
Reasoning over Extended ER Models

A. Artale1, D. Calvanese1, R. Kontchakov2, V. Ryzhikov1, M. Zakharyaschev2

1 Faculty of Computer Science
Free University of Bozen-Bolzano

I-39100 Bolzano, Italy
lastname@inf.unibz.it

2 School of Comp. Science and Inf. Sys.
Birkbeck College

London WC1E 7HX, UK
{roman,michael}@dcs.bbk.ac.uk

Abstract. We investigate the computational complexity of reasoning over var-
ious fragments of the Extended Entity-Relationship (EER) language, which in-
cludes a number of constructs: ISA between entities and relationships, disjoint-
ness and covering of entities and relationships, cardinality constraints for enti-
ties in relationships and their refinements as well as multiplicity constraints for
attributes. We extend the known EXPTIME-completeness result for UML class
diagrams [5] and show that reasoning over EER diagrams with ISA between re-
lationships is EXPTIME-complete even without relationship covering. Surpris-
ingly, reasoning becomes NP-complete when we drop ISA between relationships
(while still allowing all types of constraints on entities). If we further omit dis-
jointness and covering over entities, reasoning becomes polynomial. Our lower
complexity bound results are proved by direct reductions, while the upper bounds
follow from the correspondences with expressive variants of the description logic
DL-Lite , which we establish in this paper. These correspondences also show the
usefulness of DL-Lite as a language for reasoning over conceptual models and
ontologies.

1 Introduction

Conceptual modelling formalisms, such as the Entity-Relationship model [3], are used
in the phase of conceptual database design, where the aim is to capture at best the
semantics of the modelled application. This is achieved by expressing the constraints
that hold on the entities, attributes and relationships, which represent the domain of
interest, through suitable constructors provided by the conceptual modelling language.
Thus, on the one hand it would be desirable to make such a language as expressive
as possible in order to represent as many aspects of the modelled reality as possible.
On the other hand, when using an expressive language, the designer faces the problem
of understanding complex interactions that may occur between different parts of the
conceptual model under construction and the constraints therein. Such interactions may
force, e.g., some class (or even all classes) in the model to become inconsistent in the
sense that there cannot exist a database state satisfying all constraints in which the
class (respectively, all classes) is populated by at least one object. Or a class may turn
out to be a subclass of another one, even though this is not explicitly asserted in the
model. To understand the consequences, both explicit and implicit, of the constraints in
the conceptual model being constructed, it is essential to provide automated reasoning



support, especially in those application scenarios where models may become very large
and/or have complex interactions between constraints.

In this paper, we address these issues and investigate the computational complexity
of reasoning in conceptual modelling languages equipped with various forms of con-
straints. Our analysis is carried out in the context of the Extended Entity-Relationship
(EER) language [14], where the domain of interest is represented through entities (rep-
resenting sets of objects), possibly equipped with attributes, and relationships (rep-
resenting relations among objects). Note, however, that all of our results can also be
adapted to other conceptual modelling formalisms, such as UML class diagrams1. Specif-
ically, the kind of constraints that will be taken into account in this paper are the ones
typically used in conceptual modelling, namely:

– ISA relations between both entities and relationships;
– disjointness and covering (referred to as the Boolean constructors in what follows)

between both entities and relationships;
– cardinality constraints for participation of entities in relationships;
– refinement of cardinalities for sub-entities participating in relationships; and
– multiplicity constraints for attributes.

The hierarchy of EER languages considered in the paper is shown in the table below
together with the complexity results for reasoning in these languages (all our languages
include cardinality, refinement and multiplicity constraints).

entities relationships
lang. ISA disjoint covering ISA disjoint covering complexity

C1 v C2 C1 u C2 v ⊥ C = C1 t C2 R1 v R2 R1 u R2 v⊥ R=R1 t R2

ERfull + + + + + + EXPTIME [5]
ERisaR + + + + − − EXPTIME
ERbool + + + − − − NP
ERref + + − − − − NLOGSPACE

In our investigation we exploit the tight correspondences between conceptual mod-
elling formalisms, such as the ER model, and variants of Description Logics (DLs) [11].
DLs [2] are a family of logics studied in knowledge representation that are specifically
tailored towards the representation of structured class-based information; quite often
these logics enjoy nice computational properties.

It was shown [5] that reasoning with respect to UML class diagrams is an EXPTIME-
complete problem, and it is easy to see that this result carries over to ERfull diagrams
as well (cf., e.g., [11]). The upper complexity bound result is established by encoding
UML class diagrams in an expressive variant of DL, DLRifd, reasoning in which is
known to be in EXPTIME (cf., [7]). The proof of the lower bound is by reduction of
reasoning over knowledge bases in the DL ALC [2], which is an EXPTIME-complete
problem. The reduction proposed in [5] makes use of both ISA and the Boolean con-
structors between relationships. Here we strengthen this result by showing that even if
we drop the Booleans between relationships from ERfull (obtaining the language de-
noted by ERisaR) reasoning still stays EXPTIME-complete.

1 See, e.g., http://www.uml.org/.
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We then prove that reasoning in the languageERbool, which essentially corresponds
to ERisaR without ISA between relationships, can be done in NP, and is also NP-
complete. Thus, quite surprisingly, ISA between relationships turns out to be a major
source of complexity for reasoning over schemas, making it jump from NP to EXP-
TIME. To prove the NP upper complexity bound we again exploit the correspondence
with DLs: specifically, we resort to DL-Litebool, the Boolean extension of the tractable
DL DL-Lite [8, 9], reasoning in which is an NP-complete problem [1]: we show that
ERbool schemas can be captured by knowledge bases in DL-Litebool so that the rea-
soning services carry over. The lower complexity bound is shown by a polynomial
reduction of the satisfiability problem in propositional calculus.

Finally, we further restrict the language of ERbool by dropping the covering con-
structor and obtaining the language called ERref. We prove that the reasoning problem
forERref is NLOGSPACE-complete. The NLOGSPACE membership is shown by reduc-
tion to reasoning in DL-Litekrom, the Krom fragment of DL-Litebool, which is known to
be NLOGSPACE-complete [1]. Hardness for NLOGSPACE follows from a reduction of
the graph reachability problem to reasoning in ERref.

The correspondence between conceptual modelling languages likeERbool andERref

and the DL-Lite family of DLs, developed and exploited in this paper, shows that both
DL-Litebool and DL-Litekrom are useful languages for reasoning over conceptual mod-
els and ontologies, even though they are not equipped with all the constructors that are
typical of rich ontology languages such as OWL and its variants [4].

Our analysis is similar in spirit to [13], where the consistency checking problem
for the EER model equipped with forms of inclusion and disjointness constraints is
studied and a polynomial-time algorithm for the problem is given (assuming constant
arities of relationships). Such a polynomial-time result is incomparable with the one
for ERref, since ERref lacks both ISA and disjointness for relationships (both present
in [13]); on the other hand, it is equipped with cardinality and multiplicity constraints.
We also mention [16], where reasoning over cardinality constraints in the basic ER
model is investigated and a polynomial-time algorithm for strong schema consistency
is given, and [10], where the study is extended to the case when ISA between entities
is also allowed and an exponential algorithm for entity consistency is provided. Note,
however, that in [16, 10] the reasoning problem is analysed under the assumption that
databases are finite, whereas we do not require finiteness in this paper.

The paper is organised as follows. In Section 2, we introduce some members of
the DL-Lite family. Section 3 is devoted to the formal definition of the conceptual
modelling language ERfull and the relevant reasoning problems. In Sections 4-6, we
present the main results of the paper by establishing the computational complexity of
reasoning over various fragments of ERfull: ERisaR, ERbool and ERref, respectively.
Section 7 concludes the paper.

2 The DL-Lite Languages

We consider the extension DL-Litebool [1] of the description logic DL-Lite [8, 9]. The
language of DL-Litebool contains concept namesA0, A1, . . . and role namesP0, P1, . . . .
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Complex roles R and concepts C of DL-Litebool are defined as follows:

R ::= Pi | P−i ,

B ::= ⊥ | Ai | ≥ q R,
C ::= B | ¬C | C1 u C2,

where q ≥ 1. Concepts of the form B are called basic concepts. A DL-Litebool knowl-
edge base, K, is a finite set of axioms of the form C1 v C2.

A DL-Litebool interpretation is a structure of the form

I =
(
∆,AI0 , A

I
1 , . . . , P

I
0 , P

I
1 , . . .

)
, (1)

where ∆ is a nonempty set, AIi ⊆ ∆ and P Ii ⊆ ∆×∆, for all i. The role and concept
constructors are interpreted in I as usual:

(P−i )I = {(y, x) ∈ ∆×∆ | (x, y) ∈ P Ii }, (inverse role)

⊥I = ∅, (the empty set)

(≥q R)I =
{
x ∈ ∆ | ]{y ∈ ∆ | (x, y) ∈ RI} ≥ q

}
, (‘at least q R-successors’)

(¬C)I = ∆ \ CI , (‘not in C’)

(C1 u C2)I = CI1 ∩ CI2 , (‘both in C1 and C2’)

where ]X denotes the cardinality of the set X . The standard abbreviations > := ¬⊥,
∃R := (≥ 1R) and ≤ q R := ¬(≥ q + 1R) we need are self-explanatory and cor-
respond to the intended semantics. We say that an interpretation I satisfies an axiom
C1 v C2 if CI1 ⊆ CI2 . A knowledge base K is satisfiable if there is an interpretation I
that satisfies all the members of K (such an interpretation I is called a model of K). A
concept C is satisfiable w.r.t. a knowledge base K if there is a model I of K such that
CI 6= ∅.

We also consider a sublanguage of DL-Litebool, the Krom fragment DL-Litekrom,
where only axioms of the following form are allowed:

B1 v B2 or B1 v ¬B2 or ¬B1 v B2,

where B1, B2 are basic concepts (i.e., are of the form ⊥, Ai or ≥ q R).
The following result is proved in [1] and will be used later on:

Theorem 1. The concept and KB satisfiability problem is NP-complete for DL-Litebool

KBs and NLOGSPACE-complete for DL-Litekrom KBs.

3 The Conceptual Modelling Language

In this section, we define the notion of a conceptual schema by providing syntax and se-
mantics for the fully-fledged conceptual modelling language ERfull (the formalisation
adopted here is based on previous presentations in [2, 3, 11]). First citizens of a con-
ceptual schema are entities, relationships and attributes. Arguments of relationships—
specifying the part played by an entity when participating in a particular relationship—
are denoted by means of so-called role names. Given a conceptual schema, we make the
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following assumptions about names: relationship and entity names are unique; attribute
names are local to entities (i.e., the same attribute can be used by different entities but
its type must be the same); role names are local to relationships (this freedom will be
limited when considering conceptual models without sub-relationships).

3.1 Syntax

In what follows we make use of the notion of labelled tuples. Let X be a finite set
{x1, . . . , xn} of labels and Y a finite set. An X-labelled tuple over Y is simply a
(total) function T : X → Y . For x ∈ X , we write T [x] to refer to the element y ∈ Y
labelled by x. Given y1, . . . , yn ∈ Y , the expression 〈x1 : y1, . . . , xn : yn〉 stands for
the X-labelled tuple T over Y such that T [xi] = yi, for 1 ≤ 1 ≤ n. We also write
(xi, yi) ∈ T if T [xi] = yi. The set of all X-labelled tuples over Y is denoted by
TY (X).

Definition 1 (ERfull Syntax). An ERfull conceptual schema Σ is a tuple

(L, REL, ATT, CARDR, CARDA, REF, ISA, DISJ, COV),

where

– L is the disjoint union of alphabets E for entity symbols, A for attribute symbols,
R for relationship symbols, U for role symbols, and D for domain symbols. We
will call the tuple (E ,A,R,U ,D) the signature of the schema Σ.

– REL : R →
⋃
ν⊆U,ν 6=∅ TE(ν) is a (total) function that assigns to every relation sym-

bol a tuple over the entity symbols labelled with a nonempty set of role symbols:
REL(R) = 〈U1 : E1, . . . , Um : Em〉, where m is the arity of R. Note that the roles
Ui are pairwise distinct while the entities Ei can be repeated.

– ATT : E →
⋃
α⊆A TD(α) is a (total) function that assigns to every entity symbol a

tuple over the domain symbols labelled with some (possibly empty) set of attribute
symbols: ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉.

– CARDR : R×U×E → N×(N∪{∞}) is a partial function defining cardinality con-
straints. The value of CARDR(R,U,E) may be defined only if (U,E) ∈ REL(R).

– CARDA : A × E → N × (N ∪ {∞}) is a partial function defining multiplicity for
attributes. The value of CARDA(A,E) may be defined only if (A,D) ∈ ATT(E),
for some D ∈ D.

– REF : R × U × E → N × (N ∪ {∞}) is a partial function defining refinement of
cardinality constraints for sub-entities (see ISA below). The value of REF(R,U,E)
may be defined only if E ISA E′ and (U,E′) ∈ REL(R). Note that REF subsumes
classical cardinality constraints (CARDR).

– ISA is the union of two binary relations ISAE and ISAR, where ISAR ⊆ E × E and
ISAR ⊆ R×R. These two binary relations define the ISA hierarchy on entities and
relationships, respectively.
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– DISJ is the union of two binary relations DISJE and DISJR, where DISJE ⊆ 2E × E
and DISJR ⊆ 2R ×R. The intended meaning of, say, ({E1, . . . , En}, E) ∈ DISJE
is ‘E1, . . . , En are disjoint sub-entities of E.’

– COV is the union of two binary relations COVE and COVR, where COVE ⊆ 2E × E
and COVR ⊆ 2R ×R. The intended meaning of, say, ({E1, . . . , En}, E) ∈ COVE
is ‘E1, . . . , En are covering sub-entities of E.’

We additionally require that the relations ISAR, DISJR and COVR may only be defined
for relationships of the same arity.

In what follows we use E1 ISA E2 as a shortcut for (E1, E2) ∈ ISA (similarly for
ISAE and ISAR) and {E1, . . . , En} DISJ E as a shortcut for ({E1, . . . , En}, E) ∈ DISJ
(similarly for DISJE , DISJR, COV, COVE and COVR).

3.2 Semantics

The following definition specifies the set-theoretic semantics of ERfull schemas.

Definition 2 (ERfull Semantics). Let Σ be an ERfull conceptual schema and BD, for
D ∈ D, a collection of disjoint countable sets called basic domains. An interpretation
for Σ is a pair B = (∆B ∪ ΛB, ·B), where

– ∆B is a nonempty set, the interpretation domain;
– ΛB =

⋃
D∈D Λ

B
D, with ΛBD ⊆ BD for each D ∈ D, is the active domain such that

∆B ∩ ΛB = ∅;
– ·B is a function such that

(i) DB = ΛBD, for each D ∈ D;
(ii) EB ⊆ ∆B, for each E ∈ E ;

(iii) RB ⊆ T∆B(ν), where ν = {Ui ∈ U | (Ui, Ei) ∈ REL(R)}, for each R ∈ R;
(iv) AB ⊆ ∆B × ΛB, for each A ∈ A.

An interpretation B of a schema Σ is called a legal database state if it satisfies the
following conditions:

1. For each R ∈ R with REL(R) = 〈U1 : E1, . . . , Um : Em〉 and each r ∈ RB, we
have r = 〈U1 : e1, . . . , Um : em〉 with ei ∈ EBi , for each 1 ≤ i ≤ m. In the fol-
lowing, we adopt the convention to denote such a labelled tuple r as (e1, . . . , em),
and we may use r[i] instead of r[Ui] to denote the Ui/i-component of r—i.e., we
simplify the notation by adopting for tuples a positional notation instead of the one
based on role names.

2. For each E ∈ E with ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉, each (e, a) ∈ ∆B × ΛB
and each 1 ≤ i ≤ h, if (e, a) ∈ ABi then a ∈ DBi .

3. For each R ∈ R with REL(R) = 〈U1 : E1, . . . , Um : Em〉 and each 1 ≤ i ≤ m, if
CARDR(R,Ui, Ei) = (α, β) then, for all e ∈ EBi ,

α ≤ ]{(e1, . . . , ei, . . . , em) ∈ RB | ei = e} ≤ β. (2)
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4. For each E ∈ E with ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉 and each 1 ≤ i ≤ h, if
CARDA(Ai, E) = (α, β) then α ≤ ]{(e, a) ∈ ABi } ≤ β, for all e ∈ EB.

5. For each R ∈ R with REL(R) = 〈U1 : E1, . . . , Um : Em〉, each 1 ≤ i ≤ m and
eachE ∈ E withE ISAEi, if REF(R,Ui, E) = (α, β) then (2) holds for all e ∈ EB.

6. For all E1, E2 ∈ E , if E1 ISAE E2 then EB1 ⊆ EB2 (similarly for relationships).

7. For all E,E1, . . . , En ∈ E , if {E1, . . . , En} DISJE E then EBi ⊆ EB, for every
1 ≤ i ≤ n, and EBi ∩ EBj = ∅, for all 1 ≤ i < j ≤ n (similarly for relationships).

8. For all E,E1, . . . , En ∈ E , {E1, . . . , En} COVE E implies EB =
⋃n
i=1E

B
i (simi-

larly for relationships).

3.3 Reasoning Problems

Reasoning tasks over conceptual schemas include verifying whether an entity, a rela-
tionship, or a schema is consistent, or checking whether an entity (relationship) sub-
sumes another entity (relationship, respectively). The model-theoretic semantics asso-
ciated with a conceptual schema allows us to define formally the following reasoning
tasks:

Definition 3 (Reasoning services). Let Σ be an ERfull schema.

Schema consistency. Σ is consistent if there exists a legal database state B for Σ such
that EB 6= ∅, for some entity E ∈ E .

Strong (schema) consistency. Σ is strongly consistent if there exists a legal database
state B for Σ such that EB 6= ∅, for every entity E ∈ E .

Entity consistency. An entity E ∈ E is consistent w.r.t. a schema Σ if there exists a
legal database state B for Σ such that EB 6= ∅.

Relationship consistency. A relationship R ∈ R is consistent w.r.t. a schema Σ if
there exists a legal database state B for Σ such that RB 6= ∅.

Entity subsumption. An entity E1 ∈ E subsumes an entity E2 ∈ E w.r.t. a schema Σ
if EB2 ⊆ EB1 , for every legal database state B for Σ.

Relationships subsumption. A relationship R1 ∈ R subsumes a relationship R2 ∈ R
w.r.t. a schema Σ if RB2 ⊆ RB1 , for every legal database state B for Σ.

The reasoning tasks of Schema/Entity/Relationship consistency and Entity sub-
sumption are reducible to each other. Indeed, that Entity subsumption is equivalent to
Entity satisfiability is shown in [5]. Schema consistency can be reduced to Entity con-
sistency by extending Σ as follows: let O∗ be a fresh entity symbol, E∗ = E ∪ {O∗}
and COV∗ = COV ∪ {(E , O∗)}. Clearly, Σ is consistent iff O∗ is consistent w.r.t. Σ∗.
For the converse reduction Σ is extended as follows: let O∗ be a fresh entity symbol
and RE a fresh relationship symbol, E∗ = E ∪ {O∗}, COV∗ = COV ∪ {(E , O∗)},
R∗ = R ∪ {RE}, REL(RE) = 〈U1 : E,U2 : O∗〉, CARDR(RE , U2, O

∗) = (1,∞).
Clearly, E is consistent w.r.t. Σ iff Σ∗ is consistent.

Relationship consistency can be reduced to Entity consistency by extending Σ as
follows: let O∗ be a fresh entity symbol, E∗ = E ∪ {O∗}, ISAE

∗ = ISAE ∪ {(O∗, E)}
and REF∗ extends REF so that REF∗(R,U,O∗) = (1, β), where E is an entity with
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(U,E) ∈ REL(R) and β is such that CARDR(R,U,E) = (α, β). Relationship R is
consistent w.r.t. Σ iff entity O∗ is consistent w.r.t. Σ∗. For the converse reduction,
let RE be a fresh relationship symbol with REL(RE) = 〈U1 : E,U2 : E〉. Then E is
consistent iff RE is consistent.

Finally, we note that, in absence of the covering constructor, Schema consistency
cannot be reduced to a single instance of Entity consistency, though it can be reduced
to several Entity consistency checks.

4 Reasoning over ERisaR Schemas

The modelling language ERisaR is the subset of ERfull without the Booleans between
relationships (i.e., DISJR = ∅ and COVR = ∅) but with the possibility to express ISA be-
tween them. In this section we show that reasoning in ERisaR is an EXPTIME-complete
problem. The upper bound follows from [5]. The lower bound is established by reduc-
ing concept satisfiability w.r.t.ALC knowledge bases, which is known to be EXPTIME-
complete [2], to entity consistency w.r.t. ERisaR conceptual schemas.

We remind the reader that ALC concepts C are defined as follows:

C ::= Ai | ¬C | C1 u C2 | C1 t C2 | ∃Pi.C | ∀Pi.C,

where the last two constructors are interpreted in I of the form (1) by taking

(∃Pi.C)I = {x ∈ ∆ | ∃y ∈ ∆ ((x, y) ∈ P Ii ∧ y ∈ CI)},
(∀Pi.C)I = {x ∈ ∆ | ∀y ∈ ∆ ((x, y) ∈ P Ii → y ∈ CI)}.

An ALC knowledge base is a finite set of ALC concept inclusions C1 v C2. It is easy
to show (see, e.g., [5, Lemma 5.1]) that one can convert, in a satisfiability preserving
way, an ALC KB K into a primitive KB K′ that contains only axioms of the form:

A v B, A v ¬B, A v B tB′, A v ∀R.B, A v ∃R.B,

where A,B,B′ are concept names and R is a role name, and the size of K′ is linear
in the size of K. Thus, concept satisfiability w.r.t. primitive ALC KBs is EXPTIME-
complete [5].

Let K be a primitive ALC KB. We illustrate a satisfiable preserving mapping from
K into an ERisaR schema Σ(K): the first three forms of axioms are dealt with in a way
similar to [5]. Axioms of the form A v ∀R.B are encoded in [5] using disjointness and
covering (along with ISA) between relationships, which are unavailable in ERisaR. In
order to stay within ERisaR, we propose to use reification of ALC roles (which are bi-
nary relationships) to encode the last two forms of axioms. This approach is illustrated
in Fig. 1: in (a), A v ∀R.B is encoded by reifying the binary relationship R with the
entity CR so that the functional relationships R1 and R2 give the first and second com-
ponent of the reified R, respectively; a similar encoding is used to capture A v ∃R.B
in (b). The following lemma shows that ISA between relationships—and so conceptual
schemas in ERisaR—are enough to encode ALC axioms.
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A v ∃R.B

A v ∀R.B

.

.

CR

CRA

CR
A

A

A

B

O

R1

R2

RA1

R
A1

RA2

1,1

1,1

1, 1 1, 1

1, 1cov

disj

(a)

CR

CRAB
AB

O

R1

R2

RAB1RAB2

1,1

1,1

1, 1 1, n1, 1

(b)

Fig. 1. Encoding axioms: (a) A v ∀R.B; (b) A v ∃R.B.

Lemma 1. A concept name E is satisfiable w.r.t. a primitive ALC KB K iff the entity
E is consistent w.r.t. the ERisaR schema Σ(K).

Proof. (⇐) Let B = (∆B, ·B) be a legal database for Σ(K) such that EB 6= ∅. We
construct a model I = (∆I , ·I) of K with EI 6= ∅ by taking ∆I = ∆B, AI = AB, for
all concept names A in K, and RI = (R−1 ◦ R2)B, for all role names R in K, where ◦
denotes the binary relation composition. Clearly, EI 6= ∅. Let us show that I is indeed
a model of K. The cases of axioms of the form A v B, A v ¬B and A v B t B′ are
treated as in [5]. Let us consider the remaining two cases.

Case A v ∀R.B. Let o ∈ AI and o′ ∈ ∆I with (o, o′) ∈ RI . We show that
o ∈ (∀R.B)I . Since RI = (R−1 ◦ R2)B, there is o′′ ∈ ∆B with (o, o′′) ∈ (R−1 )B

and (o′′, o′) ∈ RB2 . Then o′′ ∈ CBR and, by the covering constraint, o′′ ∈ CBRA
∪ CBRA

.
We claim that o′′ ∈ CBRA

. Indeed, suppose otherwise; then o′′ ∈ CBRA
, and so there is

a unique a ∈ ∆B such that (o′′, a) ∈ RB
A1

and a ∈ A
B

; it follows from RB
A1
⊆ RB1

and the cardinality constraint on CR that a = o, contrary to o ∈ AB = AI and the
disjointness of A and A. Since o′′ ∈ CBRA

, there is a unique b ∈ ∆B with (o′′, b) ∈ RBA2

and b ∈ BB. From RBA2 ⊆ RB2 and the cardinality constraint on CR, we conclude that
b = o′. Thus, o′ ∈ BB = BI and o ∈ (∀R.B)I .

Case A v ∃R.B. Let o ∈ AI . Since o ∈ AI = AB, there is o′ ∈ ∆B with
(o, o′) ∈ (R−AB1)

B and o′ ∈ CBRAB
. As RBAB1 ⊆ RB1 , we have (o, o′) ∈ (R−1 )B, and, as

o′ ∈ CBRAB
, there is o′′ ∈ ∆B such that (o′, o′′) ∈ RBAB2 ⊆ RB2 and o′′ ∈ BB = BI .

Thus, as RI = (R−1 ◦R2)B, we obtain (o, o′′) ∈ RI and o′′ ∈ BI , i.e. o ∈ (∃R.B)I .

(⇒) Let I = (∆I , ·I) be an ALC model of K such that EI 6= ∅. We construct a
legal database state B = (∆B, ·B) for Σ(K) such that EB 6= ∅. Let ∆B = ∆I ∪ Γ ,
where Γ is the disjoint union of the ∆R = {(o, o′) ∈ ∆I | (o, o′) ∈ RI}, for all ALC
role namesR. We setAB = AI andA

B
= (¬A)I , for all concept namesA,OB = ∆I ,

for the entity O, and CBR = ∆R, for all ALC role names R.
Next, for every ALC axiom of the form A v ∀R.B, we set
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– CBRA
= {(o, o′) ∈ ∆R | o ∈ AI}, CBRA

= {(o, o′) ∈ ∆R | o ∈ (¬A)I},
– RB1 = {((o, o′), o) ∈ ∆R ×∆I | (o, o′) ∈ RI},
– RB2 = {((o, o′), o′) ∈ ∆R ×∆I | (o, o′) ∈ RI},
– RBA1 = {((o, o′), o) ∈ RB1 | o ∈ AI}, RBA1

= {((o, o′), o) ∈ RB1 | o ∈ (¬A)I},
– RBA2 = {((o, o′), o′) ∈ RB2 | o ∈ AI},

and, for every ALC axiom of the form A v ∃R.B, we set

– CBRAB
= {(o, o′) ∈ ∆R | o ∈ AI and o′ ∈ BI},

– RB1 = {((o, o′), o) ∈ ∆R ×∆I | (o, o′) ∈ RI},
– RB2 = {((o, o′), o′) ∈ ∆R ×∆I | (o, o′) ∈ RI},
– RBAB1 = {((o, o′), o) ∈ RB1 | (o, o′) ∈ CBRAB

}.
– RBAB2 = {((o, o′), o′) ∈ RB2 | (o, o′) ∈ CBRAB

}.

It is now easy to show that B is a legal database state for Σ(K) and EB 6= ∅.

Since reasoning over ALC knowledge bases is an EXPTIME-complete problem [2]
andERisaR is a sub-language ofERfull, which is also EXPTIME-complete [5], we obtain
the following result:

Theorem 2. Reasoning over ERisaR schemas is EXPTIME-complete.

5 Reasoning over ERbool Schemas

Denote by ERbool the sublanguage of ERfull without ISA and the Booleans between re-
lationships (i.e., ISAR = ∅, DISJR = ∅ and COVR = ∅). We also impose an extra restric-
tion on REL: reusing the same role symbol by different relations is not allowed. More
precisely, there is no U ∈ U such that (U,E′) ∈ REL(R′) and (U,E′′) ∈ REL(R′′), for
some distinct R′, R′′ ∈ R and some E′, E′′ ∈ E . This restriction does make sense in
ERbool, since the language does not allow for sub-relationships.

We first define a polynomial translation τ ofERbool schemas into DL-Litebool knowl-
edge bases. Then we show that an entity E is consistent w.r.t. an ERbool schema Σ iff
the translation of the entity, E, is satisfiable w.r.t. the knowledge base τ(Σ). The latter
problem is known to be in NP (Theorem 1).

Let Σ be an ERbool schema. Given an entity, domain or relationship symbol N
from E ∪D∪R, let N be a DL-Litebool concept name. Similarly, for an attribute or role
symbol N ∈ A ∪ U , let N be a DL-Litebool role name. The translation τ(Σ) is defined
as the following set of DL-Litebool concept inclusions:

τ(Σ) = τdom ∪
⋃
R∈R

[
τRrel ∪ τRcardR

∪ τRref

]
∪

⋃
E∈E

[
τEatt ∪ τEcardA

]
∪

⋃
E1,E2∈E
E1 ISAE2

τE1,E2
isa ∪

⋃
E1,...,En,E∈E
{E1,...,En}DISJE

τ
{E1,...,En},E
disj ∪

⋃
E1,...,En,E∈E
{E1,...,En}COVE

τ{E1,...,En},E
cov ,

where
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– τdom =
{
D v ¬X | D ∈ D, X ∈ E ∪ R ∪ D, D 6= X

}
;

– τRrel =
{
R v ∃U, ≥ 2U v ⊥, ∃U v R, ∃U− v E | (U,E) ∈ REL(R)

}
;

– τRcardR
=
{
E v ≥ αU− | (U,E) ∈ REL(R), CARDR(R,U,E) = (α, β), α 6= 0

}
∪
{
E v ≤ β U− | (U,E) ∈ REL(R), CARDR(R,U,E) = (α, β), β 6=∞

}
;

– τRref =
{
E v ≥ αU− | (U,E) ∈ REL(R), REF(R,U,E) = (α, β), α 6= 0

}
∪
{
E v ≤ β U− | (U,E) ∈ REL(R), REF(R,U,E) = (α, β), β 6=∞

}
;

– τEatt =
{
∃A− v D | (A,D) ∈ ATT(E)

}
;

– τEcardA
=
{
E v ≥ αA | (A,D) ∈ ATT(E), CARDA(A,E) = (α, β), α 6= 0

}
∪
{
E v ≤ β A | (A,D) ∈ ATT(E), CARDA(A,E) = (α, β), β 6=∞

}
;

– τE1,E2
isa =

{
E1 v E2

}
;

– τ
{E1,...,En},E
disj =

{
Ei v E | 1 ≤ i ≤ n

}
∪
{
Ei v ¬Ej | 1 ≤ i < j ≤ n

}
;

– τ
{E1,...,En},E
cov =

{
Ei v E | 1 ≤ i ≤ n} ∪

{
E v E1 t · · · t En

}
.

Clearly, the size of τ(Σ) is polynomial in the size of Σ (under the same coding of the
numerical parameters).

Lemma 2. An entity E is consistent w.r.t. an ERbool schema Σ iff the concept E is
satisfiable w.r.t. the DL-Litebool KB τ(Σ).

Proof. (⇒) Let B = (∆B ∪ ΛB, ·B) be a legal database state for Σ such that EB 6= ∅,
where {BD}D∈D are the domain sets. Define a model I = (∆I , ·I) of τ(Σ) by taking
∆I = ∆B ∪ΛB ∪Γ , where Γ is the disjoint union of the ∆R = {(e1, . . . , em) ∈ RB},
for all relationships R ∈ R, and setting D

I
= DB, for every D ∈ D, E

I
= EB, for

every E ∈ E , A
I

= AB, for every A ∈ A, R
I

= ∆R, for every R ∈ R, and, for every
U ∈ U such that there is R ∈ R with REL(R) = 〈U1 : E1, . . . , Um : Em〉 and U = Ui
for some i with 1 ≤ i ≤ m,

U
I

= {((e1, . . . , em), ei) ∈ ∆R ×∆B | (e1, . . . , em) ∈ RB}. (3)

Clearly, E
I 6= ∅. We now prove that I is indeed a model of τ(Σ). We guide the

proof by considering the translation of the various statements in Σ.

1. We show I |= τdom. For any two distinct D1, D2 ∈ D, we have DB1 ∩ DB2 = ∅,
and so I |= D1 v ¬D2. For all D ∈ D and E ∈ E , since EB ⊆ ∆B, DB ⊆ ΛB

and ∆B ∩ ΛB = ∅, we have I |= D v ¬E. Next, for all D ∈ D and R ∈ R, as
DB ⊆ ΛB, R

I
= ∆R ⊆ Γ and Γ ∩ ΛB = ∅, we have I |= D v ¬R.

2. REL(R) = 〈U1 : E1, . . . , Um : Em〉. Consider all axioms in τRrel ∪ τRcardR
∪ τRref:

(a) R v ∃Ui. Let r ∈ R
I

. Then r is of the form (e1, . . . , em) ∈ RB. By (3),
(r, ei) ∈ Ui

I
, and so r ∈ ∃Ui

I
.

11



(b) ≥ 2Ui v ⊥. Suppose that there are (r, e), (r, e′) ∈ Ui
I

such that e 6= e′.
By (3), r is of the form (e1, . . . , em) and e = ei = e′, contrary to e 6= e′.

(c) ∃Ui
− v Ei. Let e ∈ (∃Ui

−
)I . Then (r, e) ∈ Ui

I
for some r ∈ ∆I . Since Ui

may be involved only in one relation (R in this case) and in view of (3), r is of
the form (e1, . . . , em) ∈ RB and ei = e. By the semantics of R, e ∈ EBi , from
which e ∈ Ei

I
.

(d) ∃Ui v R. Let r ∈ (∃Ui)I . Then (r, e) ∈ Ui
I

for some e ∈ ∆I . Since Ui may
be involved only in one relation (R in this case) and by (3), r is of the form
(e1, . . . , em) ∈ RB and e = ei. Therefore, r ∈ RI .

(e) E v ≥ αU−i (when CARDR(R,Ui, Ei) = (α, β) and α 6= 0). Let e ∈ EIi .
Then e ∈ EBi . We have ]{(e1, . . . , em) ∈ RB | ei = e} ≥ α and, by (3), we
obtain ]{r | (r, e) ∈ UIi } ≥ α, from which e ∈ (≥ αU−i )I .

(f) E v ≤ β U−i (when CARDR(R,Ui, Ei) = (α, β) and β 6= ∞). The proof is
similar to the previous case.

(g) E v ≥ αU−i (when REF(R,Ui, Ei) = (α, β) and α 6= 0). The proof is
similar to case 2e.

(h) E v ≤ β U−i (when REF(R,Ui, Ei) = (α, β) and β 6= ∞). The proof is
similar to case 2e.

3. ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉. Let us consider all axioms in τEatt ∪ τEcardA
:

(a) ∃Ai
− v Di. Let a ∈ (∃Ai

−
)I . Then there is e ∈ ∆I such that (e, a) ∈ Ai

I
.

As Ai
I

= ABi , we have e ∈ ∆B and a ∈ ΛB. It follows that a ∈ DBi .

(b) E v ≥ αAi (when CARDA(Ai, E) = (α, β) and α 6= 0). Let e ∈ E
I

.
Then e ∈ EB. Thus, ]{a | (e, a) ∈ AB} ≥ α and ]{a | (e, a) ∈ AI} ≥ α.
Therefore, e ∈ (≥ αAi)I .

(c) E v ≤ β Ai (when CARDA(Ai, E) = (α, β) and β 6= ∞). The proof is
similar to the previous case.

4. E1 ISA E2. We have E
I
1 = EB1 ⊆ EB2 = E

I
2 , and so I |= τE1,E2

isa .
5. {E1, . . . , En} DISJ E. We have EBi ⊆ EB, for 1 ≤ i ≤ n, and EBi ∩ EBj = ∅ for

1 ≤ i < j ≤ n. Hence, I |= τ
{E1,...,En},E
disj .

6. {E1, . . . En} COV E. Similarly to the previous case.

Thus, I |= τ(Σ).

(⇐) Let T = (∆T , ·T ) be a model of τ(Σ) such that E
I 6= ∅. Without loss of gen-

erality, we may assume that T is a tree model (see, e.g., [12, 6]). We construct domain
sets {BD}D∈D and a legal database state B = (∆B ∪ΛB, ·B) for the ERbool schema Σ
by taking BD = ΛBD = DB = D

T
, for D ∈ D, ΛB =

⋃
D∈D Λ

B
D and ∆B = ∆T \ΛB;

further we set EB = E
T

, for every E ∈ E , AB = A
T ∩ (∆B × ΛB), for every A ∈ A,

and, for every R ∈ R with REL(R) = 〈U1 : E1, . . . , Um : Em〉, we set

RB =
{
(e1, . . . , em) ∈ T∆T ({U1, . . . , Um}) |

∃r ∈ RT such that (r, ei) ∈ Ui
T

for 1 ≤ i ≤ m
}
.
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Observe that the function ·B is as required by Definition 2 and EB 6= ∅. We show now
that B satisfies every assertion of the ERbool schema Σ.

1. REL(R) = 〈U1 : E1, . . . , Um : Em〉. Let (e1, . . . , em) ∈ RB. Then there exists
r ∈ RT such that (r, ei) ∈ Ui

T
, for 1 ≤ i ≤ m. Since T |= ∃Ui

− v Ei, we obtain
ei ∈ Ei

T
, and so ei ∈ EBi , for 1 ≤ i ≤ m.

2. ATT(E) = 〈A1 : D1, . . . , Ah : Dh〉. Let (e, ai) ∈ ∆B ×ΛB with (e, ai) ∈ ABi , for
1 ≤ i ≤ h. Then (e, ai) ∈ Ai

T
. As T |= ∃Ai

− v Di, we have ai ∈ Di
T

, from
which ai ∈ DBi ⊆ ΛB.

3. CARDR(R,U,E) = (α, β). Then we have REL(R) = 〈U1 : E1, . . . , Um : Em〉
such that Ui = U and Ei = E, for some Ui and Ei, 1 ≤ i ≤ m. We have to show
that, for every e ∈ EB,

α ≤ ]{(e1, . . . , em) ∈ RB | ei = e} ≤ β.

Consider the lower and upper bounds.
(a) We may assume that α 6= 0. Since T |= E v ≥ αU− and EB = E

T
,

there exist at least α distinct r1, . . . , rα ∈ ∆T such that (rj , e) ∈ U
T

, for
1 ≤ j ≤ α. Since T |= ∃U v R, we have r1, . . . , rα ∈ R

T
. And since

T |= R v ∃Ui and T |= ≥ 2Ui v ⊥, for all 1 ≤ i ≤ m, there are uniquely
determined ejk ∈ ∆T such that (rj , e

j
k) ∈ Uk

T
and eji = e, for all 1 ≤ j ≤ α

and 1 ≤ k ≤ m. Since T is a tree-like model, we have ejk 6= ej
′

k′ whenever
k 6= i, k′ 6= i and either k 6= k′ or j 6= j′. Therefore, we have shown that
exactly one tuple corresponds to each object in R

T
and vice versa. Then, by

construction, (ej1, . . . , e
j
m) ∈ RB and eji = e, for all 1 ≤ j ≤ α. It follows that

]{(e1, . . . , em) ∈ RB | ei = e} ≥ α.
(b) We may assume that β 6=∞. The proof is similar to the previous item.

4. CARDA(A,E) = (α, β). Let e ∈ EB = E
T

. Consider the lower and upper bounds:
(a) We may assume α 6= 0. Since T |= E v ≥ αA and T |= ∃A− v D, for some

D with (A,D) ∈ ATT(E), we have ]{a ∈ DB | (e, a) ∈ AT } ≥ α. Finally, as
AB = A

T ∩ (∆B × ΛB), we obtain ]{a | (e, a) ∈ AB} ≥ α.

(b) We may assume β 6=∞. The proof is similar to the previous case.

5. REF(R,U,E) = (α, β). The proof is the same as in case 3.

6. E1 ISA E2. This holds in B since T |= E1 v E2 and EiB = Ei
T

, for i ∈ {1, 2}.
7. {E1, . . . , En} DISJ E. This holds in B since T |= Ei v E, for all 1 ≤ i ≤ n, and
T |= Ei v ¬Ej , for all 1 ≤ i < j ≤ n, and EBi = Ei

T
, for 1 ≤ i ≤ n.

8. {E1, . . . En} COV E. Similar to the previous case.

It follows from this lemma and the mutual reducibility between the various reason-
ing problems in ERbool that we have the following complexity result:

13



Theorem 3. Reasoning over ERbool conceptual schemas is NP-complete.

Proof. The upper bound follows from Lemma 2 and Theorem 1. To prove NP-hardness
we provide a polynomial reduction of the 3SAT problem, which is known to be NP-
complete, to the entity consistency problem. Let an instance of 3SAT be given by a set
φ of 3-clauses ci = a1

i ∨ a2
i ∨ a3

i over some finite set Λ of literals. We define an ERbool

schema Σφ as follows:

– the signature L of Σφ is given by E = {a | a ∈ Λ} ∪ {c | c ∈ φ} ∪ {φ,>},A = ∅,
R = ∅, U = ∅, D = ∅;

– φ ISA c, for all c ∈ φ;
– (E \ {>}) COV >, {a,¬a} COV >, for all a ∈ Λ,

{a1
i , a

2
i , a

3
i } COV ci, for all ci ∈ φ, ci = a1

i ∨ a2
i ∨ a3

i ;
– {a,¬a} DISJ >, for all a ∈ Λ;
– ATT, REL, CARDR, CARDA, REF are empty functions.

Now we show the following claim:

Claim. φ is satisfiable iff the entity φ is consistent w.r.t. the schema Σφ.

(⇒) Let J |= φ. Define a legal database state B = (∆B, ·B) by taking ∆B = {o},
>B = {o} and, for every E ∈ E \ {>}, EB = {o} if J |= E and E

B
= ∅ if

J 6|= E. We show that B is indeed a legal database state for Σφ. Since J |= φ, we
have J |= ci for all ci ∈ φ, and, by construction, cBi = {o}. This means that every
ISA assertion in Σφ is satisfied by B. Consider now some ci ∈ φ. Then J |= aki for

at least one of a1
i , a

2
i or a3

i , which means that aki
B

= {o}. It follows that the assertion
{a1
i , a

2
i , a

3
i } COV ci holds in B. The assertion (E \ {>}) COV> holds, since E

B ⊆ {o},
φ
B

= {o} and >B = {o}, for every E ∈ E \ {>}. It should also be clear that every
assertion {a,¬a} COV >, for a ∈ Λ, holds in B. Since only one of a,¬a is satisfied by
J , the other one will be interpreted in B as the empty set, so every assertion in DISJ

holds, too. Thus, B is a legal database state for Σφ, with φ
B 6= ∅.

(⇐) Let B = (∆B, ·B) be a legal database state for Σφ such that o ∈ φB, for some
o ∈ ∆B. Construct a model J for φ by taking, for every propositional variable p in φ,
J |= p iff o ∈ pB. We show that J |= φ. Indeed, as o ∈ φ

B
and φ ISA ci, we have

o ∈ ciB, for 1 ≤ i ≤ n. Since, for every ci, we have {a1
i , a

2
i , a

3
i } COV ci, there is aki

in ci such that o ∈ (aki )
B. Now, if aki is a variable then, by the construction of J , we

have J |= aki , and so J |= ci. Otherwise, aki = ¬p and, since {aki , p} DISJ >, o 6∈ pB.
Therefore, by the construction of J , J 6|= p, i.e., J |= aki , and so J |= ci.

6 Reasoning over ERref Schemas

Denote by ERref the modelling language without the Booleans and ISA between rela-
tionships, but with the possibility to express ISA and disjointness between entities (i.e.,
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ISAR = ∅, COVR = ∅, DISJR = ∅ and COVE = ∅). Thus, ERref is essentially ERbool

without the covering constructor.
In this section we show that checking entity consistency inERref is an NLOGSPACE-

complete problem. Consider the reduction τ from Section 5. It is not difficult to check
that τ is logspace bounded. At the same time, for every ERref schema Σ, the knowl-
edge base τ(Σ) is a DL-Litekrom knowledge base, because we do not have τcov in this
case. Thus, as a consequence of Lemma 2, the problem of entity consistency for ERref

can be logspace reduced to the NLOGSPACE-complete problem of concept satisfiability
w.r.t. DL-Litekrom knowledge bases [1]. So the entity consistency problem w.r.t. ERref

schemas is in NLOGSPACE as well.
To establish the lower bound, we consider the reachability problem in oriented

graphs, or the MAZE problem, which is known to be NLOGSPACE-hard; see, e.g., [15].
Let G = (V,E, s, t) be an instance of MAZE, where s, t are the initial and terminal ver-
tices of (V,E), respectively. We can encode this instance in ERref using the following
schema ΣG:

u ISA v, for all (u, v) ∈ E, and {s, t} DISJ O,

where O is a fresh entity. Clearly, we have the following:

Claim. The terminal node t is reachable from s in G = (V,E, s, t) iff the entity s is
not consistent w.r.t. ΣG.

As NLOGSPACE=CONLOGSPACE (by the Immerman-Szelepcsényi theorem; see, e.g.,
[15]) and the above reduction is logspace bounded, it follows that the problem of entity
consistency in ERref is NLOGSPACE-hard. This result coupled with the membership in
NLOGSPACE showed above gives us the following complexity result:

Theorem 4. The entity consistency problem for ERref is NLOGSPACE-complete.

7 Conclusions

This paper provides new complexity results for reasoning over Extended Entity-Relati-
onship (EER) models with different modelling constructors. Starting from the EX-
PTIME result [5] for reasoning over the fully-fledged EER language, we prove that
the same complexity holds even if we drop the Boolean constructors (disjointness and
covering) on relationships. This result shows that ISA between relationships (with the
Booleans on entities) is powerful enough to capture EXPTIME-hard problems. To illus-
trate that the presence of relationship hierarchies is a major source of complexity in rea-
soning, we show that avoiding them makes reasoning in ERbool an NP-complete prob-
lem. Another source of complexity is covering constraints: indeed, we show that without
relationship hierarchies and covering constraints reasoning problem is NLOGSPACE-
complete.

The paper also establishes a tight correspondence between conceptual modelling
languages and the DL-Lite family of description logics. Such a correspondence shows
the usefulness of DL-Lite for representing and reasoning over conceptual models and
ontologies.
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