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Doing Research

I analysing problems/languages
I computability/solvability/decidability

— is there an algorithm?
I computational complexity

— is it practical?
I expressive power

— are there things that cannot be expressed?
I formal languages provide well-studied models
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Formal Languages

I given a finite alphabet (set) of symbols Σ
— e.g., Σ = {0,1}

I a string is a sequence (concatenation) of symbols
— e.g., 0101

I all finite strings over Σ are denoted by Σ∗

— e.g., Σ∗ = {ε,0,1,00,01,10,11, . . .}
I language L over Σ is just a subset of Σ∗

— e.g., L1: strings with an even number of 1’s
— e.g., L0: strings representing valid Java programs
(over an alphabet of all legal symbols in Java)

I are there finite representations for infinite languages?

I yes, grammars (generative) and automata
(recognition)
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I given a finite alphabet (set) of symbols Σ
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Automata

I device (machine) for recognising (accepting) a
language

I provide models of computation
I automaton comprises states and transitions between

states
I automaton is given a string as input
I automaton M accepts a string w by halting in an

accept/final state, when given w as input
I language L(M) accepted by automaton M is the set

of all strings which M accepts
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Types of Automata

I finite state automaton
I deterministic
I nondeterministic

I pushdown automaton
I linear-bounded automaton
I Turing machine
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Example of a Finite State Automaton

I L1 (strings with an even number of 1’s) can be
recognised by the following FSA

I 2 states seven and sodd
I 4 transitions
I seven is both the initial and final state

seven sodd

1
0 0

1

I FSA recognises 011:

011
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Example of a Finite State Automaton

I L1 (strings with an even number of 1’s) can be
recognised by the following FSA

I 2 states seven and sodd
I 4 transitions
I seven is both the initial and final state

sevenseven sodd

1
0 0

1

I FSA recognises 011:

011
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Example of a Finite State Automaton

I L1 (strings with an even number of 1’s) can be
recognised by the following FSA

I 2 states seven and sodd
I 4 transitions
I seven is both the initial and final state

sevenseven sodd

1
0 0

1

I FSA recognises 011: 0

11
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Example of a Finite State Automaton

I L1 (strings with an even number of 1’s) can be
recognised by the following FSA

I 2 states seven and sodd
I 4 transitions
I seven is both the initial and final state

soddseven sodd

1
0 0

1

I FSA recognises 011: 01

1
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Example of a Finite State Automaton

I L1 (strings with an even number of 1’s) can be
recognised by the following FSA

I 2 states seven and sodd
I 4 transitions
I seven is both the initial and final state

sevenseven sodd

1
0 0

1

I FSA recognises 011: 011
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Grammars

I grammars generate languages using:
I symbols from alphabet Σ (called terminals)
I set N of nonterminals (one designated as starting)
I set P of productions, each of the form

U → V

where U and V are (loosely) strings over Σ ∪ N
I a string (sequence of terminals) w is generated by G

if there is a derivation of w using G, starting from the
starting nonterminal of G

I language generated by grammar G, denoted L(G), is
the set of strings which can be derived using G
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Grammar Example

I L1 (strings with an even number of 1’s) can be
generated by a grammar with productions

S → ε

S → 0S
S → 1T
T → 0T
T → 1S

where S is the starting nonterminal

I a derivation of 01010 is given by

S ⇒ 0S

⇒ 01T ⇒ 010T ⇒ 0101S ⇒ 01010S ⇒ 01010
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Grammar Example

I L1 (strings with an even number of 1’s) can be
generated by a grammar with productions

S → ε

S → 0S
S → 1T
T → 0T
T → 1S

where S is the starting nonterminal
I a derivation of 01010 is given by

S ⇒ 0S ⇒ 01T ⇒ 010T ⇒ 0101S ⇒ 01010S

⇒ 01010
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Grammar Example

I L1 (strings with an even number of 1’s) can be
generated by a grammar with productions

S → ε

S → 0S
S → 1T
T → 0T
T → 1S

where S is the starting nonterminal
I a derivation of 01010 is given by

S ⇒ 0S ⇒ 01T ⇒ 010T ⇒ 0101S ⇒ 01010S ⇒ 01010
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Uses of Grammars

I to specify syntax of programming languages
I in natural language understanding
I in pattern recognition
I to specify schemas (types) for tree-structured data,

e.g., XML, JSON
I in data compression
I . . .
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Hierarchy of Grammars and Languages

I restrictions on productions give different types of
grammars

I regular (type 3)
I context-free (type 2)
I context-sensitive (type 1)
I phrase-structure (type 0)

I for context-free, e.g., left side must be single
nonterminal

I no restrictions for phrase-structure
I language is of type i iff there is a grammar of type i

which generates it
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Examples of Language Hierarchy

I varying expressive power
I regular ⊂ context-free ⊂ context-sensitive ⊂

phrase-structure

I L1 (strings over {0,1} with an even number of 1’s) is
regular

I L2 = {0n1n | n ≥ 0} is context-free, but not regular
I L3 = {ww | w ∈ {0,1}∗} is context-sensitive, but not

context-free
I there exists a phrase-structure (recursive) language

which is not context-sensitive
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I regular ⊂ context-free ⊂ context-sensitive ⊂
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I L1 (strings over {0,1} with an even number of 1’s) is
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I L2 = {0n1n | n ≥ 0} is context-free, but not regular
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which is not context-sensitive
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I L1 (strings over {0,1} with an even number of 1’s) is
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I L2 = {0n1n | n ≥ 0} is context-free, but not regular
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Complexity of Grammar Problems

Problem Type
3 2 1 0

Is w ∈ L(G)? P P PSPACE U
Is L(G) empty? P P U U
Is L(G1) ≡ L(G2)? PSPACE U U U

I P: decidable in polynomial time
I PSPACE: decidable in polynomial space (and

complete for PSPACE: at least as hard as
NP-complete)

I U: undecidable
I so type of grammar has significant effect on

complexity
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Relationships between Languages and
Automata

A language is

regular
context-free

context-sensitive
phrase-structure


iff

accepted
by


finite-state
pushdown

linear-bounded
Turing machine
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Regular Expressions

I algebraic notation for denoting regular languages
I use ◦ (concatenation), ∪ (union) and ∗ (closure)

operators
I L1 denoted by RE 0∗ ∪ (0∗ ◦ 1 ◦ 0∗ ◦ 1 ◦ 0∗)∗

I given RE R, the set of strings it denotes is L(R)

I pattern matching in text
I query languages for XML or RDF
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Using Regular Expressions to Query Graphs
Graphs (networks) are widely used for representing data

I social networks
I transportation and other networks
I geographical information
I semistructured data (e.g., XML and JSON)
I (hyper)document structure
I semantic associations in criminal investigations
I bibliographic citation analysis
I pathways in biological processes
I knowledge representation (e.g. semantic web)
I program analysis
I workflow systems
I data provenance
I . . .
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Using Regular Expressions to Query Graphs

I (my PhD thesis!)
I usually regular expressions used for string search
I consider data represented by a directed graph of

labelled nodes and labelled edges
I regular expressions can express paths we are

interested in
I sequence of edge labels rather than sequence of

symbols (characters)
I a query using regular expression R can ask for all

nodes connected by a path whose concatenation of
edge labels is in L(R)
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Graph G (where nodes represent people and places):

a

b

c

SA

CT

UK

citizenOf

bornIn

livesIn

bornIn

locatedIn
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Regular expression

R = citizenOf ∪ ((bornIn ∪ livesIn) ◦ locatedIn∗)

asks for paths of edges between a person x and a place
y such that

I x is a citizenOf y , or
I x is bornIn or livesIn y , or
I x is bornIn or livesIn a place that is locatedIn y
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Regular path query evaluation

I REGULAR PATH PROBLEM

Given graph G, pair of nodes x and y and regular
expression R, is there a path from x to y satisfying
R?

I algorithm:
I construct a nondeterministic finite automaton (NFA)

M accepting L(R)
I assume M has initial state s0 and final state sf
I consider G as an NFA with initial state x and final

state y
I form the “intersection” (or “product”) I of G and M
I check if there is a path from (x , s0) to (y , sf )

I Each step can be done in PTIME, so REGULAR PATH

PROBLEM has PTIME complexity
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NFA M for R = citizenOf ∪ ((bornIn ∪ livesIn) ◦
locatedIn∗)

s0

sf

s1

bornIn

livesIn

citizenOf ε

locatedIn



Automata and
Formal

Languages

Peter Wood

Motivation and
Background

Automata

Grammars

Regular
Expressions

Example of
Research

Conclusion

Intersection of G and M

a, s0

b, s0

c, s0

SA, s1

CT , s1

UK , s1

SA, sf

CT , sf

UK , sf

citizenOf

bornIn

livesIn

bornIn

locatedIn

ε

ε

ε
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Intersection of G and M

a, s0 SA, sfa, s0

b, s0

c, s0

SA, s1

CT , s1

UK , s1

SA, sf

CT , sf

UK , sf

citizenOf

bornIn

livesIn

bornIn

locatedIn

ε

ε

ε
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Intersection of G and M

b, s0

SA, sfa, s0

b, s0

c, s0

SA, s1

CT , s1

UK , s1

SA, sf

CT , sf

UK , sf

citizenOf

bornIn

livesIn

bornIn

locatedIn

ε

ε

ε
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Intersection of G and M

b, s0 CT , sf

a, s0

b, s0

c, s0

SA, s1

CT , s1

UK , s1

SA, sf

CT , sf

UK , sf

citizenOf

bornIn

livesIn

bornIn

locatedIn

ε

ε

ε
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Intersection of G and M

b, s0

UK , sf

a, s0

b, s0

c, s0

SA, s1

CT , s1

UK , s1

SA, sf

CT , sf

UK , sf

citizenOf

bornIn

livesIn

bornIn

locatedIn

ε

ε

ε



Automata and
Formal

Languages

Peter Wood

Motivation and
Background

Automata

Grammars

Regular
Expressions

Example of
Research

Conclusion

Intersection of G and M

c, s0 UK , sf

a, s0

b, s0

c, s0

SA, s1

CT , s1

UK , s1

SA, sf

CT , sf

UK , sf

citizenOf

bornIn

livesIn

bornIn

locatedIn

ε

ε

ε



Automata and
Formal

Languages

Peter Wood

Motivation and
Background

Automata

Grammars

Regular
Expressions

Example of
Research

Conclusion

Regular simple path queries

I path p is simple if no node is repeated on p
I REGULAR SIMPLE PATH PROBLEM

Given graph G, pair of nodes x and y and regular
expression R, is there a simple path from x to y
satisfying R?

I REGULAR SIMPLE PATH PROBLEM is NP-complete
[Mendelzon & Wood (1989)]

I there can be a path from x to y satisfying R but no
simple path satisfying R, e.g., R = (c ◦ d)∗

a b
c

d
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Regular simple path queries

I path p is simple if no node is repeated on p
I REGULAR SIMPLE PATH PROBLEM

Given graph G, pair of nodes x and y and regular
expression R, is there a simple path from x to y
satisfying R?
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a b
c

d



Automata and
Formal

Languages

Peter Wood

Motivation and
Background

Automata

Grammars

Regular
Expressions

Example of
Research

Conclusion

Approaches to deal with this problem

I what causes the problem?

I the presence of cycles
I obvious first step is to consider graphs without

cycles—DAGs
I then might look at restricted forms of REs—we

looked at those corresponding to languages closed
under abbreviations

I then one might consider a combination of graphs and
REs—we looked at graphs whose cycle structure
does not conflict with the RE

I finally showed that conflict-freedom is a
generalisation:

I no RE conflicts with any DAG
I an RE closed under abbreviations never conflicts

with any graph
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Other approaches

I in general, may also run experiments to measure
actual running times

I may also develop approximation algorithms
I can sometimes find a PTIME algorithm with a

performance guarantee (e.g. for TSP, finds a tour at
most twice the optimal distance)

I other times this problem itself is NP-hard
I use heuristic approaches
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Conclusion

I is my system/language more powerful than others?
I is my system/language more efficient than others?
I expressive power or computational complexity can

be studied by relating them to
I formal language theory: languages, grammars,

automata, . . .
I tradeoff between expressive power and

computational complexity
I consider restrictions of difficult problems or giving up

exact solutions
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