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Abstract. We investigate theories of Boolean algebras of regular sets of topological
spaces. By RC(X), we denote the complete Boolean algebra of regular closed sets
over a topological space X . By a mereotopology M over a topological space X ,
we denote every dense Boolean sub-algebra of RC(X); M is called a complete
mereotopology if it is a complete Boolean algebra.
In this paper we consider mereotopologies as L-structures, where L is the language
of Boolean algebras extended with the binary relational symbol C interpreted as the
contact relation. We show that the L−theories of complete mereotopologies and all
mereotopologies are different. We also show that no complete mereotopology M,
over a connected, compact, Hausdorff topological space X , is elementarily equiv-
alent to a mereotopology M′, over X , that is a closed base for X and is finitely
decomposable — i.e. every region in M′ has only finitely many connected compo-
nents.

1. Introduction
Formal systems for reasoning about space can be classified as point-based or region-
based, depending on whether the variables of their formal languages are interpreted as
points or sets of points. A notable example of a point-based theory of space is the decid-
able and complete theory of the Euclidean plane axiomatized by Tarski in (Tarski 1959).
An early example of a region-based theory of space can be seen in another work of Tarski.
In (Tarski 1956), he axiomatized the second-order theory of the regular closed sets of the
3-dimensional Euclidean space, with respect to the language consisting of the two predi-
cates for the binary relation part-of and the property of being a sphere.

Authors usually motivate their interest in region-based spatial logics by arguing that
they are more natural in comparison with point-based spatial logics, for people think in
terms of objects, rather than in terms of the sets of points that these objects occupy. There
are also practical advantages: greater expressive power, as noted in (Aiello, et al. 2007);
ability to reason with incomplete knowledge, which was argued in (Renz & Nebel 2007);
spatial reasoning free of numerical calculations.

In most region-based spatial logics, variables range over sets of a topological space,
but it is a matter of choice whether arbitrary sets should count as regions. An example of
a formal system for reasoning about arbitrary sets of topological spaces is given by McK-
insey and Tarski in (McKinsey & Tarski 1944). The regular sets of a topological space are
widely accepted as an appropriate choice for regions when it comes to spatial reasoning
about real world objects. Regular closed (open) sets of a topological space X are those
equal to the closure of their interior (the interior of their closure), and the set of all regular
closed (open) sets is denoted by RC(X) (RO(X)). RC(X) and RO(X) form complete
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Boolean algebras, as can be seen in (Koppelberg, et al. 1989). The aforementioned work
of Tarski (Tarski 1956), is an example of a formal system in which variables range over
all regular closed sets of the Euclidean space. Pratt and Schoop in (Pratt & Schoop 1998),
restricted the variables of their formal system to range over the ROP (R2) — the Boolean
algebra of regular open polygons of R2, which is a dense Boolean sub-algebra of RO(R2).

A mereotopology over a topological space X , is any dense Boolean sub-algebra of
RC(X); M is a complete mereotopology if it is a complete Boolean algebra — i.e. M
is RC(X). We consider this slightly weaker definition when compared to the one pro-
posed by Pratt-Hartmann in (Pratt-Hartmann 2007), in order to allow mereotopologies
over topological spaces that are not semi-regular.

In the recent years, the L−theories of different classes of mereotopologies have been
axiomatized, where L is the language of Boolean algebras extended with the binary
relational symbol C interpreted as the contact relation. Roeper in (Roeper 1997) ax-
iomatized the L−theory of the mereotopologies over compact, Hausdorff topological
spaces. Düntsch and Winter in (Düntsch & Winter 2005) established an axiomatization
of the L−theory of the mereotopologies over weakly regular, T1 topological spaces. The
L−theory of the class of all mereotopologies was axiomatized by Dimov and Vakarelov
in (Dimov & Vakarelov 2006).

To the best of our knowledge, there are no published results about the L−theory of
complete mereotopologies. In this paper we show that this theory is different from the
theory of all mereotopologies. In particular, we introduce a sentence that is true in every
complete mereotopology, but is not true in the incomplete mereotopology of the regular
closed polygons of the real plane. As a corollary of our main result, we show that no com-
plete mereotopologyM, over a Hausdorff topological space X , is elementarily equivalent
to a mereotopology M′, over X , that is a closed base for X and is finitely decomposable
— i.e. every region in M′ has only finitely many connected components.

We provide our main results in Section 4. The necessary definitions and basic facts
about topological spaces and mereotopologies we give in Section 2. In Section 3, we
summarize the main axiomatization results of classes of mereotopologies, established in
(Dimov & Vakarelov 2006, Düntsch & Winter 2005, Roeper 1997), and some related
results provided in (Pratt-Hartmann 2007). We discuss possible future work in Section 5.

2. Preliminary Notions
In this section we recall the definition and some examples of mereotopologies. We also
prove a result about topological spaces that we use in Section 4. We assume that the
reader is familiar with the basic definitions and results about Boolean algebra (see e.g.
(Koppelberg et al. 1989)), and topological spaces (see e.g. (Kelley 1975)).

We start by defining the Boolean algebra of the regular closed sets over a topological
space X .

Definition 1. Let X be a topological space with ·− and ·◦ the closure and interior opera-
tions in X . A subset A of X is called regular closed if it equals the closure of its interior,
i.e. A = A◦−. The set of all regular closed sets in X is denoted by RC(X). The Boolean
operations, relations and constants can be defined in RC(X) in the following way: for
a, b ∈ RC(X), a + b = a∪ b, a · b = (a∩ b)◦−, −a = (X \ a)−, a ≤ b iff a · b = a, 0 = ∅
and 1 = X . The topological contact relation C(x, y), is defined by: C(a, b) iff a∩ b (= ∅.
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Recall that B is a complete Boolean algebra, if each set of elements of B has an infi-
mum and a supremum. It is a well-know fact, that the structure (RC(X), +, ·,−, 0, 1,≤)
is a complete Boolean algebra (see e.g. (Koppelberg et al. 1989)). For the definition
of mereotopology, recall that, a Boolean sub-algebra B′ of B is dense in B, if for every
non-zero element a ∈ B there is some non zero element a′ ∈ B′ such that a′ ≤ a .

Definition 2. A mereotopology over a topological space X is any dense Boolean sub-
algebra, M, of the complete Boolean algebra RC(X).

In a dual way, one can define a mereotopology of regular open sets. Note that Defini-
tion 2 is weaker than the one given by Pratt-Hartmann in (Pratt-Hartmann 2007). We do
not require the mereotopology to form a base for the topological space, in order to have
mereotopologies over arbitrary topological spaces.

A well-studied example of an incomplete mereotopology of regular open sets, is that
of the regular open polygons in the real plane (see (Pratt & Schoop 1998, Pratt & Schoop
2000, Pratt-Hartmann 2007)). The dual mereotopology, RCP (R2), of the regular closed
polygons of the real plane, plays an important role in proving our main result in Section
4. The formal definition of RCP (R2) follows.

Definition 3. Each line in R2 divides the real plane into two regular open sets called open
half-planes. The closure of an open half-plane is regular closed, and is called half-plane.
The product in RC(R2) of finitely many half planes is called a basic polygon. The sum
of finitely many basic polygons is called a polygon. The set off all polygons is denoted
by RCP (R2).

We need the following lemma for Section 4. Recall that in a topological space X the
non-empty sets A, B ⊆ X are said to separate the set C ⊆ X iff C = A∪B, A−∩B = ∅
and A ∩ B− = ∅; a set C ⊆ X is connected iff no pair of non-empty sets separates it; a
connected component of a set A ⊆ X is a maximal connected subset of A.

Lemma 4. Let X be a topological space and A, A1 and A2 be subsets of X such that A1

and A2 separate A. Then the following are true:

i) A is closed iff A1 and A2 are closed;

ii) A is regular closed iff A1 and A2 are regular closed.

Proof. First notice, that the right to left implications are obvious, since the union of two
(regular) closed sets is a (regular) closed set.

i) (→) From A−
1 ⊆ A− = A = A1 ∪ A2, we get A−

1 ⊆ A−
1 ∩ (A1 ∪ A2) = (A−

1 ∩ A1) ∪
(A−

1 ∩ A2) = A−
1 ∩ A1 = A1, so A1 is closed. Similarly for A2.

ii) (→) From i) it follows that A1 and A2 are closed. We want to show that A◦ = A◦
1∪A◦

2

because this implies A1 = A∩X \A2 = A◦−∩X \A2 = (A◦−
1 ∪A◦−

2 )∩X \A2 =
A◦−

1 ∩X \A2 = A◦−
1 . The inclusion A◦ ⊇ A◦

1 ∪A◦
2 is trivial. Suppose p ∈ A◦ and

w.l.o.g. let p ∈ A1. Then p ∈ X \A2 since A1 ∩A2 = ∅. We get p ∈ A◦ ∩X \A2.
This set is open because A2 is closed and subset of A1, and, hence, p ∈ A◦

1.
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3. Representation Theorems for Mereotopologies
We consider mereotopologies as L−structures, where L is the language
{C, +, ·,−, 0, 1,≤} (see Definition 1). TheL−theories of different classes of mereotopolo-
gies were axiomatized in (Dimov & Vakarelov 2006, Düntsch & Winter 2005, Roeper
1997), although different terminology was used. In this section we give a translation
of the original results in terms of mereotopologies in a way almost identical to the one
in (Pratt-Hartmann 2007). Nice discussions on the algebraic approach taken in (Dimov
& Vakarelov 2006, Düntsch & Winter 2005, Roeper 1997), can be seen in (Bennett &
Düntsch 2007, Vakarelov 2007).

We assume the reader is familiar with some basic notions in Model Theory (see e.g.
(Marker 2002)). Before we continue, we recall definitions of semi-regular and weakly
regular topological spaces.

Definition 5. A topological space X is called semi-regular, if the set of all regular closed
sets in X form a closed base for X . A semi-regular topological space is called weakly
regular (Düntsch & Winter 2005), if for each nonempty open set A ⊆ X , there exists a
nonempty open set B such that B− ⊆ A.

Definition 6. We denote by ΦCA the set of axioms for Boolean algebra, together with the
following sentences:

ψ1 := ∀x∀y(C(x, y) → x (= 0);

ψ2 := ∀x∀y(C(x, y) → C(y, x));

ψ3 := ∀x∀y∀z(C(x, y + z) ↔ C(x, y) ∨ C(x, z));

ψ4 := ∀x∀y(x · y (= 0 → C(x, y)).

As we will see in Theorem 9, ΦCA is an axiomatization for the class of all mereotopolo-
gies. Extending ΦCA with different combinations of the axioms ψext, ψint and ψconn (see
bellow), leads to axiomatizations for mereotopologies over different classes of topological
spaces.

In the following definition we abbreviate ¬C(x,−y), by x / y.

Definition 7. Consider the following sentences:
ψext := ∀x(x (= 0 → ∃y(y (= 0 ∧ y / x)) - extensionality axiom;
ψint := ∀x∀y(x / y → ∃z(x / z ∧ z / y)) - interpolation axiom;
ψconn := ∀x(x (= 1 ∧ x (= 0 → C(x,−x)) - connectedness axiom.

Theorem 8. (Pratt-Hartmann 2007) Let M be a mereotopology over a topological space
X , considered as an L−structure.

i) M |= ΦCA.

ii) If X is weakly regular, then M |= ψext.

iii) If X is compact and Hausdorff and the elements of M form a closed base for X ,
then M |= ψint.
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Theorem 9. Let A be an L-structure.

i) If A |= ΦCA, then A is isomorphic to a mereotopology over a compact semi-regular T0

topological space X . (Dimov & Vakarelov 2006)

ii) If A |= ΦCA∪{ψext}, then A is isomorphic to a mereotopology over a weakly regular
and T1. (Düntsch & Winter 2005)

iii) If A |= ΦCA ∪ {ψext,ψint}, then A is isomorphic to a mereotopology over a compact
and Hausdorff. (Roeper 1997)

Additionally, A |= ψconn implies X is connected.

To the best of our knowledge, there are no results in the literature about the L−theory
of complete mereotopologies. It turns out that thisL−theory is different from theL−theory
of all mereotopologies. We devote the next section to establish this result.

4. The L−theory of Complete Mereotopologies
In this section we show that the theory of complete mereotopologies differs from the the-
ory of all mereotopologies. We accomplish this by introducing a first-order sentence that
is true in each complete mereotopology but that is not true in RCP (R2), which is an
incomplete mereotopology. This result relies on the fact, that every non-trivial complete
mereotopology satisfying {ψext, ψint,ψconn}, has a pair of regions that are in contact, such
that neither connected component of the first region is in contact with the second. The lat-
ter, however, is false for all finitely decomposable mereotopologies, including RCP (R2),
which on the other hand, is a non-trivial incomplete mereotopology satisfying the set of
axioms {ψext, ψint,ψconn}.

Connected regions play an important role in the proof of the main result, so we start
by introducing a formula, which defines the set of connected regions in RCP (R2) and
each complete mereotopology M. We make use of the fact that regular closed sets can be
separated only by regular closed sets (Lemma 4).

Lemma 10. Let M be a complete mereotopology. Then for all a ∈ M, a is connected
iff M |= ψc[a], where

ψc(x) := (∀y)(∀z)(y (= 0 ∧ z (= 0 ∧ y + z = x → C(y, z)).

Proof. (→) From M (|= ψc[a] it follows that there are regular closed sets b, c that separate
a, thus a is not connected.

(←) From a is not connected and Lemma 4, it follows that there are nonempty regular
closed sets b, c such that a = b + c and ¬C(b, c). So b and c are witnesses for M (|=
ψc[a].

In order to establish the same result for RCP (R2), we have to show that a regular
closed polygon can be separated only by regular closed polygons.

Lemma 11. Consider the mereotopologies RC(R2) and RCP (R2). For each a ∈ RCP (R2)
and b, c ∈ RC(R2), if a = b + c and ¬C(b, c), then b, c ∈ RCP (R2).
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Figure 1: (Lemma 14) At least one of b :=
∑

i∈ω bi and c :=
∑

i∈ω ci is in contact with
(−a), but none of {bi}i∈ω and {ci}i∈ω is.

Proof. Since a is a regular closed polygon it is the sum of finitely many basic polygons,
e.g. a =

∑n
i=1 ai. Let bi := b.ai and ci := c.ai. Since ai is connected, ¬C(bi, ci) and

ai = bi + ci, we get that ai = bi or ai = ci. So bi and ci are basic polygons (either equal
to 0 or to ai). Since b =

∑n
i=1 ai and c =

∑n
i=1 ci, we get that b and c are polygons, as

finite sums of basic polygons.

Lemma 12. For a ∈ RCP (R2), a is connected iff RCP (R2) |= ψc[a].

Proof. As in Lemma 10, considering Lemma 11.

So far, we defined the set of connected regions in RCP (R2) and each complete
mereotopology by the formula ψc. Having shown that, we continue by constructing for
every non-trivial complete mereotopology satisfying {ψext, ψint,ψconn}, a pair of regions
which are in contact, such that no connected component of the first is in contact with the
second.

Lemma 13. Let M be a complete mereotopology such that M |= ψext ∧ ψint ∧ ψconn ∧
¬ψtriv, where ψtriv := (∀x)(x = 0 ∨ x = 1). Then there are elements a and {ai}i∈ω in
M such that:

i) C(a,−a); ii) a =
∑

i∈ω ai;
iii) ai / ai+1, for i ∈ ω; iv) ai / a, for i ∈ ω.

Proof. From M |= ¬ψtriv it follows that there is some b ∈ M such that b (= 0 and
b (= 1. Now from M |= ψext, we get that there is some element a0 ∈ M such that
a0 / b and a0 (= 0. Considering that M |= ψint, it follows that there is some a1 such
that a0 / a1 / b and again by M |= ψint, we get that there is some a2 such that
a1 / a2 / b. Arguing in a similar way one can construct a sequence {ai}i∈ω such that
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a0 / ai / ai+1 / b for i ∈ ω. Now we take a :=
∑

i∈ω ai, which is in M, for M is
complete. It is easy to see that i)− iv) hold. We give details only in the case i).

i) From a0 (= 0 and a0 ≤ a, we get a (= 0. On the other hand, a ≤ b since b is an
upper bound of {ai}i∈ω and since b (= 1, we get also that a (= 1. Now considering ψconn,
we get that C(a,−a).

In the following lemma we introduce an L− sentence, denoted by ψcmp, and show that
it is true in each complete mereotopology.

Lemma 14. For each complete mereotopology M, M |= ψcmp, where

ψcmp := ψext ∧ ψint ∧ ψconn ∧ ¬ψtriv → (∃x)(∃y)(ψ%(x, y)) and
ψ%(x, y) := ψ%(x, y) := C(x, y) ∧ (∀x′)(x′ ≤ x ∧ ψc(x′) → ¬C(x′, y)).

Proof. If M |= ψext ∧ ψint ∧ ψconn ∧ ¬ψtriv, it follows from Lemma 13, that there are
elements a and {ai}i∈ω in M, such that C(a,−a), a =

∑
i∈ω ai and for i ∈ ω, ai / ai+1

and ai / a. Take a−1 = 0 and consider the following definitions:

bi = a2i − a2i−1, b =
∑

i∈ω bi, bi− =
∑

j<i bj, bi+ =
∑

j>i bj,
ci = a2i+1 − a2i, c =

∑
i∈ω ci, ci− =

∑
j<i cj, ci+ =

∑
j>i cj.

Since M is complete, it follows that b, c, bi−, ci−, bi+, ci+ ∈M. (See Figure 1.)

Claim 1 For i ∈ ω, ¬C(bi, b− bi) and ¬C(ci, c− ci)
Proof. From bi− ≤ a2i−2 / a2i−1 and bi ≤ −a2i−1, we get that ¬C(bi, bi−). From

bi+ ≤ −a2i+1 / −a2i and bi ≤ a2i, we get ¬C(bi, bi+). From b− bi = bi− + bi+, we get
that ¬C(bi, b− bi). Similarly ¬C(ci, c− ci).

Claim 2 From b′ ≤ b and M |= ψc[b′], it follows b′ / a. From c′ ≤ c and M |=
ψc[c′], it follows c′ / a.

Proof. We will show that there is some i ∈ ω such that b′ ≤ bi. Since b′ ≤ b and
b =

∑
i∈ω bi there is some i ∈ ω such that b′ · bi (= 0. We have that b′ = b′ · b =

b′ · (b+ bi− bi) = b′ · bi + b′ · (b− bi). From Claim 1 it follows that ¬C(bi, (b− bi) and thus
¬C(b′ ·bi, b′ · (b−bi)). Now from M |= ψc[b′] and b′ ·bi (= 0 it follows that b′ · (b−bi) = 0
and thus b′ = bi · b′, which is b′ ≤ bi. Finally, we get that b′ ≤ bi / a. Similarly c′ ≤ c
and M |= ψc[c′] imply c′ / a.

Finally, from a = b + c and C(a,−a), it follows that either C(b,−a) or C(c,−a).
W.l.o.g., let C(b,−a) be the case. By Claim 2 we get that M |= ψ%[b,−a] and so
M |= ψcmp.

Lemma 15. RCP (R2) (|= ψcmp .

Proof. It is well known that RCP (R2) |= ψext ∧ ψint ∧ ψconn ∧ ¬ψtriv, so it suffices to
show that RCP (R2) (|= (∃x)(∃y)(ψ%(x, y)). Let a and b be regular closed polygons, such
that a∩b (= ∅. Since a is a polygon, it can be represented as a finite sum of basic polygons,
say a =

∑n
i=1 ai. Since the sum of finitely many regular closed sets is just their union, we

get that aiCb for some i ≤ n. Since the basic polygons are connected and Lemma 12, we
get that RCP (R2) (|= ψ%[a, b]. So, we get that RCP (R2) |= (∀x)(∀y)(¬ψ%(x, y)) and
thus RCP (R2) |= ¬ψcmp.
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Theorem 16. The L−theory of complete mereotopologies is different from the L−theory
of:

i) the class of all mereotopologies;

ii) the class of mereotopologies over weakly regular topological spaces;

iii) the class of mereotopologies over compact Hausdorff topological spaces.

Proof. RCP (R2) is a member of each of the above classes.

Theorem 17. Let X be a connected, compact, Hausdorff topological space and let the
complete mereotopology, M, over X be non-trivial. Then the L−theory of M is different
from the L−theory of every finitely decomposable mereotopology, M′, over X , that is a
close base for X .

Proof. From Theorem 8 and M being non-trivial, it follows that M′ |= ψext ∧ ψint ∧
ψconn ∧ ¬ψtriv. Since M′ is finitely decomposable, one can show, as in Lemma 15, that
M′ (|= ψcmp. But since M is a complete mereotopology, we have that M |= ψcmp. So M
and M′ have different L−theories.

Corollary 18. The L−theories of RC(R2) and RCP (R2) are different.

5. Conclusions and Future Work
We showed that the theory of complete mereotopologies is different from the theory of
all mereotopologies. As a future step, one can establish an axiomatization for the theory
of complete mereotopologies or the theories of specific complete mereotopologies such
as the mereotopologies of the regular closed sets in the real line, real plane or higher
dimensional topological spaces.
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