On the Computability of Euclidean Logics

Yavor Nenov
School of Computer Science
University of Manchester, UK
(Joint work with Ian Pratt-Hartmann)

EPSRC
Pioneering research
and skills

19th EACSL Annual Conferences on Computer Science Logic Masaryk University, Brno, Czech Republic, 2010

Table of Contents

Euclidean Logics

Euclidean Logics Over \mathbb{R}

Euclidean Logics Over $\mathbb{R}^{n}(n>1)$

Euclidean Logics

Euclidean Logic: A logical language whose variables are interpreted as subsets of \mathbb{R}^{n}, for a fixed $n>0$, and whose non-logical primitives are interpreted as geometrical properties, relations and operations involving those sets.

Euclidean Logics - Regions

What collection of subset of \mathbb{R}^{n} shall we choose?

- subsets which are likely to be occupied by physical objects

Open/Closed Sets

Regular Closed Sets
$A=A^{\circ-}$
$R C(\mathcal{X})=$

$$
\left\{A \subseteq X \mid A=A^{\circ-}\right\}
$$

$R C(\mathcal{X})$ - Boolean algebra

A

A°

Euclidean Logics - Regions

$R C\left(\mathbb{R}^{n}\right)$ still include many pathological sets:

We consider different Boolean sub-algebras of $R C\left(\mathbb{R}^{n}\right)$.
$R C\left(\mathbb{R}^{n}\right) \quad$ the set of all regular closed sets
$R C S\left(\mathbb{R}^{n}\right)$ semi-algebraic sets
$R C P\left(\mathbb{R}^{n}\right)$ selmi-linear sets (polytopes)
$R C P_{\mathbb{A}}\left(\mathbb{R}^{n}\right)$ algebraic polytopes $R C P_{\mathbb{Q}}\left(\mathbb{R}^{n}\right)$ rational polytopes

Let $\Sigma=\left\{R C\left(\mathbb{R}^{n}\right), R C S\left(\mathbb{R}^{n}\right), R C P\left(\mathbb{R}^{n}\right), R C P_{\mathbb{A}}\left(\mathbb{R}^{n}\right), R C P_{\mathbb{Q}}\left(\mathbb{R}^{n}\right)\right\}$.

Euclidean Logics - The Languages $\mathcal{L}_{C}, \mathcal{L}_{\text {conv }}$ and $\mathcal{L}_{\text {closer }}$ Logical Syntax First-order logic

Non-logical Primitives
Boolean: ($\leq,+,-, \cdot, 0,1$)
Topological: connectedness and contact

Euclidean: convexity and relative closeness

$\operatorname{closer}(x, y, z)$

$$
\mathcal{L}_{C}:=\langle C\rangle \quad \mathcal{L}_{\text {conv }}:=\langle\text { conv }, \leq\rangle \quad \mathcal{L}_{\text {closer }}=\langle\text { closer }\rangle
$$

Lemma For $\mathcal{M} \in \Sigma,\left(\mathcal{M}, \mathcal{L}_{C}\right) \leq_{m}^{p}\left(\mathcal{M}, \mathcal{L}_{\text {conv }}\right) \leq_{m}^{p}\left(\mathcal{M}, \mathcal{L}_{\text {closer }}\right)$.

Theories

		Languages		
		\mathcal{L}_{C}	$\mathcal{L}_{\text {conv }}$	$\mathcal{L}_{\text {closer }}$
D	$R C(\mathbb{R})$	Decidable, N	ELEMENTARY	Δ_{ω}^{1}-complete
	$R C S(\mathbb{R})$	Decidable, NONELEMENTARY		Δ_{ω}^{1}-complete
	$R C P(\mathbb{R})$			Δ_{ω}^{1}-complete
	$R C P_{\mathbb{A}}(\mathbb{R})$			Δ_{ω}^{0}-complete
	$R C P_{\mathbb{Q}}(\mathbb{R})$			Δ_{ω}^{0}-complete
	$R C\left(\mathbb{R}^{n}\right), n>1$	Δ_{ω}^{1}-complete	Δ_{ω}^{1}-complete	Δ_{ω}^{1}-complete
	$R C S\left(\mathbb{R}^{n}\right), n>1$	Δ_{ω}^{0}-hard	Δ_{ω}^{\top}-complete	Δ_{ω}^{1}-complete
	$R C P\left(\mathbb{R}^{n}\right), n>1$	Δ_{ω}^{0}-hard	Δ_{ω}^{1}-complete	Δ_{ω}^{1}-complete
	$R C P_{\mathbb{A}}\left(\mathbb{R}^{n}\right), n>1$	Δ_{ω}^{0}-complete	Δ_{ω}^{0}-complete	Δ_{ω}^{0}-complete
	$R C P_{\mathbb{Q}}\left(\mathbb{R}^{n}\right), n>1$	Δ_{ω}^{0}-complete	Δ_{ω}^{0}-complete	Δ_{ω}^{0}-complete

Table: A complexity map of the first-order Euclidean spatial logics.

\mathcal{L}_{C} and $\mathcal{L}_{\text {conv }}$ Over \mathbb{R}

Lemma For $\mathcal{M} \in \Sigma\left(\mathcal{M}, \mathcal{L}_{C}\right) \equiv_{m}^{p}\left(\mathcal{M}, \mathcal{L}_{\text {conv }}\right)$.
Lemma $\left(R C P_{\mathbb{Q}}(\mathbb{R}), \mathcal{L}_{C}\right) \prec\left(R C P_{\mathbb{A}}(\mathbb{R}), \mathcal{L}_{C}\right) \prec\left(R C P(\mathbb{R}), \mathcal{L}_{C}\right)$ Proof. Using Tarski-Vaught Test.
$\operatorname{Lemma}\left(R C P(\mathbb{R}), \mathcal{L}_{C}\right)=\left(R C S(\mathbb{R}), \mathcal{L}_{C}\right) \leq_{m}^{p}\left(R C(\mathbb{R}), \mathcal{L}_{C}\right)$

\mathcal{L}_{C} and $\mathcal{L}_{\text {conv }}$ Over \mathbb{R} - Upper Bound

Result: The first-order theory of $\left(R C(\mathbb{R}), \mathcal{L}_{C}\right)$ is decidable.
Theorem [Rabin69] The monadic second-order theory (MSO) of $(\mathbb{Q},<)$ is decidable.

Lemma There exists an interpretation of $\left(R C(\mathbb{R}), \mathcal{L}_{C}\right)$ in the MSO of $(\mathbb{Q},<)$.

Proof. We identify every regular closed subset A of \mathbb{R} with $A \cap \mathbb{Q}$.

\mathcal{L}_{C} and $\mathcal{L}_{\text {conv }}$ Over \mathbb{R} - Lower Bound

Result: The first-order theory of $\left(R C P(\mathbb{R}), \mathcal{L}_{C}\right)$ is non-elementary.
Theorem [Meyer75] The weak monadic second-order theory of $(\mathbb{N}, S)(W S 1 S)$ is non-elementary.

Lemma WS1S in many-one reducible to $\left(R C P(\mathbb{R}), \mathcal{L}_{C}\right)$.

\mathcal{L}_{C} over $\mathbb{R}^{n}(n>1)$

Result: For $\mathcal{M} \in \Sigma$,

- $\left(\mathcal{M}, \mathcal{L}_{C}\right)$ can encode first-order arithmetic (Δ_{ω}^{0}-hard).
- $\left(R C\left(\mathbb{R}^{n}\right), \mathcal{L}_{C}\right)$ can encode second-order arithmetic (Δ_{ω}^{1}-hard).

Idea.

- Identify a natural number n with the class of regions having exactly n connected components. (Grzegorczyk 1951)
- Identify a set of natural numbers $A \subseteq \mathbb{N}$ with a pair of regions r, s as shown for the set $A=\{0,2,3\}$:

$\mathcal{L}_{\text {conv }}$ and $\mathcal{L}_{\text {closer }}$ over \mathbb{R}^{n}

Theorem [Davis'06] Let \mathcal{L} be either $\mathcal{L}_{\text {conv }}$ or $\mathcal{L}_{\text {closer }}$ and $n>1$.
$\left(R C(\mathbb{R}), \mathcal{L}_{\text {closer }}\right),\left(R C S(\mathbb{R}), \mathcal{L}_{\text {closer }}\right),\left(R C P(\mathbb{R}), \mathcal{L}_{\text {closer }}\right) \quad \Delta_{\omega}^{1}$-hard.
$\left(R C P_{\mathbb{A}}(\mathbb{R}), \mathcal{L}_{\text {closer }}\right),\left(R C P_{\mathbb{Q}}(\mathbb{R}), \mathcal{L}_{\text {closer }}\right)$
Δ_{ω}^{0}-hard.
$\left(R C\left(\mathbb{R}^{n}\right), \mathcal{L}\right),\left(R C S\left(\mathbb{R}^{n}\right), \mathcal{L}\right),\left(R C P\left(\mathbb{R}^{n}\right), \mathcal{L}\right)$
Δ_{ω}^{1}-hard.
$\left(R C P_{\mathbb{A}}\left(\mathbb{R}^{n}\right), \mathcal{L}\right),\left(R C P_{\mathbb{Q}}\left(\mathbb{R}^{n}\right), \mathcal{L}\right)$
Δ_{ω}^{0}-hard.

Summary

		Languages		
		\mathcal{L}_{C}	$\mathcal{L}_{\text {conv }}$	$\mathcal{L}_{\text {closer }}$
D\mathbf{o}m	$R C(\mathbb{R})$	Decidable, NO	ELEMENTARY	Δ_{ω}^{1}-complete
	$R C S(\mathbb{R})$	Decidable, NONELEMENTARY		Δ_{ω}^{1}-complete
	$R C P(\mathbb{R})$			Δ_{ω}^{1}-complete
	$R C P_{\mathbb{A}}(\mathbb{R})$			Δ_{ω}^{0}-complete
	$R C P_{\mathbb{Q}}(\mathbb{R})$			Δ_{ω}^{0}-complete
	$R C\left(\mathbb{R}^{n}\right), n>1$	Δ_{ω}^{1}-complete	Δ_{ω}^{1}-complete	Δ_{ω}^{1}-complete
	$R C S\left(\mathbb{R}^{n}\right), n>1$	Δ_{ω}^{0}-hard	Δ_{ω}^{1}-complete	Δ_{ω}^{1}-complete
	$R C P\left(\mathbb{R}^{n}\right), n>1$	Δ_{ω}^{0}-hard	Δ_{ω}^{1}-complete	Δ_{ω}^{1}-complete
	$R C P_{\mathbb{A}}\left(\mathbb{R}^{n}\right), n>1$	Δ_{ω}^{0}-complete	Δ_{ω}^{0}-complete	Δ_{ω}^{0}-complete
	$R C P_{\mathbb{Q}}\left(\mathbb{R}^{n}\right), n>1$	Δ_{ω}^{0}-complete	Δ_{ω}^{0}-complete	Δ_{ω}^{0}-complete

Table: A complexity map of the first-order Euclidean spatial logics.

THANK YOU!

