
Containment for XPath Fragments

under DTD Constraints

Peter Wood

School of Computer Science and Information Systems

Birkbeck College

University of London

United Kingdom

email: ptw@dcs.bbk.ac.uk

1

Outline

• introduction, motivation and background

• related work

• containment under DTDs is decidable for XP{[],∗,//,|}

• PTIME containment under duplicate-free DTDs for XP{[]}

• limitations of constraints implied by DTDs

• future work

2

Introduction

XPath is a simple language for selecting nodes from XML documents,

used in

• other W3C recommendations, e.g.,

– XQuery

– XPointer

– XSLT

• XML publish/subscribe systems

• active rule systems for XML

3

Motivation

• efficient evaluation of XPath queries crucial when

– large number of queries (e.g., publish/subscribe) or

– large repository and

– high throughput required

• can be achieved using

– physical cost-based optimisation (indexes, etc.)

– logical equivalence of queries

4

Publish/Subscribe Example—XML Document

Air traffic control data from US Department of Transport

(example from Snoeren et al., MIT)

<flight>

<id airline="AA">1021</id>

<flightleg>

<speed>512</speed>

<altitude>290</altitude>

<coordinate>

<lat>4928N</lat>

<lon>12003W</lon>

</coordinate>

</flightleg>

</flight>

5

Publish/Subscribe Example—XPath Queries

• /flight[flightleg/altitude < 100]

flights below 10 000 feet

• /flight[id[@airline = ‘AA’]]

American Airlines flights

• /flight[substring-before(string(flightleg/coordinate/lat),

‘N’) > 2327]

flights currently north of the Tropic of Cancer

6

XML Trees

• let Σ be a finite alphabet of XML element names

• a document tree (or tree) over Σ is an ordered, unranked finite

structure with nodes labelled by element names from Σ

• the set of all trees over Σ is denoted by TΣ

• for tree t ∈ TΣ,

– the root of t is denoted by root(t),

– the nodes of t by nodes(t), and

– the label of node x ∈ nodes(t) by λ(x) ∈ Σ

7

Syntax of XPath Fragments

Syntax of an XPath query P in fragment XP{[],∗,//,|} given by gram-
mar:

P ::= P / P | P // P | P [P] | P | P | * | n

• other fragments include XP{[]}, XP{[],∗}, XP{[],//} and XP{[],∗,//}

• n denotes the name of an element

• // captures descendant relationships

• * matches any element

Given query Q in XP{[],∗,//,|} and tree t ∈ TΣ, Q(t) denotes the set of
nodes that is the result of evaluating Q on t

8

XPath Query as a Tree Pattern

The tree pattern for the XPath query a//b[∗/i]/g

&%
'$

i

&%
'$
∗ &%

'$
g

&%
'$

b

&%
'$

a

�
�

�
��

@
@

@
@@

g is the result node

selects g-nodes that are children

of b-nodes, such that the b-nodes

are both descendants of the root

a-node and have an i-node as a

grandchild

9

Containment and Equivalence of XPath Queries

• containment of XPath queries can be used

– to show equivalence of queries for optimization

– to determine triggering of active rules and those in XSLT

– for inference of keys based on XPath

• for XPath queries P and Q,

– P contains Q, written P ⊇ Q, if for all trees t ∈ TΣ,

P (t) ⊇ Q(t)

– P is equivalent to Q, written P ≡ Q, if P ⊇ Q and Q ⊇ P

10

Document Type Definitions (DTDs)

• a document type definition (DTD) D over Σ consists of

– a root type in Σ, denoted root(D), and

– a mapping (or production) a → Ra that associates with each
a ∈ Σ a regular expression Ra over Σ (the content model of a)

a → ((b∗, c) | d)
b → (g?, h?)

• tree t ∈ TΣ satisfies DTD D over Σ if

– λ(root(t)) = root(D) and

– for each node x in t with sequence of children y1, . . . , yn, the
string λ(y1) · · ·λ(yn) is in L(Rλ(x))

11

Containment and Equivalence under DTDs

• let SAT (D) denote the set of trees satisfying DTD D

• for XPath queries P and Q,

– P D-contains Q, written P ⊇SAT (D) Q,

if for all trees t ∈ SAT (D), P (t) ⊇ Q(t)

– P is D-equivalent to Q, written P ≡SAT (D) Q,

if P ⊇SAT (D) Q and Q ⊇SAT (D) P

12

Constraints Implied by a DTD

Consider DTD D:

a → (b, ((b, c)|d))
b → ((e|f), (g|h))

e → (i)

f → (i)

• every a-node must have a b-node as a child

• every b-node must have an i-node as a descendant

• every path from an a-node to an i-node passes through a b-node

• if an a-node has a d-child, it has at most one b-child

13

Example of D-Containment

every a-node must have a b-child and an i-descendant

&%
'$

b &%
'$

i &%
'$

c

&%
'$

a

�
�

�
�

�
��

@
@

@
@

@
@@

⊇SAT (D)

&%
'$

c

&%
'$

a

14

Example of D-Containment

every path from an a-node to an i-node must pass through a b-node

&%
'$

i

&%
'$

b

&%
'$

a

⊇SAT (D)

&%
'$

i

&%
'$

a

15

Example of D-Containment

if an a-node has a d-child, it has at most one b-child

&%
'$

e &%
'$

g

&%
'$

b &%
'$

d

&%
'$

a

�
�

�
��

@
@

@
@@

HH
HHH

HHHH

⊇SAT (D)

&%
'$

e &%
'$

g

&%
'$

b &%
'$

b &%
'$

d

&%
'$

a

��
���

����

HH
HHH

HHHH

16

Related Work

• in the absence of constraints, containment was shown to be

– in PTIME for queries in XP{[],//} [ACLS01]

– coNP-complete for queries in XP{[],∗,//} in [MS02]

• with constraints, containment was shown to be

– in PTIME for queries in XP{[],//} with child, descendant and
type co-occurrence constraints [ACLS01]

– coNP-complete for XP{[]} with DTDs in [Wood01]

– undecidable for XP{[],∗,//,|} plus variables and equality, and var-
ious constraints, some implied by DTDs [DT01]

– comprehensive classification for DTDs in [NS03]

17

Contributions

• that containment under DTDs is decidable (and EXPTIME-complete)

for XP{[],∗,//,|}

• that if DTD D is duplicate-free, then D-containment for XP{[]}

is captured by two types of simple constraint implied by D, and

can be decided in PTIME

• that no set of constraints less expressive than those that express

exactly the unordered language generated by each regular expres-

sion in DTD D is necessary and sufficient for D-containment for

XP{[]}

18

Decidability of D-Containment for XP{[],∗,//,|}

• given query Q in XP{[],∗,//,|} and alphabet Σ for DTD D, we can

construct a regular tree grammar (RTG) G such that the set of

trees generated by G is precisely the set of trees in TΣ that satisfy

Q

• result then follows from the facts that

– DTDs are a special case of RTGs

– RTGs are closed under intersection

– containment is decidable (and EXPTIME-complete) for RTGs

• same result is proved independently by Neven and Schwentick

19

Regular Tree Grammars (RTGs)

A regular tree grammar (RTG) G is a 4-tuple 〈Σ, N, P, n0〉, where

1. Σ is a finite set of element names

2. N is a finite set of nonterminals

3. P is a finite set of productions of the form

n → a(R)

where n ∈ N , a ∈ Σ, and R is a regular expression over N

4. n0 ∈ N is the start symbol

20

RTG Corresponding to a Query

Given alphabet Σ = {a1, . . . ak} and query Q in XP{[],∗,//,|} with m
nodes, construct RTG G from Q as follows:

• number each node in Q uniquely, with the root node numbered 1

• contruct RTG G = 〈Σ, N, P, n1〉 corresponding to Q inductively,
where N = {n1, . . . , nm, nΣ}

• use n → Σ (r) as shorthand notation for the set of productions

n → a1 (r)
...

n → ak (r)

• nonterminal nΣ generates arbitrary tree over Σ: nΣ → Σ (n∗Σ)

21

RTG Productions for a Query

Ignore ∗ and | for simplicity:

1. If node i in Q is a leaf node with label aj ∈ Σ, then P includes

ni → aj (n∗Σ)

2. If node i in Q has label al ∈ Σ and has child nodes j1, . . . , jm, then

P includes

ni → al (n∗Σ & nj1 & n∗Σ & · · · & n∗Σ & njm & n∗Σ)

3. If node i in Q is connected to its parent by a descendant edge,

then P includes

ni → Σ (n∗Σ ni n∗Σ)

22

Contractions of a Query

A contraction of query Q1

is a query Q2 comprising a

subset of Q1’s nodes such

that there is a containment

mapping from Q1 to Q2

Some contractions

for the XPath query

a[.//b/c][.//c//d]:

&%
'$

c &%
'$

d

&%
'$

b &%
'$

c

&%
'$

a

�
�

�
��

�
�

�
�

@
@

@
@

@
@

@
@@

&%
'$

c

&%
'$

b &%
'$

d

&%
'$

c

&%
'$

a

�
�

�
��

�
�

�
�

@
@

@
@

@
@

@
@@

&%
'$

d

&%
'$

c

&%
'$

b

&%
'$

a

23

Decidability Result

• let D be a DTD over Σ

• Q1 and Q2 be queries over Σ in XP{[],∗,//}

• G1 and G2 be the RTGs corresponding to the sets of contractions

of Q1 and Q2, respectively

• then Q1 ⊇SAT (D) Q2 if and only if D ∩G1 ⊇ D ∩G2

• so containment for queries in XP{[],∗,//} under DTDs is decidable

and, in fact, EXPTIME-complete

24

PTIME Classes

• deciding containment under DTDs is coNP-complete for XP{[]}

[Wood, WebDB01]

• so consider subclasses of XP{[]} and subclasses of DTDs

• some constraints imposed by DTDs not relevant to XP{[]}

• look for classes of simple constraints implied by a DTD D which

are necessary and sufficient to show D-containment

– sibling constraints (SCs)

– functional constraints (FCs)

25

Sibling Constraints

• let t ∈ TΣ be a (document) tree, a, c ∈ Σ be element names, and

B ⊆ Σ be a set of element names

• t satisfies the sibling constraint (SC)

a : B ⇓ c

if whenever a node labelled a in t has children labelled with each

b ∈ B, it has a child node labelled with c

• when B = ∅, the SC is called a child constraint

26

Duplicate-Free XPath Queries

• XPath query P in XP{[]} is duplicate-free if, for each element n
in P , each element name labels at most one child of n

• e.g., a[b[e][g]][d] is duplicate-free, while a[b/e][b/g][d] is not

• let P and Q be duplicate-free queries in XP{[]}

• let S be the set of SCs implied by DTD D over Σ

• SAT (S) denotes set of trees in TΣ which satisfy each SC in S

• if Q is D-satisfiable, then P ⊇SAT (D) Q if and only if P ⊇SAT (S) Q

• P ⊇SAT (D) Q can be decided in PTIME (if SCs are given)

27

Functional Constraints (FCs)

• let t ∈ TΣ and a, b ∈ Σ be element names

• t satisfies the functional constraint (FC) a ↓ b if no node labelled

a in t has two distinct children labelled with b

• if C is a set of SCs and FCs over Σ, then SAT (C) denotes the

set of trees in TΣ which satisfy each SC and FC in C

28

Containment Under Duplicate-Free DTDs

• DTD D is duplicate-free if, in each content model in D, each

element name appears at most once

• e.g., a → ((b∗, c) |d) is duplicate-free, while a → (b, ((b, c)|d)) is not

• let P and Q be queries in XP{[]}

• let C be the set of sibling constraints (SCs) and functional con-

straints (FCs) implied by duplicate-free DTD D over Σ

• if Q is D-satisfiable, then P ⊇SAT (D) Q if and only if P ⊇SAT (C) Q

29

Complexity

• D-satisfiability of queries in XP{[]} can be tested in PTIME if D

is duplicate-free

• given SC s and duplicate-free DTD D, whether D implies s can

be decided in PTIME

• given FC f and DTD D, whether D implies f can be decided in

PTIME

• for P and Q in XP{[]} and Q being D-satisfiable, P ⊇SAT (C) Q can

be tested using a variant of the chase

30

The Chase

• chase of Q by C, denoted chaseC(Q)

– apply each FC in C to Q (only polynomially many of them)

– for “corresponding” nodes x in P and u in Q such that λ(x) =

λ(u), if x has child y and u has no child with label λ(y), check

if D implies λ(u) : B ⇓ λ(y), where B denotes the set of labels

of children of u in Q

– if so, add a node v as a child of u with λ(v) = λ(y)

• P ⊇SAT (C) Q if and only if P ⊇ chaseC(Q)

• P ⊇SAT (D) Q can be decided in PTIME

31

Limitations of Constraints

Can we extend the classes of constraints to capture D-containment

of XP{[]} queries when neither D nor the queries are duplicate-free?

• for string w, let [w] denote the bag of symbols appearing in w

• if symbol ai appears mi times in w, 1 ≤ i ≤ k, then

[w] = {am1
1 , . . . , a

mk
k }

• the unordered regular language denoted by regular expression R,

written UL(R), is defined as

UL(R) = {[w] | w ∈ L(R)}

32

Limitations of Constraints—Constructing the DTD

• let Σ be the set of symbols used in R, and w be an arbitrary string

over Σ, where [w] = {cm1
1 , . . . , c

mk
k }

• D contains productions

b → R

ci → (d1 | · · · | dmi),1 ≤ i ≤ k

a → ((b, b+, e) | (f, b))

– where each dj, 1 ≤ j ≤ mi, is distinct

– (an a-node in a tree t satisfying D has an e-child if and only if

it has at least two b-children)

33

Limitations of Constraints—the Queries

• query Q1 is

a[b/c1/d1]· · ·[b/c1/dm1]
[b/c2/d1]· · ·[b/c2/dm2]...
[b/ck/d1]· · ·[b/ck/dmk][e]

• query Q2 is the same as Q1 without the predicate [e]

• Q1 ⊇SAT (D) Q2 if and only if [w] 6∈ UL(R)

• none of D, Q1 or Q2 is duplicate-free

• constraints less powerful than those which characterize unordered
regular languages cannot capture query containment for XP{[]}

34

Future work

• characterise and determine complexity of D-containment for

– other classes of XPath queries

– other practical restrictions on DTDs

• incorporate optimizations into XML servers and active rule sys-

tems

• determine the utility of optimizations through experimentation

35

