

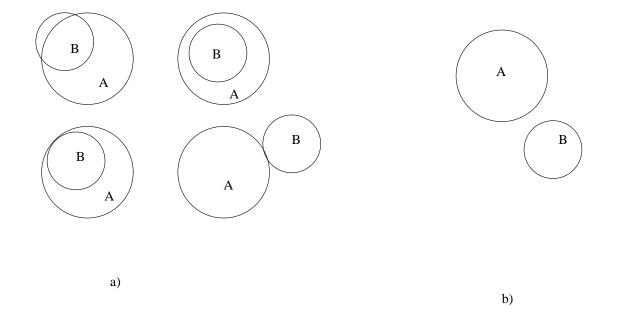
From Points to Regions (and back again)

Ian Pratt-Hartmann School of Computer Science Manchester University

Symposium on Logic and Physics University of Utrecht 11th January, 2008

- Most theories of space take points as the primitive entities.
- This postulation has always troubled some philosophers.
- What happens if we take *regions* rather than *points* as the primitive spatial entities, and *qualitative relations involving regions* as the primitive spatial relations?

- Whitehead (1920, 1929) proposed a system of postulates governing a primitive relation of 'contact'.
- This notion, being primitive, cannot be defined, but it can be illustrated by the following diagrams:



• A generally similar theory was proposed by De Laguna (1922).

- An alternative (and independent) approach to developing a region-based theory of space is illustrated by Tarski (1929):
 - begin with the familiar model of space as \mathbb{R}^3 ;
 - define a formal language with variables ranging over the set of spheres in this space, and the part-whole relation as the only primitive relation;
 - axiomatize the theory (in higher-order logic);
 - prove a categoricity result.
- Then the subject went very quiet, until, ...

- ... the revival of region-based theories of space in Artificial Intelligence in the 1990s.
- The primary objective of this work is to devise 'spatial representation languages', enabling quantification over regions while remaining within first-order logic.
- Issues of particular concern
 - computational complexity,
 - efficient practical automation,
 - expressive power.
- Note the shift in underlying motivation: computational inefficiency rather than epistemological hygiene.

- Whatever the motivation, this talk addresses the questions
 - What might region-based theories of space look like?
 - How should we go about developing them?
 - Which mathematical methods can we use to analyse them?
 - Are these theories technically interesting?
- For historical continuity (and simplicity!) we shall focus on topology.
- Remark: *proximity spaces* (Naimpally and Warrack).

- Two methodologies present themselves:
 - 1. the 'postulation-based' methodology of Whitehead and de Laguna (and much of the early AI work);
 - 2. the 'model-theoretic' strategy of Tarski.
- We opt for the latter. In more detail:
 - start with a familiar, point-based model of space;
 - select a collection of 'regions', understood as sets of points;
 - select a collection of non-logical constants representing primitive geometrical relations between regions, interpreted over the space in the standard way;
 - investigate the logical theory of these geometrical primitives.

- To fix ideas, let us
 - take our (point-based) model of space to be \mathbb{R}^2 ;
 - take Whitehead's contact relation C to be our only geometrical primitive, where this predicate is given the interpretation:

 $\langle r, s \rangle$ satisfies C iff $r^- \cap s^- \neq \emptyset$;

– take regions to be certain subsets of \mathbb{R}^2 .

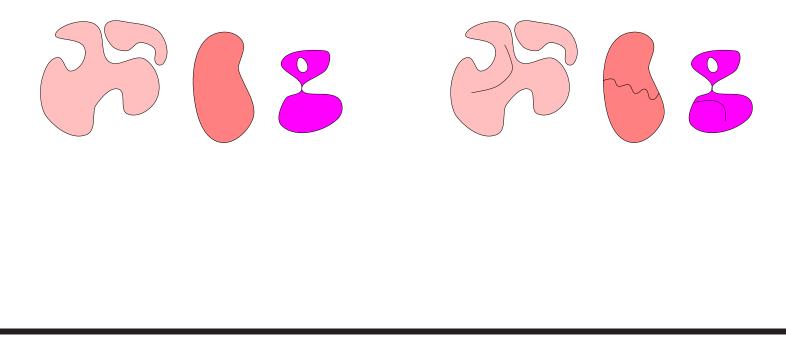
• We need to be clear about *which* subsets of \mathbb{R}^2 qualify as regions.

- Allowing *arbitrary* sets of points as regions is unlikely to yield an attractive spatial ontology: we want our regions to be 'region-like'.
- A subset x of a topological space X is regular open if it is equal to the interior of its closure:

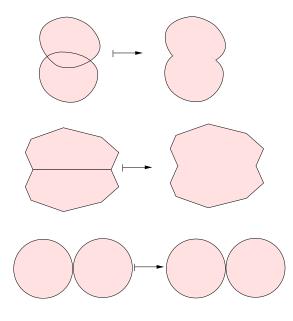
$$x = x^{-0}$$

• We propose (provisionally) that regions be simply the regular open subsets of \mathbb{R}^2 .

- If X is any topological space, we denote the collection of regular open subsets of X by RO(X).
- The elements of $RO(\mathbb{R}^2)$ are nice: they are the open sets with no internal cracks or point-holes



• **Theorem:** Let X be a topological space. Then $\operatorname{RO}(X)$ forms a Boolean algebra with top and bottom defined by 1 = X and $0 = \emptyset$, and Boolean operations defined by $x \cdot y = x \cap y$, $x + y = (x \cup y)^{-0}$ and $-x = (X \setminus x)^{0}$.



- Here, we have selected
 - our domain of regions to be $\mathrm{RO}(\mathbb{R}^2)$,
 - our set of geometrical primitives to be C.
- Notation:
 - denote the first-order language with the single non-logical primitive C by \mathcal{L}_C ;
 - denote the first-order theory of the structure $(\operatorname{RO}(\mathbb{R}^2), C)$ by $\operatorname{Th}_C(\operatorname{RO}(\mathbb{R}^2))$.
- Question:

What can we say about $\operatorname{Th}_C(\operatorname{RO}(\mathbb{R}^2))$?

• Of course, other sets of geometrical primitives are possible:

c(x)	x is connected
$x \le y$	" x is a part of y "
$\operatorname{conv}(x)$	" x is convex"
b(x)	x is bounded (has a compact closure)
• • •	•••

• Given any collection Σ of such primitives, we can ask:

What can we say about $\operatorname{Th}_{\Sigma}(\operatorname{RO}(\mathbb{R}^2))$?

 In fact, given any collection Σ of such primitives and any domain D of regions over some space (for which the primitives Σ are defined), we can ask:

What can we say about $\operatorname{Th}_{\Sigma}(D)$?

• It is worth considering a further example. Suppose we select the primitives to be

 $\Sigma = \{c, \leq\},$

and our domain of regions to be the regular opens of the one-point compactification of the Euclidean plane, i.e.

 $D = \mathrm{RO}(\dot{\mathbb{R}}^2).$

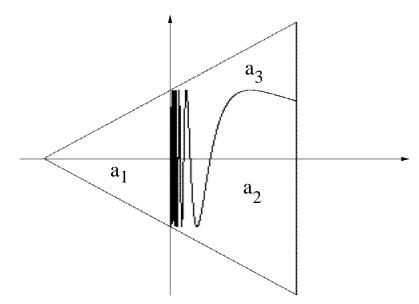
What can be say about $\operatorname{Th}_{c,\leq}(\operatorname{RO}(\dot{\mathbb{R}}^2))$?

• Let $\psi_{\text{no-wiggle}}$ be the $\mathcal{L}_{c,\leq}$ -sentence:

$$\forall x_1 \forall x_2 \forall x_3 \big(\big(\bigwedge_{1 \le i \le 3} c(x_i) \land c(x_1 + x_2 + x_3) \big) \rightarrow \\ \big(c(x_1 + x_2) \lor c(x_1 + x_3) \big) \big)$$

• In fact, $\operatorname{RO}(\dot{\mathbb{R}}^2) \not\models \psi_{\text{no-wiggle}}$, because ...

• ... $\operatorname{RO}(\dot{\mathbb{R}}^2)$ contains very wiggly regions:



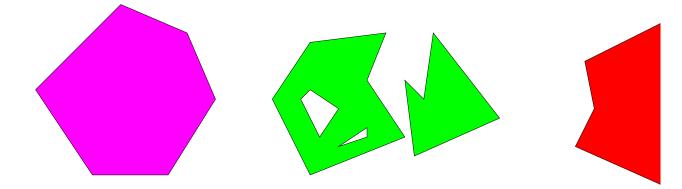
$$a_{1} = \{(x,y)| - 1 < x < 0 ; -1 - x < y < 1 + x\}$$

$$a_{2} = \{(x,y)|0 < x < 1 ; -1 - x < y < \sin(1/x)\}$$

$$a_{3} = \{(x,y)|0 < x < 1 ; \sin(1/x) < y < 1 + x\}$$

• Do we want our spatial ontology to include these regions?

- Define a *half-plane* (in $\dot{\mathbb{R}}^2$) to be one of the residual domains of a straight line; all half-planes are regular open.
- Define a polygon (in R²) to be a finite Boolean combination of half-planes in RO(R²).



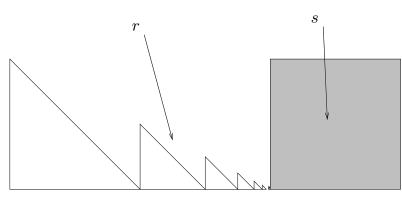
- Denote by $ROP(\dot{\mathbb{R}}^2)$ the set of polygons in the closed plane.
- Obviously, $\operatorname{ROP}(\dot{\mathbb{R}}^2)$ is a Boolean subalgebra of $\operatorname{RO}(\mathbb{R}^2)$.

- Remark: we might alternatively call the regular open polygons the regular open semi-linear sets in \mathbb{R}^2 .
- It can be shown that $\operatorname{ROP}(\dot{\mathbb{R}}^2) \models \psi_{\text{no-wiggle}}$. That is: $\operatorname{RO}(\dot{\mathbb{R}}^2) \not\equiv_{c,\leq} \operatorname{ROP}(\dot{\mathbb{R}}^2).$
- Moral: it matters what counts as a 'region'.

- Here is a further difference between $RO(\dot{\mathbb{R}}^2)$ and $ROP(\dot{\mathbb{R}}^2)$.
- Let $\Sigma = (C, c, \leq)$, and let ψ_{inf} be the L_{Σ} -sentence

 $\forall x \forall y (C(x, y) \to \exists z (c(z) \land z \leq y \land C(x, z))).$

• Again, we have $\operatorname{RO}(\dot{\mathbb{R}}^2) \not\models \phi$, because of the configuration:



• By contrast, $\operatorname{ROP}(\dot{\mathbb{R}}^2) \models \phi$.

- The regions in $ROP(\dot{\mathbb{R}}^2)$ are all *tame*, in the following sense:
 - They exhibit curve-selection: if r is a region, and $q \in \mathcal{F}(r)$, then there exists a Jordan arc have end q as one of its endpoints, lying in $r \cup \{q\}$.
 - They are all finitely decomposable: each region is the sum of finitely many connected regions.
- These properties make $\text{ROP}(\dot{\mathbb{R}}^2)$ much easier to work with than $\text{RO}(\dot{\mathbb{R}}^2)$ —so let us do that.

- Having (provisionally) chosen our collection of regions, let us revisit the choice of topological primitives.
- The language \mathcal{L}_C has at least as much expressive power over $\operatorname{ROP}(\dot{\mathbb{R}}^2)$ as does $\mathcal{L}_{c,\leq}$:
 - The \mathcal{L}_C -formula $\phi_{\leq}(x, y) := \forall z (C(x, z) \to C(y, z))$ is satisfied in ROP (\mathbb{R}^2) by a pair (a, b) iff $a \leq b$.
 - There exists a (more complicated) \mathcal{L}_C -formula $\phi_c(x)$, such that $\phi_c(x)$ is satisfied in ROP(\mathbb{R}^2) by *a* iff *a* is connected.
- These results are *robust*—they work for almost any sensible collection of regions (over almost any topological space).
- In particular, over the polygons in the *open* plane (defined analogously), \mathcal{L}_C has at least as much expressive power as $\mathcal{L}_{c,\leq}$.

- Conversely, the language $\mathcal{L}_{c,\leq}$ has at least as much expressive power over $\operatorname{ROP}(\dot{\mathbb{R}}^2)$ as does \mathcal{L}_C :
 - There exists a (complicated) $\mathcal{L}_{c,\leq}$ -formula $\psi_C(x,y)$, such that $\psi_C(x,y)$ is satisfied in $\operatorname{ROP}(\dot{\mathbb{R}}^2)$ by a pair (a,b) iff $a^- \cap b^- \neq \emptyset$.
- This result is *fragile*: it relies on global topological features of the space \mathbb{R}^2 .
 - In particular, over the polygons in the *open* plane, $\mathcal{L}_{c,\leq}$ is strictly less expressive than \mathcal{L}_C . For example, \mathcal{L}_C can define the property of being bounded, but $\mathcal{L}_{c,\leq}$ cannot.
- Nevertheless, we have enough motivatation for studying $\operatorname{Th}_{c,\leq}(\operatorname{ROP}(\dot{\mathbb{R}}^2)).$

• Now we have a question which we can answer:

What can we say about $\operatorname{Th}_{c,\leq}(\operatorname{ROP}(\dot{\mathbb{R}}^2))$?

- As an aside:
 - Considered as $\{c, \leq\}$ -structures, $\text{ROP}(\dot{\mathbb{R}}^2)$ and $\text{ROP}(\mathbb{R}^2)$ are isomorphic:

 $\operatorname{ROP}(\dot{\mathbb{R}}^2) \simeq_{c,\leq} \operatorname{ROP}(\mathbb{R}^2);$

– however, as $\{C\}$ -structures, they are not even elementarily equivalent:

 $\operatorname{ROP}(\dot{\mathbb{R}}^2) \not\equiv_C \operatorname{ROP}(\mathbb{R}^2).$

- We can characterize $\operatorname{Th}_{c,\leq}(\operatorname{ROP}(\dot{\mathbb{R}}^2))$ axiomatically as follows:
 - 1. the usual axioms of non-trivial Boolean algebra;
 - **2.** two axioms concerning the interaction between c and \leq , e.g. the axiom

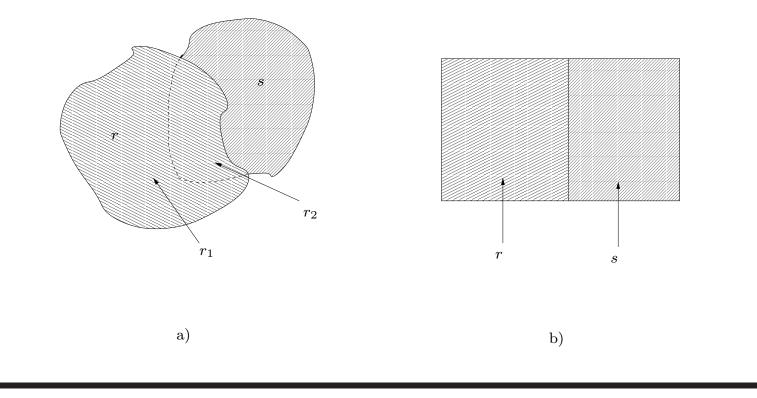
$$\forall x \forall y (c(x) \land c(y) \land x \cdot y \neq 0 \to c(x+y));$$

3. two planarity axioms, e.g.

$$\neg \exists x_1 \dots \exists x_5 \Big(\bigwedge_{1 \le i \le 5} (c(x_i) \land x_i \ne 0) \land \\ \bigwedge_{1 \le i < j \le 5} (c(x_i + x_j) \land x_i \cdot x_j = 0) \Big);$$

4. two axioms to do with partitioning up regions, e.g.

$$\begin{aligned} \forall x \forall y \big(x \cdot y &= 0 \land \\ x, y \text{ and } -(x+y) \text{ are non-empty and connected} \rightarrow \\ \exists u \exists v \big(u_1 \text{ and } u_2 \text{ partition } x \\ \land c(u_1+y) \land \neg c(u_1+-(x+y)) \\ \land c(u_2+-(x+y)) \land \neg c(u_2+y) \big) \big); \end{aligned}$$



5. the infinitary rule of inference

$$\frac{\{\forall x(\psi_{\rm c}^n(x) \to \phi(x)) \mid n \ge 1\}}{\forall x \phi(x)},$$

where $\psi_{c}^{n}(x)$ stands for the formula

$$\exists z_1 \dots \exists z_n \Big(\bigwedge_{1 \le i \le n} c(z_i) \land (x = z_1 + \dots + z_n)\Big)$$

("If a property holds of all n-component regions, for all n, then it holds of all regions").

• Let $T_{c,\leq}$ denote the set of sentences which are consequences of the above axioms and the infinitary proof rule.

Theorem: $T_{c,\leq} = \operatorname{Th}_{c,\leq}(\operatorname{RO}(\dot{\mathbb{R}}^2)).$

Proof: Take a model of $T_{c,\leq}$ in which every element is the sum of finitely many elements (using the infinitary rule of inference and the omitting types theorem); embed it in $\operatorname{ROP}(\mathbb{R}^2)$ (using the planarity axioms), and show that the embedding is elementary (using the splitting axioms).

- This gives us a very quick method of checking whether alternative choices of the domain of regions yield the same first-order theory. In particular, we consider
 - The regular open *rational* polygons, $\text{ROQ}(\dot{\mathbb{R}}^2)$.

- The regular open *semialgebraic* sets, $ROS(\dot{\mathbb{R}}^2)$.

- Note that $\operatorname{ROQ}(\dot{\mathbb{R}}^2) \subset \operatorname{ROP}(\dot{\mathbb{R}}^2) \subset \operatorname{ROS}(\dot{\mathbb{R}}^2)$.
- These collections of regions also satisfy curve selection and finite decomposability.
- It is also easy to check that they make the above axioms true and validate the infinitary rule of inference. Hence

$$\operatorname{ROQ}(\dot{\mathbb{R}}^2) \equiv_{c,\leq} \operatorname{ROP}(\dot{\mathbb{R}}^2) \equiv_{c,\leq} \operatorname{ROS}(\dot{\mathbb{R}}^2).$$

• We can generalize this observation:

Definition: Let X be a topological space. A mereotopology over X is a Boolean sub-algebra M of RO(X) such that M forms a basis for the topology on X.

- Thus, $\text{ROQ}(\dot{\mathbb{R}}^2)$, $\text{ROP}(\dot{\mathbb{R}}^2)$ and $\text{ROS}(\dot{\mathbb{R}}^2)$ are all mereotopologies over $\dot{\mathbb{R}}^2$.
- Where M is clear from context, we refer its elements as *regions*.

- A word on etymology:
 - Mereology (Leśniewski): the logic of the part-whole relationship (\leq).
 - Mereotopology is simply the study of topological spaces with regions functioning as the primary objects.
- I am not sure where the term 'mereotopology' first appeared in print.

- Now for the generalization:
 - **Theorem:** All finitely decomposable mereotopologies over \mathbb{R}^2 having curve-selection, and satisfying the above 'splitting axiom' have the same $L_{c,\leq}$ -theory (and hence the same L_C -theory).
- Actually, the following can be shown:

Theorem: All splittable, finitely decomposable mereotopologies over \mathbb{R}^2 with curve-selection have the same L_{Σ} -theory for any topological signature Σ .

- Let us return to the issue of expressive power of $\mathcal{L}_{c,\leq}$ over $\operatorname{ROP}(\dot{\mathbb{R}}^2)$:
- Note that any tuple \bar{r} from ROP($\dot{\mathbb{R}}^2$) can be 'triangulated' with finitely many 'triangles'.
- These triangles can be combinatorially described in $\mathcal{L}_{c,<}$.
- This (almost) immediately yields the following result.
 Theorem: For every tuple *r̄* of ROP(R²), there exists an *L*_{c,≤}-formula φ_{*ī*}(*x̄*) such that, for every tuple *s̄* of ROP(R²), *s̄* satisfies φ_{*ī*}(*x̄*) iff *ī* and *s̄* are similarly situated.

- Actually, this observation, combined with some elementary model theory, yields a much more interesting result.
- Recall that a structure \mathfrak{A} is said to be *prime* if it is elementarily embeddable in every other model of its theory.
- Prime models (where they exist) are unique up to isomorphism, and are considered 'simplest' models of their respective theories.
- We have:

Theorem: The $\{c, \leq\}$ -structure $\operatorname{ROQ}(\dot{\mathbb{R}}^2)$ is a prime model of $T_{c,\leq}$.

- Yet more follows from the same line of argument.
- We can generalize the notion of *finite decomposability* to general structures interpreting $\mathcal{L}_{c,\leq}$ in the obvious way. Doing so, we obtain:
 - **Theorem:** All countable, finitely decomposable models of $T_{c,\leq}$ are isomorphic.
- Thus, we can get very close to characterizing the rational polygons in the closed Euclidean plane axiomatically, using either the language $\mathcal{L}_{c,\leq}$ or the language \mathcal{L}_C .

- The last theorem states that any countable, finitely decomposable model \mathfrak{A} of $T_{c,\leq}$ is, up to isomorphism, the same as the mereotopology $\operatorname{ROQ}(\mathbb{R}^2)$.
- In fact, switching to the language L_C (which we may do), it turns out that $\operatorname{ROQ}(\dot{\mathbb{R}}^2)$ is almost the only mereotopology \mathfrak{A} is the same as:
 - **Theorem:** Let M be a countable, finitely decomposable mereotopology over a locally connected, compact, Hausdorff space X, such that $\operatorname{Th}_C(M) = \operatorname{Th}_C(\operatorname{ROQ}(\dot{\mathbb{R}}^2))$. Then there is a homeomorphism $h: X \leftrightarrow \dot{\mathbb{R}}^2$ taking M to $\operatorname{ROQ}(\dot{\mathbb{R}}^2)$.

- We can link this last result back to a completely separate development in topology originating in the study of "proximity spaces".
- **Definition:** A contact algebra is a structure interpreting the signature $(C, \leq, +, \cdot, -, 0, 1)$ satisfying the usual axioms of Boolean algebra together with

$$(C0) \forall x \neg C(x, 0)$$

$$(C1) \forall x(x > 0 \rightarrow C(x, x))$$

$$(C2) \forall x \forall y(C(x, y) \rightarrow C(y, x))$$

$$(C3) \forall x \forall y(C(x, y) \land y \leq z \rightarrow C(x, z))$$

$$(C4) \forall x \forall y(C(x, y + z) \rightarrow C(x, y) \lor C(x, z))$$

• We consider also the following additional axioms:

(Ext)
$$\forall x \forall y (\forall z (C(x, z) \to C(y, z)) \to x \leq y)$$

(Int) $\forall x \forall y (\neg C(x, y) \to \exists z (\neg C(x, -z) \land \neg C(y, z)))$
(Con) $\forall x \forall y (x + y = 1 \land x > 0 \land y > 0 \to C(x, y)).$

- A topological space is semi-regular if it has a basis of regular open sets; a topological space is weakly regular if it is semi-regular and, for any non-empty open set u, there exists a non-empty open set v with v⁻ ⊆ u.
- X is regular \Rightarrow X is weakly regular \Rightarrow X is semi-regular.

Theorem: Let X be a topological space, and let M be a mereotopology over X, regarded as a structure interpreting the signature $(C, \leq, +, \cdot, -, 0, 1)$. Then $M \models (C0)-(C4)$. In addition:

- 1. If X is weakly regular, then $M \models (Ext)$.
- 2. If X is compact and Hausdorff, then $M \models (Int)$.
- 3. If X is connected, then $M \models (Con)$.

Proof: Routine.

- **Theorem:** (Dimov and Vakarelov, 2006) Let \mathfrak{A} be a structure interpreting $(C, \leq, +, \cdot, -, 0, 1)$, whose reduct to $(\leq, +, \cdot, -, 0, 1)$ is a Boolean algebra. If $\mathfrak{A} \models (C0)-(C4)$, then \mathfrak{A} is isomorphic to a mereotopology over some topological space X. Moreover:
 - 1. if $\mathfrak{A} \models (Ext)$, then X can be chosen to be weakly regular (Düntsch and Winter, 2004);
 - 2. if $\mathfrak{A} \models (Int)$ and (Ext), then X can be chosen to be compact and Hausdorff (Roeper, 1997); and
 - 3. if $M \models (Con)$, then X can be chosen to be connected.

Proof sketch: Define the points of X to be ultrafilter-like subsets of A; define a mapping $g: A \to \mathbb{P}(X)$ by

 $g(a) = \{ x \in X \mid a \in X \};$

use these sets as the basis of a topology.

- Thus, the classes of mereotopologies over
 - all topological spaces
 - weakly regular topological spaces
 - compact, Hausdorff topological spaces

can be axiomatically characterized

• Cf. our earlier result that the rational polygons can be *almost* axiomatically characterized.

- Returning to region based theories of familiar spaces, of obvious interest are tame mereotopologies over \mathbb{R}^3 (or $\dot{\mathbb{R}}^3$).
- Here, the language $\mathcal{L}_{c,\leq}$ is too inexpressive to be of much interest. However, \mathcal{L}_C is again maximally expressive, in the same sense as it is for $\operatorname{ROP}(\mathbb{R}^2)$:
 - **Theorem:** For every tuple \bar{r} of $\operatorname{ROP}(\mathbb{R}^3)$, there exists an \mathcal{L}_C -formula $\phi(\bar{x})$ such that, for every tuple \bar{b} of $\operatorname{ROP}(\mathbb{R}^3)$, \bar{b} satisfies $\phi(\bar{x})$ iff \bar{a} and \bar{b} are similarly situated.
 - **Proof:** Show that 'triangulations' can be combinatorially described by \mathcal{L}_C -formulas.
- This means that Th(ROP(R³)) must display similar model-theoretic characteristics to Th(ROP(R²)). In particular Theorem: The {C}-structure ROQ(R³) is a prime model of its theory.
- As for axiomatization, ...

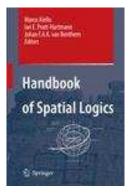
- We have concentrated on topology, but that is largely for historical reasons.
- Consider the langauge $\mathcal{L}(\text{conv}, \leq)$ (Pratt 1999, Davis, Gotts and Cohn, 1999).
- It is simple to show that:
 - $\operatorname{ROQ}(\mathbb{R}^2)$, $\operatorname{ROP}(\mathbb{R}^2)$, $\operatorname{ROS}(\mathbb{R}^2)$ and $\operatorname{RO}(\mathbb{R}^2)$ all have different $\mathcal{L}(\operatorname{conv}, \leq)$ -theories;
 - every tuple \bar{r} of regions from $\operatorname{ROQ}(\mathbb{R}^2)$, satisfies a formula which fixes \bar{r} up to an affine transformation;
 - every tuple \bar{r} of regions from $\operatorname{ROP}(\mathbb{R}^2)$, satisfies a set of formulas which fix \bar{r} up to an affine transformation.
- This (and more expressive) region-based theories remain, however, largely unexplored.

- Time to summarize:
 - We recalled early interest in region-based theories of space, which were motivated by concerns about the distance between theories of space and empirical data.
 - We translated this interest into questions of the form

What can we say about $\operatorname{Th}_{\Sigma}(D)$?

for a signature of geometrical primitives Σ and domain of regions D.

 We gave a reasonably full answer to this question for topological signatures of primitives. • Many of the results reported here can be found in



Ian Pratt-Hartmann: "First-Order Mereotopology", in Aiello, Pratt-Hartmann and van Benthem (eds.), *Handbook of Spatial Logics*, Springer, 2007.