
On the Computability of Euclidean Logics

Yavor Nenov

School of Computer Science
University of Manchester, UK

(Joint work with Ian Pratt-Hartmann)

19th EACSL Annual Conferences on Computer Science Logic

Masaryk University, Brno, Czech Republic, 2010



Table of Contents

Euclidean Logics

Euclidean Logics Over R

Euclidean Logics Over Rn (n > 1)



Euclidean Logics

Euclidean Logic: A logical language whose variables are
interpreted as subsets of Rn, for a �xed n > 0, and whose
non-logical primitives are interpreted as geometrical properties,
relations and operations involving those sets.



Euclidean Logics - Regions

What collection of subset of Rn shall we choose?

I subsets which are likely to be occupied by physical objects

CZ CZ

Open/Closed Sets

Regular Closed Sets A A◦ A◦−

A = A◦−

RC (X ) =

{A ⊆ X | A = A◦−}

RC (X ) � Boolean algebra



Euclidean Logics - Regions

RC (Rn) still include many pathological sets:

semi-algebraic polytopes

Wild
vs

Tame

We consider di�erent Boolean sub-algebras of RC (Rn).

RC (Rn) the set of all regular closed sets
RCS(Rn) semi-algebraic sets
RCP(Rn) selmi-linear sets (polytopes)
RCPA(Rn) algebraic polytopes
RCPQ(Rn) rational polytopes

Let Σ = {RC (Rn),RCS(Rn),RCP(Rn),RCPA(Rn),RCPQ(Rn)}.



Euclidean Logics - The Languages LC , Lconv and Lcloser

Logical Syntax First-order logic

Non-logical Primitives

Boolean: (≤, +,−, ·, 0, 1)

Topological: connectedness and contact
c(x) ¬c(y) C(x , y)

x y

DC(x , y)

x y

EC(x , y)

x y

PO(x , y)

x y

TPP(y , x)

x y

PP(y , x)

x = y

EQ(x , y)

Euclidean: convexity and relative closeness
conv(x) ¬conv(y)

y x z

closer(x , y , z)

LC := 〈C 〉 Lconv := 〈conv ,≤〉 Lcloser = 〈closer〉

Lemma ForM∈ Σ, (M,LC ) ≤p
m (M,Lconv ) ≤p

m (M,Lcloser ).



Theories

Languages
LC Lconv Lcloser

RC(R) Decidable, NONELEMENTARY ∆1
ω-complete

D RCS(R) ∆1
ω-complete

o RCP(R) Decidable, NONELEMENTARY ∆1
ω-complete

m RCPA(R) ∆0
ω-complete

a RCPQ(R) ∆0
ω-complete

i RC(Rn), n > 1 ∆1
ω-complete ∆1

ω-complete ∆1
ω-complete

n RCS(Rn), n > 1 ∆0
ω-hard ∆1

ω-complete ∆1
ω-complete

s RCP(Rn), n > 1 ∆0
ω-hard ∆1

ω-complete ∆1
ω-complete

RCPA(Rn), n > 1 ∆0
ω-complete ∆0

ω-complete ∆0
ω-complete

RCPQ(Rn),n > 1 ∆0
ω-complete ∆0

ω-complete ∆0
ω-complete

Table: A complexity map of the �rst-order Euclidean spatial logics.



LC and Lconv Over R

Lemma ForM∈ Σ (M,LC ) ≡p
m (M,Lconv ).

Lemma (RCPQ(R),LC ) ≺ (RCPA(R),LC ) ≺ (RCP(R),LC )
Proof. Using Tarski-Vaught Test.

Lemma(RCP(R),LC ) = (RCS(R),LC ) ≤p
m (RC (R),LC )



LC and Lconv Over R� Upper Bound

Result: The �rst-order theory of (RC (R),LC ) is decidable.

Theorem [Rabin69] The monadic second-order theory (MSO) of
(Q, <) is decidable.

Lemma There exists an interpretation of (RC (R),LC ) in the MSO
of (Q, <).

Proof. We identify every regular closed subset A of R with A ∩Q.



LC and Lconv Over R� Lower Bound

Result: The �rst-order theory of (RCP(R),LC ) is non-elementary.

Theorem [Meyer75] The weak monadic second-order theory of
(N, S) (WS1S) is non-elementary.

Lemma WS1S in many-one reducible to (RCP(R),LC ).

r s0 s1 s2 s3 s4 s5

A = {1, 2, 4} n = 3



LC over Rn(n > 1)

Result: ForM∈ Σ,

• (M,LC ) can encode �rst-order arithmetic (∆0
ω-hard).

• (RC (Rn),LC ) can encode second-order arithmetic (∆1
ω-hard).

Idea.

• Identify a natural number n with the class of regions having exactly n

connected components. (Grzegorczyk 1951)

• Identify a set of natural numbers A ⊆ N with a pair of regions r , s as
shown for the set A = {0, 2, 3}:

t0 t1

t2

t3

r1

r2 r3

s

s

s

s

s



Lconv and Lcloser over Rn

Theorem [Davis'06] Let L be either Lconv or Lcloser and n > 1.

(RC (R),Lcloser ), (RCS(R),Lcloser ), (RCP(R),Lcloser ) ∆1
ω-hard.

(RCPA(R),Lcloser ), (RCPQ(R),Lcloser ) ∆0
ω-hard.

(RC (Rn),L), (RCS(Rn),L),(RCP(Rn),L) ∆1
ω-hard.

(RCPA(Rn),L),(RCPQ(Rn),L) ∆0
ω-hard.



Summary

Languages
LC Lconv Lcloser

RC(R) Decidable, NONELEMENTARY ∆1
ω-complete

D RCS(R) ∆1
ω-complete

o RCP(R) Decidable, NONELEMENTARY ∆1
ω-complete

m RCPA(R) ∆0
ω-complete

a RCPQ(R) ∆0
ω-complete

i RC(Rn), n > 1 ∆1
ω-complete ∆1

ω-complete ∆1
ω-complete

n RCS(Rn), n > 1 ∆0
ω-hard ∆1

ω-complete ∆1
ω-complete

s RCP(Rn), n > 1 ∆0
ω-hard ∆1

ω-complete ∆1
ω-complete

RCPA(Rn), n > 1 ∆0
ω-complete ∆0

ω-complete ∆0
ω-complete

RCPQ(Rn),n > 1 ∆0
ω-complete ∆0

ω-complete ∆0
ω-complete

Table: A complexity map of the �rst-order Euclidean spatial logics.
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