On dynamic topological and metric logics

B. Konev, ${ }^{1}$ R. Kontchakov ${ }^{2}$, F. Wolter ${ }^{1}$, and M. Zakharyaschev ${ }^{2}$
${ }^{1}$ Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, U.K. \{b.konev, frank\}@csc.liv.ac.uk,
${ }^{2}$ Department of Computer Science, King's College London, Strand, London WC2R 2LS, U.K.
\{romanvk, mz\}@dcs.kcl.ac.uk

Abstract

The first result of this paper shows that some dynamic topological logics interpreted in various topological spaces with homeomorphisms are not recursively enumerable (and so are not recursively axiomatisable). This gives a 'negative' solution to a conjecture of Kremer and Mints [12]. Second, we prove the non-elementary decidability of the dynamic metric logic with distance operators of the form 'somewhere in the ball of radius a, for $a \in \mathbb{Q}^{+}$, interpreted in arbitrary metric spaces with distance preserving automorphisms.

1 Introduction

Dynamic topological logics were first introduced in 1997 (see, e.g., [10, 11, 13, 2, 12]) as a logical formalism for describing the behaviour of dynamical systems, e.g., in order to specify liveness and safety properties of hybrid systems [6]. Dynamical systems [4, 9] are usually represented by some 'mathematical' space W (modelling possible system states) and a function f on W (modelling the evolution of the system), with one of the main research problems being the study of iterations of f, in particular, the orbits $O(w)=\left\{w, f(w), f^{2}(w), \ldots\right\}$ of states $w \in W$.

A natural logical formalism for speaking about such iterations is a variant of temporal logic. For example, given a subset V of W, we can introduce the standard temporal operators O ('at the next moment'), \square_{F} ('always in the future'), and its dual \diamond_{F} ('eventually') by taking

$$
\bigcirc V=f^{-1}(V), \quad \square_{F} V=\bigcap_{0<n<\omega} f^{-n}(V) \quad \text { and } \quad \diamond_{F} V=\bigcup_{0<n<\omega} f^{-n}(V)
$$

Using this language we can describe in a succinct and transparent way properties like

- starting from a state in some region P, one will never leave a region $Q: P \rightarrow \square_{F} Q$;
- starting from a state in a region P, one will eventually reach a state in $Q: P \rightarrow \diamond_{F} Q$;
- w 'visits' P ever and ever again: $w \in \square_{F} \diamond_{F} P$.

To speak about the structure of the underlying space W-important examples are (subspaces of) the Euclidean spaces \mathbb{R}^{n}, general topological spaces, metric spaces, and measure spaces-as well as the type of the intended functions f, one may require different non-temporal operators. So far,
research has mainly been focused on topological spaces with continuous mappings. The corresponding logical constructors are those of modal logic $\mathbf{S 4}$ which can be regarded also as the topological closure and interior operators-we denote them by \mathbf{C} and \mathbf{I}, respectively. For example, a property similar to Poincare's recurrence theorem corresponds in this language to the validity of the formula $\mathbf{C}\left(\mathbf{I} p \rightarrow \bigcirc \diamond_{F} \mathbf{I} p\right)$ in spaces based on the unit disc with measure preserving continuous mappings.

Metric operators were suggested in [16] in order to formulate safety properties. For example, using the operator $\exists \leq a$, where a is a positive rational number, the formula $P \rightarrow \square_{F} \neg^{\leq \leq a} Q$ states that, having started from a point in P, one can never reach the a-neighbourhood of some 'unsafe' area Q.

The resulting combinations of temporal and topological/metric logics are of a clear 'two-dimensional character,' which makes it very difficult to analyse their computational properties (see, e.g., [7]). Perhaps this is the main reason why in the field of dynamic topological systems no (un)decidability or axiomatisability results have been obtained yet for the full language containing both \bigcirc and the infinitary \square_{F}.

This note provides answers to some of the open problems. First, we show that some dynamic topological logics introduced in [12] and interpreted in various topological spaces with homeomorphisms are not recursively enumerable (and so are not recursively axiomatisable). This result gives negative solutions to Conjectures 2.7 (ii) and 2.7 (iv) from [12]. Second, we prove the non-elementary decidability of the dynamic metric logic with distance operators of the form $\exists \leq a$ from [14] interpreted in arbitrary metric spaces with distance preserving automorphisms.

Although numerous problems remain open, the obtained results clearly indicate that the logics for dynamic systems are very sensitive to the available operators (say, topological vs metric) as well as the constraints imposed on the spaces $\langle W, f\rangle$ (e.g., the proof of the undecidability result mentioned above does not go through for continuous functions, while the decidability proof only works for arbitrary metric spaces, but not for, say, compact ones).

2 Definitions

Syntax. The language $\mathcal{D} \mathcal{T} \mathcal{L}$ of dynamic topological logic (or dynamic topo-logic, for short) [2, 12] is constructed from a countably infinite set of propositional variables using the Booleans \wedge and \neg, the modal operators \mathbf{I} and \mathbf{C} (for topological interior and closure), and the temporal operators \bigcirc (for 'next'), \square_{F} and \diamond_{F} (for 'always' and 'eventually'). By $\mathcal{D} \mathcal{T} \mathcal{L}_{\circ}$ we denote the fragment of $\mathcal{D} \mathcal{T} \mathcal{L}$ which does not use \square_{F} and \diamond_{F}. We write $\square_{F}^{+} \varphi$ for $\varphi \wedge \square_{F} \varphi$ and dually $\diamond_{F}^{+} \varphi=\varphi \vee \diamond_{F} \varphi$, for every $\mathcal{D T} \mathcal{L}$-formula φ.

Semantics. In this paper, by a dynamic topological structure (or DTS, for short) we understand a pair of the form $\mathfrak{F}=\langle\mathfrak{T}, f\rangle$, where $\mathfrak{T}=\langle T, \mathbb{I}\rangle$ is a topological space with an interior operator \mathbb{I} (satisfying the standard Kuratowski axioms) and f is a homeomorphism ${ }^{1}$ (i.e., a bijective continuous and open mapping) on \mathfrak{T}. A dynamic topological model (or DTM) is a pair $\mathfrak{M}=\langle\mathfrak{F}, \mathfrak{V}\rangle$, where \mathfrak{F} is a DTS and \mathfrak{V}, a valuation, associates with each propositional variable p a subset $\mathfrak{V}(p)$ of T. The truth-relation $(\mathfrak{M}, w) \models \varphi$, for a $\mathcal{D} \mathcal{T} \mathcal{L}$-formula φ, is defined as follows:

$$
\begin{array}{lll}
(\mathfrak{M}, w) \models p & \text { iff } & w \in \mathfrak{V}(p), \\
(\mathfrak{M}, w) \models \mathbf{I} \varphi & \text { iff } & w \in \mathbb{I}\{v \in T \mid(\mathfrak{M}, v) \models \varphi\},
\end{array}
$$

[^0]\[

$$
\begin{array}{llll}
(\mathfrak{M}, w) \models \mathbf{C} \varphi & \text { iff } & w \in \mathbb{C}\{v \in T \mid(\mathfrak{M}, v) \models \varphi\}, \\
(\mathfrak{M}, w) \models O \varphi & \text { iff } & (\mathfrak{M}, f(w)) \models \varphi, \\
(\mathfrak{M}, w) \models \square_{F} \varphi & \text { iff } & \left(\mathfrak{M}, f^{n}(w)\right) \models \varphi \text { for every } n>0, \\
(\mathfrak{M}, w) \models \diamond_{F} \varphi & \text { iff } & \left(\mathfrak{M}, f^{n}(w)\right) \models \varphi \text { for some } n>0 .
\end{array}
$$
\]

Here $f^{n}(w)=\overbrace{f \ldots f}^{n}(w)$. If $(\mathfrak{M}, w) \models \varphi$ for some $w \in T$, then we say that φ is satisfied in \mathfrak{M}. A $\mathcal{D} \mathcal{L} \mathcal{L}$-formula φ is satisfiable in a DTS \mathfrak{F} if φ is satisfied in a DTM based on \mathfrak{F}.

Given a class \mathcal{K} of dynamic topological structures, we denote by $\log \mathcal{K}\left(\right.$ respectively, $\left.\log _{\circ} \mathcal{K}\right)$ the logic of \mathcal{K} in the language $\mathcal{D T} \mathcal{L}$ (or $\mathcal{D} \mathcal{T} \mathcal{L}_{\bigcirc}$), i.e., the set of all $\mathcal{D T} \mathcal{L}$-formulas (respectively, $\mathcal{D} \mathcal{T} \mathcal{L}_{\circ}$-formulas) φ such that $(\mathfrak{M}, w) \models \varphi$ holds for every model \mathfrak{M} based on a structure in \mathcal{K} and every point w in \mathfrak{M}.

We remind the reader that every quasi-order $\mathfrak{G}=\langle W, R\rangle(R$ is a reflexive and transitive relation on W) gives rise to a topological space $\mathfrak{T}_{\mathfrak{G}}=\left\langle W, \mathbb{I}_{\mathfrak{G}}\right\rangle$, where, for every $X \subseteq W$,

$$
\mathbb{I}_{\mathfrak{G}} X=\{x \in X \mid \forall y \in W(x R y \rightarrow y \in X)\}
$$

Such spaces are known as Aleksandrov spaces. Alternatively they can be defined as topological spaces where arbitrary (not only finite) intersections of open sets are open; for details see [1,3]. Clearly, for $\mathfrak{M}=\left\langle\left\langle\mathfrak{T}_{\mathfrak{G}}, f\right\rangle, \mathfrak{V}\right\rangle$ we have

$$
\begin{array}{lll}
(\mathfrak{M}, w) \models \mathbf{I} \varphi & \text { iff } & (\mathfrak{M}, v) \models \varphi \text { for every } v \in W \text { with } w R v, \\
(\mathfrak{M}, w) \models \mathbf{C} \varphi & \text { iff } \quad & \text { there is } v \in W \text { such that } w R v \text { and }(\mathfrak{M}, v) \models \varphi .
\end{array}
$$

It should be also clear that a function $f: W \rightarrow W$ is a continuous mapping on $\mathfrak{T}_{\mathfrak{G}}$ if, for all $w, v \in W$,

$$
w R v \quad \text { implies } \quad f(w) R f(v)
$$

The function f is a homeomorphism on $\mathfrak{T}_{\mathfrak{G}}$ if f is bijective and the converse implication holds as well.
Let \mathbb{R}^{n} denote the standard Euclidean space of dimension n and \mathbb{R} is the real line. For $n \geq 2$, a unit ball is a DTS $\mathfrak{B}^{n}=\left\langle B^{n}, f\right\rangle$, where B^{n} is a ball in \mathbb{R}^{n} of radius 1 , and f is a measure preserving homeomorphism on B^{n}.

The results of the theorem below were explicitly proved in or easily follow from [2, 13, 12].
Theorem 1. The four dynamic topo-logics listed below coincide, have the finite model property, are finitely axiomatisable, and so decidable:

1. $\log _{\circ}\{\langle\mathfrak{T}, f\rangle \mid\langle\mathfrak{T}, f\rangle$ a DTS $\}$,
2. $\log _{\bigcirc}\left\{\left\langle\mathbb{R}^{n}, f\right\rangle \mid\left\langle\mathbb{R}^{n}, f\right\rangle\right.$ a DTS, $\left.n \geq 1\right\}$,
3. $\log _{\circ}\{\langle\mathfrak{T}, f\rangle \mid\langle\mathfrak{T}, f\rangle$ a DTS, \mathfrak{T} an Aleksandrov space $\}$,
4. $\log \left\{\mathfrak{B}^{n} \mid \mathfrak{B}^{n}\right.$ a unit ball, $\left.n \geq 2\right\}$.

Later on we will use the fact that $\log _{\circ}\{\langle\mathbb{R}, x \mapsto x+1\rangle\}$ coincides with all of the logics above as well (see [12]).

We show now that the computational behaviour of dynamic topo-logics becomes completely different if we allow the use of the operators \square_{F} and \diamond_{F}.

3 Undecidability and non-axiomatisability

Theorem 2. No logic from the list below is recursively enumerable:

1. $\log \{\langle\mathfrak{T}, f\rangle \mid\langle\mathfrak{T}, f\rangle$ a $D T S\}$,
2. $\log \left\{\left\langle\mathbb{R}^{n}, f\right\rangle \mid\left\langle\mathbb{R}^{n}, f\right\rangle\right.$ a DTS, $\left.n \geq 1\right\}$,
3. $\log \{\langle\mathfrak{T}, f\rangle \mid\langle\mathfrak{T}, f\rangle$ a DTS, \mathfrak{T} an Aleksandrov space $\}$,
4. $\log \left\{\mathfrak{B}^{n} \mid \mathfrak{B}^{n}\right.$ a unit ball, $\left.n \geq 2\right\}$.

Remark 3. Before proceeding to the proof, we note that all logics mentioned in this theorem are different. As was shown in [18], the formula $\mathbf{I} \diamond_{F}(p \wedge \mathbf{C I} \neg p)$ is not satisfiable in any DTS of the form $\left\langle\mathbb{R}^{n}, f\right\rangle$, while it is clearly satisfiable. According to [12], the formula $\mathbf{C}\left(\mathbf{I} p \rightarrow \bigcirc \diamond_{F} \mathbf{I} p\right)$ is valid in all unit balls, but refuted in a DTS based on both an Aleksandrov space and $\left\langle\mathbb{R}^{n}, x \mapsto x+1\right\rangle$. Finally, the formula $\diamond_{F} \mathbf{C} p \leftrightarrow \mathbf{C} \diamond_{F} p$ is valid in DTSs based on Aleksandrov spaces, but refuted both in $\left\langle\mathbb{R}^{n}, f\right\rangle$ and in all unit balls.

We prove Theorem 2 by reduction of Post's correspondence problem or PCP, for short [17]. (Cases (2) and (4) will only be proved for $n=1$ and $n=2$, respectively.) The idea of the proof is taken from [7]. Let A be a finite alphabet and P a finite set of pairs $\left\langle\mathbf{v}_{1}, \mathbf{u}_{1}\right\rangle, \ldots,\left\langle\mathbf{v}_{k}, \mathbf{u}_{k}\right\rangle$ of nonempty finite words

$$
\mathbf{v}_{i}=\left\langle b_{1}^{i}, \ldots, b_{l_{i}}^{i}\right\rangle, \quad \mathbf{u}_{i}=\left\langle c_{1}^{i}, \ldots, c_{r_{i}}^{i}\right\rangle \quad(i=1, \ldots, k)
$$

over A. For a sequence of indices i_{1}, \ldots, i_{N} ranging over $1, \ldots, k$, let

$$
m_{j}=l_{i_{1}}+\cdots+l_{i_{j}} \quad \text { and } \quad n_{j}=r_{i_{1}}+\cdots+r_{i_{j}}
$$

for $1 \leq j \leq N$. The following problem is undecidable (for a proof see, e.g., [8]): given a set P of pairs of words as above, decide whether there exist an $N \geq 1$ and a sequence i_{1}, \ldots, i_{N} of indices such that

$$
\begin{equation*}
\mathbf{v}_{i_{1}} * \cdots * \mathbf{v}_{i_{N}}=\mathbf{u}_{i_{1}} * \cdots * \mathbf{u}_{i_{N}} \tag{1}
\end{equation*}
$$

where $*$ is the concatenation operation. If the condition above holds for a PCP instance P then we say that P has a solution. Later, we will use a consequence of this result, namely, that the set of PCP instances without solutions is not recursively enumerable.

The reduction formula $\phi_{A, P}$ is constructed using the propositional variables r, s, left and right, left a_{a} and right t_{a}, for every $a \in A$, as well as pair ${ }_{i}$, for every pair $\left\langle\mathbf{v}_{i}, \mathbf{u}_{i}\right\rangle$ in $P, 1 \leq i \leq k$.

The variable s is used to introduce a new operator \mathbf{S} (which can be interpreted as a 'strict diamond' in Kripke quasi-ordered frames). Namely, for every $\mathcal{D} \mathcal{T} \mathcal{L}$-formula ψ, we put

$$
\mathbf{S} \psi=(s \rightarrow \mathbf{C}(\neg s \wedge \mathbf{C} \psi)) \wedge(\neg s \rightarrow \mathbf{C}(s \wedge \mathbf{C} \psi)) .
$$

Denote by \mathbf{S}^{m} a string of m operators \mathbf{S} (so that $\mathbf{S}^{0} \psi=\psi$). The variable r is used to 'relativise' \square_{F} in the following ways: $\square_{F}^{<\mathbf{r}} \psi=\square_{F}^{+}\left(\diamond_{F} r \rightarrow \psi\right)$ and $\square_{F}^{\leq \mathbf{r}} \psi=\square_{F}^{+}\left(\diamond_{F}^{+} r \rightarrow \psi\right)$.

Now $\phi_{A, P}$ is defined as the conjunction

$$
\phi_{A, P}=\varphi_{e q} \wedge \varphi_{\text {pair }} \wedge \varphi_{\text {stripe }} \wedge \varphi_{\text {left }} \wedge \varphi_{\text {right }}
$$

where

$$
\begin{aligned}
\varphi_{e q} & =\diamond_{F}\left(r \wedge \bigwedge_{a \in A} \mathbf{I}\left(\text { left }_{a} \leftrightarrow \text { right }_{a}\right)\right), \\
\varphi_{\text {pair }} & =\square_{F}^{<\mathbf{r}}\left(\bigvee_{1 \leq i \leq k} \text { pair }_{i} \wedge \bigwedge_{1 \leq i<j \leq k} \neg\left(\text { pair }_{i} \wedge \text { pair }_{j}\right)\right),
\end{aligned}
$$

$$
\varphi_{\text {stripe }}=\square_{F}^{<\mathbf{r}} \mathbf{I}(s \leftrightarrow O s)
$$

$\varphi_{\text {left }}$ is the conjunction of (2)-(8), for $1 \leq i \leq k$,

$$
\begin{align*}
& \bigwedge_{\substack{a \neq b \\
a, b \in A}} \square_{F}^{\leq \mathbf{r}} \mathbf{I} \neg\left(\text { left }_{a} \wedge l e f t_{b}\right) \wedge \square_{F}^{\leq \mathbf{r}} \mathbf{I}\left(l e f t \leftrightarrow \bigvee_{a \in A} l e f t_{a}\right), \tag{2}\\
& \bigwedge_{a \in A} \square_{F}^{<\mathbf{r}} \mathbf{I}\left(\text { left }_{a} \rightarrow \text { Oleft }_{a}\right), \tag{3}\\
& \mathbf{I} \neg \text { left } \wedge \square_{F}^{\leq \mathbf{r}} \mathbf{I}(\neg \text { left } \rightarrow \neg \mathbf{S} \text { left }), \tag{4}\\
& \square_{F}^{<\mathbf{r}}\left(\text { pair }_{i} \rightarrow \mathbf{I}\left(\neg l e f t \rightarrow \bigcirc \neg \mathbf{S}^{l_{i}} l e f t\right)\right), \tag{5}\\
& \square_{F}^{<\mathbf{r}}\left(\text { pair }_{i} \rightarrow \bigwedge_{j<l_{i}} \bigcirc \mathbf{I}\left(\left(\mathbf{S}^{j} l e f t \wedge \neg \mathbf{S}^{j+1} \text { left }\right) \rightarrow \text { left }_{b_{l_{i}-j}}\right)\right), \tag{6}\\
& \text { pair }_{i} \rightarrow \text { Olw } w_{i}, \tag{7}\\
& \square_{F}^{<\mathbf{r}}\left(\text { pair }_{i} \rightarrow \mathbf{I}\left((\text { left } \wedge \neg \mathbf{S} \text { left }) \rightarrow \mathbf{S} \bigcirc l w_{i}\right)\right), \tag{8}
\end{align*}
$$

where

$$
l w_{i}=\operatorname{left}_{b_{1}^{i}} \wedge \mathbf{S}\left(\text { left }_{b_{2}^{i}} \wedge \mathbf{S}\left(\text { left }_{b_{3}^{i}} \wedge \cdots \wedge \mathbf{S} \text { left }_{b_{l_{i}}^{i}}\right) \ldots\right)
$$

(remember that l_{i} is the length of the word $\mathbf{v}_{i}=\left\langle b_{1}^{i}, \ldots, b_{l_{i}}^{i}\right\rangle$), and the conjunct $\varphi_{\text {right }}$ the 'right counterpart' of $\varphi_{\text {left }}$-is defined by replacing in $\varphi_{\text {left }}$ all occurrences of left with right, left ${ }_{a}$ with right ${ }_{a}$, l_{i} with r_{i}, etc.

We also require $\mathcal{D} \mathcal{T} \mathcal{L}_{\bigcirc}$-formulas $\phi_{A, P}^{n}, n>0$, which are defined similarly to $\phi_{A, P}$ by replacing

- $\varphi_{e q}$ with $\bigcirc^{n} \bigwedge_{a \in A} \mathbf{I}\left(\right.$ left $\left._{a} \leftrightarrow r i g h t_{a}\right)$, and
- every occurrence of $\square_{F}^{\leq \mathbf{r}} \psi\left(\right.$ or $\left.\square_{F}^{<\mathbf{r}} \psi\right)$ with $\square_{F}^{\leq n} \psi\left(\right.$ respectively, $\left.\square_{F}^{<n} \psi\right)$, where

$$
\square_{F}^{\leq n} \psi=\psi \wedge \bigcirc \psi \wedge \bigcirc \bigcirc \psi \wedge \cdots \wedge \bigcirc^{n} \psi \quad \text { and } \quad \square_{F}^{<n} \psi=\psi \wedge \bigcirc \psi \wedge \bigcirc \bigcirc \psi \wedge \cdots \wedge \bigcirc^{n-1} \psi
$$

We denote the subformula of $\phi_{A, P}^{n}$ corresponding to a subformula φ of $\phi_{A, P}$ by φ^{n}.
Lemma 4. If $\phi_{A, P}$ is satisfiable in $\langle\mathfrak{T}, f\rangle$ then there is $n>0$ such that $\phi_{A, P}^{n}$ is satisfiable in $\langle\mathfrak{T}, f\rangle$.
Proof. Suppose $(\mathfrak{M}, w) \models \phi_{A, P}$. Then $(\mathfrak{M}, w) \models \diamond_{F}\left(r \wedge \bigwedge_{a \in A} \mathbf{I}\left(\right.\right.$ left $_{a} \leftrightarrow$ right $\left.\left._{a}\right)\right)$, that is, there exists $m>0$ such that $\left(\mathfrak{M}, f^{m}(w)\right) \vDash r \wedge \bigwedge_{a \in A} \mathbf{I}\left(\right.$ left $\left._{a} \leftrightarrow r_{\text {right }}^{a}\right)$. Let n be the minimal such m. One can easily check that $(\mathfrak{M}, w) \models \phi_{A, P}^{n}$.

Lemma 5. If P has a solution, then the following hold:
(i) $\phi_{A, P}$ is satisfiable in a DTS $\langle\mathfrak{T}, f\rangle$, where \mathfrak{T} is an Aleksandrov space;
(ii) $\phi_{A, P}$ is satisfiable in a DTS;
(iii) $\phi_{A, P}$ is satisfiable in \mathfrak{B}^{2};
(iv) $\phi_{A, P}$ is satisfiable in $\langle\mathbb{R}, f\rangle$, where $f: x \mapsto x+1$.

Proof. Suppose that P has a solution

$$
\begin{equation*}
\mathbf{v}_{i_{1}} * \cdots * \mathbf{v}_{i_{N}}=\mathbf{u}_{i_{1}} * \cdots * \mathbf{u}_{i_{N}} . \tag{9}
\end{equation*}
$$

Let $\mathbf{v}_{i_{1}} * \cdots * \mathbf{v}_{i_{N}}=\left\langle b_{0}, \ldots, b_{m_{N}-1}\right\rangle$.
(i) Define a quasi-order $\mathfrak{G}=\langle W, R\rangle$ by taking $W=\left\{0, \ldots, 2 m_{N}\right\} \times \mathbb{Z}$, where \mathbb{Z} is the set of integers, and $(x, y) R\left(x^{\prime}, y^{\prime}\right)$ iff $x \leq x^{\prime}$ and $y=y^{\prime}$. Define $f: W \rightarrow W$ by taking $f(x, y)=(x, y+1)$. Clearly, f is a homeomorphism on $\mathfrak{T}_{\mathfrak{G}}$. Finally, define \mathfrak{V} by taking

$$
\begin{array}{rlrl}
\mathfrak{V}(s) & =\left\{(2 n, z) \mid 0 \leq 2 n \leq 2 m_{N}, z \in \mathbb{Z}\right\}, & \mathfrak{V}(r)=\{(0, N)\}, \\
\mathfrak{V}\left(\text { pair }_{i}\right) & =\left\{(0, j-1) \mid i=i_{j}, \text { for some } j \leq N\right\}, & & \mathfrak{V}\left(\text { left }^{\prime}\right)=\bigcup_{a \in A} \mathfrak{V}\left(\text { left }_{a}\right), \\
\mathfrak{V}\left(\text { left }_{a}\right) & =\left\{(2 k, j) \mid 0<j \leq N, k<m_{j}, b_{k}=a\right\}, & \mathfrak{V}(\text { right })=\bigcup_{a \in A} \mathfrak{V}\left(\text { right }_{a}\right) . \\
\mathfrak{V}\left(\text { right }_{a}\right) & =\left\{(2 k, j) \mid 0<j \leq N, k<n_{j}, b_{k}=a\right\}, & 0.0
\end{array}
$$

Let $\mathfrak{M}=\left\langle\mathfrak{T}_{\mathfrak{G}}, \mathfrak{V}\right\rangle$. It is an easy exercise to show $(\mathfrak{M},(0,0)) \models \phi_{A, P}$. We leave this to the reader.
(ii) follows from (i).
(iii) We only consider the two-dimensional unit ball $\mathfrak{B}^{2}=\left\langle B^{2}, g\right\rangle$, where g is the rotation of B^{2} clockwise by some rational angle α such that $0<\alpha<2 \pi / N+1$ and N is given by (9) (for $n>2$, the construction is similar: we rotate the ball around a fixed axis by the same angle α). Obviously, g is a measure preserving homeomorphism.

Let E be an open set, say, a smaller open ball contained in the sector $[-\alpha / 2, \alpha / 2]$ of B^{2} and let $E_{i}=$ $g^{i}(E)$, for $i<\omega$. Note that $E=E_{0}, E_{1}, \ldots, E_{N}$ are pairwise disjoint sets. Let $\mathfrak{H}=\left\langle\left\{0, \ldots, 2 m_{N}\right\}, \leq\right\rangle$. By the main result of McKinsey and Tarski [15], there exists a continuous mapping h_{i} from E_{i} onto $\mathfrak{T}_{\mathfrak{H}}$. Moreover, one may assume that, for every $x \in E_{i}$, we have $h_{i}(x)=h_{i+1}(g(x))$ and that $h_{i}\left(e_{i}\right)=0$, where e_{i} is the center of the ball E_{i}. Define a valuation \mathfrak{V} on \mathfrak{B}^{2} by taking

$$
\begin{aligned}
\mathfrak{V}(s) & =\bigcup_{i=0}^{N}\left\{h_{i}^{-1}(2 n) \mid 0 \leq 2 n \leq 2 m_{N}\right\}, & \mathfrak{V}(r)=\left\{e_{N}\right\}, \\
\mathfrak{V}\left(\text { pair }_{i}\right) & =\left\{e_{j-1} \mid i=i_{j}, \text { for some } j \leq N\right\}, & \mathfrak{V}(\text { left })=\bigcup_{a \in A} \mathfrak{V}\left(\text { left }_{a}\right), \\
\mathfrak{V}\left(\text { left }_{a}\right) & =\bigcup_{j=1}^{N}\left\{h_{j}^{-1}(2 k) \mid k<m_{j}, b_{k}=a\right\}, & \mathfrak{V}(\text { right })=\bigcup_{a \in A} \mathfrak{V}\left(\text { right }_{a}\right) . \\
\mathfrak{V}\left(\text { right }_{a}\right) & =\bigcup_{j=1}^{N}\left\{h_{j}^{-1}(2 k) \mid k<n_{j}, b_{k}=a\right\}, &
\end{aligned}
$$

As α is rational, we have $g^{j}\left(e_{0}\right)=e_{N}$ iff $j=N$. It is not hard to check now that $\left(\langle\mathfrak{B}, \mathfrak{V}\rangle, e_{0}\right) \models \phi_{A, P}$.
(iv) We know from (i) and Lemma 4 that there exists $n>0$ such that $\phi_{A, P}^{n}$ is satisfiable in a DTS $\langle\mathfrak{T}, f\rangle$. Then, by the remark following Theorem 1 and since $\phi_{A, P}^{n}$ is a $\mathcal{D T} \mathcal{L}_{\bigcirc}$-formula, $(\mathfrak{M}, w) \models \phi_{A, P}^{n}$, for some model $\mathfrak{M}=\langle\langle\mathbb{R}, f\rangle, \mathfrak{V}\rangle$ and $f: x \mapsto x+1$. Define a new valuation \mathfrak{V}^{\prime} on \mathbb{R} which coincides with \mathfrak{V} except for only one case: now we set $\mathfrak{V}^{\prime}(r)=\left\{f^{n}(w)\right\}$. (Note that r does not occur in $\phi_{A, P}^{n}$.) Let $\mathfrak{M}^{\prime}=\left\langle\langle\mathbb{R}, f\rangle, \mathfrak{V}^{\prime}\right\rangle$. Then clearly $\left(\mathfrak{M}^{\prime}, w\right) \mid=\phi_{A, P}$.

Lemma 6. Suppose that there exists $n>0$ such that $\phi_{A, P}^{n}$ is satisfiable in a DTS based on an Aleksandrov space. Then P has a solution.
Proof. Suppose that $\left(\mathfrak{M}, w_{1}^{0}\right) \models \phi_{A, P}^{N}$ for some DTM $\mathfrak{M}=\left\langle\left\langle\mathfrak{T}_{\mathfrak{G}}, f\right\rangle, \mathfrak{V}\right\rangle$, where $\mathfrak{G}=\langle W, R\rangle$ is a quasiorder, f a homeomorphism on $\mathfrak{T}_{\mathfrak{G}}$ and $w_{1}^{0} \in W$. For $j<\omega$, let

$$
W_{j}=\left\{w \in W \mid f^{j}\left(w_{1}^{0}\right) R w\right\}
$$

As $\left(\mathfrak{M}, w_{1}^{0}\right) \mid=\bigcirc^{N} \bigwedge_{a \in A} \mathbf{I}\left(\right.$ left $_{a} \leftrightarrow$ right $\left._{a}\right)$, we have

$$
\begin{equation*}
\left(\mathfrak{M}, f^{N}\left(w_{1}^{0}\right)\right) \mid=\bigwedge_{a \in A} \mathbf{I}\left(\text { left }_{a} \leftrightarrow \text { right }_{a}\right) . \tag{10}
\end{equation*}
$$

Since $\left(\mathfrak{M}, w_{1}^{0}\right) \models \varphi_{\text {stripe }}^{N}$, for each $w \in W_{0}$ and each $j \leq N$, we have $(\mathfrak{M}, w) \models s$ iff $\left(\mathfrak{M}, f^{j}(w)\right) \models s$.

Denote by $S_{j}, j \leq N$, the transitive binary relation on W_{j} defined by taking $w S_{j} v$ iff there is $u \in W_{j}$ such that $w R u R v$ and $(\mathfrak{M}, w) \models s$ iff $(\mathfrak{M}, u) \not \models s$. Then we clearly have that, for every $j \leq N$ and every $w \in W_{j}$,

$$
(\mathfrak{M}, w) \models \mathbf{S} \psi \quad \text { iff } \quad \text { there is } v \in W_{j} \text { such that } w S_{j} v \text { and }(\mathfrak{M}, v) \models \psi .
$$

Note that, since f is a homeomorphism and in view of $\left(\mathfrak{M}, w_{1}^{0}\right)=\varphi_{\text {stripe }}^{N}$, for all $w, v \in W_{0}$ and $i \leq N$, we have $w S_{0} v$ iff $f^{i}(w) S_{i} f^{i}(v)$.

Let i_{1}, \ldots, i_{N} be the sequence of indices such that, for $1 \leq j \leq N$, we have $\left(\mathfrak{M}, f^{j-1}\left(w_{1}^{0}\right)\right) \models \operatorname{pair}_{i_{j}}$ ($\varphi_{\text {pair }}^{N}$ ensures that there is a unique sequence of this sort). We claim that (1) holds for this sequence.

For every j with $1 \leq j \leq N$, let

$$
W_{j}^{L}=\left\{w \in W_{j} \mid(\mathfrak{M}, w) \models \text { left }\right\} .
$$

Call a sequence $\left\langle w_{1}, \ldots, w_{l}\right\rangle$ of (not necessarily distinct) points from W_{j}^{L} an S_{j}-path in W_{j}^{L} of length l if $w_{1} S_{j} w_{2} S_{j} \ldots S_{j} w_{l}$, and set

$$
\text { leftword }_{j}\left(w_{1}, \ldots, w_{l}\right)=\left\langle a_{1}, \ldots, a_{l}\right\rangle
$$

where the a_{i} are the (uniquely determined by (2)) symbols from A such that $\left(\mathfrak{M}, w_{i}\right) \models$ left $_{a_{i}}$.
We show now that there is a sequence π_{1}, \ldots, π_{N} such that, for every j with $1 \leq j \leq N$, the following hold:
(a) $\pi_{j}=\left\langle w_{1}^{j}, \ldots, w_{m_{j}}^{j}\right\rangle$ is an S_{j}-path in W_{j}^{L} of length m_{j}, and there is no S_{j}-path in W_{j}^{L} of length $>m_{j}$;
(b) $f\left(w_{1}^{0}\right)=w_{1}^{1}$ and if $j>1$ then $w_{m}^{j}=f\left(w_{m}^{j-1}\right)$, for all $m, 1 \leq m \leq m_{j-1}$;
(c) leftword $_{j}\left(w_{1}^{j}, \ldots, w_{m_{j}}^{j}\right)=\mathbf{v}_{i_{1}} * \ldots * \mathbf{v}_{i_{j}}$;
(d) for every S_{j}-path $\left\langle w_{1}, \ldots, w_{m_{j}}\right\rangle$ in W_{j}^{L} of length m_{j}, we have leftword ${ }_{j}\left(w_{1}, \ldots, w_{m_{j}}\right)=\mathbf{v}_{i_{1}} * \ldots * \mathbf{v}_{i_{j}}$.

Indeed, by $\left(\mathfrak{M}, w_{1}^{0}\right) \models$ pair $_{i_{1}}$, (7), (4) and (5), there exists an S_{1}-path π_{1} in W_{1}^{L} such that (a)-(c) hold. Condition (d) follows from (6).

Now assume inductively that conditions (a)-(d) hold for some $j-1$ with $1 \leq j-1<N$. Let $\pi_{j-1}=\left\langle w_{1}^{j-1}, \ldots, w_{m_{j-1}}^{j-1}\right\rangle$ be an S_{j-1}-path in W_{j-1}^{L} for which (a)-(d) hold. By (3), the sequence $\left\langle f\left(w_{1}^{j-1}\right), \ldots, f\left(w_{m_{j-1}}^{j-1}\right)\right\rangle$ is an S_{j}-path in W_{j}^{L}. Since $\left(\mathfrak{M}, w_{m_{j-1}}^{j-1}\right) \models$ left $\wedge \neg \mathbf{S l e f t}$ and $\left(\mathfrak{M}, w_{1}^{j-1}\right) \models$ pair $_{i_{j}}$, (8) means that there exists a sequence $w_{m_{j-1}+1}^{j}, \ldots, w_{m_{j-1}+l_{j}}^{j}$ of points in W_{j}^{L} such that

$$
\pi_{j}=\left\langle f\left(w_{1}^{j-1}\right), \ldots, f\left(w_{m_{j-1}}^{j-1}\right), w_{m_{j-1}+1}^{j}, \ldots, w_{m_{j-1}+l_{i_{j}}}^{j}\right\rangle
$$

is an S_{j}-path in W_{j}^{L} of length $m_{j}=m_{j-1}+l_{i_{j}}$ such that leftword ${ }_{j}\left(w_{n_{j-1}+1}^{j}, \ldots, w_{m_{j-1}+l_{i_{j}}}^{j}\right)=\mathbf{v}_{i_{j}}$. By (5) and the induction hypothesis, there is no S_{j}-path in W_{j}^{L} of length $>m_{j}$. Thus, (a) and (b) hold for π_{j}, (c) follows from (3), and (d) from (6) and the induction hypothesis.

Now define sets W_{j}^{R} in the same way as W_{j}^{L}, but with left replaced by right, introduce the notion of an S_{j}-path in W_{j}^{R}, and, for every sequence w_{1}, \ldots, w_{l} of points from W_{j}^{R}, set

$$
\operatorname{rightword}_{j}\left(w_{1}, \ldots, w_{l}\right)=\left\langle a_{1}, \ldots, a_{l}\right\rangle,
$$

where the a_{i} are the uniquely determined (by 'right analogue' of (2)) elements of A such that $\left(\mathfrak{M}, w_{i}\right) \models$ right $_{a_{i}}$. In precisely the same way as above we show now that there is a sequence $\pi_{1}^{\prime}, \ldots, \pi_{N}^{\prime}$ such that, for every j with $1 \leq j \leq N$,
($\left.\mathrm{a}^{\prime}\right) \pi_{j}^{\prime}=\left\langle w_{1}^{j}, \ldots, w_{n_{j}}^{j}\right\rangle$ is an S_{j}-path in W_{j}^{R} of length n_{j}, and there is no S_{j}-path in W_{j}^{R} of length $>n_{j}$;
($\left.\mathrm{b}^{\prime}\right) f\left(w_{1}^{0}\right)=w_{1}^{1}$ and if $j>1$ then $w_{n}^{j}=f\left(w_{n}^{j-1}\right)$, for all n with $1 \leq n \leq n_{j-1}$;
(c') $\operatorname{rightword}_{j}\left(w_{1}^{j}, \ldots, w_{n_{j}}^{j}\right)=\mathbf{u}_{i_{1}} * \ldots * \mathbf{u}_{i_{j}}$;
$\left(\mathrm{d}^{\prime}\right)$ for every S_{j}-path $\left\langle w_{1}, \ldots, w_{n_{j}}\right\rangle$ in W_{j}^{R} of length n_{j}, we have rightword $_{j}\left(w_{1}, \ldots, w_{n_{j}}\right)=\mathbf{u}_{i_{1}} * \ldots * \mathbf{u}_{i_{j}}$.
Now it is easy to see that (10) means that

$$
\mathbf{v}_{i_{1}} * \ldots * \mathbf{v}_{i_{N}}=\operatorname{leftword}_{N}\left(w_{1}^{N}, \ldots, w_{m_{N}}^{N}\right)=\operatorname{rightword}_{N}\left(w_{1}^{N}, \ldots, w_{n_{N}}^{N}\right)=\mathbf{u}_{i_{1}} * \ldots * \mathbf{u}_{i_{N}}
$$

as required.
Theorem 2 now follows immediately. Just observe that we have proved that, for any of the classes \mathcal{K} of DTSs listed in Theorem 2, $\phi_{A, P}$ is satisfiable in \mathcal{K} iff P has a solution. Indeed, the direction from right to left is Lemma 5. The direction from left to right for DTSs based on Aleksandrov spaces follows from Lemmas 4 and 6. For the remaining classes this direction follows from Lemmas 4, 6, and Theorem 1, since the $\phi_{A, P}^{n}$ are $\mathcal{D} \mathcal{T} \mathcal{L}_{O}$-formulas.

4 Dynamic metric logic

The language $\mathcal{D M} \mathcal{L}$ of dynamic metric logic is defined in the same way as $\mathcal{D} \mathcal{T} \mathcal{L}$ with the exception that the topological operators are replaced by the metric operators $\exists \leq a$, for $a \in \mathbb{Q}^{+}$, where \mathbb{Q}^{+}is the set of positive rational numbers. The intended semantics of this logic is defined as follows.

A dynamic metric structure (DMS, for short) is a pair $\mathfrak{F}=\langle\langle W, d\rangle, f\rangle$, where $\langle W, d\rangle$ is a metric space (with a metric d) and $f: W \rightarrow W$ is a metric automorphism, i.e., a bijection on W such that $d(x, y)=d(f(x), f(y))$ for all $x, y \in W$. For example, the map $x \mapsto x+1$ on \mathbb{R} and the rotation g on B^{2} considered above are metric automorphisms on the respective spaces with the Euclidean metric.

A dynamic metric model (or DMM) is a pair $\mathfrak{M}=\langle\mathfrak{F}, \mathfrak{V}\rangle$, where \mathfrak{F} is a DMS and \mathfrak{V} a valuation defined in precisely the same way as in the topological case. The truth-relation is also defined in the same manner as for DTMs with the exception that the truth-conditions for the topological operators I and \mathbf{C} are replaced by

$$
(\mathfrak{M}, x) \models \exists^{\leq a} \varphi \quad \text { iff } \quad \text { there exists } y \in W \text { such that } d(x, y) \leq a \text { and }(\mathfrak{M}, y) \models \varphi .
$$

In contrast to the topological case, now we have the following:
Theorem 7. The set of $\mathcal{D} \mathcal{M} \mathcal{L}$-formulas that are valid in all DMSs is decidable. However, the decision problem is not elementary.

Roughly, the idea of the decidability proof is similar to that of Theorem 13.6 from [7]: first we represents DMMs in the form of quasimodels and then show that quasimodels can be encoded in monadic second-order logic. The main novelty of this proof is the rather involved notion of a quasimodel.

Given a $\mathcal{D} \mathcal{M} \mathcal{L}$-formula φ, denote by γ_{φ} the maximal numerical parameter occurring in φ and by $M[\varphi] \subseteq \mathbb{Q}^{+}$the smallest set containing all numerical parameters in φ and closed under the rule
$(+)$ if $a, b \in M[\varphi]$ and $a+b \leq \gamma_{\varphi}$, then $a+b \in M[\varphi]$.

Clearly, $M[\varphi]$ is finite. Let $M^{+}[\varphi]=M[\varphi] \cup\left\{2 \cdot \gamma_{\varphi}\right\}$.
Define the metric depth $\operatorname{mtd}(\varphi)$ of φ inductively by taking:

$$
\begin{aligned}
m t d(p) & =0 \\
\operatorname{mtd}(\neg \varphi) & =\operatorname{mtd}(\varphi) \\
\operatorname{mtd}\left(\varphi_{1} \wedge \varphi_{2}\right) & =\max \left(\operatorname{mtd}\left(\varphi_{1}\right), \operatorname{mtd}\left(\varphi_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
m t d\left(\exists^{\leq a} \varphi\right) & =\operatorname{mtd}(\varphi)+a \\
m t d(\bigcirc \varphi) & =\operatorname{mtd}(\varphi) \\
m t d\left(\square_{F} \varphi\right) & =\operatorname{mtd}(\varphi) .
\end{aligned}
$$

Our first observation is that every satisfiable $\mathcal{D} \mathcal{M} \mathcal{L}$-formula φ can be satisfied in a DMS that is based on the metric space generated by some intransitive labelled tree.

Given an intransitive tree $\langle T,<\rangle$ and a function δ labelling the edges of $\langle T,<\rangle$ with positive real numbers, we denote by $\left\langle T, \delta^{*}\right\rangle$ the tree metric space induced by $\langle T,<\rangle$ and δ, i.e., for any $x \neq y$ in $T, \delta^{*}(x, y)$ is the sum of labels on the edges occurring in the shortest path from x to y in $\langle T,<\rangle$, and $\delta^{*}(x, x)=0$. If $\delta^{*}(x, y)$ is bounded, then the number

$$
\max \left\{\delta^{*}(r, x) \mid r \text { the root and } x \in T\right\}
$$

is called it the radius of the tree metric space $\left\langle T, \delta^{*}\right\rangle$.
Lemma 8. A $\mathcal{D M} \mathcal{L}$-formula $\varphi($ with $\operatorname{mtd}(\varphi)>0)$ is satisfiable iff it is satisfiable in a DMS of the form $\mathfrak{F}^{\prime}=\left\langle\left\langle T \times \mathbb{Z}, d^{\prime}\right\rangle, f^{\prime}\right\rangle$, where

- $\langle\langle T,<\rangle, \delta\rangle$ is a labelled intransitive tree such that $\delta(x, y) \in M^{+}[\varphi]$, for all $x, y \in T$ with $x<y$, and $\left\langle T, \delta^{*}\right\rangle$ is of radius $\leq m t d(\varphi)$;
- $\left\langle T \times \mathbb{Z}, d^{\prime}\right\rangle$ is the metric space with

$$
d^{\prime}(\langle x, i\rangle,\langle y, j\rangle)= \begin{cases}\delta^{*}(x, y), & \text { if } i=j \\ 3 \cdot \operatorname{mtd}(\varphi), & \text { otherwise }\end{cases}
$$

- $f^{\prime}(\langle x, i\rangle)=\langle x, i+1\rangle$, for all $\langle x, i\rangle \in T \times \mathbb{Z}$.

Proof. Suppose that $\left(\mathfrak{M}, u_{0}\right) \models \varphi$ for some model $\mathfrak{M}=\langle\mathfrak{F}, \mathfrak{V}\rangle$ with $\mathfrak{F}=\langle\langle W, d\rangle, f\rangle$ and some point $u_{0} \in W$. For any $u, v \in W$, put

$$
d_{0}(u, v)=\min \left(\left\{2 \cdot \gamma_{\varphi}\right\} \cup\{a \in M[\varphi] \mid d(u, v) \leq a\}\right) \in M^{+}[\varphi] .
$$

Now define the required labelled tree $\langle\langle T,<\rangle, \delta\rangle$ by taking

$$
\begin{aligned}
& T=\left\{\left\langle u_{0}, u_{1}, \ldots, u_{n}\right\rangle \mid \sum_{i=1}^{n} d_{0}\left(u_{i-1}, u_{i}\right) \leq m t d(\varphi), u_{1}, \ldots, u_{n} \in W\right\}, \\
& x<y \quad \text { iff } \quad x=\left\langle u_{0}, \ldots, u_{n}\right\rangle \text { and } y=\left\langle u_{0}, \ldots, u_{n}, u_{n+1}\right\rangle \\
& \delta\left(\left\langle u_{0}, \ldots, u_{n}\right\rangle,\left\langle u_{0}, \ldots, u_{n}, u_{n+1}\right\rangle\right)=d_{0}\left(u_{n}, u_{n+1}\right)
\end{aligned}
$$

Clearly, the radius of $\left\langle T, \delta^{*}\right\rangle$ is $\leq m t d(\varphi)$.
Let $\mathfrak{F}^{\prime}=\left\langle\left\langle T \times \mathbb{Z}, d^{\prime}\right\rangle, f^{\prime}\right\rangle$, where d^{\prime} and f^{\prime} are defined as above. It is easy to see that $\left\langle T \times \mathbb{Z}, d^{\prime}\right\rangle$ is indeed a metric space and $f^{\prime}: T \times \mathbb{Z} \rightarrow T \times \mathbb{Z}$ a metric automorphism. Put, for every propositional variable p,

$$
\mathfrak{V}^{\prime}(p)=\left\{\left\langle\left\langle u_{0}, \ldots, u_{n}\right\rangle, i\right\rangle \in T \times \mathbb{Z} \mid\left(\mathfrak{M}, f^{i}\left(u_{n}\right)\right) \models p\right\}
$$

and $\mathfrak{M}^{\prime}=\left\langle\mathfrak{F}^{\prime}, \mathfrak{V}^{\prime}\right\rangle$.

Denote by x_{0} the root $\left\langle u_{0}\right\rangle$ of $\langle T,<\rangle$. We show now by induction that, for every $\psi \in \operatorname{sub} \varphi$, every $i \in \mathbb{Z}$ and every $x=\left\langle u_{0}, \ldots, u_{n}\right\rangle \in T$ such that

$$
\begin{equation*}
\delta^{*}\left(x_{0}, x\right) \leq m t d(\varphi)-m t d(\psi) \tag{11}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left(\mathfrak{M}, f^{i}\left(u_{n}\right)\right) \models \psi \quad \text { iff } \quad\left(\mathfrak{M}^{\prime},\langle x, i\rangle\right) \models \psi . \tag{12}
\end{equation*}
$$

The basis of induction (propositional variables) follows immediately from the definition of \mathfrak{M}^{\prime}. The case of the Booleans is trivial.

Case $\psi=\exists \leq a \psi^{\prime}$. Let $\left(\mathfrak{M}, f^{i}\left(u_{n}\right)\right) \vDash \exists \leq a \psi^{\prime}$. Since f is a metric automorphism, there is $u_{n+1} \in W$ such that $d\left(u_{n}, u_{n+1}\right)=d\left(f^{i}\left(u_{n}\right), f^{i}\left(u_{n+1}\right)\right) \leq a$ and $\left(\mathfrak{M}, f^{i}\left(u_{n+1}\right)\right) \models \psi^{\prime}$. Take $y=\left\langle u_{0}, \ldots, u_{n}, u_{n+1}\right\rangle$. By (11), $y \in T$. By the definition of δ, we have $\delta^{*}(x, y) \leq a$. By the triangle inequality,

$$
\delta^{*}\left(x_{0}, y\right) \leq \delta^{*}\left(x_{0}, x\right)+\delta^{*}(x, y) \leq \operatorname{mtd}(\varphi)-\operatorname{mtd}\left(\psi^{\prime}\right)
$$

By IH, $\left(\mathfrak{M}^{\prime},\langle y, i\rangle\right) \models \psi^{\prime}$ and, since $d^{\prime}(\langle x, i\rangle,\langle y, i\rangle) \leq a$, we finally obtain $\left(\mathfrak{M}^{\prime},\langle x, i\rangle\right) \models \exists \leq a \psi^{\prime}$.
Conversely, suppose $\left(\mathfrak{M}^{\prime},\langle x, i\rangle\right) \models \exists \leq a \Psi^{\prime}$. Then there is $\langle y, j\rangle \in T \times \mathbb{Z}$ with $d^{\prime}(\langle x, i\rangle,\langle y, j\rangle) \leq a$ and $\left(\mathfrak{M}^{\prime},\langle y, j\rangle\right) \models \psi^{\prime}$. By the definition of d^{\prime}, we must have $j=i$, and so $\delta^{*}(x, y) \leq a$. By the triangle inequality, $\delta^{*}\left(x_{0}, y\right) \leq \delta^{*}\left(x_{0}, x\right)+\delta^{*}(x, y) \leq m t d(\varphi)-m t d\left(\psi^{\prime}\right)$. By $\mathrm{IH},\left(\mathfrak{M}, f^{i}\left(v_{m}\right)\right) \models \psi^{\prime}$ for $\left\langle u_{0}, v_{1}, \ldots, v_{m}\right\rangle=y$. As f is a metric automorphism, $d\left(f^{i}\left(u_{n}\right), f^{i}\left(v_{m}\right)\right)=d\left(u_{n}, v_{m}\right)$ and, by the definition of δ^{*}, we have $d\left(u_{n}, v_{m}\right) \leq \delta^{*}(x, y)$. Therefore, $d\left(f^{i}\left(u_{n}\right), f^{i}\left(v_{m}\right)\right) \leq a$ and $\left(\mathfrak{M}, f^{i}\left(u_{n}\right)\right) \models \exists \leq a \psi^{\prime}$.

Case $\psi=\bigcirc \psi^{\prime}$.

$$
\begin{array}{llll}
\left(\mathfrak{M}, f^{i}\left(u_{n}\right)\right) \models ○ \psi^{\prime} & \text { iff } & \left(\mathfrak{M}, f^{i+1}\left(u_{n}\right)\right) \models \psi^{\prime} & \\
& \text { iff } & \left(\mathfrak{M}^{\prime},\langle x, i+1\rangle\right) \models \psi^{\prime} & {[\text { by IH }]} \\
& \text { iff } & \left(\mathfrak{M}^{\prime},\langle x, i\rangle\right) \models \bigcirc \psi^{\prime} & {\left[\text { by definition of } f^{\prime}\right] .}
\end{array}
$$

Case $\psi=\square_{F} \psi^{\prime}$ is similar.
It follows that $\left(\mathfrak{M}^{\prime},\left\langle x_{0}, 0\right\rangle\right) \models \varphi$.
Define the closure cl φ of φ to be the set

$$
\{\psi, \neg \psi \mid \psi \in \operatorname{sub} \varphi\} \cup\left\{\exists^{\leq a} \psi, \neg \exists^{\leq a} \psi \mid \psi \in \operatorname{sub} \varphi \text { and } a \in M[\varphi]\right\}
$$

where $\operatorname{sub} \varphi$ is the set of all subformulas of φ. A type for φ is a subset t of $c l \varphi$ such that

- for every $\neg \psi \in c l \varphi, \quad \psi \in \boldsymbol{t}$ iff $\neg \psi \notin \boldsymbol{t}$;
- for every $\psi_{1} \wedge \psi_{2} \in c l \varphi, \quad \psi_{1} \wedge \psi_{2} \in \boldsymbol{t}$ iff $\psi_{1} \in \boldsymbol{t}$ and $\psi_{2} \in \boldsymbol{t}$.

We are now in a position to define the notion of a quasimodel for a given formula φ as a set of quasistates connected by runs.

A quasistate \boldsymbol{q} for $\boldsymbol{\varphi}$ is a triple $\boldsymbol{q}=\left\langle\left\langle T_{\boldsymbol{q}},<_{\boldsymbol{q}}\right\rangle, \delta_{\boldsymbol{q}}, \boldsymbol{t}_{\boldsymbol{q}}\right\rangle$, where

- $\left\langle T_{\boldsymbol{q}},<_{\boldsymbol{q}}\right\rangle$ is an intransitive tree with a labelling function $\delta_{\boldsymbol{q}}:\left\{(u, v) \in T_{\boldsymbol{q}} \times T_{\boldsymbol{q}} \mid u<_{\boldsymbol{q}} v\right\} \rightarrow M^{+}[\varphi]$ such that the radius of $\left\langle T_{q}, \delta_{q}^{*}\right\rangle$ is bounded by $m t d(\varphi)$;
- $\boldsymbol{t}_{\boldsymbol{q}}$ is a function associating with each $u \in T_{\boldsymbol{q}}$ a type $\boldsymbol{t}_{\boldsymbol{q}}(u)$ for φ, and
(qs1) for every $u \in T_{\boldsymbol{q}}$ and every $\exists{ }^{\leq a} \psi \in c l \boldsymbol{\varphi}$, we have $\exists \leq a \psi \in \boldsymbol{t}_{\boldsymbol{q}}(u)$ iff there is $v \in T_{\boldsymbol{q}}$ such that $\delta_{\boldsymbol{q}}^{*}(u, v) \leq a$ and $\psi \in \boldsymbol{t}_{\boldsymbol{q}}(v) ;$
(qs2) for no $u \in T_{\boldsymbol{q}}$, there exist two isomorphic substructures generated by immediate $<_{\boldsymbol{q}^{-}}$ successors v_{1} and v_{2} of u and such that $\delta_{\boldsymbol{q}}\left(u, v_{1}\right)=\delta_{\boldsymbol{q}}\left(u, v_{2}\right)$.

We say that a point $u \in T_{\boldsymbol{q}}$ is of index $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ if $u_{0}<_{\boldsymbol{q}} u_{1}<_{\boldsymbol{q}} \cdots<_{\boldsymbol{q}} u_{n}=u$, where u_{0} is the root of $\left\langle T_{\boldsymbol{q}},<_{\boldsymbol{q}}\right\rangle$, and $a_{i}=\delta_{\boldsymbol{q}}\left(u_{i-1}, u_{i}\right)$, for all $i, 1 \leq i \leq n$. The index of the root, u_{0}, is \rangle.

Let \mathbf{q} be a function associating with each $i \in \mathbb{Z}$ a quasistate $\mathbf{q}(i)=\left\langle\left\langle T_{i},<_{i}\right\rangle, \delta_{i}, \boldsymbol{t}_{i}\right\rangle$ for φ. A run of index $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ through \mathbf{q} is a function r mapping each $i \in \mathbb{Z}$ to a point $r(i) \in T_{i}$ of index $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ such that, for every $i \in \mathbb{Z}$

- and every $O \psi \in c l \boldsymbol{\varphi}, \quad \bigcirc \psi \in \boldsymbol{t}_{i}(r(i)) \quad$ iff $\quad \psi \in \boldsymbol{t}_{i+1}(r(i+1))$;
- and every $\square_{F} \psi \in \operatorname{cl} \varphi, \quad \square_{F} \psi \in \boldsymbol{t}_{i}(r(i)) \quad$ iff $\quad \psi \in \boldsymbol{t}_{j}(r(j))$ for all $j>i$.

Given a set \mathfrak{R} of runs, we denote by $\Re_{\left\langle a_{1}, \ldots, a_{n}\right\rangle}$ its subset of all runs of index $\left\langle a_{1}, \ldots, a_{n}\right\rangle$.
A quasimodel for φ is a pair $\langle\mathbf{q}, \mathfrak{R}\rangle$, where for every $i \in \mathbb{Z}, \mathbf{q}(i)=\left\langle\left\langle T_{i},<_{i}\right\rangle, \delta_{i}, \boldsymbol{t}_{i}\right\rangle$ is a quasistate for φ such that
(qm2) $\varphi \in \boldsymbol{t}_{0}\left(u_{0}\right)$, where u_{0} is the root of $\left\langle T_{0},<_{0}\right\rangle$,
and \mathfrak{R} is a set of runs through \mathbf{q} satisfying the following condition
(qm3) $\mathfrak{R}_{\langle \rangle} \neq \mathbb{0}$ and, for all $r \in \mathfrak{R}_{\left\langle a_{1}, \ldots, a_{n}\right\rangle}, i \in \mathbb{Z}$ and $u \in T_{i}$, if $r(i)<_{i} u$ and $\delta_{i}(r(i), u)=a_{n+1}$ then there is a run $r^{\prime} \in \mathfrak{R}_{\left\langle a_{1}, \ldots, a_{n}, a_{n+1}\right\rangle}$ such that $r^{\prime}(i)=u$ and $r(i)<_{i} r^{\prime}(i)$ for all $i \in \mathbb{Z}$.

Lemma 9. A $\mathcal{D} \mathcal{M} \mathcal{L}$-formula $\varphi($ with $\operatorname{mtd}(\varphi)>0)$ is satisfiable in a DMM iff there is a quasimodel for φ.

Proof. (\Rightarrow) Suppose φ is satisfiable. Take some model $\mathfrak{M}^{\prime}=\left\langle\mathfrak{F}^{\prime}, \mathfrak{V}^{\prime}\right\rangle$ with $\mathfrak{F}^{\prime}=\left\langle\left\langle T \times \mathbb{Z}, d^{\prime}\right\rangle, f^{\prime}\right\rangle$ provided by Lemma 8 . Let $\left(\mathfrak{M}^{\prime},\left\langle x_{0}, 0\right\rangle\right) \models \varphi$, where x_{0} is the root of $\langle T,<\rangle$.

For every pair $\langle x, i\rangle \in T \times \mathbb{Z}$, we define a type $t(x, i)$ for φ by taking

$$
\boldsymbol{t}(x, i)=\left\{\psi \in \operatorname{cl} \varphi \mid\left(\mathfrak{M}^{\prime},\langle x, i\rangle\right) \models \psi\right\} .
$$

Fix now $i \in \mathbb{Z}$ and define a binary relation \sim_{i} on T by taking

$$
\begin{aligned}
x \sim_{i} y \quad \text { iff } \quad \boldsymbol{t} & (x, i)=\boldsymbol{t}(y, i) \\
& \wedge \forall z \in T\left(x<z \rightarrow \exists z^{\prime} \in T\left(y<z^{\prime} \wedge \boldsymbol{\delta}(x, z)=\boldsymbol{\delta}\left(y, z^{\prime}\right) \wedge z \sim_{i} z^{\prime}\right)\right) \\
& \wedge \forall z \in T\left(y<z^{\prime} \rightarrow \exists z \in T\left(x<z \wedge \boldsymbol{\delta}(x, z)=\boldsymbol{\delta}\left(y, z^{\prime}\right) \wedge z \sim_{i} z^{\prime}\right)\right)
\end{aligned}
$$

Clearly, \sim_{i} is an equivalence relation on T. Denote by $[x]_{i}$ the \sim_{i}-equivalence class of $x \in T$ and put, for $a \in M^{+}[\varphi]$,

$$
[x]_{i} S_{i}^{a}[y]_{i} \quad \text { iff } \quad \exists y^{\prime} \in[y]_{i}\left(x<y^{\prime} \wedge \delta\left(x, y^{\prime}\right)=a\right)
$$

By the definition of \sim_{i}, the S_{i}^{a} are well-defined. Let

$$
\begin{aligned}
& T_{i}=\left\{\left\langle\left[x_{0}\right]_{i}, a_{1},\left[x_{1}\right]_{i}, a_{2}, \ldots, a_{n},\left[x_{n}\right]_{i}\right\rangle \mid\left[x_{0}\right]_{i} S_{i}^{a_{1}}\left[x_{1}\right]_{i} S_{i}^{a_{2}} \ldots S_{i}^{a_{n}}\left[x_{n}\right]_{i}\right\} \\
& u<_{i} v \quad \text { iff } \quad u=\left\langle\left[x_{0}\right]_{i}, a_{1}, \ldots, a_{n},\left[x_{n}\right]_{i}\right\rangle, \quad v=\left\langle\left[x_{0}\right]_{i}, a_{1}, \ldots, a_{n},\left[x_{n}\right]_{i}, a_{n+1},\left[x_{n+1}\right]_{i}\right\rangle \quad \text { and } \\
& \qquad \quad\left[x_{n}\right]_{i} S_{i}^{a_{n+1}}\left[x_{n+1}\right]_{i}, \\
& \delta_{i}\left(\left\langle\left[x_{0}\right]_{i}, a_{1}, \ldots, a_{n},\left[x_{n}\right]_{i}\right\rangle,\left\langle\left[x_{0}\right]_{i}, a_{1}, \ldots, a_{n},\left[x_{n}\right]_{i}, a_{n+1},\left[x_{n+1}\right]_{i}\right\rangle\right)=\delta\left(x_{n}, x_{n+1}\right)=a_{n+1} \\
& \boldsymbol{t}_{i}\left(\left\langle\left[x_{0}\right]_{i}, a_{1}, \ldots, a_{n},\left[x_{n}\right]_{i}\right\rangle\right)=\boldsymbol{t}\left(x_{n}, i\right) .
\end{aligned}
$$

We show that $\left\langle\left\langle T_{i},<_{i}\right\rangle, \delta_{i}, \boldsymbol{t}\right\rangle$ is a quasistate for φ. It is easy to see that $\left\langle T_{i},<_{i}\right\rangle$ is an intransitive tree, the tree metric space $\left\langle T_{i}, \delta_{i}^{*}\right\rangle$ induced by $\left\langle\left\langle T_{i},<_{i}\right\rangle, \delta_{i}\right\rangle$ is of radius $\leq m t d(\varphi)$ and that (qs2) holds.

To show (qs1), suppose first that $\exists^{\leq a} \psi \in \boldsymbol{t}_{i}(u)$, for $u=\left\langle\left[x_{0}\right]_{i}, a_{1}, \ldots, a_{n},\left[x_{n}\right]_{i}\right\rangle \in T_{i}$. By the definition of \boldsymbol{t}_{i}, we have $\exists^{\leq a} \psi \in \boldsymbol{t}\left(x_{n}, i\right)$, and so $\left(\mathfrak{M}^{\prime},\left\langle x_{n}, i\right\rangle\right) \models \exists \leq a \psi$. Then there is $\left\langle y_{m}, j\right\rangle \in T \times \mathbb{Z}$ such that $d^{\prime}\left(\left\langle x_{n}, i\right\rangle,\left\langle y_{m}, j\right\rangle\right) \leq a$ and $\left(\mathfrak{M}^{\prime},\left\langle y_{m}, j\right\rangle\right) \mid=\psi$. By the definition of $d^{\prime}, j=i$ and $\delta^{*}\left(x_{n}, y_{m}\right) \leq a$. Then we have $\psi \in \boldsymbol{t}\left(y_{m}, i\right)$. Take the sequence $x_{0}=y_{0}<y_{1}<\cdots<y_{m}$. Let $v=\left\langle\left[y_{0}\right]_{i}, b_{1}, \ldots, b_{m},\left[y_{m}\right]_{i}\right\rangle \in T_{i}$. By the definition of $\boldsymbol{t}_{i}, \psi \in \boldsymbol{t}_{i}(v)$ and clearly we have $\delta_{i}^{*}(u, v) \leq \delta^{*}\left(x_{n}, y_{m}\right) \leq a$.

Conversely, consider $u=\left\langle\left[x_{0}\right]_{i}, a_{1}, \ldots, a_{n},\left[x_{n}\right]_{i}\right\rangle \in T_{i}$ and $v=\left\langle\left[y_{0}\right]_{i}, b_{1}, \ldots, b_{m},\left[y_{m}\right]_{i}\right\rangle \in T_{i}$ such that $\delta_{i}^{*}(u, v) \leq a$ and $\psi \in \boldsymbol{t}_{i}(v)$. Clearly, $x_{0}=y_{0}$. Let $k \geq 0$ be the maximal number such that $a_{j}=b_{j}$ and $x_{j} \sim_{i} y_{j}$, for all $j, 1 \leq j \leq k$. Denote by w the common prefix $\left\langle\left[x_{0}\right]_{i}, a_{1}, \ldots, a_{k},\left[x_{k}\right]_{i}\right\rangle$ of u and v. By the definition of δ_{i}^{*}, we have $\delta_{i}^{*}(w, u)=\delta^{*}\left(x_{k}, x_{n}\right)$ and $\delta_{i}^{*}(w, v)=\delta^{*}\left(y_{k}, y_{m}\right)$. Let $b=\delta^{*}\left(y_{k}, y_{m}\right)$. Since $\left\langle T_{i}, \delta_{i}^{*}\right\rangle$ is a tree metric space, $\delta_{i}^{*}(u, v)=\delta_{i}^{*}(w, u)+\delta_{i}^{*}(w, v)$. Then $b \leq a$ follows from $\delta_{i}^{*}(u, v) \leq a$ and, as a sum of elements of $M^{+}[\varphi]$ not exceeding $\gamma_{\varphi}, b \in M[\varphi]$.

By the definition of $\boldsymbol{t}_{i}, \psi \in \boldsymbol{t}\left(y_{m}, i\right)$ and therefore, $\left(\mathfrak{M}^{\prime},\left\langle y_{m}, i\right\rangle\right) \models \psi$. Then $\left(\mathfrak{M}^{\prime},\left\langle y_{k}, i\right\rangle\right) \models \exists \leq b \psi$ and, as $\exists^{\leq b} \psi \in c l \boldsymbol{\varphi}, \exists \leq b \psi \in \boldsymbol{t}\left(y_{k}, i\right)$. Since $\boldsymbol{t}\left(x_{k}, i\right)=\boldsymbol{t}\left(y_{k}, i\right)$, we obtain $\left(\mathfrak{M}^{\prime},\left\langle x_{k}, i\right\rangle\right) \mid=\exists \leq b \psi$. Then, there is $z \in T$ such that $\delta^{*}\left(x_{k}, z\right) \leq b$ and $\left(\mathfrak{M}^{\prime},\langle z, i\rangle\right) \models \psi$. Now, by the triangle inequality,

$$
\delta^{*}\left(x_{n}, z\right) \leq \underbrace{\delta^{*}\left(x_{n}, x_{k}\right)}_{\leq a-b}+\underbrace{\delta^{*}\left(x_{k}, z\right)}_{\leq b} .
$$

Then $\delta^{*}\left(x_{n}, z\right) \leq a$ and so $\left(\mathfrak{M}^{\prime},\left\langle x_{n}, i\right\rangle\right) \mid=\exists \leq a \psi$. Therefore, $\exists \leq a \psi \in \boldsymbol{t}\left(x_{n}, i\right)$ and $\exists \leq a \psi \in \boldsymbol{t}_{i}(u)$.
So, the $\left\langle\left\langle T_{i},<_{i}\right\rangle, \delta_{i}, \boldsymbol{t}_{i}\right\rangle$ are quasistates for φ. Let $\mathbf{q}(i)=\left\langle\left\langle T_{i},<_{i}\right\rangle, \delta_{i}, \boldsymbol{t}_{i}\right\rangle$, for $i \in \mathbb{Z}$. As $\varphi \in \boldsymbol{t}_{0}\left(\left[x_{0}\right]_{0}\right)$, $(\mathbf{q m 2})$ holds for \mathbf{q}. It remains to define runs through \mathbf{q}. For each sequence $\left\langle x_{0}, x_{1}, \ldots, x_{n}\right\rangle$ of points in T such that $x_{0}<x_{1}<\cdots<x_{n}$, take the map

$$
r: i \mapsto\left\langle\left[x_{0}\right]_{i}, a_{1},\left[x_{1}\right]_{i}, a_{2}, \ldots, a_{n},\left[x_{n}\right]_{i}\right\rangle
$$

where $a_{j}=\delta\left(x_{j-1}, x_{j}\right)$, for all $j, 1 \leq j \leq n$. It is easy to see that r is a run of index $\left\langle a_{1}, \ldots, a_{n}\right\rangle$. Let \mathfrak{R} be the set of all such runs. Observe that $r_{0} \in \mathfrak{R}_{\langle \rangle}$, where $r_{0}: i \mapsto\left\langle\left[x_{0}\right]_{i}\right\rangle$. Take $r \in \mathfrak{R}_{\left\langle a_{1}, \ldots, a_{n}\right\rangle}, i \in \mathbb{Z}$ and $u \in T_{i}$ such that $r(i)<_{i} u$ and $\delta_{i}(r(i), u)=a_{n+1}$. Clearly, r is of the form $r: i \mapsto\left\langle\left[x_{0}\right]_{i}, a_{1}, \ldots, a_{n},\left[x_{n}\right]_{i}\right\rangle$, for $x_{1}, \ldots, x_{n} \in T$ such that $x_{0}<\cdots<x_{n}$ and $a_{j}=\delta\left(x_{j-1}, x_{j}\right)$, for all $j, 1 \leq j \leq n$, and u is of the form $\left\langle\left[x_{0}\right]_{i}, a_{1}, \ldots, a_{n},\left[x_{n}\right]_{i}, a_{n+1},\left[x_{n+1}\right]_{i}\right\rangle$, for $x_{n+1} \in T$ such that $x_{n}<x_{n+1}$ and $a_{n+1}=\delta\left(x_{n}, x_{n+1}\right)$. It is easy to check that the run

$$
r^{\prime}: i \mapsto\left\langle\left[x_{0}\right]_{i}, a_{1}, \ldots, a_{n},\left[x_{n}\right]_{i}, a_{n+1},\left[x_{n+1}\right]_{i}\right\rangle
$$

is as required by (qm3).
(\Leftarrow) Suppose that $\langle\mathbf{q}, \mathfrak{R}\rangle$ is a quasimodel for φ. First, we construct a tree metric space $\left\langle T_{\mathfrak{R}}, \delta_{\mathfrak{R}}^{*}\right\rangle$, elements of which are sequences of runs from \mathfrak{R}. For each $a \in M[\varphi]$, define a binary relation \triangleleft_{a} on \mathfrak{R} as follows: for $r_{1}, r_{2} \in \mathfrak{R}$,

$$
r_{1} \triangleleft_{a} r_{2} \quad \text { iff } \quad r_{1}(i)<_{i} r_{2}(i) \text { and } \delta_{i}\left(r_{1}(i), r_{2}(i)\right)=a, \text { for all } i \in \mathbb{Z}
$$

Let $r_{0} \in \mathfrak{R}_{\langle \rangle}$(by (qm3) such a run exists) and set

$$
\begin{aligned}
& T_{\mathfrak{R}}=\left\{\left\langle r_{0}, r_{1}, \ldots r_{n}\right\rangle \mid r_{0} \triangleleft_{a_{1}} r_{1} \triangleleft_{a_{2}} \cdots \triangleleft_{a_{n}} r_{n}, \quad a_{1}, \ldots, a_{n} \in M[\varphi]\right\} ; \\
& u<\mathfrak{R} v \quad \text { iff } \quad u=\left\langle r_{0}, \ldots, r_{n}\right\rangle, v=\left\langle r_{0}, \ldots, r_{n}, r_{n+1}\right\rangle \text { and } r_{n} \triangleleft_{a} r_{n+1} \\
& \delta_{\mathfrak{R}}\left(\left\langle r_{0}, \ldots, r_{n}\right\rangle,\left\langle r_{0}, \ldots, r_{n}, r_{n+1}\right\rangle\right)=a \quad \text { iff } \quad r_{n} \triangleleft_{a} r_{n+1} .
\end{aligned}
$$

Clearly, $\left\langle\left\langle T_{\mathfrak{R}},\langle\mathfrak{R}\rangle, \delta_{\mathfrak{R}}\right\rangle\right.$ is a labelled intransitive tree inducing a tree metric space $\left\langle T_{\mathfrak{R}}, \delta_{\mathfrak{R}}^{*}\right\rangle$ of radius $\leq \operatorname{mtd}(\varphi)$. Now we construct a model $\mathfrak{M}^{\prime \prime}=\left\langle\mathfrak{F}^{\prime \prime}, \mathfrak{V}^{\prime \prime}\right\rangle$ with $\mathfrak{F}^{\prime \prime}=\left\langle\left\langle T_{\mathfrak{R}} \times \mathbb{Z}, d^{\prime \prime}\right\rangle, f^{\prime \prime}\right\rangle$ by taking

$$
d^{\prime \prime}(\langle u, i\rangle,\langle v, j\rangle)= \begin{cases}\delta_{\mathfrak{R}}^{*}(u, v), & \text { if } i=j, \\ 3 \cdot m t d(\varphi), & \text { otherwise }\end{cases}
$$

$f^{\prime \prime}(\langle u, i\rangle)=\langle u, i+1\rangle$, for all $\langle u, i\rangle \in T_{\mathfrak{R}} \times \mathbb{Z}$, and $\mathfrak{V}^{\prime \prime}(p)=\left\{\left\langle\left\langle r_{0}, \ldots r_{n}\right\rangle, i\right\rangle \in T_{\mathfrak{R}} \times \mathbb{Z} \mid p \in \boldsymbol{t}_{i}\left(r_{n}(i)\right)\right\}$, for every propositional variable p. By induction on the construction of $\psi \in c l \varphi$ we show that, for every point $\left\langle\left\langle r_{0}, \ldots, r_{n}\right\rangle, i\right\rangle$ in $\mathfrak{M}^{\prime \prime}$, we have

$$
\left(\mathfrak{M}^{\prime \prime},\left\langle\left\langle r_{0}, \ldots, r_{n}\right\rangle, i\right\rangle\right) \models \psi \quad \text { iff } \quad \psi \in \boldsymbol{t}_{i}\left(r_{n}(i)\right),
$$

The basis of induction follows from the definition of $\mathfrak{V}^{\prime \prime}$. The case of the Booleans follows from the definition of type.

Case $\psi=\exists^{\leq a} \psi^{\prime}$. Let $u=\left\langle r_{0}, r_{1}, \ldots, r_{n}\right\rangle$ and $\left(\mathfrak{M}^{\prime \prime},\langle u, i\rangle\right) \mid=\exists \leq a \psi^{\prime}$. Then there is $\langle v, j\rangle \in T_{\mathfrak{R}} \times \mathbb{Z}$, $v=\left\langle r_{0}, r_{1}^{\prime}, \ldots, r_{m}^{\prime}\right\rangle$, such that $d^{\prime \prime}(\langle u, i\rangle,\langle v, j\rangle) \leq a$ and $\left(\mathfrak{M}^{\prime \prime},\langle v, j\rangle\right) \models \psi$. By the definition of $d^{\prime \prime}, j=i$ and $\delta_{\mathfrak{R}}^{*}(u, v) \leq a$. By IH, $\psi \in \boldsymbol{t}_{i}\left(r_{m}^{\prime}(i)\right)$. Let w be the longest common prefix of u and v, and k the maximal number such that $r_{j}=r_{j}^{\prime}$, for all $j, 1 \leq j \leq k$. As $\left\langle T_{\mathfrak{R}}, \delta_{\mathfrak{R}}^{*}\right\rangle$ is a tree metric space, we have $\delta_{\mathfrak{R}}^{*}(u, v)=\delta_{\mathfrak{R}}^{*}(w, u)+\delta_{\mathfrak{R}}^{*}(w, v)$. By the definition of $\delta_{\mathfrak{R}}, \delta_{\mathfrak{R}}^{*}(w, u)=\delta_{i}\left(r_{k}(i), r_{n}(i)\right)$ and $\delta_{\mathfrak{R}}^{*}(w, v)=$ $\delta_{i}\left(r_{k}^{\prime}(i), r_{m}^{\prime}(i)\right)$. As $r_{k}=r_{k}^{\prime}$, by the triangle inequality, $\delta_{i}\left(r_{n}(i), r_{m}^{\prime}(i)\right) \leq a$ and therefore, by (qs1), ${ }^{\exists \leq a} \boldsymbol{\psi} \in \boldsymbol{t}_{i}\left(r_{n}(i)\right)$.

Conversely, let $\exists^{\leq a} \psi \in \boldsymbol{t}_{i}\left(r_{n}(i)\right)$ for $u=\left\langle r_{0}, \ldots, r_{n}\right\rangle \in T_{\mathfrak{R}}$. Then, by (qs1), there is $x \in T_{i}$ such that $\delta_{i}^{*}\left(r_{n}(i), x\right) \leq a$ and $\psi \in \boldsymbol{t}_{i}(x)$. Let k be the maximal number such that $r_{k}(i)=x_{k}$,

$$
x_{k}<_{i} x_{k+1}<i \cdots<_{i} x_{m}
$$

and $x_{m}=x$. Clearly, such a $k \geq 0$ exists. As $\left\langle T_{i}, \delta_{i}^{*}\right\rangle$ is a tree metric space, we have $\delta_{i}^{*}\left(r_{n}(i), x\right)=$ $\delta_{i}^{*}\left(r_{n}(i), r_{k}(i)\right)+\delta_{i}^{*}\left(x_{k}, x_{m}\right)$. Then, by applying (qm3) sufficiently many times, one can construct a sequence of runs $\left\langle r_{k}^{\prime}, r_{k+1}^{\prime}, \ldots, r_{m}^{\prime}\right\rangle$ such that $r_{k}^{\prime}=r_{k}, r_{j}^{\prime}(i)=x_{j}$ and $r_{j-1}^{\prime} \triangleleft_{a_{j}} r_{j}^{\prime}$, for all $j, k<j \leq m$. Consider $v=\left\langle r_{0}, \ldots r_{k}, r_{k+1}^{\prime}, \ldots, r_{m}^{\prime}\right\rangle \in T_{\mathfrak{\Re}}$. As $\delta_{\mathfrak{R}}\left(\left\langle r_{0}, \ldots, r_{k}\right\rangle, v\right)=\delta_{i}^{*}\left(x_{k}, x_{m}\right)$ and $\delta_{\mathfrak{\Re}}\left(\left\langle r_{0}, \ldots, r_{k}\right\rangle, u\right)=$ $\delta_{i}^{*}\left(r_{k}(i), r_{n}(i)\right)$, we have $\delta_{\mathfrak{R}}^{*}(u, v) \leq a$. By IH, we have $\left(\mathfrak{M}^{\prime \prime},\langle v, i\rangle\right) \models \psi$ and thus $\left(\mathfrak{M}^{\prime \prime},\langle u, i\rangle\right) \models \exists \leq a \psi$.

Case $\psi=\bigcirc \psi^{\prime}$. Then we have:

$$
\begin{array}{lll}
\left(\mathfrak{M}^{\prime \prime},\left\langle\left\langle r_{0}, \ldots, r_{n}\right\rangle, i\right\rangle\right) \models O \boldsymbol{\psi}^{\prime} & \text { iff } & \left(\mathfrak{M},\left\langle\left\langle r_{0}, \ldots, r_{n}\right\rangle, i+1\right\rangle\right) \models \psi \\
& \text { iff } & \boldsymbol{\psi} \in \boldsymbol{t}_{i+1}\left(r_{n}(i+1)\right) \quad[\text { by IH }] \\
& \text { iff } & \quad \boldsymbol{\psi} \in \boldsymbol{t}_{i}\left(r_{n}(i)\right) \quad\left[r_{n} \text { is a run }\right] .
\end{array}
$$

Case $\psi=\square_{F} \psi^{\prime}$ is similar.
It follows from (qm2) that $\left(\mathfrak{M}^{\prime \prime},\left\langle\left\langle r_{0}\right\rangle, 0\right\rangle\right) \models \varphi$.
We can now deduce the decidability of the satisfiability problem for $\mathcal{D M} \mathcal{L}$-formulas by translating into monadic second-order logic the statement that there exists a quasimodel for a given formula φ. We require a number of auxiliary formulas. Denote by Σ the set of all quasistates for φ. Given a quasistate $\boldsymbol{q}=\left\langle\left\langle T_{\boldsymbol{q}},<_{\boldsymbol{q}}\right\rangle, \delta_{\boldsymbol{q}}, \boldsymbol{t}_{\boldsymbol{q}}\right\rangle$ from Σ and a point u in $T_{\boldsymbol{q}}$ we denote the index of u by $i d x_{\boldsymbol{q}}(u)$.

Introduce a unary predicate variable $P_{\boldsymbol{q}}$ for each quasistate $\boldsymbol{q} \in \Sigma$ and a unary predicate variable $R_{\psi}^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}$ for each $\psi \in c l \varphi$ and index $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ with $\sum_{i=1}^{n} a_{i} \leq \operatorname{mtd}(\varphi)$. Given a type \boldsymbol{t} for φ and such an index $\left\langle a_{1}, \ldots, a_{n}\right\rangle$, let

$$
\chi_{t}\left(\overline{R^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}}(x)\right)=\bigwedge_{\psi \in t} R_{\psi}^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}(x) \wedge \bigwedge_{\psi \psi \in t} \neg R_{\psi}^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}(x),
$$

saying that the type \boldsymbol{t} at 'moment' x of index $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is defined with the help of

$$
\overline{R^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}}(x)=\left\langle R_{\psi}^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}(x) \mid \psi \in c l \varphi\right\rangle .
$$

For each index $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ with $\sum_{i=0}^{n} a_{i} \leq m t d(\varphi)$, let $\operatorname{run}_{0}\left(\bar{P}(x), \overline{R^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}}(x)\right)$ denote the conjunction of the three formulas

$$
\begin{aligned}
& \bigwedge_{q \in \Sigma} \forall x\left[P_{\boldsymbol{q}}(x) \rightarrow \underset{\substack{\left.u \in T_{q} \\
i d x(u)=a_{1}, \ldots, a_{n}\right\rangle}}{\left.\left.\bigvee_{\boldsymbol{t}_{q}(u)} \overline{R^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}}(x)\right)\right],}\right. \\
& \bigwedge_{\square_{F} \psi \in c l \varphi} \forall x\left[R_{\square_{F} \psi}^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}(x) \leftrightarrow \forall y\left(x<y \rightarrow R_{\psi}^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}(y)\right)\right], \\
& \bigwedge_{O \psi \in c l \varphi} \forall x\left[R_{\circ \psi}^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}(x) \leftrightarrow R_{\psi}^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}(S(x))\right]
\end{aligned}
$$

—this is intended to say that $\overline{R^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}}(x)$ defines a run of index $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ through a sequence of quasistates defined with the help of

$$
\bar{P}(x)=\left\langle P_{\boldsymbol{q}}(x) \mid \boldsymbol{q} \in \Sigma\right\rangle .
$$

However, we have to refine this definition in order to ensure that condition (qm3) holds. To this end, we define, by 'backwards' induction on the length of the index, another formula run $\left(\bar{P}(x), \overline{R^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}}(x)\right)$ as follows. If $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is maximal (that is, we are at the 'leaf-level') then take

$$
\operatorname{run}\left(\bar{P}(x), \overline{R^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}}(x)\right)=\operatorname{run}_{0}\left(\bar{P}(x), \overline{R^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}}(x)\right)
$$

Suppose, inductively, that for all proper extensions $\left\langle a_{1}, \ldots, a_{m}\right\rangle$ of $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ (that is, $m>n$) we have already defined $\operatorname{run}\left(\bar{P}(x), \overline{R^{\left\langle a_{1}, \ldots, a_{m}\right\rangle}}(x)\right)$. Then $\operatorname{run}\left(\bar{P}(x), \overline{R^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}}(x)\right)$ is the following formula:

$$
\begin{aligned}
& \operatorname{run}_{0}\left(\bar{P}(x), \overline{R^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}}(x)\right) \wedge \\
& \bigwedge_{\boldsymbol{q} \in \Sigma} \bigwedge_{\substack{u \in T_{\boldsymbol{q}} \\
i d x(u)=\left\langle a_{1}, \ldots, a_{n}\right\rangle}} \forall x\left[P_{\boldsymbol{q}}(x) \wedge \chi_{\boldsymbol{t}_{\boldsymbol{q}}(u)}\left(\overline{R^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}}(x)\right) \rightarrow\right.
\end{aligned}
$$

$$
\bigwedge_{\substack{v \in T_{q} \\ \delta_{q}(u, v)=a}} \underset{\psi \in c l \varphi}{\exists} R_{\psi}^{\left\langle a_{1}, \ldots, a_{n}, a\right\rangle}\left(\operatorname{run}\left(\bar{P}(x), \overline{R^{\left\langle a_{1}, \ldots, a_{n}, a\right\rangle}}(x)\right) \wedge \chi_{t_{\boldsymbol{q}}(v)}\left(\overline{R^{\left\langle a_{1}, \ldots, a_{n}, a\right\rangle}}(x)\right)\right.
$$

$$
\left.\left.\bigwedge_{\boldsymbol{s} \in \Sigma} \bigwedge_{\substack{u^{\prime} \in T_{\boldsymbol{s}} \\ i d x\left(u^{\prime}\right)=\left\langle a_{1}, \ldots, a_{n}\right\rangle}} \forall z\left(P_{\boldsymbol{s}}(z) \wedge \chi_{\boldsymbol{t}_{\boldsymbol{s}}\left(u^{\prime}\right)}\left(\overline{R^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}}(z)\right) \quad \rightarrow \bigvee_{\substack{v^{\prime} \in T_{\boldsymbol{s}} \\ \delta_{\boldsymbol{s}}\left(u^{\prime}, v^{\prime}\right)=a}} \chi_{\boldsymbol{t}_{\boldsymbol{s}}\left(v^{\prime}\right)}\left(\overline{R^{\left\langle a_{1}, \ldots, a_{n}, a\right\rangle}}(z)\right)\right)\right)\right] .
$$

Finally, we define a monadic second-order sentence φ^{\sharp} by taking

$$
\begin{aligned}
\varphi^{\sharp}= & \underset{\boldsymbol{q} \in \Sigma}{\exists} P_{\boldsymbol{q}}\left[\forall x \bigvee_{\boldsymbol{q} \in \Sigma}\left(P_{\boldsymbol{q}}(x) \wedge \bigwedge_{\substack{\boldsymbol{q}^{\prime} \in \Sigma \\
\boldsymbol{q} \neq \boldsymbol{q}^{\prime}}} \neg P_{\boldsymbol{q}^{\prime}}(x)\right) \wedge\right. \\
& \left.\bigvee_{\substack{\boldsymbol{s} \in \Sigma \\
i d x(u)=\langle \rangle \\
\boldsymbol{q} \in \boldsymbol{t}_{\boldsymbol{s}}(u)}} \bigvee_{\substack{u T_{\boldsymbol{s}} \\
\exists}}^{\exists x}\left(P_{\boldsymbol{s}}(x) \wedge \underset{\psi \in c l \boldsymbol{\varphi}}{\exists} R_{\psi}^{\langle \rangle}\left(\operatorname{run}\left(\bar{P}(x), \overline{R^{\langle \rangle}}(x)\right) \wedge \chi_{\boldsymbol{t}_{\boldsymbol{s}}(u)}\left(\overline{R^{\langle \rangle}}(x)\right)\right)\right)\right] .
\end{aligned}
$$

Evaluated in $\langle\mathbb{Z},<\rangle$, the first line of φ^{\sharp} says that the sets $P_{\boldsymbol{q}} \subseteq \mathbb{Z}(\boldsymbol{q} \in \Sigma)$ form a partition of \mathbb{Z}. By defining the $\operatorname{map} \mathbf{q}: \mathbb{Z} \rightarrow \Sigma$ as

$$
\mathbf{q}(i)=\boldsymbol{q} \quad \text { iff } \quad i \in P_{\boldsymbol{q}}
$$

we obtain a quasimodel $\langle\mathbf{q}, \mathfrak{R}\rangle$ for φ : the second line of φ^{\sharp} states condition (qm2); condition (qm3) is satisfied by the formulas $\operatorname{run}\left(\bar{P}(x), \overline{R^{\left\langle a_{1}, \ldots, a_{n}\right\rangle}}(x)\right)$. Therefore, it is easy to see that the following holds:

Lemma 10. For every $\mathcal{D M} \mathcal{L}$-formula $\varphi, \operatorname{mtd}(\varphi)>0,\langle\mathbb{Z},<\rangle \vDash \varphi^{\sharp}$ iff there is a quasimodel for φ.
Clearly, Σ can be constructed from φ by an algorithm. So we can now apply the result of Büchi [5] stating the decidability of monadic second-order logic over $\langle\mathbb{Z},<\rangle$.

The non-elementary lower bound can be proved by a trivial polynomial reduction of the satisfiability problem for the product modal logic $\mathbf{P T L} \times \mathbf{K}$ (which is non-elementary by Theorem 6.37 from [7]) to the satisfiability problem for $\mathcal{D} \mathcal{M} \mathcal{L}$-formulas in DMSs. We leave this to the reader.

Open problems. Interesting and challenging open problems are (i) the decidability of dynamic topological logics interpreted in various topological spaces with continuous mappings, and (ii) the decidability of dynamic metric logics interpreted in various compact metric spaces; for a justification and more details see, e.g., [12].

Acknowledgements. The work on this paper was partially supported by U.K. EPSRC grants no. GR/S61973/01, GR/S63175/01, GR/S61966/01 and GR/S63182/01, and the U.S. Civilian Research \& Development Foundation for the Independent States of the Former Soviet Union (CRDF) award no. RM1-2409-ST-02.

References

[1] P. S. Alexandroff. Diskrete Räume. Matematicheskii Sbornik, 2 (44):501-518, 1937.
[2] S. Artemov, J. Davoren, and A. Nerode. Modal logics and topological semantics for hybrid systems. Technical Report MSI 97-05, Cornell University, 1997.
[3] N. Bourbaki. General topology, Part 1. Hermann, Paris and Addison-Wesley, 1966.
[4] J. R. Brown. Ergodic Theory and Topological Dynamics. Academic Press, 1976.
[5] J. R. Büchi. On a decision method in restricted second order arithmetic. In Logic, Methodology and Philosophy of Science: Proceedings of the 1960 International Congress, pages 1-11. Stanford University Press, 1962.
[6] J. Davoren and A. Nerode. Logics for hybrid systems. Proceedings of the IEEE, 88:985-1010, 2000.
[7] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional Modal Logics: Theory and Applications, volume 148 of Studies in Logic. Elsevier, 2003.
[8] J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 2001.
[9] A. Katok and B. Hasselblatt. Introduction to Modern Theory of Dynamical Systems, volume 54 of Encyclopedia of mathematics and its applications. Elsevier, 1995.
[10] P. Kremer. Temporal logic over S4: an axiomatizable fragment of dynamic topological logic. Bulletin of Symbolic Logic, 3:375-376, 1997.
[11] P. Kremer and G. Mints. Dynamic topological logic. Bulletin of Symbolic Logic, 3:371-372, 1997.
[12] P. Kremer and G. Mints. Dynamic topological logic. Manuscript, 2003.
[13] P. Kremer, G. Mints, and V. Rybakov. Axiomatizing the next-interior fragment of dynamic topological logic. Bulletin of Symbolic Logic, 3:376-377, 1997.
[14] O. Kutz, H. Sturm, N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev. Logics of metric spaces. ACM Transactions on Computational Logic, 4:260-294, 2003.
[15] J.C.C. McKinsey and A. Tarski. The algebra of topology. Annals of Mathematics, 45:141-191, 1944.
[16] T. Moor and J. Davoren. Robust controller synthesis for hybrid systems using modal logics. In M.D. Di Benedetto and A. Sangiovanni-Vincentelli, editors, Hybrid Systems: Computation and Control (HSCC'01), volume 2034 of LNCS, pages 433-446. Springer, 2001.
[17] E. Post. A variant of a recursively unsolvable problem. Bulletin of the AMS, 52:264-268, 1946.
[18] S. Slavnov. Two counterexamples in the logic of dynamic topological systems. Technical Report TR-2003015, Cornell University, 2003.

[^0]: ${ }^{1}$ In a more general setting, f can be a continuous mapping.

