

Computational Complexity of Topological Logics

Ian Pratt-Hartmann School of Computer Science Manchester University

(Joint work with Roman Kontchakov and Michael Zakharyaschev.)

Summer Conference on Topology and its Applications Brno, 14th–17th July, 2009 • A well-known fact:

Suppose r_1 and r_2 are subsets of a topological space with r_1 included in r_2 and r_2 included in the closure of r_1 . If r_1 connected, then so is r_2 .

• We might write this in symbols as follows

 $c(r_1) \wedge r_1 \subseteq r_2 \wedge r_2 \subseteq r_1^- \to c(r_2).$

- Once we are working in a formal language, the following issue become salient:
 - decidability and complexity
 - expresive power
 - axiomatizability
 - model theory.

- A topological language is a formal language with (object) variables $\mathbf{R} = \{r_1, r_2, \ldots\}$, whose non-logical signature is given a fixed 'topological' interpretation (e.g. $\mathbf{0}, -, \mathbf{c}, \subseteq, \ldots$).
- A topological frame is a pair $\mathfrak{F} = (T, W)$, where T is a topological space and $W \subseteq 2^T$. A topological interpretation is a pair $\mathfrak{A} = (\mathfrak{F}, \cdot^{\mathfrak{A}})$, where $\mathfrak{F} = (T, W)$ is a topological frame and $\cdot^{\mathfrak{A}}$ a function $\mathbf{R} \to W$.
- The notions of truth in an interpretation and satisfiability (dually: validity) over a frame (or class of frames) are understood as expected ...
- If \mathcal{K} is a class of frames, we denote the satisfiability problem for \mathcal{L} -formulas over a class of frames \mathcal{K} by $Sat(\mathcal{L}, \mathcal{K})$.

• The most basic class of frames to consider is:

 $ALL = \{ (T, 2^T) \mid T \text{ a topological space} \}.$

Are there any others we should look at?

- Recall that a regular closed set is one that is equal to the closure of its interior: $u = u^{\circ -}$.
- The regular closed sets of any topological space T form a Boolean algebra:

$$u + v = u \cup v,$$
 $u \cdot v = (u \cap v)^{\circ -},$ $-u = (T \setminus u)^{-}$

We denote the set of regular closed subsets of T by $\mathbf{RC}(T)$.

• We shall be interested in the frame class

 $REGC = \{ (T, \mathbf{RC}(T)) \mid T \text{ a topological space} \}.$

and some of its sub-classes.

• Perhaps the most intensively studied topological language is *RCC-8* (Randall, Cui, Cohn, 1992; Egenhoffer 1991):

• Example of a formula valid over REGC:

 $(\mathsf{TPP}(r_1, r_2) \land \mathsf{NTPP}(r_1, r_3)) \rightarrow$

 $(\mathsf{PO}(r_2, r_3) \lor \mathsf{TPP}(r_2, r_3) \lor \mathsf{NTPP}(r_2, r_3))$

The problem Sat(RCC-8, REGC) is NPTIME-complete (Renz, 1998); the satisfiability problem for conjunctions of RCC-8-literals is NLOGSPACE-complete (Griffiths, 2007).

- The language C (Wolter and Zakharyaschev, 2000) adds Boolean operators to this language, i.e. we have the primitives
 0, 1, +, ·, - (with the obvious interpretations), in addition to the *RCC*-8-predicates.
- The following C-formula is valid over REGC:

 $\mathsf{EC}(r_1 + r_2, r_3) \leftrightarrow \left(\mathsf{EC}(r_1, r_3) \lor \mathsf{EC}(r_2, r_3)\right)$

- The problem Sat(C, REGC) is still NPTIME-complete.
- Using the function symbols +, \cdot and -, we can replace the \mathcal{RCC} -8-predicates with the single binary relation of contact:

 $C(r_1, r_2)$ iff $r_1 \cap r_2 = \emptyset$.

For instance, the literal $\mathsf{EC}(\tau_1, \tau_2)$ can be expressed as

 $C(\tau_1,\tau_2)\wedge\tau_1\cdot\tau_2=\mathbf{0}.$

• A more familiar example: let $S4_u$ be the topological language with primitives

- **0**, **1**

- -, ° (topological interior)
- \cup , , (complement in whole space).
- The following $S4_u$ -formula is valid over the class ALL.

 $r_1 \cap r_2^{\circ} = \mathbf{0} \to r_1^- \cap r_2^{\circ} = \mathbf{0}$

• We may write it in the syntax of modal logic, under the topological semantics of McKinsey and Tarski (1944):

 $\mathcal{U}\neg(p_1\wedge\Box p_2)\rightarrow\mathcal{U}\neg(\Diamond p_1\wedge\Box p_2).$

• The satisfiability problem for this logic is known to be **PSPACE-complete** (Ladner, 1977).

- None of the languages in the previous summary features the convexity predicate c.
- Define the languages \mathcal{RCC} -8c, \mathcal{Cc} and $\mathcal{S4}_u c$ by adding c to \mathcal{RCC} -8, \mathcal{C} and $\mathcal{S4}_u$, repectively.
 - The following Cc-formula is valid over REGC:

 $c(r_1) \wedge c(r_2) \wedge C(r_1, r_2) \rightarrow c(r_1 + r_2).$

– The following $S4_uc$ -formula is valid over ALL:

 $c(r_1) \wedge r_1 \subseteq r_2 \wedge r_2 \subseteq r_1^- \to c(r_2).$

- More ambitiously, we can add the predicates
 - $c^{\leq k}$ (has at most k components)
 - $-c^{\geq k}$ (has at least k components)

for all $k \ge 0$.

- This gives us the languages \mathcal{RCC} -8*cc*, \mathcal{Ccc} and $\mathcal{S}4_ucc$.
 - The following Ccc-formula is valid over REGC:

 $(c^{\leq k}(r_1) \wedge c^{\leq \ell}(r_2) \wedge C(r_1, r_2)) \rightarrow c^{\leq \ell+k-1}(r_1+r_2).$

• What can we say about the complexity of the satisfiability problems for these langauges?

- The language Cc exhibits some interesting behaviour: let Cc^1 be the restriction of Cc to formulas containing at most one one occurrence of c.
- Given the variables r_n, \ldots, r_1 , we can number the various terms $\pm r_n \cdot \cdots \cdot \pm r_1$ as

 $\tau_0 \cdot \cdots \cdot \tau_{2^n-1}$.

We may assume that, in the term τ_j $(0 \le j < 2^n)$, the *i*th factor (i.e. r_1 or $-r_i$) specifies the *i*th bit of *j*.

• We can write a Cc-formula enforcing the condition

 $\neg C(\tau_i, \tau_j)$ for all $0 \le i < j < 2^n$ with j - i > 1.

with the size of this formula polynomial in n.

• Thus, the Cc^1 -formula

$$\left(\bigwedge_{j-i>1} \neg C(\tau_i, \tau_j)\right) \land \tau_0 \neq \mathbf{0} \land \tau_{2^n-1} \neq \mathbf{0} \land c(\mathbf{1})$$

forces an exponentially long 'chain', e.g.:

- This allows us to encode computations of any polynomial-space-bounded Turing machine.
- As a result, we have:

 $Sat(Cc^1, REGC)$ is PSPACE-hard.

• A matching upper bound is available:

 $\mathcal{S}at(\mathcal{S}4_uc^1, \text{REGC})$ is in PSPACE.

- What happens if we are allowed the full power of Cc?
- With just two occurrences of c, we can 'enforce' the following configuration:

c(Blue + 1 + Dark red + 2 + Light red + 3 + Green)c(Red + a + Dark blue + b + Light blue + c + Green)

• This structure can be viewed as a tree:

- This allows us to encode computations of any polynomial-space-bounded alternating Turing machine.
- As a result, we have:

Sat(Cc, REGC) is EXPTIME-hard

• A matching upper bound is available:

 $Sat(S4_uc, REGC)$ is in EXPTIME.

- Actually, $\ensuremath{\mathcal{Cc}}\xspace$ -formulas can encode exponentially large grids.
- We take sequences of variables r_n, \ldots, r_1 and s_n, \ldots, s_1 , using them to encode pairs of numbers (i, j) $(0 \le i, j, < 2^n)$.
- And we use the number-coding tricks (familiar from Cc) to create a 'chess'-board pattern

with each square corresponding to a product

 $\pm r_n \cdot \cdots \cdot \pm r_1 \cdot \pm s_n \cdot \cdots \cdot \pm s_1.$

and the grid connectivity represented by C.

• In the larger language $\mathcal{C}cc$, we can add formulas

 $c^{\leq 2^{n-1}}((r_0 \cdot s_0) + (-r_0 \cdot -s_0)) \quad c^{\leq 2^{n-1}}((r_0 \cdot -s_0) + (-r_0 \cdot s_0)).$

• This enforces connectedness of each of the 2^{n-1} black squares and each of the 2^{n-1} white squares:

• As a result, we have:

Sat(Ccc, REGC) is NEXPTIME-hard.

• A matching upper bound is available:

 $\mathcal{S}at(\mathcal{S}4_ucc, \operatorname{RegC})$ is in NEXPTIME.

- We mention in passing that, in the presence of the connectedness predicate, we can drop the predicate C in the languages Cc and Ccc.
- Thus, $\mathcal{B}c$ is defined by the signature

 $\mathbf{0}, \quad \mathbf{1}, \quad +, \quad \cdot, \quad c$

and $\mathcal{B}cc$ is defined by the signature

 $\mathbf{0}, \quad \mathbf{1}, \quad +, \quad \cdot, \quad c^{\leq k}, \quad c^{\geq k}$

where $k \geq 0$.

• This reduces expressive power, but not complexity: $Sat(\mathcal{B}c, \operatorname{REGC})$ is EXPTIME-complete; $Sat(\mathcal{B}cc, \operatorname{REGC})$ is NEXPTIME-complete.

- Finally, we consider what happens when the languages \mathcal{RCC} -8c, $\mathcal{C}c$ and $\mathcal{C}c$ are interpreted over low-dimensional Euclidean spaces.
- For the spaces \mathbb{R}^n , it is natural to consider the frames
 - $-(\mathbb{R}^n, \mathbf{RC}(\mathbb{R}^n))$ —the regular closed sets in \mathbb{R}^n ;
 - $-(\mathbb{R}^n, \mathbf{RCS}(\mathbb{R}^n))$ —the reg. closed semi-algebraic sets in \mathbb{R}^n .
- Recall that the semi-algebraic sets count as 'tame':
 - They have finitely many components
 - They have the 'curve-selection' property

• Consider the \mathcal{RCC} -8c-formula

$$c(r_1) \wedge \bigwedge_{1 \leq i < j \leq 4} \mathsf{EC}(r_i, r_j).$$

• This formula is satisfiable over $(\mathbb{R}, \mathbf{RC}(\mathbb{R}))$, e.g. by

But it is not satisfiable over $(\mathbb{R}, \mathbf{RCS}(\mathbb{R}))$.

- Thus, $Sat(\mathcal{RCC}-8c, (\mathbb{R}, \mathbf{RC}(\mathbb{R}))) \neq Sat(\mathcal{RCC}-8c, (\mathbb{R}, \mathbf{RCS}(\mathbb{R}))).$
- We know that: $Sat(\mathcal{RCC}-8c, (\mathbb{R}, \mathbf{RCS}(\mathbb{R})))$ is NPTIME-complete; $Sat(\mathcal{RCC}-8c, (\mathbb{R}, \mathbf{RC}(\mathbb{R})))$ is NPTIME-hard and in PSPACE.
- Also: $Sat(Cc, (\mathbb{R}, \mathbb{R}C(\mathbb{R}))) \neq Sat(Cc, (\mathbb{R}, \mathbb{R}CS(\mathbb{R})))$, and both these problems are PSPACE-complete.
- However: $Sat(\mathcal{B}c, (\mathbb{R}, \mathbb{R}C(\mathbb{R}))) = Sat(\mathcal{C}c, (\mathbb{R}, \mathbb{R}CS(\mathbb{R})))$, and this probelm is NPTIME-complete.

- In \mathbb{R}^2 , a rather different picture emerges:
- We know

 $\mathcal{S}at(\mathcal{RCC}-8c,(\mathbb{R},\mathbf{RC}(\mathbb{R}^2)))=\mathcal{S}at(\mathcal{RCC}-8c,(\mathbb{R},\mathbf{RCS}(\mathbb{R}^2))).$

- The problem Sat(RCC-8c, (R, D)), where D is the set of disc-homeomorphs in the plane, is NPTIME-complete (Schaefer, Sedgwick and Štefankovič, 2003).
- It is then easy to show that $Sat(\mathcal{RCC}-8c, (\mathbb{R}, \mathbf{RCS}))$ is also NPTIME-complete.
- However, we have

 $\begin{aligned} &\mathcal{S}at(\mathcal{B}c,(\mathbb{R},\boldsymbol{RC}(\mathbb{R}^2))) &\neq \quad \mathcal{S}at(\mathcal{B}c,(\mathbb{R},\boldsymbol{RCS}(\mathbb{R}^2))) \\ &\mathcal{S}at(\mathcal{C}c,(\mathbb{R},\boldsymbol{RC}(\mathbb{R}^2))) &\neq \quad \mathcal{S}at(\mathcal{C}c,(\mathbb{R},\boldsymbol{RCS}(\mathbb{R}^2))). \end{aligned}$

The decidability of these problems is not known.

- Conceptual summary:
 - Topological langauges: \mathcal{RCC} -8, \mathcal{B} , \mathcal{C} , $\mathcal{S}4_u$ plus $c, c^{\leq k} c^{\geq k}$
 - Topological frame classes: ALL, REGC, $\{(\mathbb{R}^n, \mathbf{RCS}(\mathbb{R}^n))\}$.
- Technical summary:

	RegC	$RC(\mathbb{R})$		$oldsymbol{RCS}(\mathbb{R})$	${\it RC}({\mathbb R}^2)$	$oldsymbol{RCS}(\mathbb{R}^2)$
RCC-80	e NP	\geq NP \leq PSpace		NP	NP	NP
RCC-8ce	e NP	\geq NP \leq PSpace		\geq NP \leq ExpTime	\geq NP \leq NEXPTIN	Me \geq NP \leq NEXPTIME
Be	E EXPTIME	NP		NP	$\geq PSPACE$	$\geq PSPACE$
Co	E EXPTIME	PSpace		PSpace	$\geq ExpTime$	$\geq ExpTime$
Bce	e NEXPTIME	\geq NP \leq PSpace		$\geq NP$	$\geq PSPACE$	$\geq PSPACE$
Ссе	e NEXPTIME	PSpace		$\geq PSPACE$	\geq NEXPTIME	\geq NEXPTIME
[]						
	All	\mathbb{R}	$S(\mathbb{R})$	\mathbb{R}^2	$S(\mathbb{R}^2)$	
$\mathcal{S}4_u c$	EXPTIME	PSpace	PSpace	$\geq ExpTime$	$\geq EXPTIME$	
$S4_ucc$	NEXPTIME	PSpace	PSPACE	\geq NEXPTIME	\geq NEXPTIME	