## On the Computability of Euclidean Logics

Yavor Nenov

School of Computer Science University of Manchester, UK

(Joint work with Ian Pratt-Hartmann)



19th EACSL Annual Conferences on Computer Science Logic Masaryk University, Brno, Czech Republic, 2010 Table of Contents

**Euclidean Logics** 

Euclidean Logics Over  $\mathbb R$ 

Euclidean Logics Over  $\mathbb{R}^n$  (n > 1)

**Euclidean Logic:** A logical language whose variables are interpreted as **subsets** of  $\mathbb{R}^n$ , for a fixed n > 0, and whose non-logical primitives are interpreted as **geometrical** properties, relations and operations involving those sets.

# Euclidean Logics - Regions

What collection of subset of  $\mathbb{R}^n$  shall we choose?

subsets which are likely to be occupied by physical objects



# Euclidean Logics - Regions

 $RC(\mathbb{R}^n)$  still include many pathological sets:



We consider different Boolean sub-algebras of  $RC(\mathbb{R}^n)$ .

 $\begin{array}{ll} RC(\mathbb{R}^n) & \text{the set of all regular closed sets} \\ RCS(\mathbb{R}^n) & \text{semi-algebraic sets} \\ RCP(\mathbb{R}^n) & \text{selmi-linear sets (polytopes)} \\ RCP_{\mathbb{A}}(\mathbb{R}^n) & \text{algebraic polytopes} \\ RCP_{\mathbb{Q}}(\mathbb{R}^n) & \text{rational polytopes} \end{array}$ 

Let  $\Sigma = \{ RC(\mathbb{R}^n), RCS(\mathbb{R}^n), RCP(\mathbb{R}^n), RCP_{\mathbb{A}}(\mathbb{R}^n), RCP_{\mathbb{Q}}(\mathbb{R}^n) \}.$ 

Euclidean Logics - The Languages  $\mathcal{L}_{C}$ ,  $\mathcal{L}_{conv}$  and  $\mathcal{L}_{closer}$ 

Logical Syntax First-order logic

**Non-logical Primitives** 

Boolean: ( $\leq$ , +, -,  $\cdot$ , 0, 1)

Topological: connectedness and contact



Euclidean: convexity and relative closeness

| conv(x) | $\neg conv(y)$ | closer(x, y, z) |   |
|---------|----------------|-----------------|---|
|         |                | y x             | Z |

 $\mathcal{L}_{C} := \langle C \rangle \qquad \mathcal{L}_{conv} := \langle conv, \leq \rangle \qquad \mathcal{L}_{closer} = \langle closer \rangle$ Lemma For  $\mathcal{M} \in \Sigma$ ,  $(\mathcal{M}, \mathcal{L}_{C}) \leq_{m}^{p} (\mathcal{M}, \mathcal{L}_{conv}) \leq_{m}^{p} (\mathcal{M}, \mathcal{L}_{closer}).$ 

## Theories

|   |                                         | Languages                         |                                 |                                 |  |
|---|-----------------------------------------|-----------------------------------|---------------------------------|---------------------------------|--|
|   |                                         | Lс                                | $\mathcal{L}_{conv}$            | $\mathcal{L}_{closer}$          |  |
|   | $RC(\mathbb{R})$                        | Decidable, NONELEMENTARY          |                                 | $\Delta^{1}_{\omega}$ -complete |  |
| D | $RCS(\mathbb{R})$                       |                                   |                                 | $\Delta^{1}_{\omega}$ -complete |  |
| 0 | $RCP(\mathbb{R})$                       | Decidable, NONELEMENTARY          |                                 | $\Delta^{1}_{\omega}$ -complete |  |
| m | $RCP_{\mathbb{A}}(\mathbb{R})$          |                                   |                                 | $\Delta^0_\omega$ -complete     |  |
| а | $RCP_{\mathbb{Q}}(\mathbb{R})$          |                                   |                                 | $\Delta^0_\omega$ -complete     |  |
| i | $RC(\mathbb{R}^n), n > 1$               | $\Delta^1_\omega$ -complete       | $\Delta^1_\omega$ -complete     | $\Delta^1_\omega$ -complete     |  |
| n | $RCS(\mathbb{R}^n), n > 1$              | $\Delta^0_\omega$ -hard           | $\Delta^{1}_{\omega}$ -complete | $\Delta^{1}_{\omega}$ -complete |  |
| s | $RCP(\mathbb{R}^n), n > 1$              | $\Delta^0_\omega$ -hard           | $\Delta^{1}_{\omega}$ -complete | $\Delta^{1}_{\omega}$ -complete |  |
|   | $RCP_{\mathbb{A}}(\mathbb{R}^n), \ n>1$ | $\Delta^{m 0}_{\omega}$ -complete | $\Delta^0_{\omega}$ -complete   | $\Delta^0_\omega$ -complete     |  |
|   | $RCP_{\mathbb{Q}}(\mathbb{R}^n), n > 1$ | $\Delta^0_\omega$ -complete       | $\Delta^0_\omega$ -complete     | $\Delta^0_\omega$ -complete     |  |

Table: A complexity map of the first-order Euclidean spatial logics.

**Lemma** For  $\mathcal{M} \in \Sigma$   $(\mathcal{M}, \mathcal{L}_C) \equiv_m^p (\mathcal{M}, \mathcal{L}_{conv})$ .

Lemma  $(RCP_{\mathbb{Q}}(\mathbb{R}), \mathcal{L}_{C}) \prec (RCP_{\mathbb{A}}(\mathbb{R}), \mathcal{L}_{C}) \prec (RCP(\mathbb{R}), \mathcal{L}_{C})$ Proof. Using Tarski-Vaught Test.

 $\text{Lemma}(RCP(\mathbb{R}),\mathcal{L}_{C}) = (RCS(\mathbb{R}),\mathcal{L}_{C}) \leq_{m}^{p} (RC(\mathbb{R}),\mathcal{L}_{C})$ 

**Result:** The first-order theory of  $(RC(\mathbb{R}), \mathcal{L}_C)$  is decidable.

**Theorem** [Rabin69] The monadic second-order theory (MSO) of  $(\mathbb{Q}, <)$  is decidable.

**Lemma** There exists an interpretation of  $(RC(\mathbb{R}), \mathcal{L}_C)$  in the MSO of  $(\mathbb{Q}, <)$ .

**Proof.** We identify every regular closed subset A of  $\mathbb{R}$  with  $A \cap \mathbb{Q}$ .

 $\mathcal{L}_{C}$  and  $\mathcal{L}_{conv}$  Over  $\mathbb{R}$ — Lower Bound

**Result:** The first-order theory of  $(RCP(\mathbb{R}), \mathcal{L}_C)$  is non-elementary.

**Theorem** [Meyer75] The weak monadic second-order theory of  $(\mathbb{N}, S)$  (WS1S) is non-elementary.

**Lemma** WS1S in many-one reducible to  $(RCP(\mathbb{R}), \mathcal{L}_C)$ .



# $\mathcal{L}_{\mathcal{C}}$ over $\mathbb{R}^n (n > 1)$

### Result: For $\mathcal{M} \in \Sigma$ ,

- $(\mathcal{M}, \mathcal{L}_{C})$  can encode first-order arithmetic  $(\Delta_{\omega}^{0}$ -hard).
- $(RC(\mathbb{R}^n), \mathcal{L}_C)$  can encode second-order arithmetic  $(\Delta^1_{\omega}$ -hard).

#### ldea.

 $\bullet$  Identify a natural number n with the class of regions having exactly n connected components. (Grzegorczyk 1951)

• Identify a set of natural numbers  $A \subseteq \mathbb{N}$  with a pair of regions r, s as shown for the set  $A = \{0, 2, 3\}$ :



Theorem [Davis'06] Let  $\mathcal{L}$  be either  $\mathcal{L}_{conv}$  or  $\mathcal{L}_{closer}$  and n > 1. $(RC(\mathbb{R}), \mathcal{L}_{closer}), (RCS(\mathbb{R}), \mathcal{L}_{closer}), (RCP(\mathbb{R}), \mathcal{L}_{closer})$  $\Delta^1_{\omega}$ -hard. $(RCP_{\mathbb{A}}(\mathbb{R}), \mathcal{L}_{closer}), (RCP_{\mathbb{Q}}(\mathbb{R}), \mathcal{L}_{closer})$  $\Delta^0_{\omega}$ -hard.

 $(RC(\mathbb{R}^n),\mathcal{L}),(RCS(\mathbb{R}^n),\mathcal{L}),(RCP(\mathbb{R}^n),\mathcal{L})$   $\Delta^1_{\omega}$ -hard.

 $(RCP_{\mathbb{A}}(\mathbb{R}^{n}), \mathcal{L}), (RCP_{\mathbb{Q}}(\mathbb{R}^{n}), \mathcal{L})$   $\Delta^{0}_{\omega}$ -hard.

# Summary

|   |                                         | Lс                                | $\mathcal{L}_{conv}$            | $\mathcal{L}_{closer}$          |
|---|-----------------------------------------|-----------------------------------|---------------------------------|---------------------------------|
|   | $RC(\mathbb{R})$                        | Decidable, NONELEMENTARY          |                                 | $\Delta^{1}_{\omega}$ -complete |
| D | $RCS(\mathbb{R})$                       |                                   |                                 | $\Delta^{1}_{\omega}$ -complete |
| 0 | $RCP(\mathbb{R})$                       | Decidable, NONELEMENTARY          |                                 | $\Delta^{1}_{\omega}$ -complete |
| m | $RCP_{\mathbb{A}}(\mathbb{R})$          |                                   |                                 | $\Delta^0_\omega$ -complete     |
| а | $RCP_{\mathbb{Q}}(\mathbb{R})$          |                                   |                                 | $\Delta^0_\omega$ -complete     |
| i | $RC(\mathbb{R}^n), n > 1$               | $\Delta^1_\omega$ -complete       | $\Delta^1_\omega$ -complete     | $\Delta^1_\omega$ -complete     |
| n | $RCS(\mathbb{R}^n), n > 1$              | $\Delta^0_\omega$ -hard           | $\Delta^{1}_{\omega}$ -complete | $\Delta^{1}_{\omega}$ -complete |
| S | $RCP(\mathbb{R}^n), n > 1$              | $\Delta^0_\omega$ -hard           | $\Delta^{1}_{\omega}$ -complete | $\Delta^{1}_{\omega}$ -complete |
|   | $RCP_{\mathbb{A}}(\mathbb{R}^n), \ n>1$ | $\Delta^{m 0}_{\omega}$ -complete | $\Delta^0_{\omega}$ -complete   | $\Delta^0_\omega$ -complete     |
|   | $RCP_{\mathbb{Q}}(\mathbb{R}^n), n>1$   | $\Delta^0_\omega$ -complete       | $\Delta^0_\omega$ -complete     | $\Delta^0_\omega$ -complete     |

Table: A complexity map of the first-order Euclidean spatial logics.

# THANK YOU!