
Adding Weight to DL-Lite

A. Artale,1 D. Calvanese,1 R. Kontchakov,2 and M. Zakharyaschev2

1 KRDB Research Centre
Free University of Bozen-Bolzano

I-39100 Bolzano, Italy
lastname @inf.unibz.it

2 School of Comp. Science and Inf. Sys.
Birkbeck College

London WC1E 7HX, UK
{roman,michael}@dcs.bbk.ac.uk

1 Introduction

Description logics (DLs) have recently been used to provide access to large
amounts of data through a high-level conceptual interface, which is of relevance
in several application contexts, notably data integration and ontology-based data
access. Besides the traditional reasoning services of knowledge base satisfiability
and instance checking, a further important service in that context is that of an-
swering complex database-like queries by fully taking into account the axioms
in the TBox and the data stored in the ABox. The key property for such an
approach to be viable in practice is the efficiency of query evaluation, in partic-
ular for conjunctive queries and, more generally, for positive existential queries
(this class of queries includes unions of conjunctive queries) [1]. To address these
needs, the DL-Lite family of description logics has been proposed and investi-
gated in [6–8, 16], with the aim of identifying a class of DLs that could capture
typical conceptual modeling formalisms, such as UML class diagrams and ER
models, and for which query answering could be performed efficiently in terms of
data complexity. The data complexity measure presupposes that only the size of
the ABox is considered as variable while the sizes of the TBox and the query are
regarded as fixed. Such a measure is important since in the typical application
contexts we are interested in here, the size of the data stored in the ABox largely
dominates that of the TBox and the query. As shown in [6–8, 16], for the logics
of the DL-Lite family, a (union of) conjunctive queries posed over a TBox can
be answered by rewriting it into a new union of conjunctive queries that has
‘compiled in’ the assertions in the TBox, and that can simply be evaluated (by
a relational engine) over the ABox to produce the correct answer to the original
query. In other words, it was shown that such logics enjoy FO rewritability [7,
8], and so belong to the complexity class FO in terms of descriptive complexity
theory, and to the class AC0 in terms of circuit complexity [10].

Successive work [3] has shown that some of the nice computational properties
of DL-Lite logics can be preserved, even when they are extended with additional
constructs used in conceptual modeling. In particular, it was proved in [3] that
the data complexity of answering positive existential queries stays in AC0 for
the logic DL-LiteNhorn which allows conjunctions on the left-hand side of concept
inclusions as well as arbitrary number restrictions. Moreover, the same data
complexity bound holds also for satisfiability and instance checking in the logic

Language Combined complexity Data complexity

Satisfiability Instance checking Query answering

DL-Lite(RN)
core NLogSpace in AC0 in AC0

DL-Lite(RN)
horn P ≤ [Th.1] in AC0 in AC0 ≤ [Th.3]

DL-Lite(RN)
krom NLogSpace ≤ [Th.1] in AC0 coNP ≥[18]

DL-Lite(RN)
bool NP ≤ [Th.1] in AC0 ≤ [Th.2] coNP ≤[14, 13, 9]

Table 1. Combined and data complexity.

DL-LiteNbool which allows full Booleans as concept constructs. (Note that these
results hold only under the unique name assumption. DL-Lite logics without
this assumption are investigated in [4].)

One aim of this paper is to extend DL-LiteNhorn, DL-LiteNbool and their
fragments with a number of new constructs without spoiling their computa-
tional properties. The resulting logic is called DL-Lite(RN)

horn . Another aim is to
present explicit (exponential) FO rewritings of positive existential queries over
DL-Lite(RN)

horn KBs. The constructs we add to our logics are as follows: (i) role
inclusions, (ii) qualified number restrictions, and (iii) role disjointness, symme-
try, asymmetry, reflexivity, and irreflexivity constraints. Needless to say that
when adding (i) and (ii), we have to restrict the interaction of these constructs
with number restrictions (otherwise, even the logic DL-LiteR,Fcore with extremely
primitive concept inclusions, but with unrestricted role inclusions and global
functionality constraints is ExpTime-complete for combined complexity and P-
complete for data complexity [11].) This will be done by generalizing the ideas
of [16]. Our main tool for dealing with DL-Lite logics is embedding into the one-
variable fragment QL1 of first-order logic without equality and function symbols,
which seems to be a natural logic-based characterization of the DL-Lite logics.

The complexity results obtained in this paper are summarized in Table 1.

2 DL-Lite(RN)

bool and its fragments

We start by defining the description logic DL-Lite(RN)

bool , the most expressive of our
logics, which subsumes, in particular, all members of the DL-Lite family [6–8].

The language of DL-Lite(RN)

bool contains object names a0, a1, . . . , concept names
A0, A1, . . . , and role names P0, P1, Complex concepts C and roles R are
defined as follows:

B ::= ⊥ | Ai | ≥ q R, R ::= Pi | P−i ,
C ::= B | ¬C | ≥ q R.C | C1 u C2,

where q is a positive integer. The concepts of the form B will be called basic. A
DL-Lite(RN)

bool TBox, T , is a finite set of concept inclusions (CIs, for short), role
inclusions, and role constraints of the form:

C1 v C2, R1 v R2, Dis(R1, R2), Irr(Pk), and Ref(Pk).

We write inv(R) for P−k if R = Pk, and for Pk if R = P−k . Denote by v∗T the
reflexive and transitive closure of {(R,R′), (inv(R), inv(R′)) | R v R′ ∈ T }. Say

2

that R′ is a proper sub-role of R in T if R′ v∗T R and R 6v∗T R′. We impose the
following syntactic conditions on DL-Lite(RN)

bool TBoxes T (cf. DL-LiteA [16]):

(inter) if R has a proper sub-role in T then T contains no negative occurrences1

of number restrictions ≥ q R or ≥ q inv(R) with q ≥ 2;
(exists) T may contain only positive occurrences of ≥ q R.C, and if ≥ q R.C

occurs in T then T does not contain negative occurrences of ≥ q′R or
≥ q′ inv(R), for q′ ≥ 2.

It follows that no TBox can contain both a functionality constraint ≥ 2R v ⊥
and an occurrence of ≥ q R.C, for some q ≥ 1 and some role R.

An ABox, A, is a finite set of assertions of the form: Ak(ai), Pk(ai, aj) and
¬Pk(ai, aj). Taken together, T and A constitute the DL-Lite(RN)

bool knowledge base
(KB, for short) K = (T ,A).

As usual in description logic, an interpretation, I = (∆I , ·I), consists of
a nonempty domain ∆I and an interpretation function ·I that assigns to each
object name ai an element aIi ∈ ∆I , to each concept name Ai a subset AIi ⊆ ∆I ,
and to each role name Pi a binary relation P Ii ⊆ ∆I × ∆I . In this paper, we
adopt the unique name assumption (UNA): aIi 6= aIj , for all i 6= j, and refer the
reader to [4] for results on the DL-Lite logics without UNA.

The role and concept constructs are interpreted in I in the standard way.
We will also use standard abbreviations such as > = ¬⊥, ∃R = (≥ 1R) and
≤ q R = ¬(≥ q + 1R). The satisfaction relation |= is also standard; we only
mention here that I |= Dis(R1, R2) iff RI1 ∩ RI2 = ∅ (R1 and R2 are disjoint),
I |= Irr(Pk) iff (x, x) /∈ P Ik for all x ∈ ∆I (Pk is irreflexive), I |= Ref(Pk) iff
(x, x) ∈ P Ik for all x ∈ ∆I (Pk is reflexive). Note that symmetric and asymmetric
role constraints can be regarded as syntactic sugar in this language: Sym(Pk)
and Asym(Pk) can be equivalently replaced with P−k v Pk and Dis(Pk, P−k),
respectively (extending a TBox with P−k v Pk cannot violate (inter) as P−k
is not a proper sub-role of Pk). A KB K = (T ,A) is said to be satisfiable (or
consistent) if there is an interpretation, I, satisfying all the members of T and
A. In this case we write I |= K (as well as I |= T and I |= A) and say that I is
a model of K.

It is to be emphasized that such constructs as role constraints and qual-
ified number restrictions are used in conceptual modeling and also belong to
the OWL 2 proposal; moreover, as we show, adding them does not affect the
computational complexity of our logics.

Similarly to classical logic, we adopt the following definitions: a TBox T is

– a DL-Lite(RN)

horn TBox if its CIs are of the form B1 u · · · u Bk v B (the Bi
and B are basic concepts and, by definition, the empty conjunction is >);

– a DL-Lite(RN)

krom TBox2 if its CIs are of the form B1 v B2, B1 v ¬B2 or
¬B1 v B2;

1 An occurrence of a concept on the right-hand (resp., left-hand) side of a concept
inclusion is called negative if it is in the scope of an odd (resp., even) number of
negations ¬; otherwise the occurrence is called positive.

2 The Krom fragment of first-order logic consists of all formulas in prenex normal form
whose quantifier-free part is a conjunction of binary clauses.

3

– a DL-Lite(RN)
core TBox if its CIs are of the form B1 v B2 or B1 v ¬B2.

As B1 v ¬B2 is equivalent to B1 u B2 v ⊥, core TBoxes can be regarded as
both Krom and Horn TBoxes. We note here that a concept C occurring in T in
some ≥ q R.C can be a conjunction of any concepts allowed on the right-hand
side of concept inclusions in the respective language.

3 DL-Lite in the Light of First-Order Logic

Our main aim in this section is to prove the upper combined complexity bounds
for reasoning in DL-Lite(RN)

bool and its fragments and develop the technical tools
we need to investigate the data complexity of query answering in DL-Lite(RN)

horn .
For a DL-Lite(RN)

bool KB K = (T ,A), denote by role±(K) the set of role names
occurring in K and their inverses and by ob(A) the set of object names occurring
in A. Let QRT be the set of natural numbers containing 1 and all the numerical
parameters q such that ≥ q R or ≥ q R.C occurs in T . Note that |QRT | ≥ 2 if T
contains a functionality constraint for R. Our main result in this section is:

Theorem 1. (i) Satisfiability of DL-Lite(RN)

bool KBs is NP-complete; (ii) satisfi-
ability of DL-Lite(RN)

horn KBs is P-complete; and (iii) satisfiability of DL-Lite(RN)

krom

and DL-Lite(RN)
core KBs is NLogSpace-complete.

Let us consider first the sub-language of DL-Lite(RN)

bool without qualified num-
ber restrictions and role constraints, which will be required for purely technical
reasons; we denote it by DL-Lite(RN)−

bool . In Section 4, we will also use DL-Lite(RN)−

horn .
Let K = (T ,A) be a DL-Lite(RN)−

bool KB and let Id be a distinguished role
name, which will be used to simulate the identity relation required for encoding
the role constraints. We assume that either K does not contain Id at all or
satisfies the following conditions:

(Id1) Id(ai, aj) ∈ A iff i = j, for all ai, aj ∈ ob(A),
(Id2)

{
> v ∃Id, Id− v Id

}
⊆ T , and QId

T = QId−

T = {1},
(Id3) Id is only allowed in role inclusions of the form Id− v Id and Id v R.

We assume, without loss of generality, that QRT ⊆ QR
′

T whenever R v∗T R′ (for
if this is not the case we can always introduce the missing numbers in QR

′

T , e.g.,
by adding ⊥ v ≥ q R′ to the TBox).

We present now a reduction of the satisfiability problem for DL-Lite(RN)−

bool

KBs to satisfiability of first-order formulas with one variable, or QL1-formulas.
With every object name ai ∈ ob(A) we associate the individual constant ai
of QL1 and with every concept name Ai the unary predicate Ai(x) from the
signature of QL1. For each role R ∈ role±(K), we introduce |QRT |-many fresh
unary predicates EqR(x), for q ∈ QRT . The intended meaning of these predicates
is as follows: for a role name Pk, E1Pk(x) and E1P

−
k (x) represent the domain

and range of Pk, respectively; more generally, for each q ∈ QRT , EqPk(x) and
EqP

−
k (x) represent the sets of points with at least q distinct Pk-successors and at

4

least q distinct Pk-predecessors, respectively. We write inv(EqR)(x) for EqP−k (x)
if R = Pk, and for EqPk(x) if R = P−k . Additionally, for every pair of roles
Pk, P

−
k ∈ role±(K), we take two fresh individual constants dpk and dp−k of QL1,

which will serve as ‘representatives’ of the points from the domain and range of
Pk, respectively (provided that it is not empty). Denote the set of all those dpk
and dp−k by dr(K) and write inv(dr) for dp−k if R = Pk, and for dpk if R = P−k .
By induction on the construction of concept C we define the QL1-formula C∗:

⊥∗ = ⊥, (Ai)∗ = Ai(x), (≥q R)∗ = EqR(x),
(¬C)∗ = ¬C∗(x), (C1 u C2)∗ = C∗1 (x) ∧ C∗2 (x).

For every role R ∈ role±(K), we need two QL1-formulas:

εR(x) = E1R(x)→ inv(E1R)(inv(dr)),

δR(x) =
∧

q,q′∈QR
T , q′>q

q′>q′′>q for no q′′∈QR
T

(
Eq′R(x)→ EqR(x)

)
.

Formula εR(x) says that if the domain of R is not empty then its range is not
empty either: it contains the constant inv(dr), the ‘representative’ of the domain
of inv(R). The meaning of δR(x) should be obvious. For a KB K, we define

K‡e = ∀x
[
T ∗R(x) ∧

∧
R∈role±(K)

(
εR(x) ∧ δR(x)

)]
∧ A‡e , where

T ∗R(x) =
∧

C1vC2∈T

(
C∗1 (x)→ C∗2 (x)

)
∧

∧
RvR′∈T or

inv(R)vinv(R′)∈T

∧
q∈QR

T

(
EqR(x)→ EqR

′(x)
)
,

A‡e =
∧

Ak(ai)∈A

Ak(ai) ∧
∧

R(a,a′)∈CleT (A)

EqeR,a
R(a) ∧

∧
¬Pk(ai,aj)∈A

(¬Pk(ai, aj))⊥e ,

CleT (A) = {R′(ai, aj) | R(ai, aj) ∈ A, R v∗T R′},3 qeR,a is the maximum number
in QRT such that there are qeR,a many distinct ai with R(a, ai) ∈ CleT (A), and
(¬Pk(ai, aj))⊥e = ⊥ if Pk(ai, aj) ∈ CleT (A) and > otherwise. Note that the size
of K‡e is linear in the size of K, no matter whether the numerical parameters are
coded in unary or in binary. The following lemma is an analogue of [3, Theorem 1]
(for the proof see [4]):

Lemma 1. A DL-Lite(RN)−

bool KB K is satisfiable iff the QL1-sentence K‡e is
satisfiable.

It should be clear that the translation ·‡e can be computed in NLogSpace for
combined complexity. Indeed, this is trivial for the first conjunct of K‡e . To
compute A‡e , we first need to be able to check, given a role R and a pair of ob-
jects ai, aj , whether R(ai, aj) ∈ CleT (A) and second, given R(a, a′) ∈ CleT (A), to
3 We slightly abuse notation and write R(ai, aj) ∈ A to indicate that Pk(ai, aj) ∈ A

if R = Pk, or Pk(aj , ai) ∈ A if R = P−k .

5

compute qeR,a. The R(ai, aj) ∈ CleT (A) test can be done by a non-deterministic
algorithm using space logarithmic in |role±(K)| (see, e.g., the NLogSpace di-
rected graph reachability problem [12]). The following algorithm computes qeR,a:
set q = 0 and then enumerate all object names ai in A incrementing q each time
R(a, ai) ∈ CleT (A); stop if q = maxQRT or the end of the object name list is
reached. The resulting qeR,a is the maximum number in QRT not exceeding q.

As follows from the proof of Lemma 1, for a DL-Lite(RN)−

bool KB K = (T ,A),
every model M of K‡e induces a model IM of K with the following properties:

(abox) For all ai, aj ∈ ob(A), (aIM
i , aIM

j) ∈ RIM iff R(ai, aj) ∈ CleT (A).
(uniq) The object names a ∈ ob(A) induce a partitioning of ∆IM into disjoint

labeled trees Ta = (Ta, Ea, `a) with nodes Ta, edges Ea, root aIM , and a
labeling function `a : Ea → role±(K) \ {Id, Id−}.

(cp) There is a function cp : ∆IM → ob(A) ∪ dr(K) such that cp(aIM) = a for
a ∈ ob(A), and cp(w) = dr, for role R such that w′ ∈ Ta, (w′, w) ∈ Ea and
`a(w′, w) = inv(R), for some a ∈ ob(A).

(iso) For each R ∈ role±(K), all labeled subtrees generated by w ∈ ∆IM with
cp(w) = dr are isomorphic.

(con) For all basic concepts B in K and w ∈ ∆IM , w ∈ BIM iff M |= B∗[cp(w)].
(role) For every role name Pk, including Id,

P IM

k =
{

(aIM
i , aIM

j) | R(ai, aj) ∈ A, R v∗T Pk
}
∪
{

(w,w) | Id v∗T Pk
}
∪{

(w,w′) ∈ Ea | a ∈ ob(A), `a(w,w′) = R, R v∗T Pk
}
.

Such a model will be called an untangled model of K (the untangled model of K
induced by M, to be more precise). It should be pointed out that there are two
main distinguishing features of untangled models for DL-Lite(RN)

bool KBs: (i) there
are at most |ob(A)| + |role±(K)| different types of points in them, and (ii) al-
though two points may be connected by a set of roles Ω, one can always select
R ∈ Ω such that Ω is an upward closure of {R} under v∗T , provided that one of
the points is not from ob(A).

The following lemma reduces satisfiability of DL-Lite(RN)

bool KBs to satisfiability
of DL-Lite(RN)−

bool KBs (for the proof see [4, Lemma 5.17]):

Lemma 2. For every DL-Lite(RN)

bool KB K′ = (T ′,A′), one can construct (in
linear time and logarithmic space) a DL-Lite(RN)−

bool KB K = (T ,A) such that

– every untangled model IM of K is a model of K′, provided that
there are no R1(ai, aj), R2(ai, aj) ∈ CleT (A) with Dis(R1, R2) ∈ T ′, and
there is no R(ai, ai) ∈ CleT (A) with Irr(R) ∈ T ′;

– every model I ′ of K′ gives rise to a model I of K based on the same domain
as I ′ and such that I agrees with I ′ on all symbols from K′.

Theorem 1 follows from Lemmas 2 and 1, the observation that K‡e is a QL1-
formula, for a DL-Lite(RN)

bool KB, a universal Horn QL1-formula, for a DL-Lite(RN)

horn

KB, and a universal Krom QL1-formula, for a DL-Lite(RN)

krom KB, and the com-
plexity results for the respective fragments of QL1 [15, 5].

For the data complexity the following result is proved in [4, Section 6]:

6

Theorem 2. The satisfiability and instance checking problems for DL-Lite(RN)

bool

KBs are in AC0 for data complexity.

4 FO Rewritability of Query Answering

In this section we study the data complexity of query answering over DL-Lite(RN)

horn

KBs. We assume that all concept and role names of a KB occur in its TBox and
write role±(T) and dr(T) instead of role±(K) and dr(K), respectively. Denote
by Bcon(T) the set of basic concepts occurring in T (i.e., concepts of the form
A and ≥ q R, for a concept name A occurring in T , R ∈ role±(T) and q ∈ QRT).

A positive existential query q(x) is a first-order formula ϕ(x) constructed
by means of conjunction, disjunction and existential quantification from atoms
of the from A(t1) and P (t1, t2), where t1, t2 are terms taken from the list of
variables y0, y1, . . . and object names a0, a1, The free variables of ϕ are called
distinguished variables of q. An assignment a in ∆I is a function associating with
each variable y an element a(y) of ∆I . We write aI,ai = aIi and yI,a = a(y). For
K = (T ,A), say that a tuple a of object names from A is a certain answer to
q(x) w.r.t. K, and write K |= q(a), if I |= q(a) whenever I |= K. The query
answering problem is, given K, a query q(x) and a ⊆ ob(A), decide whether
K |= q(a). Our main result in this section is the following:

Theorem 3. The positive existential query answering problem for DL-Lite(RN)

horn

KBs is in AC0 for data complexity.

Proof. Suppose that we are given a consistent DL-Lite(RN)

horn KB K′ = (T ′,A′) and
a positive existential query in prenex form q(x) = ∃y ϕ(x,y), y = y1, . . . , yk,
in the signature of K′. Consider the DL-Lite(RN)−

horn KB K = (T ,A) provided by
Lemma 2. The untangled models of K produce exactly the same answers as K′:
Lemma 3. For every tuple a of object names in K′, we have K′ |= q(a) iff
I |= q(a) for all untangled models I of K.

Next we show that, as K‡e is a universal Horn sentence, it is enough to
consider just one special untangled model I0 of K. Let M0 be the minimal
Herbrand model of K‡e . We remind the reader (see, e.g., [2, 17]) that M0 can be
constructed by taking the intersection of all Herbrand models for K‡e , that is,
of all models based on the domain Λ = ob(A) ∪ dr(T). It follows that

M0 |= B∗[c] iff K‡e |= B∗(c), for all c ∈ Λ and B ∈ Bcon(T).

Denote by I0 the untangled model of K induced by M0 and its domain by ∆I0 .
By Lemma 1 with (con) and (cp),

aI0i ∈ B
I0 iff K |= B(ai), for all ai ∈ ob(A) and B ∈ Bcon(T). (1)

For each R ∈ role±(T), by Lemma 1, if RI0 6= ∅ then M0 |= (∃R)∗[dr] and thus,
(T ∪ {∃R v ⊥},A) is not satisfiable, whence RI 6= ∅, for all models I of K.
Moreover, if RI0 6= ∅ then

w ∈ BI0 iff K |= ∃R v B, for all w ∈ ∆I0 with cp(w) = dr, (2)

7

where cp : ∆I0 → Λ is the function provided by (cp).

Lemma 4. If I0 |= q(a) then I |= q(a) for all untangled models I of K.

Proof. Suppose I |= K. As q(a) is a positive existential sentence, it is enough
to construct a homomorphism h : I0 → I. By (uniq), ∆I0 is partitioned into
trees Ta, for a ∈ ob(A). Define the depth of w ∈ ∆I0 to be the length of the
path in the respective tree from its root to w. Denote by Wm the set of points
of depth ≤ m; in particular, W0 = {aI0 | a ∈ ob(A)}. We construct h as the
union of homomorphisms hm : Wm → I, m ≥ 0, such that hm+1(w) = hm(w),
for all w ∈ Wm. For the basis of induction, set h0(aI0i) = aIi , for ai ∈ ob(A);
h0 is a homomorphism by (1) and (abox). For the induction step, suppose hm
has been defined. If v ∈Wm, set hm+1(v) = hm(v). Otherwise, v ∈Wm+1 \Wm.
By (uniq), there is a unique u ∈Wm with (u, v) ∈ Ea, for some a ∈ ob(A). Let
`a(u, v) = S. By (cp), cp(v) = inv(ds) and, by (role), u ∈ (∃S)I0 . As hm is a
homomorphism, hm(u) ∈ (∃S)I , whence there is w ∈ ∆I with (hm(u), w) ∈ SI .
Set hm+1(v) = w. As (∃inv(S))I0 6= ∅, cp(v) = inv(ds) and w ∈ (∃inv(S))I ,
by (2), if v ∈ BI0 then w ∈ BI , for all B ∈ Bcon(T). It remains to show that
(w, v) ∈ RI0 implies (hm+1(w), hm+1(v)) ∈ RI . By (role), we have (w, v) ∈ RI0 ,
for w ∈ Wm+1 and v ∈ Wm+1 \Wm, just in two cases: either w ∈ Wm+1 \Wm,
and then w = v with Id v∗T R, or w ∈Wm, and then w = u with S v∗T R. In the
former case, (hm+1(v), hm+1(v)) ∈ IdI ⊆ RI . In the latter case, (u, v) ∈ SI0 ;
hence (hm+1(u), hm+1(v)) ∈ SI ⊆ RI . ut

Our next lemma shows that to check whether I0 |= q(a) it suffices to consider
only the set of points Wm0 of depth ≤ m0 in ∆I , for some m0 that does not
depend on |A| (see [4, Lemma 7.4] for the proof):

Lemma 5. Let m0 = k+ |role±(T)|. If I0 |= ∃y ϕ(a,y) then there is an assign-
ment a0 in Wm0 (i.e., a0(yi) ∈Wm0 for all i) such that I0 |=a0 ϕ(a,y).

To complete the proof of Theorem 3, we encode the problem ‘K |= q(a)?’
as a model checking problem for first-order formulas. We fix a signature that
contains a unary predicate Ak(x) for each concept name Ak and a binary pred-
icate Pk(x, y) for each role name Pk, and then represent the ABox A of K as a
first-order model AA with domain ob(A): for each ai, aj ∈ ob(A),

AA |= Ak[ai] iff Ak(ai) ∈ A and AA |= Pk[ai, aj] iff Pk(ai, aj) ∈ A.

Now we define a first-order formula ϕT ,q(x) in the above signature such that (i)
ϕT ,q(x) depends on T and q but not on A, and (ii) AA |= ϕT ,q(a) iff I0 |= q(a).

To simplify the presentation, we denote by e(T) the extension of T with:

– ≥ q′R v ≥ q R, for all R ∈ role±(T) and q, q′ ∈ QRT with q′ > q, and
– ≥ q R v ≥ q R′, for all q ∈ QRT and R v R′ ∈ T or inv(R) v inv(R′) ∈ T .

It follows from the definition of ·‡e and Lemma 1 that, for a Horn concept inclu-
sion C v B, we have T |= C v B iff (C∗(x) → B∗(x)) is a logical consequence
of {(C∗i (x)→ B∗i (x)) | Ci v Bi ∈ e(T)}.

8

We begin by defining formulas ψB(x), B ∈ Bcon(T), that describe the types
of the elements of ob(A) in the model I0 in the following sense (cf. (1)):

AA |= ψB [ai] iff aI0i ∈ B
I0 , for B ∈ Bcon(T) and ai ∈ ob(A). (3)

These formulas are defined as the ‘fixed-points’ of sequences ψ0
B(x), ψ1

B(x), . . .
of formulas with one free variable, where

ψ0
B(x) =


A(x), if B = A,

∃y1 . . . ∃yq
[∧
1≤i<j≤q

(yi 6= yj) ∧
∧

1≤i≤q

RT (x, yi)
]
, if B = ≥ q R,

ψiB(x) = ψ0
B(x) ∨

∨
B1u···uBkvB∈e(T)

(
ψi−1
B1

(x) ∧ · · · ∧ ψi−1
Bk

(x)
)
, for i ≥ 1,

and RT (x, y) =
∨
Pkv∗T R

Pk(x, y) ∨
∨
P−k v

∗
T R

Pk(y, x). Clearly, if there is an i

such that, for all B ∈ Bcon(T), ψiB(x) ≡ ψi+1
B (x), i.e., every ψiB(x) is equivalent

to ψi+1
B (x) in first-order logic, then ψiB(x) ≡ ψjB(x) for all B ∈ Bcon(T), j ≥ i.

The minimum such i does not exceed N = |Bcon(T)|, so we set ψB(x) = ψNB (x).
Next we introduce sentences θB,dr, for B ∈ Bcon(T) and dr ∈ dr(T), that

describe the types of the elements of dr(T) in I0 in the following sense (cf. (2)):

AA |= θB,dr iff w ∈ BI0 , for each (some) w ∈ ∆I0 with cp(w) = dr. (4)

These sentences are defined similarly to the ψB(x): namely, for each B ∈
Bcon(T) and dr ∈ dr(T), we consider a sequence θ0B,dr, θ

1
B,dr, . . . by taking

θ0B,dr = ρ0
B,dr, θiB,dr = ρiB,dr ∨

∨
B1u···uBkvB∈e(T)

(
θi−1
B1,dr

∧ · · · ∧ θi−1
Bk,dr

)
, for i ≥ 1,

where ρiB,dr = ⊥, for all B 6= ∃R and i ≥ 0, and

ρ0
∃R,dr = ∃xψ∃inv(R)(x) and ρi∃R,dr =

∨
ds∈dr(T)

θi−1
∃inv(R),ds, for i ≥ 1.

We have θiB,dr ≡ θ
i+1
B,dr for some i ≤M = N · |role±(T)|. So, let θB,dr = θMB,dr.

Now we consider the directed graph GT = (VT , ET), where VT is the set of
all equivalence classes [R], [R] = {R′ | R v∗T R′, R′ v∗T R}, such that ∃R is not
empty in some model of T , and ET is the set of all pairs ([Ri], [Rj]) such that

(path) T |= ∃inv(Ri) v ≥ q Rj and either inv(Ri) 6v∗T Rj or q ≥ 2,

and Rj has no proper sub-role satisfying (path). We have ([Ri], [Rj]) ∈ ET iff,
for any ABox A′, whenever the minimal untangled model I0 of (T ,A′) contains
a copy w of inv(dr′i), for R′i ∈ [Ri], then w is connected to a copy of inv(dr′j), for
R′j ∈ [Rj], by all relations S with Rj v∗T S. Let ΣT ,m0 be the set of all paths in
GT of length ≤ m0 (as in Lemma 5):

ΣT ,m0 =
{
ε
}
∪
{

([R1], . . . , [Rn]) | 1 ≤ n ≤ m0 & ([Rj], [Rj+1]) ∈ ET , for j < n
}
.

9

For σ, σ′ ∈ ΣT ,m0 and R ∈ role±(T), we write σ R→ σ′ if (i) σ = σ′ and Id v∗T R
or (ii) σ.[S] = σ′ or (iii) σ = σ′.[inv(S)], for some S with S v∗T R.

Let Σk
T ,m0

be the set of all k-tuples of the form σ = (σ1, . . . , σk), σi ∈ ΣT ,m0 .
Intuitively, when evaluating the query ∃y ϕ(x,y) over I0, each bound, or non-
distinguished, variable yi is mapped to a point w in Wm0 . However, the first-
order model AA does not contain the points from Wm0 \W0, and to represent
them, we use the following ‘trick.’ By (uniq), every point w in Wm0 is uniquely
determined by the pair (a, σ), where aI0 is the root of the tree Ta containing w,
and σ is the sequence of labels `a(u, v) on the path from aI0 to w. It follows from
the unraveling procedure and (path) that σ ∈ ΣT ,m0 . So, in the formula ϕT ,q
we are about to define we assume that the yi range over W0 and represent the
first component of the pairs (a, σ), whereas the second component is encoded
in the ith member of σ (these yi should not be confused with the yi in the
original query q, which range over all of Wm0). In order to treat arbitrary terms
t occurring in ϕ(x,y) in a uniform way, we set tσ = ε, if t = a ∈ ob(A) or t = xi,
and tσ = σi, if t = yi (the distinguished variables xi and the object names a are
mapped to W0 and do not require the second component of the pairs).

Given an assignment a0 in Wm0 we denote by split(a0) the pair (a,σ), where
a is an assignment in AA and σ = (σ1, . . . , σk) ∈ Σk

T ,m0
are such that

– for each distinguished variable xi, a(xi) = a with aI0 = a0(xi);
– for each bound variable yi, a(yi) = a and σi = ([R1], . . . , [Rn]), n ≤ m0,

with aI0 being the root of the tree containing a0(yi) and R1, . . . , Rn being
the sequence of labels `a(u, v) on the path from aI0 to a0(yi).

Not every pair (a,σ), however, corresponds to an assignment in Wm0 because
some paths in σ may not exist in our I0: GT represents possible paths in all
models for the fixed TBox T and varying ABox. As follows from the unraveling
procedure, a point in Wm0 \ W0 corresponds to a ∈ ob(A) and σ ∈ ΣT ,m0 ,
σ = ([R], . . .), iff a has not enough R-witnesses in A: AA |= ¬ψ0

≥q R[a]∧ψ≥q R[a],
for some q ∈ QRT . Thus, for every (a,σ) with σ = (σ1, . . . , σk), there is an
assignment a0 in Wm0 with split(a0) = (a,σ) iff AA |=a ησ(y), where

ησ(y) =
∧

1≤i≤k
σi 6=ε

∨
q∈QRi

T

(
¬ψ0
≥q Ri

(yi) ∧ ψ≥q Ri
(yi)

)

and each Ri, for 1 ≤ i ≤ k with σi 6= ε, is such that σi = ([Ri], . . .).
We define now, for every σ ∈ Σk

T ,m0
, concept name A and role name R,

Aσ(t) =

{
ψA(t), if tσ = ε,

θA,inv(ds), if tσ = σ′.[S], for some σ′ ∈ ΣT ,m0 ,

Rσ(t1, t2) =


RT (t1, t2), if tσ1 = tσ2 = ε,

(t1 = t2), if tσ1
R→ tσ2 and either tσ1 6= ε or tσ2 6= ε,

⊥, otherwise.

10

We claim that, for each assignment a0 in Wm0 , (a, σ) = split(a0) and term t,

I0 |=a0 A(t) iff AA |=a Aσ(t), for all concept names A, (5)
I0 |=a0 R(t1, t2) iff AA |=a Rσ(t1, t2), for all roles R. (6)

For A(a), A(xi) or A(yi) with σi = ε the claim follows from (3). For A(yi)
with σi = σ′.[S], by (cp), we have cp(a(yi)) = inv(dr), for some R ∈ [S]; the
claim then follows from (4). For R(yi1 , yi2) with σi1 = σi2 = ε, the claim follows
from (abox). Let us consider the case of R(yi1 , yi2) with σi2 6= ε: we have
a0(yi2) /∈W0 and thus, by (role), I0 |=a0 R(yi1 , yi2) iff

– a0(yi1), a0(yi2) are in the same tree Ta, for a ∈ ob(A), i.e., AA |=a (yi1 = yi2),
– and either (a0(yi1), a0(yi2)) ∈ Ea and then `a(a0(yi1), a0(yi2)) = S for some
S v∗T R, or (a0(yi2), a0(yi1)) ∈ Ea and then `a(a0(yi2), a0(yi1)) = S for some
inv(S) v∗T R, or a0(yi1) = a0(yi2) and then Id v∗T R, i.e., σi1

R→ σi2 .

Other cases are similar and left to the reader.
Finally, let ϕσ(x,y) be the result of attaching the superscript σ to each atom

of ϕ and
ϕT ,q(x) = ∃y

∨
σ∈Σk

T ,m0

(
ϕσ(x,y) ∧ ησ(y)

)
.

As follows from (5)–(6), for every assignment a0 in Wm0 , we have I0 |=a0 ϕ(x,y)
iff AA |=a ϕσ(x,y) for (a, σ) = split(a0). For the converse direction notice that,
if AA |=a ησ(y) then there is an assignment a0 in Wm0 with split(a0) = (a,σ).

Clearly, AA |= ϕT ,q(a) iff I0 |= q(a), for every tuple a. We also note that,
for every pair of tuples a and b of object names in ob(A), ϕσ(a, b) is a positive
existential sentence with inequalities, and so domain-independent.4 It is also
easily seen that, for each b, ησ(b) is domain-independent. It follows from the
minimality of I0 that ϕT ,q(a) is domain-independent, for each tuple a of object
names in ob(A).

Finally, we note that the resulting query contains ≤ mk·(k+m) disjuncts,
where m = |role±(T)| and k is the number of bound variables in q. ut

We also remark that although extending the DL-Lite(RN)
α languages with

transitive roles does not change the combined complexity of reasoning, it does
change the data complexity: instance checking and satisfiability in DL-Lite(RN)

α ,
for α ∈ {core, krom, horn, bool}, are NLogSpace-complete (rather than in AC0)
and query answering over DL-Lite(RN)

horn and DL-Lite(RN)
core KBs is NLogSpace-

complete for data complexity (see Section 5.4 of [4]).

4 A query q(x) is said to be domain-independent in case AA |=a q(x) iff A |=a q(x),
for each A such that the domain of A contains ob(A), the active domain of AA, and
AA = AAA and P A = P AA , for all concept and role names A and P .

11

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. K. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoret-
ical Computer Science, Volume B: Formal Models and Sematics, pages 493–574.
Elsevier and MIT Press, 1990.

3. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. DL-Lite in the
light of first-order logic. In Proc. of the 22nd Nat. Conf. on Artificial Intelligence
(AAAI 2007), pages 361–366, 2007.

4. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite fam-
ily and relations. Technical Report BBKCS-09-03, SCSIS, Birkbeck College, Lon-
don, 2009 (available at http://www.dcs.bbk.ac.uk/research/techreps/2009/

bbkcs-09-03.pdf).
5. E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Perspec-

tives in Mathematical Logic. Springer, 1997.
6. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:

Tractable description logics for ontologies. In Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005), pages 602–607, 2005.

7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In Proc. of the 10th Int. Conf.
on the Principles of Knowledge Representation and Reasoning (KR 2006), pages
260–270, 2006.

8. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. of Automated Reasoning, 39(3):385–429, 2007.

9. B. Glimm, I. Horrocks, C. Lutz, and U. Sattler. Conjunctive query answering for
the description logic SHIQ. In Proc. of the 20th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2007), pages 399–404, 2007.

10. N. Immerman. Descriptive Complexity. Springer, 1999.
11. R. Kontchakov and M. Zakharyaschev. DL-Lite and role inclusions. In

J. Domingue and C. Anutariya, editors, Proc. of the 3rd Asian Semantic Web
Conf. (ASWC 2008), volume 5367 of Lecture Notes in Computer Science, pages
16–30. Springer, 2008.

12. D. Kozen. Theory of Computation. Springer, 2006.
13. M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of query answering in

expressive description logics via tableaux. J. of Automated Reasoning, 41(1):61–
98, 2008.

14. M. M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data complexity for
conjunctive query answering in expressive description logics. In Proc. of the 21st
Nat. Conf. on Artificial Intelligence (AAAI 2006), pages 275–280, 2006.

15. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
16. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.

Linking data to ontologies. J. on Data Semantics, X:133–173, 2008.
17. W. Rautenberg. A Concise Introduction to Mathematical Logic. Springer, 2006.
18. A. Schaerf. On the complexity of the instance checking problem in concept lan-

guages with existential quantification. J. of Intelligent Information Systems, 2:265–
278, 1993.

12

