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Abstract
We investigate (quantifier-free) spatial constraint
languages with equality, contact and connectedness
predicates, as well as Boolean operations on re-
gions, interpreted over low-dimensional Euclidean
spaces. We show that the complexity of reasoning
varies dramatically depending on the dimension of
the space and on the type of regions considered. For
example, the logic with the interior-connectedness
predicate (and without contact) is undecidable over
polygons or regular closed sets in R2, EXPTIME-
complete over polyhedra in R3, and NP-complete
over regular closed sets in R3.

1 Introduction
A central task in Qualitative Spatial Reasoning is that of de-
termining whether some described spatial configuration is ge-
ometrically realizable in 2D or 3D Euclidean space. Typi-
cally, such a description is given using a spatial logic—a for-
mal language whose variables range over (typed) geometrical
entities, and whose non-logical primitives represent geomet-
rical relations and operations involving those entities. Where
the geometrical primitives of the language are purely topolog-
ical in character, we speak of a topological logic; and where
the logical syntax is confined to that of propositional calculus,
we speak of a topological constraint language.

Topological constraint languages have been intensively
studied in Artificial Intelligence over the last two decades.
The best-known of these, RCC8 and RCC5, employ vari-
ables ranging over regular closed sets in topological spaces,
and a collection of eight (respectively, five) binary predicates
standing for some basic topological relations between these
sets [Egenhofer and Franzosa, 1991; Randell et al., 1992;
Bennett, 1994; Renz and Nebel, 2001]. An important exten-
sion of RCC8, known as BRCC8, additionally features stan-
dard Boolean operations on regular closed sets [Wolter and
Zakharyaschev, 2000].

A remarkable characteristic of these languages is their
insensitivity to the underlying interpretation. To show that
an RCC8-formula is satisfiable in n-dimensional Euclidean
space, it suffices to demonstrate its satisfiability in any topo-
logical space [Renz, 1998]; for BRCC8-formulas, satisfiabil-
ity in any connected space is enough. This inexpressiveness

yields (relatively) low computational complexity: satisfiabil-
ity of BRCC8-, RCC8- and RCC5-formulas over arbitrary
topological spaces is NP-complete; satisfiability of BRCC8-
formulas over connected spaces is PSPACE-complete.

However, satisfiability of spatial constraints by arbitrary
regular closed sets by no means guarantees realizability by
practically meaningful geometrical objects, where connect-
edness of regions is typically a minimal requirement [Borgo
et al., 1996; Cohn and Renz, 2008]. (A connected region is
one which consists of a ‘single piece.’) It is easy to write
constraints in RCC8 that are satisfiable by connected regu-
lar closed sets over arbitrary topological spaces but not over
R2; in BRCC8 we can even write formulas satisfiable by con-
nected regular closed sets over arbitrary spaces but not over
Rn for any n. Worse still: there exist simple collections of
spatial constraints (involving connectedness) that are satisfi-
able in the Euclidean plane, but only by ‘pathological’ sets
that cannot plausibly represent the regions occupied by phys-
ical objects [Pratt-Hartmann, 2007]. Unfortunately, little is
known about the complexity of topological constraint satis-
faction by non-pathological objects in low-dimensional Eu-
clidean spaces. One landmark result [Schaefer et al., 2003] in
this area shows that satisfiability of RCC8-formulas by disc
homeomorphs in R2 is still NP-complete (even though for-
mulas can force arrangements that cut the plane into expo-
nentially many regions). This paper investigates the compu-
tational properties of more general and flexible spatial logics
with connectedness constraints interpreted over R2 and R3.

We consider two ‘base’ topological constraint languages.
The language B features = as its only predicate, but has func-
tion symbols +, −, · denoting the standard operations of fu-
sion, complement and taking common parts defined for regu-
lar closed sets, as well as the constants 1 and 0 for the entire
space and the empty set. Our second base language, C, ad-
ditionally features a binary predicate, C, denoting the ‘con-
tact’ relation (two sets are in contact if they share at least one
point). The language C is a notational variant of BRCC8 (and
thus an extension of RCC8), while B is the analogous exten-
sion ofRCC5. We add to B and C one of two new unary pred-
icates: c, representing the property of connectedness, and c◦,
representing the (stronger) property of having a connected in-
terior. We denote the resulting languages by Bc, Bc◦, Cc and
Cc◦. We are interested in interpretations over (i) the regular
closed sets of R2 and R3, and (ii) the regular closed polyhe-



dra in R2 and R3. (A set is polyhedral if it can be defined by
finitely many bounding hyperplanes; see Sec. 2.) By restrict-
ing interpretations to polyhedra, we rule out pathological sets,
and, in effect, use the same ‘data structure’ as in GISs.

When interpreted over arbitrary topological spaces, the
complexity of reasoning with these languages is known: sat-
isfiability of Bc◦-formulas is NP-complete, while for the
other three languages, it is EXPTIME-complete. Likewise,
the 1D Euclidean case is completely solved. For the spaces
Rn (n ≥ 2), however, most problems are still open. All
four languages contain formulas satisfiable by regular closed
sets in R2, but not by regular closed polygons; in R3, the
analogous result is known only for Bc◦ and Cc◦. The sat-
isfiability problem for Bc, Cc and Cc◦ is EXPTIME-hard (in
both polyhedral and unrestricted cases) for Rn (n ≥ 2); how-
ever, the only known upper bound is that satisfiability of Bc◦-
formulas by polyhedra in Rn (n ≥ 3) is EXPTIME-complete.
(See [Kontchakov et al., 2010b] for a summary.)

This paper settles most of these open problems, reveal-
ing considerable differences between the computational prop-
erties of constraint languages with connectedness predi-
cates when interpreted over R2 and over abstract topological
spaces. Sec. 3 shows that Bc, Bc◦, Cc and Cc◦ are all sensitive
to restriction to polyhedra in Rn (n ≥ 2). Sec. 4 establishes
an unexpected result: all these languages are undecidable
in R2, both in the polyhedral and unrestricted cases ([Dorn-
heim, 1998] proves undecidability of the first-order versions
of these languages). Sec. 5 resolves the open issue of the
complexity of Bc◦ over regular closed sets (not just polyhe-
dra) in R3 by establishing an NP upper bound. Thus, Qual-
itative Spatial Reasoning in Euclidean spaces proves much
more challenging if connectedness of regions is to be taken
into account. We discuss the obtained results in the context
of spatial reasoning in Sec. 6. Omitted proofs can be found
in [Kontchakov et al., 2011].

2 Constraint Languages with Connectedness
Let T be a topological space. We denote the closure of any
X ⊆ T by X− , its interior by X◦ and its boundary by δX =
X− \X◦ . We callX regular closed ifX = X◦− , and denote
by RC(T ) the set of regular closed subsets of T . Where T is
clear from context, we refer to elements of RC(T ) as regions.
RC(T ) forms a Boolean algebra under the operations X +
Y = X ∪ Y , X · Y = (X ∩ Y )◦− and −X = (T \X)− .
We write X ≤ Y for X · (−Y ) = ∅; thus X ≤ Y iff X ⊆ Y .
A subsetX ⊆ T is connected if it cannot be decomposed into
two disjoint, non-empty sets closed in the subspace topology;
X is interior-connected if X◦ is connected.

Any (n−1)-dimensional hyperplane in Rn, n ≥ 1, bounds
two elements of RC(Rn) called half-spaces. We denote by
RCP(Rn) the Boolean subalgebra of RC(Rn) generated by
the half-spaces, and call the elements of RCP(Rn) (regular
closed) polyhedra. If n = 2, we speak of (regular closed)
polygons. Polyhedra may be regarded as ‘well-behaved’ or, in
topologists’ parlance, ‘tame.’ In particular, every polyhedron
has finitely many connected components, a property which is
not true of regular closed sets in general.

The topological constraint languages considered here all

employ a countably infinite collection of variables r1, r2, . . .
The language C features binary predicates = and C, together
with the individual constants 0, 1 and the function symbols
+, ·, −. The terms τ and formulas ϕ of C are given by:
τ ::= r | τ1 + τ2 | τ1 · τ2 | −τ1 | 1 | 0,

ϕ ::= τ1 = τ2 | C(τ1, τ2) | ϕ1 ∧ ϕ2 | ¬ϕ1.

The language B is defined analogously, but without the pred-
icate C. If S ⊆ RC(T ) for some topological space T , an
interpretation over S is a function ·I mapping variables r to
elements rI ∈ S. We extend ·I to terms τ by setting 0I = ∅,
1I = T , (τ1 + τ2)

I = τI1 + τI2 , etc. We write I |= τ1 = τ2
iff τI1 = τI2 , and I |= C(τ1, τ2) iff τI1 ∩ τI2 6= ∅. We read
C(τ1, τ2) as ‘τ1 contacts τ2.’ The relation |= is extended to
non-atomic formulas in the obvious way. A formula ϕ is sat-
isfiable over S if I |= ϕ for some interpretation I over S.

Turning to languages with connectedness, we define Bc
and Cc to be the extensions of B and C with the unary predi-
cate c. We set I |= c(τ) iff τI is connected in the topological
space under consideration. Similarly, we define Bc◦ and Cc◦
to be the extensions of B and C with the predicate c◦, setting
I |= c◦(τ) iff (τI)◦ is connected. Sat(L, S) is the set of L-
formulas satisfiable over S, where L is one of Bc, Cc, Bc◦ or
Cc◦ (the topological space is implicit in this notation, but will
always be clear from context). We shall be concerned with
Sat(L, S), where S is RC(Rn) or RCP(Rn) for n = 2, 3.

To illustrate, consider the Bc◦-formulas ϕk given by∧
1≤i≤k

(
c◦(ri)∧(ri 6= 0)

)
∧
∧
i<j

(
c◦(ri+rj)∧(ri ·rj = 0)

)
. (1)

One can show that ϕ3 is satisfiable over RC(Rn), n ≥ 2, but
not over RC(R), as no three intervals with non-empty, disjoint
interiors can be in pairwise contact. Also, ϕ5 is satisfiable
over RC(Rn), for n ≥ 3, but not over RC(R2), as the graph
K5 is non-planar. Thus, Bc◦ is sensitive to the dimension of
the space. Or again, consider the Bc◦-formula∧
1≤i≤3

c◦(ri) ∧ c◦(r1+r2+r3) ∧
∧

2≤i≤3

¬c◦(r1+ri). (2)

One can show that (2) is satisfiable over RC(Rn), for any
n ≥ 2 (see, e.g., Fig. 1), but not over RCP(Rn). Thus
Bc◦ is sensitive to tameness in Euclidean spaces. It is

r1

r2

r3

Figure 1: Three regions in RC(R2) satisfying (2).

known [Kontchakov et al., 2010b] that, for the Euclidean
plane, the same is true of Bc and Cc: there is a Bc-formula
satisfiable over RC(R2), but not over RCP(R2). (The exam-
ple required to show this is far more complicated than the
Bc◦-formula (2).) In the next section, we prove that any of
Bc, Cc and Cc◦ contains formulas satisfiable over RC(Rn),
for every n ≥ 2, but only by regions with infinitely many
components. Thus, all four of our languages are sensitive to
tameness in all dimensions greater than one.



3 Regions with Infinitely Many Components
Fix n ≥ 2 and let d0, d1, d2, d3 be regions partitioning Rn:(∑

0≤i≤3 di = 1
)
∧

∧
0≤i<j≤3(di · dj = 0). (3)

We construct formulas forcing the di to have infinitely many
connected components. To this end we require non-empty
regions ai contained in di, and a non-empty region t:∧

0≤i≤3
(
(ai 6= 0) ∧ (ai ≤ di)

)
∧ (t 6= 0). (4)

The configuration of regions we have in mind is depicted in
Fig. 2, where components of the di are arranged like the lay-
ers of an onion. The ‘innermost’ component of d0 is sur-
rounded by a component of d1, which in turn is surrounded
by a component of d2, and so on. The region t passes through
every layer, but avoids the ai. To enforce a configuration of
this sort, we need the following three formulas, for 0 ≤ i ≤ 3:

c(ai + dbi+1c + t), (5)

¬C(ai, dbi+1c · (−abi+1c)) ∧ ¬C(ai, t), (6)

¬C(di, dbi+2c), (7)

where bkc = kmod4. Formulas (5) and (6) ensure that each
component of ai is in contact with abi+1c , while (7) ensures
that no component of di can touch any component of dbi+2c .

a1 d1a0 d0a3 d3a2 d2a1 d1a0 d0

t
. . .

Figure 2: Regions satisfying ϕ∞.

Denote by ϕ∞ the conjunction of the above constraints.
Fig. 2 shows how ϕ∞ can be satisfied over RC(R2). By cylin-
drification, it is also satisfiable over any RC(Rn), for n > 2.

The arguments of this section are based on the following
property of regular closed subsets of Euclidean spaces:
Lemma 1 If X ∈ RC(Rn) is connected, then every compo-
nent of −X has a connected boundary.

The proof of this lemma, which follows from [Newman,
1964], can be found in [Kontchakov et al., 2011]. The result
fails for other familiar spaces such as the torus.
Theorem 2 There is a Cc-formula satisfiable over RC(Rn),
n ≥ 2, but not by regions with finitely many components.
Proof. Let ϕ∞ be as above. To simplify the presentation, we
ignore the difference between variables and the regions they
stand for, writing, for example, ai instead of aIi . We construct
a sequence of disjoint componentsXi of dbic and open sets Vi
connecting Xi to Xi+1 (Fig. 3). By the first conjunct of (4),
letX0 be a component of d0 containing points in a0. Suppose
Xi has been constructed. By (5) and (6),Xi is in contact with
abi+1c . Using (7) and the fact that Rn is locally connected,
one can find a component Xi+1 of dbi+1c which has points
in ai+1, and a connected open set Vi such that Vi ∩ Xi and
Vi ∩Xi+1 are non-empty, but Vi ∩ dbi+2c is empty.

. . .X3X2X1X0 V2V1V0

Figure 3: The sequence {Xi, Vi}i≥0 generated by ϕ∞. (Si+1

and Ri+1 are the ‘holes’ of Xi+1 containing Xi and Xi+2.)

To see that the Xi are distinct, let Si+1 and Ri+1 be the
components of−Xi+1 containingXi andXi+2, respectively.
It suffices to show Si+1 ⊆ S◦i+2. Note that the connected set
Vi must intersect δSi+1. Evidently, δSi+1 ⊆ Xi+1 ⊆ dbi+1c .
Also, δSi+1 ⊆ −Xi+1; hence, by (3) and (7), δSi+1 ⊆
di ∪ dbi+2c . By Lemma 1, δSi+1 is connected, and therefore,
by (7), is entirely contained either in dbic or in dbi+2c . Since
Vi∩δSi+1 6= ∅ and Vi∩dbi+2c = ∅, we have δSi+1 6⊆ dbi+2c ,
so δSi+1 ⊆ di. Similarly, δRi+1 ⊆ di+2. By (7), then,
δSi+1∩δRi+1 = ∅, and since Si+1 andRi+1 are components
of the same set, they are disjoint. Hence, Si+1 ⊆ (−Ri+1)

◦ ,
and since Xi+2 ⊆ Ri+1, also Si+1 ⊆ (−Xi+2)

◦ . So,
Si+1 lies in the interior of a component of −Xi+2, and since
δSi+1 ⊆ Xi+1 ⊆ Si+2, that component must be Si+2. q

Now we show how the Cc-formula ϕ∞ can be transformed
to Cc◦- and Bc-formulas with similar properties. Note first
that all occurrences of c in ϕ∞ have positive polarity. Let
ϕ◦∞ be the result of replacing them with the predicate c◦.
In Fig. 2, the connected regions mentioned in (5) are in
fact interior-connected; hence ϕ◦∞ is satisfiable over RC(Rn).
Since interior-connectedness implies connectedness, ϕ◦∞ en-
tails ϕ∞, and we obtain:
Corollary 3 There is a Cc◦-formula satisfiable over RC(Rn),
n ≥ 2, but not by regions with finitely many components.

To construct a Bc-formula, we observe that all occurrences
of C in ϕ∞ are negative. We eliminate these using the pred-
icate c. Consider, for example, the formula ¬C(ai, t) in (6).
By inspection of Fig. 2, one can find regions r1, r2 satisfying

c(r1) ∧ c(r2) ∧ (ai ≤ r1) ∧ (t ≤ r2) ∧ ¬c(r1 + r2). (8)

On the other hand, (8) entails ¬C(ai, t). By treating all other
non-contact relations similarly, we obtain a Bc-formula ψ∞
that is satisfiable over RC(Rn), and that entails ϕ∞. Thus:
Corollary 4 There is a Bc-formula satisfiable over RC(Rn),
n ≥ 2, but not by regions with finitely many components.

Obtaining a Bc◦ analogue is complicated by the fact that
we must enforce non-contact constraints using c◦ (rather than
c). In the Euclidean plane, this can be done using planarity
constraints; see [Kontchakov et al., 2011].
Theorem 5 There is a Bc◦-formula satisfiable over RC(R2),
but not by regions with finitely many components.

Theorem 2 and Corollary 4 entail that, if L is Bc or Cc,
then Sat(L,RC(Rn)) 6= Sat(L,RCP(Rn)) for n ≥ 2. The-
orem 5 fails for RC(Rn) with n ≥ 3 (Sec. 5). However, we
know from (2) that Sat(Bc◦,RC(Rn)) 6= Sat(Bc◦,RCP(Rn))
for all n ≥ 2. Theorem 2 fails in the 1D case; moreover,
Sat(L,RC(R)) = Sat(L,RCP(R)) only in the case L = Bc
or Bc◦ [Kontchakov et al., 2010b].



4 Undecidability in the Plane
Let L be any of Bc, Cc, Bc◦ or Cc◦. In this section, we show,
via a reduction of the Post correspondence problem (PCP),
that Sat(L,RC(R2)) is r.e.-hard, and Sat(L,RCP(R2)) is r.e.-
complete. An instance of the PCP is a quadruple w =
(S, T,w1,w2) where S and T are finite alphabets, and each
wi is a word morphism from T ∗ to S∗. We may assume that
S = {0, 1} and wi(t) is non-empty for any t ∈ T . The in-
stance w is positive if there exists a non-empty τ ∈ T ∗ such
that w1(τ) = w2(τ). The set of positive PCP-instances is
known to be r.e.-complete. The reduction can only be given
in outline here: for details, see [Kontchakov et al., 2011].

To deal with arbitrary regular closed subsets of RC(R2),
we use the technique of ‘wrapping’ a region inside two big-
ger ones. Let us say that a 3-region is a triple a = (a, ȧ, ä) of
elements of RC(R2) such that 0 6= ä� ȧ� a, where r � s
abbreviates ¬C(r,−s). It helps to think of a = (a, ȧ, ä)
as consisting of a kernel, ä, encased in two protective lay-
ers of shell. As a simple example, consider the sequence
of 3-regions a1, a2, a3 depicted in Fig. 4, where the inner-
most regions form a sequence of externally touching poly-
gons. When describing arrangements of 3-regions, we use

a1
a2

a3
ȧ1

ȧ2
ȧ3

ä1
ä2

ä3

Figure 4: A chain of 3-regions satisfying stack(a1, a2, a3).

the variable r for the triple of variables (r, ṙ, r̈), taking the
conjuncts r̈ 6= 0, r̈ � ṙ and ṙ � r to be implicit. As with
ordinary variables, we often ignore the difference between 3-
region variables and the 3-regions they stand for.

For k ≥ 3, define the formula stack(a1, . . . , ak) by∧
1≤i≤k

c(ȧi + äi+1 + · · ·+ äk) ∧
∧

j−i>1

¬C(ai, aj).

Thus, the triple of 3-regions in Fig. 4 satisfies
stack(a1, a2, a3). This formula plays a crucial role in
our proof. If stack(a1, . . . , ak) holds, then any point p0 in
the inner shell ȧ1 of a1 can be connected to any point pk
in the kernel äk of ak via a Jordan arc γ1 · · · γk whose ith
segment, γi, never leaves the outer shell ai of ai. Moreover,
each γi intersects the inner shell ȧi+1 of ai+1, for 1 ≤ i < k.

This technique allows us to write Cc-formulas whose sat-
isfying regions are guaranteed to contain various networks of
arcs, exhibiting almost any desired pattern of intersections.
Now recall the construction of Sec. 3, where constraints on
the variables d0, . . . , d3 were used to enforce ‘cyclic’ patterns
of components. Using stack(a1, . . . , ak), we can write a for-
mula with the property that the regions in any satisfying as-
signment are forced to contain the pattern of arcs having the
form shown in Fig. 5. These arcs define a ‘window,’ contain-
ing a sequence {ζi} of ‘horizontal’ arcs (1 ≤ i ≤ n), each
connected by a corresponding ‘vertical arc,’ ηi, to some point
on the ‘top edge.’ We can ensure that each ζi is included in a

ζ1

η1

ζ2

η2

ζ3

η3

ζn

ηn

Figure 5: Encoding the PCP: Stage 1.

region abic , and each ηi (1 ≤ i ≤ n) in a region bbic , where
bic now indicates i mod 3. By repeating the construction, a
second pair of arc-sequences, {ζ ′i} and {η′i} (1 ≤ i ≤ n′) can
be established, but with each η′i connecting ζ ′i to the ‘bottom
edge.’ Again, we can ensure each ζ ′i is included in a region
a′bic and each η′i in a region b′bic (1 ≤ i ≤ n′). Further, we
can ensure that the final horizontal arcs ζn and ζ ′n′ (but no
others) are joined by an arc ζ∗ lying in a region z∗. The cru-

ζ′1

η′1

ζ′2

η′2

ζ′3

η′3

ζ′n

η′n
ζ∗

Figure 6: Encoding the PCP: Stage 2.

cial step is to match up these arc-sequences. To do so, we
write ¬C(a′i, bj) ∧ ¬C(ai, b′j) ∧ ¬C(bi + b′i, bj + b′j + z∗),
for all i, j (0 ≤ i, j < 3, i 6= j). A simple argument based
on planarity considerations then ensures that the upper and
lower sequences of arcs must cross (essentially) as shown in
Fig. 6. In particular, we are guaranteed that n = n′ (without
specifying the value n), and that, for all 1 ≤ i ≤ n, ζi is
connected by ηi (and also by η′i) to ζ ′i.

Having established the configuration of Fig. 6, we write
(bi ≤ l0 + l1) ∧ ¬C(bi · l0, bi · l1), for 0 ≤ i < 3, ensuring
that each ηi is included in exactly one of l0, l1. These inclu-
sions naturally define a word σ over the alphabet {0, 1}. Next,
we write Cc-constraints which organize the sequences of arcs
{ζi} and {ζ ′i} (independently) into consecutive blocks. These
blocks of arcs can then be put in 1–1 correspondence using es-
sentially the same construction used to put the individual arcs
in 1–1 correspondence. Each pair of corresponding blocks
can now be made to lie in exactly one region from a collec-
tion t1, . . . , t`. We think of the tj as representing the letters of
the alphabet T , so that the labelling of the blocks with these
elements defines a word τ ∈ T ∗. It is then straightforward
to write non-contact constraints involving the arcs ζi ensur-
ing that σ = w1(τ) and non-contact constraints involving the
arcs ζ ′i ensuring that σ = w2(τ). Let ϕw be the conjunction
of all the foregoing Cc-formulas. Thus, if ϕw is satisfiable
over RC(R2), then w is a positive instance of the PCP. On the
other hand, if w is a positive instance of the PCP, then one
can construct a tuple satisfying ϕw over RCP(R2) by ‘thick-
ening’ the above collections of arcs into polygons in the ob-
vious way. So, w is positive iff ϕw is satisfiable over RC(R2)
iff ϕw is satisfiable over RCP(R2). This shows r.e.-hardness
of Sat(Cc,RC(R2)) and Sat(Cc,RCP(R2)). Membership of



the latter problem in r.e. is immediate because all polygons
may be assumed to have vertices with rational coordinates,
and so may be effectively enumerated. Using the techniques
of Corollaries 3–4 and Theorem 5, we obtain:

Theorem 6 For L ∈ {Bc◦,Bc, Cc◦, Cc}, Sat(L,RC(R2)) is
r.e.-hard, and Sat(L,RCP(R2)) is r.e.-complete.

The complexity of Sat(L,RC(R3)) remains open for the
languages L ∈ {Bc, Cc◦, Cc}. However, as we shall see in
the next section, for Bc◦ it drops dramatically.

5 Bc◦ in 3D
In this section, we consider the complexity of satisfying Bc◦-
constraints by polyhedra and regular closed sets in three-
dimensional Euclidean space. Our analysis rests on an im-
portant connection between geometrical and graph-theoretic
interpretations. We begin by briefly discussing the results
of [Kontchakov et al., 2010a] for the polyhedral case.

Recall that every partial order (W,R), where R is a transi-
tive and reflexive relation on W , can be regarded as a topo-
logical space by takingX ⊆W to be open just in case x ∈ X
and xRy imply y ∈ X . Such topologies are called Aleksan-
drov spaces. If (W,R) contains no proper paths of length
greater than 2, we call (W,R) a quasi-saw (Fig. 8). If, in ad-
dition, no x ∈W has more than two properR-successors, we
call (W,R) a 2-quasi-saw. The properties of 2-quasi-saws we
need are as follows [Kontchakov et al., 2010a]:

– satisfiability of Bc-formulas in arbitrary topological
spaces coincides with satisfiability in 2-quasi-saws, and
is EXPTIME-complete;

– X ⊆ W is connected in a 2-quasi-saw (W,R) iff it is
interior-connected in (W,R).

The following construction lets us apply these results to the
problem Sat(Bc◦,RCP(R3)). Say that a connected partition
in RCP(R3) is a tuple X1, . . . , Xk of non-empty polyhedra
having connected and pairwise disjoint interiors, which sum
to the entire space R3. The neighbourhood graph (V,E) of
this partition has vertices V = {X1, . . . , Xk} and edges E =
{{Xi, Xj} | i 6= j and (Xi +Xj)

◦ is connected} (Fig. 7).
One can show that every connected graph is the neighbour-

X1

X2

X3

X4

X5

X6
X1

X2

X3

X4

X5

X6

Figure 7: A connected partition and its neighbourhood graph.

hood graph of some connected partition in RCP(R3). Fur-
thermore, every neighbourhood graph (V,E) gives rise to
a 2-quasi-saw, namely, (W0 ∪ W1, R), where W0 = V ,
W1 = {zx,y | {x, y} ∈ E}, and R is the reflexive closure
of {(zx,y, x), (zx,y, y) | {x, y} ∈ E}. From this, we see

that (i) a Bc◦-formula ϕ is satisfiable over RCP(R3) iff (ii)
ϕ is satisfiable over a connected 2-quasi-saw iff (iii) the Bc-
formula ϕ•, obtained from ϕ by replacing every occurrence
of c◦ with c, is satisfiable over a connected 2-quasi-saw. Thus,
Sat(Bc◦,RCP(R3)) is EXPTIME-complete.

The picture changes if we allow variables to range over
RC(R3) rather than RCP(R3). Note first that the Bc◦-formula
(2) is not satisfiable over 2-quasi-saws, but has a quasi-saw
model as in Fig. 8. Some extra geometrical work will show

x1 x2 x3

z

R
R

R
W1 = depth 1

W0 = depth 0

Figure 8: A quasi-saw model I of (2): rIi = {xi, z}.

now that (iv) a Bc◦-formula is satisfiable over RC(R3) iff (v)
it is satisfiable over a connected quasi-saw. And as shown
in [Kontchakov et al., 2010a], satisfiability of Bc◦-formulas
in connected spaces coincides with satisfiability over con-
nected quasi-saws, and is NP-complete.
Theorem 7 The problem Sat(Bc◦,RC(R3)) is NP-complete.
Proof. From the preceding discussion, it suffices to show that
(v) implies (iv) for any Bc◦-formula ϕ. So suppose A |= ϕ,
with A based on a finite connected quasi-saw (W0 ∪W1, R),
where Wi contains all points of depth i ∈ {0, 1} (Fig. 8).
Without loss of generality we will assume that there is a spe-
cial point z0 of depth 1 such that z0Rx for all x of depth 0.
We show how A can be embedded into RC(R3).

Take pairwise disjoint closed balls B1
x, for x of depth 0,

and pairwise disjoint open balls Dz , for all z of depth 1 ex-
cept z0 (we assume the Dz are disjoint from the B1

x). Let
Dz0 be the closure of the complement of all B1

x and Dz .
We expand the B1

x to sets Bx forming a connected partition
in RC(R3) (i.e. they sum to R3, and their interiors are non-
empty, connected and pairwise disjoint). To construct theBx,
let q1, q2, . . . be an enumeration of all the points in the interi-
ors of any of the Dz with rational coordinates. For x ∈ W0,
we set Bx to be (

⋃
k≥1B

k
x)
− , where the regular closed sets

Bk
x are defined inductively as follows (Fig. 9). Suppose, for

k ≥ 1, Bk
x has been defined for all x ∈ W0. Let qi be the

first point in the list q1, q2, . . . that is not in any Bk
x yet. If

qi is in the interior of some Dz , take a closed ball in the in-
terior of Dz centred on qi and disjoint from the Bk

x . Now
pick some x such that zRx, and expand Bk

x by the closed
ball around qi together with a closed ‘rod’ connecting it to
B1

x, in such a way that the rod is disjoint from the rest of the
Bk

x ; the result is denoted by Bk+1
x . Consider the function f

mapping regular closed sets X ⊆ W to RC(R3), defined by
f(X) =

∑
x∈X∩W0

Bx. Since theBx form a partition, f pre-
serves +, ·, −, 0 and 1. And since, for all z,

∑
{Bx | zRx}

is interior connected, f preserves interior-connectedness. By
carefully adding extra balls and rods in the construction of
the Bk

x , we can further ensure that non-interior-connected el-
ements of RC(W,R) are mapped to non-interior connected
elements of RC(R3) (for details, see [Kontchakov et al.,
2011]). Defining an interpretation I over RC(R3) by setting
rI = f(rA) then secures I |= ϕ. q



Bx1

Bx2

Bx3Dz

Figure 9: Filling Dz with Bxi
, for zRxi, i = 1, 2, 3.

The remarkably diverse computational behaviour of Bc◦
over RC(R3), RCP(R3) and RCP(R2) can be explained as
follows. To satisfy a Bc◦-formula ϕ in RC(R3), it suffices
to find polynomially many points in the regions mentioned in
ϕ (witnessing non-emptiness or non-interior-connectedness
constraints), and then to ‘inflate’ those points to (possibly
interior-connected) regular closed sets using the technique of
Fig. 9. By contrast, over RCP(R3), one can write a Bc◦-
formula analogous to (8) stating that two interior-connected
polyhedra do not share a 2D face. Such ‘face-contact’ con-
straints can be used to generate constellations of exponen-
tially many polyhedra simulating runs of alternating Tur-
ing machines on polynomial tapes, leading to EXPTIME-
hardness. Finally, over RCP(R2), planarity considerations
endow Bc◦ with the extra expressive power required to en-
force full non-contact constructs (not possible in higher di-
mensions), and thus to encode the PCP as sketched in Sec. 4.

6 Conclusion
This paper investigated topological constraint languages fea-
turing connectedness predicates and Boolean operations on
regions. Unlike their less expressive cousins, RCC8 and
RCC5, such languages are highly sensitive to the spaces
over which they are interpreted, and exhibit more challeng-
ing computational behaviour. Specifically, we demonstrated
that the languages Cc, Cc◦ and Bc contain formulas satisfiable
over RC(Rn), n ≥ 2, but only by regions with infinitely many
components. Using a related construction, we proved that the
satisfiability problem for any of Bc, Cc, Bc◦ and Cc◦, inter-
preted either over RC(R2), or over its polygonal subalgebra,
RCP(R2), is undecidable. Finally, we showed that the sat-
isfiability problem for Bc◦, interpreted over RC(R3), is NP-
complete, which contrasts with EXPTIME-completeness for
RCP(R3). The complexity of satisfiability for Bc, Cc and
Cc◦ over RC(Rn) or RCP(Rn) for n ≥ 3 remains open. The
obtained results rely on certain distinctive topological prop-
erties of Euclidean spaces. Thus, for example, the argument
of Sec. 3 is based on the property of Lemma 1, while Sec. 4
similarly relies on planarity considerations. In both cases,
however, the moral is the same: the topological spaces of
most interest for Qualitative Spatial Reasoning exhibit spe-
cial characteristics which any topological constraint language
able to express connectedness must take into account.

The results of Sec. 4 pose a challenge for Qualitative Spa-
tial Reasoning in the Euclidean plane. On the one hand, the
relatively low complexity of RCC8 over disc-homeomorphs
suggests the possibility of usefully extending the expressive
power of RCC8 without compromising computational prop-
erties. On the other hand, our results impose severe limits
on any such extension. We observe, however, that the con-

structions used in the proofs depend on a strong interaction
between the connectedness predicates and the Boolean opera-
tions on regular closed sets. We believe that by restricting this
interaction one can obtain non-trivial constraint languages
with more acceptable complexity. For example, the exten-
sion of RCC8 with connectedness constraints is still in NP
for both RC(R2) and RCP(R2) [Kontchakov et al., 2010b].
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