
A Relaxed Approach to RDF Querying

Carlos A. Hurtado
churtado@dcc.uchile.cl

Department of Computer Science
Universidad de Chile

Alexandra Poulovassilis, Peter T. Wood
{ap,ptw}@dcs.bbk.ac.uk

School of Computer Science and Information Systems
Birkbeck, University of London



1

Motivation

• W3C RDF data access group has emphasized the need to
enhance RDF query languages to solve real problems:
− “it must be possible to express a query that does not fail

when some specified part of the query fails to match”
• motivated theOPTIONAL clause in the emerging SPARQL

W3C proposal
• OPTIONAL clause allows a query to return matchings that

fail to match some conditions in the query



2

Motivation

Consider the following SPARQL-like query:

?Y ← (?X,hasName,?Y),(?X,type,Wine),

(?X, locatedIn,?Z),

OPTIONAL(?Z,type,MalboroughRegion).

• returns names of wines located in Malborough region
• headof query is a single variable
• bodyis agraph patterncomprising 4triple patterns
• because last triple pattern is inside anOPTIONAL clause,

query also returns names ofall wines (located somewhere)



3

Motivation

• the conditions of a query could be relaxed in ways other
than simply dropping optional triple patterns
− by replacing constants with variables
− by using the type and predicate hierarchies in an

ontology associated with the data
• OPTIONAL clause lacks a notion of ranking answers; hence

users cannot establish how closely answers match original
query



4

Example of relaxation

Consider the following query, with a newRELAX clause:

?Y ← (?X,hasName,?Y),

RELAX(?X,type,SauvignonBlanc).

• returns names of wines of type Sauvignon Blanc
• assumeSauvignonBlancis asubclassof WhiteWine
• 2nd triple pattern can berelaxedto (?X,type,WhiteWine),

for example
• names of Sauvignon Blanc wines can be returned to the

user before names of white wines



5

Outline

• Related work
• Definitions
− RDF graphs, RDFS ontologies, entailment, graph

patterns, conjunctive queries
• Relaxing triple patterns
• Relaxation graph of a triple pattern
• Algorithm for computing ranked, relaxed answers
• Conclusion and future work



6

Related Work

• the idea of making queries more flexible by the logical
relaxation of their conditions is not new
• e.g., Gaasterland, Godfrey and Minker proposed such

a mechanism in the context of deductive databases and
logic programming, and called itquery relaxation
• there are many other proposals for flexible querying
• we believe this is the first proposal for flexible querying

of RDF which also includes ranking



7

Definitions—RDF graphs

• we work with RDF graphs which may mention the RDFS
vocabulary
• assume there are infinite setsI (IRIs), B (blank nodes),

andL (RDF literals)
• elements inI ∪B∪L are called RDFterms
• a triple(v1,v2,v3) ∈ (I ∪B)× I × (I ∪B∪L) is called an

RDF triple
• v1 is called thesubject, v2 thepredicateandv3 theobject
• anRDF graphis a set of RDF triples



8

Definitions—RDFS ontologies

• we assume an ontology is modeled as an RDF graph with
interpreted RDFS vocabulary
• RDFS vocabulary defines classes and properties, used to

describe related resources and their relationships
• we use a small fragment of the RDFS vocabulary:

rdfs:range [range], rdfs:domain [dom],

rdf:type [type], rdfs:subClassOf [sc],

rdfs:subPropertyOf [sp]
• we assume thatsc andsp areacyclic
• we also assume there are no blank nodes in the ontology
• we omit all other vocabulary includingrdf:Property,
rdfs:Class, andrdfs:Resource



9

Fragment of RDFS wine ontology

range dom

sc sc sc

scscscscsc

locatedIn

NewZealandRegion

MalboroughRegion HawkesBayRegion CentralValleyRegion SauvignonBlanc

ChileRegion WhiteWine

Chardonnay

WineRegion



10

Definitions—simple entailment

• decompose entailment intosimpleandRDFSentailment
• simple entailmentdepends only on the basic logical form

of RDF graphs and therefore holds for any vocabulary
• given two RDF graphsG1,G2, amapfrom G1 to G2 is a

functionµ from terms ofG1 to terms ofG2, preserving
IRIs and literals, such that for each triple(a,b,c) ∈G1 we
have(µ(a),µ(b),µ(c)) ∈G2

• RDF graphG1 simply entailsG2, denotedG1 |=simple G2,
if and only if there exists a map fromG2 to G1

• simple entailment is captured by rule 7 on next slide



11

RDFS Inference Rules

Group A (Subproperty) (1) (a,sp,b) (b,sp,c)
(a,sp,c) (2) (a,sp,b) (x,a,y)

(x,b,y)

Group B (Subclass) (3) (a,sc,b) (b,sc,c)
(a,sc,c) (4) (a,sc,b) (x,type,a)

(x,type,b)

Group C (Typing) (5) (a,dom,c) (x,a,y)
(x,type,c) (6) (a,range,d) (x,a,y)

(y,type,d)

(Simple Entailment) (7) For a mapµ : G′→G : G
G′



12

Definitions—RDFS entailment

• RDFS entailmentcaptures the semantics added by the
RDFS vocabulary
• we write thatG1 |=rule G2 if G2 can be derived fromG1

by iteratively applying rules in groups (A), (B) and (C) on
the previous slide
• closureof an RDF graphG, denoted cl(G), is the closure

of G under the rules in groups (A), (B) and (C)
• we have thatG1 |=rule G2 if and only if G2 ∈ cl(G1)

• it turns out thatG1 RDFS-entailsG2, written G1 |=RDFS

G2, iff there is a graph G such thatG1 |=rule G and
G |=simple G2



13

Definitions—graph patterns

• assume set of variablesV disjoint from the setsI ,B, andL
• a triple patternis a triple(v1,v2,v3) ∈ (I ∪V)× (I ∪V)×

(I ∪V ∪L)

• agraph patternis a set of triple patterns
• we denote byvar(P) the variables mentioned inP
• variables are indicated by a leading question mark
• the notions of map and entailment can be generalized to

graph patterns by treating variables like blanks



14

Definitions—conjunctive queries

• aconjunctive queryQ is an expressionT← B
− B is a graph pattern
− T = 〈T1, . . . ,Tn〉 is a list of variables invar(B)

• we denoteT by Head(Q), andB by Body(Q)

• a queryQ may be formulated over an ontologyO
• matchingis a function fromvar(Body(Q)) to (I ∪B∪L)

• for matchingΘ, Θ(Body(Q)) denotes the graph resulting
from replacing each variableX in Body(Q) by Θ(X)

• given RDF graphG, theanswerof Q, denotedans(Q,O,G),
is the set of tuples defined as follows:
− for eachΘ such thatΘ(Body(Q))⊆ cl(O∪G),

returnΘ(Head(Q))



15

Relaxing triple patterns

• relaxation will be defined in the context of an ontology,
denoted byO, and a set offixed variables, denoted byF
• we model relaxation as a combination of two types of

relaxations,ontology relaxationandsimple relaxation
• let t1, t2 be triple patterns, wheret1 6∈ cl(O), t2 6∈ cl(O),

andvar(t1) = var(t2)⊆ F
• ontology relaxationis defined as follows:

t1≺∗onto t2 if {t1}∪O |=rule t2
• e.g., letO be wine ontology and letF = {?X}
− (?X,type,SauvignonBlanc)≺∗onto (?X,type,Wine)
− (?X, locatedIn,Maipo)≺∗onto (?X,type,Wine)
− (?X, locatedIn,?Y) 6≺∗onto (?X,type,Wine)



16

Relaxing triple patterns

• simple relaxationis defined as follows:
t1≺∗simple t2 if t1 |=simple t2 via a map that preservesF

• e.g., withF = {?X}
− (?X,type,Wine)≺∗simple (?X,type,?Z)

− (?X,type,Wine)≺∗simple (?X,?W,Wine)
• relaxationis defined as follows. We say thatt2 relaxest1,

denotedt1≺∗ t2, if one of the following holds:
1. t1≺∗onto t2,
2. t1≺∗simple t2, or
3. there exists at such thatt1≺∗ t andt ≺∗ t2.
• denote by≺ (direct relaxation) the reflexive and transitive

reduction of≺∗ (relaxation)



17

Relaxation graph of a triple pattern

• want to relax each triple pattern that occurs inside the
RELAX clause of a query
• adapt the relaxation relationship to use relaxation “above”

a given triple pattern
• relaxation relation “above” a triple patternt, denoted by
≺∗t , is≺∗ restricted to triple patternst ′ such thatt ≺∗ t ′,
and whereF = var(t) (i.e., the variables oft are the fixed
variables in the relaxation)
• the relaxation graphof a triple patternt is the directed

acyclic graph induced by≺t



18

Example

Consider the following query:

?Y,?Z ← (?X,hasName,?Y),(?X,hasPrice,?Z),

RELAX(?X,type,SauvignonBlanc),

(?X, locatedIn,?W)

RELAX(?W,type,MalboroughRegion).

• returns names and prices of wines of type Sauvignon
Blanc from the Malborough region
• relaxation graphs of(?X,type,SauvignonBlanc) and

(?W,type,MalboroughRegion) on next 2 slides



19

Relaxation graph of (?X, type, SauvignonBlanc)

(?X, type, SauvignonBlanc)0

1

2

3

4

Level

(?X, ?V1, SauvignonBlanc)

(?X, ?V2, WhiteWine)

(?X, ?V3, Wine)

(?X, ?V5, ?V6)

(?X, type, WhiteWine)

(?X, type, ?V4)

(?X, type, Wine)



20

Relaxation graph: (?W, type, MalboroughRegion)

0

(?W, ?U3, Region)

(?W, ?U2, NewZealandRegion)

(?W, ?U5, ?U6)

(?W, type, ?U4)

(?W, type, Region)

(?W, type, NewZealandRegion)(?W, ?U1, MalboroughRegion)

(?W, type, MalboroughRegion)

Level

4

3

2

1



21

Algorithm for computing ranked, relaxed answers

• assumes triples of RDF graph are stored in a single
statement tableG
• assumes an operatordeltaFind(t,G) that, given triple

patternt and tableG, returns triples inG that matcht but
no triple pattern belowt in its relaxation graph

Input: a queryQ (interpreted over an ontologyO), where
Body(Q) = {t1, . . . , tn}, a statement tableG, and an integer
maxLevel

Output: the setansrelax(Q,G,maxLevel) where new answers
are returned successively at each level of the relaxation graph.



22

Algorithm for computing ranked, relaxed answers

1. k := 0, stillMore := true

2. For each triple patternti ∈ Body(Q), compute the
relaxation graphRi of ti up to levelmaxLevel

3. While (k≤maxLevelandstillMore) do

(a) For each combinationt ′1 ∈ R1, . . . , t ′n ∈ Rn such that
∑i level(t ′i,Ri) = k output

πH(deltaFind(t ′1,G) ⋊⋉ . . . ⋊⋉ deltaFind(t ′n,G))

(b) k := k+1
(c) stillMore := there exist nodest ′1 ∈ R1, . . . , t ′n ∈ Rn

such that∑i level(t ′i,Ri) = k



23

Example of relaxed query—level 0

?Y,?Z ← (?X,hasName,?Y),(?X,hasPrice,?Z),

(?X,type,SauvignonBlanc),

(?X, locatedIn,?W)

(?W,type,MalboroughRegion).

• returns names and prices of wines of type Sauvignon
Blanc from the Malborough region
• from now on, we just consider the 3rd and 5th triple

patterns, the ones being relaxed



24

Example of relaxed queries—level 1

Ontology relaxations give rise to the following 2 queries:

(?X,type,SauvignonBlanc),(?W,type,NewZealandRegion)

• Sauvignon Blanc wines fromNew Zealand, e.g. from
Hawkes Bay

(?X,type,WhiteWine),(?W,type,MalboroughRegion)

• wines from the Malborough region of typeWhiteWine,
e.g. a Chardonnay



25

Example of relaxed queries—level 1

Simple relaxations give rise to the following 2 queries:

(?X,type,SauvignonBlanc),(?W,?U1,MalboroughRegion)

• Sauvignon Blanc wines located in regionsthat are directly
connected in some way tothe Malborough region

(?X,?V1,SauvignonBlanc),(?W,type,MalboroughRegion)

• wines from the Malborough regionthat are directly
connected in some way toSauvignon Blanc



26

Conclusion and future work

• developed a framework for query relaxation and answer
ranking for RDF
− useful when user lacks knowledge of the ontology
− data represents concepts with heterogeneous properties
• potentially applicable to other languages such as OWL
• we would like to generalize relaxation
− to graph patterns rather than triple patterns
− to queries involving disjunction, . . .



27

Conclusion and future work

• we could include other forms of relaxation
− e.g., breaking join dependencies i.e. shared variables
− adding triple patterns(?Xi,equal,?Xj)

− each equality clause can now also be subject to
relaxation

− e.g., to find resources connected by somepath
• notion of ranking can be made much more sophisticated
− to include similarity measures, e.g.


