA 16. Let α be a parent of β in ∆. Then, for all i < k, we have:

|dα(i)− dβ(i)| ≤ dβ .

Proof. Suppose that hr(α) = (α0, . . . , αn−1), bl(α) = (t0, . . . , tn), c(α) =
(c0, . . . , cn), and β = α(j, l), t = tp(β). Then (tn, t) is a ϕj-link. Let i < k.

First, assume ϕi ∈ min t. Then dβ(i) = 0, ϕj 6<t ϕi, and so ϕj 6<tn
ϕi.

By (14), we obtain dα(i) ≤ dα(j), which implies 0 ≤ dα(i) − dβ(i) ≤ dβ ,
since dβ(j) ≤ dβ .

Therefore we further assume that ϕi /∈ min t. Two cases are possible.
Case 1: ϕj /∈ min t0. Then β = α(j, 0), c(β) = (c0/2), dβ = dα(j),

and dα(i), dα(j) ∈ [2c0/3, c0), dβ(i) ∈ [c0/3, c0/2). It follows that we have
|dα(i)− dβ(i)| ≤ c0 − c0/3 ≤ dβ .

Case 2: ϕj ∈ min tm−1 \min tm, for 1 ≤ m ≤ n. Then β = α(j, 0), dβ =
dα(j) ∈ [2cm/3, cm), and hr(β) = (α0, . . . , αm−1), bl(β) = (t0, . . . , tm−1, t)
c(β) = (c0, . . . , cm−1, cm/2), Suppose first that ϕi ∈ min tm−1 \ t. Then
dα(i) < cm, and dβ(i) ∈ [cm/3, cm/2), i.e., |dα(i)−dβ(i)| ≤ cm−cm/3 ≤ dβ .

Suppose now that ϕi /∈ min tm−1. Then 0 ≤ dβ(i) − dαm−1(i) < cm/6
by (17), and 0 ≤ dα(i) − dαm−1(i) < 2cm/3 by (21). Therefore, we have
|dα(i)− dβ(i)| ≤ 2cm/3 ≤ dβ . q
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LEMMA 17. Let α, β ∈ ∆ and ϕi ∈ tp(β), for some i < k. Then

dα(i) ≤ dD(α, β).

Proof. First, note that dβ(i) = 0. Let α0, . . . , αn be the shortest path
between α and β (i.e., α0 = α, αn = β). We proceed by induction on n.

Let n = 0, i.e., α = β. Then dα(i) = dβ(i) = 0 = dD(α, β).
Let now n ≥ 1. We have dD(α, β) = dD(α, α1) + dD(α1, β) by the

definition of dβ . Then |dα(i) − dα1(i)| ≤ dD(α, α1) by Lemma 16, and
|dα1(i) − dβ(i)| ≤ dD(α1, β) by the induction hypothesis. Thus, we obtain
dα(i) = |dα(i)− dβ(i)| ≤ dD(α, β), as required. q

BIBLIOGRAPHY
[1] J. P. Delgrande. Preliminary considerations on the modelling of belief change operators

by metric spaces. In Proceedings of NMR, pages 118–125, 2004.
[2] L. Esakia. Intuitionistic logic and modality via topology. Annals of Pure and Applied

Logic, 127:155–170, 2004.

[3] K. Etessami, M. Vardi, and T. Wilke. First-order logic with two variables and unary
temporal logic. In Proceedings of the 12th IEEE Symp. Logic in Computer Science,

pages 228–235, 1997.

[4] N. Friedman and J. Halpern. On the complexity of conditional logics. In Proceedings
of KR’94, pages 202–213, 1994.

[5] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, 2000.

[6] A. Kurucz, F. Wolter, and M. Zakharyaschev. Modal logics for metric spaces: Open
problems. In S. Artemov, H. Barringer, A. d’Avila Garcez, L. Lamb, and J. Woods,

editors, We Will Show Them! Essays in Honour of Dov Gabbay, Volume Two, pages
193–108. College Publications, 2005.

[7] O. Kutz, H. Sturm, N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev. Logics of metric

spaces. ACM Transactions on Computational Logic, 4:260–294, 2003.
[8] D. Lewis. Counterfactuals. Blackwell, Oxford, 1973.

[9] C. Lutz, U. Sattler, and F. Wolter. Description logics and the two-variable fragment. In

D. L. McGuiness, P. F. Pater-Schneider, C. Goble, and R. Möller, editors, Proceedings
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