
Computational Complexity of Topological Logics

Ian Pratt-Hartmann
School of Computer Science

Manchester University

(Joint work with Roman Kontchakov and Michael Zakharyaschev.)

Summer Conference on Topology and its Applications
Brno, 14th–17th July, 2009

1



• A well-known fact:

Suppose r1 and r2 are subsets of a topological space with
r1 included in r2 and r2 included in the closure of r1. If
r1 connected, then so is r2.

• We might write this in symbols as follows

c(r1) ∧ r1 ⊆ r2 ∧ r2 ⊆ r−1 → c(r2).

• Once we are working in a formal language, the following issue
become salient:

– decidability and complexity

– expresive power

– axiomatizability

– model theory.

2



• A topological language is a formal language with (object)
variables R = {r1, r2, . . .}, whose non-logical signature is given
a fixed ‘topological’ interpretation (e.g. 0, −, c, ⊆, . . . ).

• A topological frame is a pair F = (T,W ), where T is a
topological space and W ⊆ 2T . A topological interpretation is
a pair A = (F, ·A), where F = (T,W ) is a topological frame and
·A a function R→W .

• The notions of truth in an interpretation and satisfiability
(dually: validity) over a frame (or class of frames) are
understood as expected . . .

• If K is a class of frames, we denote the satisfiability problem for
L-formulas over a class of frames K by Sat(L,K).

3



• The most basic class of frames to consider is:

All = {(T, 2T ) | T a topological space}.

Are there any others we should look at?

• Recall that a regular closed set is one that is equal to the
closure of its interior: u = u◦− .

• The regular closed sets of any topological space T form a
Boolean algebra:

u+ v = u ∪ v, u · v = (u ∩ v)◦− , −u = (T \ u)−

We denote the set of regular closed subsets of T by RC(T ).

• We shall be interested in the frame class

RegC = {(T,RC(T )) | T a topological space}.

and some of its sub-classes.

4



• Perhaps the most intensively studied topological language is
RCC-8 (Randall, Cui, Cohn, 1992; Egenhoffer 1991):

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�
�
�
�

�
�
�
�

�
�
�
�

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������������
������
������
������

���
���
���
���

���
���
���
������

���
���

���
���
���

����
����
����
����

����
����
����
����

����
����
����

����
����
���� ������

������
������
������

NTPP(X, Y ) TPP(X, Y ) EQ(X, Y ) PO(X, Y ) DC(X, Y )EC(X, Y )

X Y X and Y

• Example of a formula valid over RegC:(
TPP(r1, r2) ∧ NTPP(r1, r3)

)
→(

PO(r2, r3) ∨ TPP(r2, r3) ∨ NTPP(r2, r3)
)

• The problem Sat(RCC-8,RegC) is NPTime-complete (Renz,
1998); the satisfiability problem for conjunctions of
RCC-8-literals is NLOGSpace-complete (Griffiths, 2007).

5



• The language C (Wolter and Zakharyaschev, 2000) adds
Boolean operators to this language, i.e. we have the primitives
0, 1, +, ·, − (with the obvious interpretations), in addition to
the RCC-8-predicates.

• The following C-formula is valid over RegC:

EC(r1 + r2, r3)↔
(
EC(r1, r3) ∨ EC(r2, r3)

)
• The problem Sat(C,RegC) is still NPTime-complete.

• Using the function symbols +, · and −, we can replace the
RCC-8-predicates with the single binary relation of contact:

C(r1, r2) iff r1 ∩ r2 = ∅.

For instance, the literal EC(τ1, τ2) can be expressed as

C(τ1, τ2) ∧ τ1 · τ2 = 0.

6



• A more familiar example: let S4u be the topological language
with primitives

– 0, 1

– −, ◦ (topological interior)

– ∪, , − (complement in whole space).

• The following S4u-formula is valid over the class All.

r1 ∩ r◦2 = 0→ r−1 ∩ r
◦
2 = 0

• We may write it in the syntax of modal logic, under the
topological semantics of McKinsey and Tarski (1944):

U¬(p1 ∧2p2)→U¬(3p1 ∧2p2).

• The satisfiability problem for this logic is known to be
PSpace-complete (Ladner, 1977).

7



• None of the languages in the previous summary features the
convexity predicate c.

• Define the languages RCC-8c, Cc and S4uc by adding c to
RCC-8, C and S4u, repectively.

– The following Cc-formula is valid over RegC:

c(r1) ∧ c(r2) ∧ C(r1, r2)→ c(r1 + r2).

– The following S4uc-formula is valid over All:

c(r1) ∧ r1 ⊆ r2 ∧ r2 ⊆ r−1 → c(r2).

8



• More ambitiously, we can add the predicates

– c≤k (has at most k components)

– c≥k (has at least k components)

for all k ≥ 0.

• This gives us the languages RCC-8cc, Ccc and S4ucc.

– The following Ccc-formula is valid over RegC:(
c≤k(r1) ∧ c≤`(r2) ∧ C(r1, r2)

)
→ c≤`+k−1(r1 + r2).

• What can we say about the complexity of the satisfiability
problems for these langauges?

9



• The language Cc exhibits some interesting behaviour: let Cc1

be the restriction of Cc to formulas containing at most one one
occurrence of c.

• Given the variables rn, . . . , r1, we can number the various
terms ±rn · · · · · ±r1 as

τ0 · · · · · · · · · · · τ2n−1.

We may assume that, in the term τj (0 ≤ j < 2n), the ith
factor (i.e. r1 or −ri) specifies the ith bit of j.

• We can write a Cc-formula enforcing the condition

¬C(τi, τj) for all 0 ≤ i < j < 2n with j − i > 1.

with the size of this formula polynomial in n.

10



• Thus, the Cc1-formula ∧
j−i>1

¬C(τi, τj)

∧τ0 6= 0 ∧ τ2n−1 6= 0 ∧ c(1)

forces an exponentially long ‘chain’, e.g.:

0 2n − 1

• This allows us to encode computations of any
polynomial-space-bounded Turing machine.

• As a result, we have:

Sat(Cc1,RegC) is PSpace-hard.

• A matching upper bound is available:

Sat(S4uc
1,RegC) is in PSpace.

11



• What happens if we are allowed the full power of Cc?

• With just two occurrences of c, we can ‘enforce’ the following
configuration:

1

a

b

2 3

c

a

b c

1

2 3

c(Blue + 1 + Dark red + 2 + Light red + 3 + Green)

c(Red + a + Dark blue + b + Light blue + c + Green)

12



• This structure can be viewed as a tree:

1

a

b

2 3

c

a

b c

1

2 3

⇒

• This allows us to encode computations of any
polynomial-space-bounded alternating Turing machine.

• As a result, we have:

Sat(Cc,RegC) is ExpTime-hard

• A matching upper bound is available:

Sat(S4uc,RegC) is in ExpTime.

13



• Actually, Cc-formulas can encode exponentially large grids.

• We take sequences of variables rn, . . . , r1 and sn, . . . , s1, using
them to encode pairs of numbers (i, j) (0 ≤ i, j, < 2n).

• And we use the number-coding tricks (familiar from Cc) to
create a ‘chess’-board pattern

with each square corresponding to a product

±rn · · · · · ±r1 · ±sn · · · · · ±s1.

and the grid connectivity represented by C.

14



• In the larger language Ccc, we can add formulas

c≤2n−1
((r0 · s0) + (−r0 · −s0)) c≤2n−1

((r0 · −s0) + (−r0 · s0)).

• This enforces connectedness of each of the 2n−1 black squares
and each of the 2n−1 white squares:

• As a result, we have:

Sat(Ccc,RegC) is NExpTime-hard.

• A matching upper bound is available:

Sat(S4ucc,RegC) is in NExpTime.

15



• We mention in passing that, in the presence of the
connectedness predicate, we can drop the predicate C in the
languages Cc and Ccc.

• Thus, Bc is defined by the signature

0, 1, +, ·, c

and Bcc is defined by the signature

0, 1, +, ·, c≤k, c≥k

where k ≥ 0.

• This reduces expressive power, but not complexity:

Sat(Bc,RegC) is ExpTime-complete;
Sat(Bcc,RegC) is NExpTime-complete.

16



• Finally, we consider what happens when the languages RCC-8c,
Cc and Cc are interpreted over low-dimensional Euclidean
spaces.

• For the spaces Rn, it is natural to consider the frames

– (Rn,RC(Rn))—the regular closed sets in Rn;

– (Rn,RCS(Rn))—the reg. closed semi-algebraic sets in Rn.

• Recall that the semi-algebraic sets count as ‘tame’:

– They have finitely many components

– They have the ‘curve-selection’ property

17



• Consider the RCC-8c-formula

c(r1) ∧
∧

1≤i<j≤4

EC(ri, rj).

• This formula is satisfiable over (R,RC(R)), e.g. by

r1 r3 r4r2r4

r2
r3

r4

But it is not satisfiable over (R,RCS(R)).

18



• Thus, Sat(RCC-8c, (R,RC(R))) 6= Sat(RCC-8c, (R,RCS(R))).

• We know that: Sat(RCC-8c, (R,RCS(R))) is
NPTime-complete; Sat(RCC-8c, (R,RC(R))) is NPTime-hard
and in PSpace.

• Also: Sat(Cc, (R,RC(R))) 6= Sat(Cc, (R,RCS(R))), and both
these problems are PSpace-complete.

• However: Sat(Bc, (R,RC(R))) = Sat(Cc, (R,RCS(R))), and
this probelm is NPTime-complete.

19



• In R2, a rather different picture emerges:

• We know
Sat(RCC-8c, (R,RC(R2))) = Sat(RCC-8c, (R,RCS(R2))).

• The problem Sat(RCC-8c, (R, D)), where D is the set of
disc-homeomorphs in the plane, is NPTime-complete
(Schaefer, Sedgwick and Štefankovič, 2003).

• It is then easy to show that Sat(RCC-8c, (R,RCS)) is also
NPTime-complete.

• However, we have

Sat(Bc, (R,RC(R2))) 6= Sat(Bc, (R,RCS(R2)))

Sat(Cc, (R,RC(R2))) 6= Sat(Cc, (R,RCS(R2))).

The decidability of these problems is not known.

20



• Conceptual summary:

– Topological langauges: RCC-8, B, C, S4u plus c, c≤k c≥k

– Topological frame classes: All, RegC, {(Rn,RCS(Rn))}.

• Technical summary:

RegC RC(R) RCS(R) RC(R2) RCS(R2)

RCC-8c NP ≥NP ≤ PSpace NP NP NP

RCC-8cc NP ≥NP ≤ PSpace ≥NP≤ ExpTime ≥NP ≤ NExpTime ≥NP ≤ NExpTime

Bc ExpTime NP NP ≥ PSpace ≥ PSpace

Cc ExpTime PSpace PSpace ≥ ExpTime ≥ ExpTime

Bcc NExpTime ≥ NP≤ PSpace ≥ NP ≥ PSpace ≥ PSpace

Ccc NExpTime PSpace ≥ PSpace ≥ NExpTime ≥ NExpTime

All R S(R) R2 S(R2)

S4uc ExpTime PSpace PSpace ≥ ExpTime ≥ ExpTime

S4ucc NExpTime PSpace PSpace ≥ NExpTime ≥ NExpTime

21


