The University of Manchester

Computational Complexity of Topological Logics

Ian Pratt-Hartmann
School of Computer Science
Manchester University

(Joint work with Roman Kontchakov and Michael Zakharyaschev.)

Summer Conference on Topology and its Applications Brno, 14th-17th July, 2009

- A well-known fact:

Suppose r_{1} and r_{2} are subsets of a topological space with r_{1} included in r_{2} and r_{2} included in the closure of r_{1}. If r_{1} connected, then so is r_{2}.

- We might write this in symbols as follows

$$
c\left(r_{1}\right) \wedge r_{1} \subseteq r_{2} \wedge r_{2} \subseteq r_{1}^{-} \rightarrow c\left(r_{2}\right)
$$

- Once we are working in a formal language, the following issue become salient:
- decidability and complexity
- expresive power
- axiomatizability
- model theory.
- A topological language is a formal language with (object) variables $\mathbf{R}=\left\{r_{1}, r_{2}, \ldots\right\}$, whose non-logical signature is given a fixed 'topological' interpretation (e.g. $\mathbf{0},^{-}, c, \subseteq, \ldots$).
- A topological frame is a pair $\mathfrak{F}=(T, W)$, where T is a topological space and $W \subseteq 2^{T}$. A topological interpretation is a pair $\mathfrak{A}=\left(\mathfrak{F}, \cdot^{\mathfrak{A}}\right)$, where $\mathfrak{F}=(T, W)$ is a topological frame and ${ }^{\mathfrak{A}}$ a function $\mathbf{R} \rightarrow W$.
- The notions of truth in an interpretation and satisfiability (dually: validity) over a frame (or class of frames) are understood as expected ...
- If \mathcal{K} is a class of frames, we denote the satisfiability problem for \mathcal{L}-formulas over a class of frames \mathcal{K} by $\mathcal{S a t}(\mathcal{L}, \mathcal{K})$.
- The most basic class of frames to consider is:

$$
\text { ALL }=\left\{\left(T, 2^{T}\right) \mid T \text { a topological space }\right\}
$$

Are there any others we should look at?

- Recall that a regular closed set is one that is equal to the closure of its interior: $u=u^{\circ-}$.
- The regular closed sets of any topological space T form a Boolean algebra:

$$
u+v=u \cup v, \quad u \cdot v=(u \cap v)^{\circ-}, \quad-u=(T \backslash u)^{-}
$$

We denote the set of regular closed subsets of T by $\boldsymbol{R} \boldsymbol{C}(T)$.

- We shall be interested in the frame class

$$
\text { REGC }=\{(T, \boldsymbol{R} \boldsymbol{C}(T)) \mid T \text { a topological space }\}
$$

and some of its sub-classes.

- Perhaps the most intensively studied topological language is RCC-8 (Randall, Cui, Cohn, 1992; Egenhoffer 1991):

$\operatorname{NTPP}(X, Y)$

$\operatorname{TPP}(X, Y)$

$\mathrm{EQ}(X, Y)$
$\boxtimes X \quad \boxtimes Y \quad X$ and Y

- Example of a formula valid over REgC:
$\left(\operatorname{TPP}\left(r_{1}, r_{2}\right) \wedge \operatorname{NTPP}\left(r_{1}, r_{3}\right)\right) \rightarrow$

$$
\left(\mathrm{PO}\left(r_{2}, r_{3}\right) \vee \operatorname{TPP}\left(r_{2}, r_{3}\right) \vee \operatorname{NTPP}\left(r_{2}, r_{3}\right)\right)
$$

- The problem $\operatorname{Sat}(\mathcal{R C C}-8$, RegC) is NPTime-complete (Renz, 1998); the satisfiability problem for conjunctions of $\mathcal{R C C}$-8-literals is NLOGSpace-complete (Griffiths, 2007).
- The language \mathcal{C} (Wolter and Zakharyaschev, 2000) adds Boolean operators to this language, i.e. we have the primitives $\mathbf{0}, \mathbf{1},+, \cdot,-$ (with the obvious interpretations), in addition to the $\mathcal{R C C}$-8-predicates.
- The following \mathcal{C}-formula is valid over REGC:

$$
\mathrm{EC}\left(r_{1}+r_{2}, r_{3}\right) \leftrightarrow\left(\mathrm{EC}\left(r_{1}, r_{3}\right) \vee \mathrm{EC}\left(r_{2}, r_{3}\right)\right)
$$

- The problem $\mathcal{S} a t(\mathcal{C}, \operatorname{RegC})$ is still NPTime-complete.
- Using the function symbols + , • and - , we can replace the $\mathcal{R C C}$-8-predicates with the single binary relation of contact:

$$
C\left(r_{1}, r_{2}\right) \text { iff } r_{1} \cap r_{2}=\emptyset \text {. }
$$

For instance, the literal $\mathrm{EC}\left(\tau_{1}, \tau_{2}\right)$ can be expressed as

$$
C\left(\tau_{1}, \tau_{2}\right) \wedge \tau_{1} \cdot \tau_{2}=\mathbf{0}
$$

- A more familiar example: let $\mathcal{S} 4_{u}$ be the topological language with primitives
- 0, 1
- -, ${ }^{\circ}$ (topological interior)
$-\cup,-$ (complement in whole space).
- The following $\mathcal{S} 4_{u}$-formula is valid over the class All.

$$
r_{1} \cap r_{2}^{\circ}=\mathbf{0} \rightarrow r_{1}^{-} \cap r_{2}^{\circ}=\mathbf{0}
$$

- We may write it in the syntax of modal logic, under the topological semantics of McKinsey and Tarski (1944):

$$
\mathcal{U} \neg\left(p_{1} \wedge \square p_{2}\right) \rightarrow \mathcal{U} \neg\left(\diamond p_{1} \wedge \square p_{2}\right) .
$$

- The satisfiability problem for this logic is known to be PSpace-complete (Ladner, 1977).
- None of the languages in the previous summary features the convexity predicate c.
- Define the languages $\mathcal{R C C}-8 c, \mathcal{C} c$ and $\mathcal{S} 4_{u} c$ by adding c to $\mathcal{R C C}-8, \mathcal{C}$ and $\mathcal{S} 4_{u}$, repectively.
- The following $\mathcal{C} c$-formula is valid over REGC:

$$
c\left(r_{1}\right) \wedge c\left(r_{2}\right) \wedge C\left(r_{1}, r_{2}\right) \rightarrow c\left(r_{1}+r_{2}\right)
$$

- The following $\mathcal{S} 4_{u} c$-formula is valid over All:

$$
c\left(r_{1}\right) \wedge r_{1} \subseteq r_{2} \wedge r_{2} \subseteq r_{1}^{-} \rightarrow c\left(r_{2}\right)
$$

- More ambitiously, we can add the predicates
$-c^{\leq k}$ (has at most k components)
$-c^{\geq k}$ (has at least k components)
for all $k \geq 0$.
- This gives us the languages $\mathcal{R C C}-8 c c, \mathcal{C} c c$ and $\mathcal{S} 4_{u} c c$.
- The following $\mathcal{C} c c$-formula is valid over REGC:

$$
\left(c^{\leq k}\left(r_{1}\right) \wedge c^{\leq \ell}\left(r_{2}\right) \wedge C\left(r_{1}, r_{2}\right)\right) \rightarrow c^{\leq \ell+k-1}\left(r_{1}+r_{2}\right)
$$

- What can we say about the complexity of the satisfiability problems for these langauges?
- The language $\mathcal{C} c$ exhibits some interesting behaviour: let $\mathcal{C} c^{1}$ be the restriction of $\mathcal{C} c$ to formulas containing at most one one occurrence of c.
- Given the variables r_{n}, \ldots, r_{1}, we can number the various terms $\pm r_{n} \cdot \cdots \cdot \pm r_{1}$ as

$$
\tau_{0} \cdot \cdots \quad \cdots \quad \cdots \cdot \tau_{2^{n}-1} .
$$

We may assume that, in the term $\tau_{j}\left(0 \leq j<2^{n}\right)$, the i th factor (i.e. r_{1} or $-r_{i}$) specifies the i th bit of j.

- We can write a \mathcal{C}-formula enforcing the condition

$$
\neg C\left(\tau_{i}, \tau_{j}\right) \quad \text { for all } 0 \leq i<j<2^{n} \text { with } j-i>1 .
$$

with the size of this formula polynomial in n.

- Thus, the $\mathcal{C} c^{1}$-formula

$$
\left(\bigwedge_{j-i>1} \neg C\left(\tau_{i}, \tau_{j}\right)\right) \wedge \tau_{0} \neq \mathbf{0} \wedge \tau_{2^{n}-1} \neq \mathbf{0} \wedge c(\mathbf{1})
$$

forces an exponentially long 'chain', e.g.:

- This allows us to encode computations of any polynomial-space-bounded Turing machine.
- As a result, we have:

$$
\mathcal{S a t}\left(\mathcal{C} c^{1}, \mathrm{REGC}\right) \text { is PSPACE-hard. }
$$

- A matching upper bound is available:

$$
\mathcal{S} a t\left(\mathcal{S} 4_{u} c^{1}, \text { REGC }\right) \text { is in PSPACE. }
$$

- What happens if we are allowed the full power of $\mathcal{C} c$?
- With just two occurrences of c, we can 'enforce' the following configuration:

- This structure can be viewed as a tree:

- This allows us to encode computations of any polynomial-space-bounded alternating Turing machine.
- As a result, we have:

$$
\mathcal{S} a t(\mathcal{C} c, \operatorname{REGC}) \text { is ExpTime-hard }
$$

- A matching upper bound is available:

$$
\mathcal{S} a t\left(\mathcal{S} 4_{u} c, \text { REGC }\right) \text { is in ExpTime. }
$$

- Actually, \mathcal{C} c-formulas can encode exponentially large grids.
- We take sequences of variables r_{n}, \ldots, r_{1} and s_{n}, \ldots, s_{1}, using them to encode pairs of numbers $(i, j)\left(0 \leq i, j,<2^{n}\right)$.
- And we use the number-coding tricks (familiar from $\mathcal{C} c$) to create a 'chess'-board pattern

with each square corresponding to a product

$$
\pm r_{n} \cdot \cdots \cdot \pm r_{1} \cdot \pm s_{n} \cdot \cdots \cdot \pm s_{1}
$$

and the grid connectivity represented by C.

- In the larger language $\mathcal{C} c c$, we can add formulas

$$
c^{\leq 2^{n-1}}\left(\left(r_{0} \cdot s_{0}\right)+\left(-r_{0} \cdot-s_{0}\right)\right) \quad c^{\leq 2^{n-1}}\left(\left(r_{0} \cdot-s_{0}\right)+\left(-r_{0} \cdot s_{0}\right)\right) .
$$

- This enforces connectedness of each of the 2^{n-1} black squares and each of the 2^{n-1} white squares:

- As a result, we have:

$$
\mathcal{S a t}(\mathcal{C} c c, \operatorname{ReG}) \text { is NExpTime-hard. }
$$

- A matching upper bound is available:

$$
\mathcal{S} a t\left(\mathcal{S} 4_{u} c c, \operatorname{RegC}\right) \text { is in NExpTime. }
$$

- We mention in passing that, in the presence of the connectedness predicate, we can drop the predicate C in the languages $\mathcal{C} c$ and $\mathcal{C} c c$.
- Thus, \mathcal{B} c is defined by the signature

$$
\mathbf{0}, \quad \mathbf{1}, \quad+, \quad \cdot \quad c
$$

and $\mathcal{B} c c$ is defined by the signature

$$
\mathbf{0}, \quad \mathbf{1}, \quad+, \quad \cdot, \quad c^{\leq k}, \quad c^{\geq k}
$$

where $k \geq 0$.

- This reduces expressive power, but not complexity:
$\mathcal{S a t}(\mathcal{B} c, \operatorname{REGC})$ is ExpTimE-complete;
$\mathcal{S} a t(\mathcal{B} c c$, REGC $)$ is NExpTime-complete.
- Finally, we consider what happens when the languages $\mathcal{R C C}-8 c$, $\mathcal{C} c$ and $\mathcal{C} c$ are interpreted over low-dimensional Euclidean spaces.
- For the spaces \mathbb{R}^{n}, it is natural to consider the frames
- $\left(\mathbb{R}^{n}, \boldsymbol{R} \boldsymbol{C}\left(\mathbb{R}^{n}\right)\right)$-the regular closed sets in \mathbb{R}^{n};
$-\left(\mathbb{R}^{n}, \boldsymbol{R} \boldsymbol{C S}\left(\mathbb{R}^{n}\right)\right)$-the reg. closed semi-algebraic sets in \mathbb{R}^{n}.
- Recall that the semi-algebraic sets count as 'tame':
- They have finitely many components
- They have the 'curve-selection' property
- Consider the $\mathcal{R C C}-8 c$-formula

$$
c\left(r_{1}\right) \wedge \bigwedge_{1 \leq i<j \leq 4} \mathrm{EC}\left(r_{i}, r_{j}\right)
$$

- This formula is satisfiable over $(\mathbb{R}, \boldsymbol{R} \boldsymbol{C}(\mathbb{R}))$, e.g. by

But it is not satisfiable over $(\mathbb{R}, \boldsymbol{R C S}(\mathbb{R}))$.

- Thus, $\operatorname{Sat}(\mathcal{R C C}-8 c,(\mathbb{R}, \boldsymbol{R C}(\mathbb{R}))) \neq \operatorname{Sat}(\mathcal{R C C}-8 c,(\mathbb{R}, \boldsymbol{R C S}(\mathbb{R})))$.
- We know that: $\operatorname{Sat}(\mathcal{R C C}-8 c,(\mathbb{R}, \boldsymbol{R C S}(\mathbb{R})))$ is NPTime-complete; $\mathcal{S a t}(\mathcal{R C C}-8 c,(\mathbb{R}, \boldsymbol{R} \boldsymbol{C}(\mathbb{R})))$ is NPTime-hard and in PSpace.
- Also: $\operatorname{Sat}(\mathcal{C} c,(\mathbb{R}, \boldsymbol{R C}(\mathbb{R}))) \neq \mathcal{S a t}(\mathcal{C} c,(\mathbb{R}, \boldsymbol{R C S}(\mathbb{R})))$, and both these problems are PSpace-complete.
- However: $\operatorname{Sat}(\mathcal{B} c,(\mathbb{R}, \boldsymbol{R C}(\mathbb{R})))=\operatorname{Sat}(\mathcal{C} c,(\mathbb{R}, \boldsymbol{R C S}(\mathbb{R})))$, and this probelm is NPTime-complete.
- In \mathbb{R}^{2}, a rather different picture emerges:
- We know $\operatorname{Sat}\left(\mathcal{R C C}-8 c,\left(\mathbb{R}, \boldsymbol{R} \boldsymbol{C}\left(\mathbb{R}^{2}\right)\right)\right)=\operatorname{Sat}\left(\mathcal{R C C}-8 c,\left(\mathbb{R}, \boldsymbol{R C S}\left(\mathbb{R}^{2}\right)\right)\right)$.
- The problem $\operatorname{Sat}(\mathcal{R C C}-8 c,(\mathbb{R}, D))$, where D is the set of disc-homeomorphs in the plane, is NPTimE-complete (Schaefer, Sedgwick and Štefankovič, 2003).
- It is then easy to show that $\operatorname{Sat}(\mathcal{R C C}-8 c,(\mathbb{R}, \boldsymbol{R C S}))$ is also NPTime-complete.
- However, we have

$$
\begin{aligned}
\mathcal{S} a t\left(\mathcal{B} c,\left(\mathbb{R}, \boldsymbol{R} \boldsymbol{C}\left(\mathbb{R}^{2}\right)\right)\right) & \neq \operatorname{Sat}\left(\mathcal{B} c,\left(\mathbb{R}, \boldsymbol{R} \boldsymbol{C S}\left(\mathbb{R}^{2}\right)\right)\right) \\
\mathcal{S} a t\left(\mathcal{C} c,\left(\mathbb{R}, \boldsymbol{R} \boldsymbol{C}\left(\mathbb{R}^{2}\right)\right)\right) & \neq \operatorname{Sat}\left(\mathcal{C} c,\left(\mathbb{R}, \boldsymbol{R} \boldsymbol{C S}\left(\mathbb{R}^{2}\right)\right)\right)
\end{aligned}
$$

The decidability of these problems is not known.

- Conceptual summary:
- Topological langauges: $\mathcal{R C C}-8, \mathcal{B}, \mathcal{C}, \mathcal{S} 4_{u}$ plus $c, c^{\leq k} c^{\geq k}$
- Topological frame classes: All, RegC, $\left\{\left(\mathbb{R}^{n}, \boldsymbol{R} \boldsymbol{C S}\left(\mathbb{R}^{n}\right)\right)\right\}$.
- Technical summary:

	RegC	$R C(\mathbb{R})$	$\boldsymbol{R C S}(\mathbb{R})$	$\boldsymbol{R C}\left(\mathbb{R}^{2}\right)$	$\boldsymbol{R C S}\left(\mathbb{R}^{2}\right)$
$\mathcal{R C C}-8 c$	NP	$\geq \mathrm{NP} \leq$ PSPACE	NP	NP	NP
RCC-8cc	NP	$\geq \mathrm{NP} \leq$ PSPACE	$\geq \mathrm{NP} \leq$ ExpTime	$\geq \mathrm{NP} \leq$ NExpTime	$\geq \mathrm{NP} \leq$ NExpTime
$\mathcal{B} c$	ExpTime	NP	NP	\geq PSpace	\geq PSpace
$\mathcal{C} c$	ExpTime	PSpace	PSpace	\geq ExpTime	\geq ExpTime
$\mathcal{B} c c$	NExpTime	$\geq \mathrm{NP} \leq$ PSPACE	\geq NP	\geq PSPACE	\geq PSpace
$\mathcal{C} c c$	NExpTime	PSpace	\geq PSPACE	\geq NExpTime	\geq NExpTime

	All	\mathbb{R}	$S(\mathbb{R})$	\mathbb{R}^{2}	$S\left(\mathbb{R}^{2}\right)$
$\mathcal{S} 4_{u} c$	ExpTime	PSpAce	PSpace	\geq ExpTime	\geq ExpTime
$\mathcal{S} 4_{u} c c$	NExpTime	PSpace	PSpace	\geq NExpTime	\geq NExpTime

