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e A well-known fact:

Suppose r1 and ry are subsets of a topological space with
r1 included in ro and 7o included in the closure of rq. If

r1 connected, then so is rs.

e We might write this in symbols as follows

c(ri) Ary CroAre Cry — c(ra).

e Once we are working in a formal language, the following issue

become salient:

— decidability and complexity
— expresive power

— axiomatizability

— model theory.




A topological language is a formal language with (object)
variables R = {ry, 72, ...}, whose non-logical signature is given
a fixed ‘topological’ interpretation (e.g. 0, —, ¢, C, ...).

A topological frame is a pair § = (T, W), where T is a
topological space and W C 2. A topological interpretation is

a pair A = (F,-*), where § = (T, W) is a topological frame and

2l g function R — W.

The notions of truth in an interpretation and satisfiability
(dually: validity) over a frame (or class of frames) are
understood as expected . ..

If IC is a class of frames, we denote the satisfiability problem for
L-formulas over a class of frames IC by Sat(L, K).




The most basic class of frames to consider is:

ALL = {(T,27) | T a topological space}.

Are there any others we should look at?

Recall that a regular closed set is one that is equal to the

closure of its interior: u = u° .

The regular closed sets of any topological space 1" form a

Boolean algebra:

u+v=uUwv, u-v=(unv)’ , —u = (T \ u)

We denote the set of regular closed subsets of T' by RC(T).

We shall be interested in the frame class
REGC = {(T, RC(T)) | T a topological space}.

and some of its sub-classes.




e Perhaps the most intensively studied topological language is
RCC-8 (Randall, Cui, Cohn, 1992; Egenhoffer 1991):
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5605
botelelely
%y
5
56055
5

535055
B35,

btstel

55052

<R\
<,

3
ogese
R
o
KK

SIS

$53505

555,

b %fm¢
< ?w:*
AL

/‘z‘

L7

I
LA
1%

5
bty
0%

5%t

R
ot

o,

X NY X andY

e Example of a formula valid over REGC:

(TPP(Tl,Tz) N\ NTPP(’I“l,?“g)) —
(PO(TQ, 7“3) V TPP(?“Q, 7“3) V NTPP(TQ, 7“3))

e The problem Sat(RCC-8, REGC) is NPTIiME-complete (Renz,
1998); the satisfiability problem for conjunctions of
RCC-8-literals is NLOGSPACE-complete (Griffiths, 2007).




The language C (Wolter and Zakharyaschev, 2000) adds
Boolean operators to this language, i.e. we have the primitives

0, 1, +, -, — (with the obvious interpretations), in addition to
the RCC-8-predicates.

The following C-formula is valid over REGC:

EC(?“l + TQ,Tg) NI (EC(Tl,Tg) V EC(?“Q,T;;))

The problem Sat(C, REGC) is still NPTiME-complete.

Using the function symbols +, - and —, we can replace the
RCC-8-predicates with the single binary relation of contact:

C(?“l,’l“g) iff 1 ﬂ?”‘g = @
For instance, the literal EC(71, 2) can be expressed as

C(Tl,TQ) /\7'1 *To — 0.




A more familiar example: let S4,, be the topological language

with primitives
~-0,1
— —, ° (topological interior)

— U, , — (complement in whole space).

The following S4,-formula is valid over the class ALL.

riNrea=0—r Nry =0

We may write it in the syntax of modal logic, under the
topological semantics of McKinsey and Tarski (1944):

U=(p1 A Bpz)—U—~(Opy A Opa).

The satisfiability problem for this logic is known to be
PSpace-complete (Ladner, 1977).




e None of the languages in the previous summary features the

convexity predicate c.

e Define the languages RCC-8¢, Cc and §4,¢ by adding ¢ to
RCC-8, C and S4,, repectively.

— The following Cc-formula is valid over REGC:
c(ri) Ne(rg) AC(ry,re) — c(ry +12).

— The following S4,c-formula is valid over ALL:

c(ri) Ary CraoAre Cry — c(ra).




e More ambitiously, we can add the predicates
— ¢=F (has at most k components)

— ¢2¥ (has at least k components)

for all £k > 0.

e This gives us the languages RCC-8cc, Ccc and §4,cc.

— The following Ccc-formula is valid over REGC:

(c=F(r) A =) A Clri,m2)) — S+ ).

e What can we say about the complexity of the satisfiability

problems for these langauges?




e The language Cc exhibits some interesting behaviour: let Cc!

be the restriction of Cc to formulas containing at most one one

occurrence of c.

e Given the variables r,,,...,r;, we can number the various

terms =+r,, - --- - =*xri; as

7—0.... o o o o o o '7-2?’L_1.

We may assume that, in the term 7; (0 < j < 2"), the ith
factor (i.e. 1 or —r;) specifies the ith bit of j.

e We can write a Cc-formula enforcing the condition
—C(7;,7;5) for all 0 <14 < j < 2" with j —¢ > 1.

with the size of this formula polynomial in n.




e Thus, the Cc'-formula

/\ ﬁC’(TZ',TJ') /\7’0 7é 0 /\Tgn_l 7& 0OA C(].)

j—i>1

forces an exponentially long ‘chain’, e.g.:

0 2" —1

e This allows us to encode computations of any

polynomial-space-bounded Turing machine.

e As a result, we have:
Sat(Cc', REGC) is PSPACE-hard.

e A matching upper bound is available:

Sat(84,c', REGC) is in PSPACE.
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e What happens if we are allowed the full power of Cc?

e With just two occurrences of ¢, we can ‘enforce’ the following

configuration:

c(Blue 4+ 1 + Dark red + 2 4 Light red 4 3 4+ Green)

c(Red + a 4+ Dark blue 4 b + Light blue + ¢ + Green)




e This structure can be viewed as a tree:

e This allows us to encode computations of any
polynomial-space-bounded alternating Turing machine.

e As a result, we have:

Sat(Cc, RECC) is ExPTIME-hard

e A matching upper bound is available:

Sat(S4,c, REcC) is in EXPTIME.




e Actually, Cc-formulas can encode exponentially large grids.

e We take sequences of variables r,,,...,r; and s,,...,S1, using
them to encode pairs of numbers (¢, 7) (0 < 1,7, < 27).

e And we use the number-coding tricks (familiar from Cc) to
create a ‘chess’-board pattern

&
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with each square corresponding to a product

o T o TSNP Ly

and the grid connectivity represented by C.




e In the larger language Ccc, we can add formulas

271,—1

((ro - s0) + (=ro - —s0)) <> ((ro-—s0) + (=70 - 50))-

e This enforces connectedness of each of the 27”~1 black squares
and each of the 2"~! white squares:

® o
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Sat(Ccc, REGC) is NEXPTIME-hard.

e As a result, we have:

e A matching upper bound is available:

Sat(S4,cc, REGC) is in NEXPTIME.




e We mention in passing that, in the presence of the
connectedness predicate, we can drop the predicate C' in the

languages Cc and Ccc.

e Thus, Bc is defined by the signature

where k£ > 0.

e This reduces expressive power, but not complexity:

Sat(Bec, REGC) is EXPTIME-complete;
Sat(Bce, REGC) is NEXPTIME-complete.




e Finally, we consider what happens when the languages RCC-8c,
Cc and Cc are interpreted over low-dimensional Euclidean

spaces.

e For the spaces R", it is natural to consider the frames

— (R™, RC(R™))—the regular closed sets in R™;

— (R™, RCS(R"))—the reg. closed semi-algebraic sets in R".

e Recall that the semi-algebraic sets count as ‘tame’:
— They have finitely many components

— They have the ‘curve-selection’ property




e Consider the RCC-8c-formula

e This formula is satisfiable over (R, RC(R)), e.g. by

Ta

But it is not satisfiable over (R, RC'S(R)).




Thus, Sat(RCC-8c, (R, RC(R))) # Sat(RCC-8¢, (R, RCS(R))).

We know that: Sat(RCC-8¢, (R, RCS(R))) is
NPTiMmE-complete; Sat(RCC-8¢, (R, RC(R))) is NPTiME-hard
and in PSPACE.

Also: Sat(Cc, (R, RC(R))) # Sat(Cc, (R, RCS(R))), and both
these problems are PSPACE-complete.

However: Sat(Bc, (R, RC(R))) = Sat(Cc, (R, RCS(R))), and
this probelm is NPTIME-complete.




In R?, a rather different picture emerges:

We know
Sat(RCC-8c, (R, RC(R?))) = Sat(RCC-8¢, (R, RCS(R?))).

The problem Sat(RCC-8¢, (R, D)), where D is the set of
disc-homeomorphs in the plane, is NPTIME-complete
(Schaefer, Sedgwick and Stefankovi¢, 2003).

It is then easy to show that Sat(RCC-8¢, (R, RCS)) is also
NPTIME-complete.

However, we have

Sat(Be, (R, RC(R?))) # Sat(Bc, (R, RCS(R?)))
Sat(Ce, (R, RC(R?))) # Sat(Cc, (R, RCS(R?))).

The decidability of these problems is not known.




e Conceptual summary:
<k >k

— Topological langauges: RCC-8, B, C, S4,, plus ¢, ¢
— Topological frame classes: ALL, REGC, {(R", RCS(R™))}.

e Technical summary:

RC(R) RCS(R) RC(R?) RCS(R?)
RCC-8¢ NP >NP < PSPACE NP NP NP
RCC-8cc NP >NP < PSpace >NP< ExpTIME >NP < NExXpPTIME >NP < NEXPTIME
Bec | EXPTIME NP NP > PSPACE > PSPACE
Cc | EXPTIME PSrACE PSrACE > ExPTIME > ExXPTIME
NExPTIME > NP< PSPACE > NP > PSPACE > PSPACE
NEXPTIME PSprACE > PSPACE > NEXPTIME > NEXPTIME

ALL R S(R) R2 S(R?%)
ExpTiME  PSPACE PSPACE > EXpPTIME > EXpPTIME

NExrTiIME PSprace PSpacE > NExXxPTIME > NEXPTIME




