
Query Inseparability for Description Logic Knowledge Bases

E. Botoeva,1 R. Kontchakov,2 V. Ryzhikov,1 F. Wolter3 and M. Zakharyaschev2

1Faculty of Computer Science 3Department of Computer Science 2Department of Computer Science
Free University of Bozen-Bolzano, Italy University of Liverpool, U.K. Birkbeck, University of London, U.K.
{botoeva,ryzhikov}@inf.unibz.it wolter@liverpool.ac.uk {roman,michael}@dcs.bbk.ac.uk

Abstract

We investigate conjunctive query inseparability of description
logic (DL) knowledge bases (KBs) with respect to a given
signature, a fundamental problem for KB versioning, module
extraction, forgetting and knowledge exchange. We study the
data and combined complexity of deciding KB query insep-
arability for fragments of Horn-ALCHI, including the DLs
underpinning OWL 2 QL and OWL 2 EL. While all of these
DLs are P-complete for data complexity, the combined com-
plexity ranges from P to EXPTIME and 2EXPTIME. We also
resolve two major open problems for OWL 2 QL by showing
that TBox query inseparability and the membership problem
for universal UCQ-solutions in knowledge exchange are both
EXPTIME-complete for combined complexity.

Introduction
A description logic (DL) knowledge base (KB) consists of a
terminological box (TBox), storing conceptual knowledge,
and an assertion box (ABox), storing data. Typical applica-
tions of KBs involve answering queries over incomplete data
sources (ABoxes) augmented by ontologies (TBoxes) that
provide additional information about the domain of interest
as well as a convenient vocabulary for user queries. The
standard query language in such applications, which bal-
ances expressiveness and computational complexity, is the
language of conjunctives queries (CQs).

With typically large data, often tangled ontologies, and
the hard problem of answering CQs over ontologies, vari-
ous transformation and comparison tasks are becoming in-
dispensable for KB engineering and maintenance. For ex-
ample, to make answering certain CQs more efficient, one
may want to extract from a given KB a smaller module re-
turning the same answers to those CQs as the original KB;
to provide the user with a more convenient query vocabu-
lary, one may want to reformulate the KB in a new language.
These tasks are known as module extraction (Stucken-
schmidt, Parent, and Spaccapietra 2009) and knowledge ex-
change (Arenas et al. 2012); other relevant tasks include ver-
sioning, revision and forgetting (Jiménez-Ruiz et al. 2011;
Wang, Wang, and Topor 2010; Lin and Reiter 1994).

In this paper, we investigate the following relationship be-
tween KBs which is fundamental for all such tasks. Let Σ

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

be a signature consisting of concept and role names. We call
KBs K1 and K2 Σ-query inseparable and write K1 ≡Σ K2

if any CQ formulated in Σ has the same answers over K1

and K2. Note that even for Σ containing all concept and
role names, Σ-query inseparability does not necessarily im-
ply logical equivalence. The relativisation to (smaller) sig-
natures is crucial to support the tasks mentioned above:

(versioning) When comparing two versions K1 and K2 of
a KB with respect to their answers to CQs in a relevant
signature Σ, the basic task is to check whetherK1 ≡Σ K2.

(modularisation) A Σ-module of a KB K is a KB K′ ⊆ K
such that K′ ≡Σ K. If we are only interested in answer-
ing CQs in Σ over K, then we can achieve our aim by
querying any Σ-module of K instead of K itself.

(knowledge exchange) In knowledge exchange, we want
to transform a KBK1 in a signature Σ1 to a new KBK2 in
a disjoint signature Σ2 connected to Σ1 via a declarative
mapping specification given by a TBox T12. Thus, the tar-
get KBK2 should satisfy the conditionK1∪T12 ≡Σ2 K2,
in which case it is called a universal UCQ-solution (CQ
and UCQ inseparabilities coincide for Horn DLs).

(forgetting) A KB K′ results from forgetting a signature Σ
in a KB K if K′ ≡sig(K)\Σ K and sig(K′) ⊆ sig(K) \ Σ.
Thus, the result of forgetting Σ does not use Σ and gives
the same answers to CQs without symbols in Σ as K.

We investigate the data and combined complexity of decid-
ing Σ-query inseparability for KBs given in various frag-
ments of the DL Horn-ALCHI (Krötzsch, Rudolph, and
Hitzler 2013), which include DL-LiteHcore (Calvanese et al.
2007) and EL (Baader, Brandt, and Lutz 2005) underlying
the W3C profiles OWL 2 QL and OWL 2 EL. For all of these
DLs, Σ-query inseparability turns out to be P-complete for
data complexity, which matches the data complexity of CQ
evaluation for all of our DLs lying outside the DL-Lite fam-
ily. For combined complexity, the obtained tight complex-
ity results are summarised in the diagram below. Most
interesting are EXPTIME-completeness of DL-LiteHcore and
2EXPTIME-completeness of Horn-ALCI, which contrast
with NP-completeness and EXPTIME-completeness of CQ
evaluation for those logics. For DL-Lite without role in-
clusions and ELH, Σ-query inseparability is P-complete,
while CQ evaluation is NP-complete. In general, it is the
combined presence of inverse roles and qualified existential

restrictions (or role inclusions) that makes Σ-query insep-
arability hard. To establish the upper complexity bounds,
we develop a uniform game-theoretic technique for check-
ing finite Σ-homomorphic embeddability between (possibly
infinite) materialisations of KBs.

Horn-ALCHI

Horn-ALCIHorn-ALCH

Horn-ALCELH

EL

DL-LiteHhorn

DL-Litehorn

DL-LiteHcore

DL-LitecoreP
Thms. 12, 24

EXPTIME
Thms. 12, 25

EXPTIME
Thms. 23, 25

P
Thms. 16, 24

2EXPTIME
Thms. 23, 25

forward strategy

arbitrary strategy

backward+forward strategy

Σ-query inseparability for KBs has not been investigated
systematically before. The polynomial upper bound for EL
was established as a preliminary step to study TBox insep-
arability (Lutz and Wolter 2010), and this notion was also
used to study forgetting for DL-LiteNbool (Wang et al. 2010).

We apply our results to resolve two important open prob-
lems. First, we show that the membership problem for uni-
versal UCQ-solutions in knowledge exchange for KBs in
DL-LiteHcore is EXPTIME-complete for combined complex-
ity, which settles an open question of (Arenas et al. 2013),
where only PSPACE-hardness was established. We also
show that Σ-query inseparability of DL-LiteHcore TBoxes is
EXPTIME-complete, which closes the PSPACE–EXPTIME
gap that was left open by Konev et al. (2011).

Recall that TBoxes T1 and T2 are Σ-query inseparable if,
for all Σ-ABoxesA (which only use concept and role names
from Σ), the KBs (T1,A) and (T2,A) are Σ-query insepa-
rable. TBox and KB inseparabilities have different applica-
tions. The former supports ontology engineering when data
is not known or changes frequently: one can equivalently
replace one TBox with another only if they return the same
answers to queries for every Σ-ABox. In contrast, KB insep-
arability is useful in applications where data is stable such as
knowledge exchange, module extraction or forgetting for a
stable KB in order to re-use it in a new application or as a
compilation step to make CQ answering more efficient. As
we show below, TBox and KB Σ-query inseparabilities also
have different computational properties.

TBox Σ-query inseparability has been extensively stud-
ied (Kontchakov, Wolter, and Zakharyaschev 2010; Lutz
and Wolter 2010; Konev et al. 2012). For work on dif-
ferent notions of TBox inseparability and the correspond-
ing notions of modules and forgetting, we refer the reader
to (Cuenca Grau et al. 2008; Konev, Walther, and Wolter
2009; Del Vescovo et al. 2011; Nikitina and Rudolph 2012;
Nikitina and Glimm 2012; Lutz, Seylan, and Wolter 2012).

Omitted proofs can be found in the full version available
at www.dcs.bbk.ac.uk/˜roman.

Horn-ALCHI and its Fragments
All the DLs for which we investigate KB Σ-query insepara-
bility are Horn fragments of ALCHI. To define these DLs,
we fix sequences of individual names ai, concept names Ai,

and role names Pi, where i < ω. A role is either a role name
Pi or an inverse role P−i ; we assume that (P−i)− = Pi.
ALCI-concepts, C, are defined by the grammar

C ::= Ai | > | ⊥ | ¬C | C1uC2 | C1tC2 | ∃R.C | ∀R.C,
where R is a role. ALC-concepts are ALCI-concepts with-
out inverse roles; EL-concepts are ALC-concepts without
the constructs ⊥, t, ¬ and ∀R.C. DL-Litehorn-concepts are
ALCI-concepts without t, ¬ and ∀R.C, in which C = >
in every occurrence of ∃R.C. Finally, DL-Litecore-concepts
are DL-Litehorn-concepts without u; in other words, they are
basic concepts of the form ⊥, >, Ai or ∃R.>.

For a DL L, an L-concept inclusion (CI) takes the form
C v D, where C and D are L-concepts. An L-TBox, T ,
contains a finite set of L-CIs. An ALCHI, DL-LiteHhorn and
DL-LiteHcore TBox can also contain a finite set of role in-
clusions (RIs) R1 v R2, where the Ri are roles. In ELH
TBoxes, RIs do not have inverse roles. DL-Lite TBoxes
may also contain disjointness constraints B1 uB2 v ⊥ and
R1 uR2 v ⊥, for basic concepts Bi and roles Ri.

To introduce the Horn fragments of these DLs, we re-
quire the following (standard) recursive definition (Hustadt,
Motik, and Sattler 2005; Kazakov 2009): a concept C oc-
curs positively in C; if C occurs positively (respectively,
negatively) in C ′ then C occurs positively (negatively) in
C ′ t D, C ′ u D, ∃R.C ′, ∀R.C ′, D v C ′, and it occurs
negatively (positively) in ¬C ′ and C ′ v D. Now, we call a
TBox T Horn if no concept of the form C tD occurs posi-
tively in T , and no concept of the form ¬C or ∀R.C occurs
negatively in T . In the DL Horn-L, where L is one of our
DLs, only Horn L TBoxes are allowed. Clearly, the EL and
DL-Lite TBoxes are Horn by definition.

An ABox, A, is a finite set of assertions of the form
Ak(ai) or Pk(ai, aj). An L-TBox T and an ABox A to-
gether form an L knowledge base (KB) K = (T ,A). The
set of individual names in K is denoted by ind(K).

The semantics for the DLs is defined in the usual way
based on interpretations I = (∆I , ·I) that comply with the
unique name assumption: aIi 6= aIj for i 6= j (Baader et al.
2003). We write I |= α in case an inclusion or assertion α
is true in I. If I |= α, for all α ∈ T ∪ A, then I is a model
of a KB K = (T ,A); in symbols: I |= K. K is consistent if
it has a model. K |= α means that I |= α for all I |= K.

A conjunctive query (CQ) q(~x) is a formula ∃~y ϕ(~x, ~y),
where ϕ is a conjunction of atoms of the form Ak(z1) or
Pk(z1, z2) with zi ∈ ~x∪~y. A tuple ~a ⊆ ind(K) (of the same
length as ~x) is a certain answer to q(~x) over K = (T ,A) if
I |= q(~a) for all I |= K; in this case we write K |= q(~a). If
~x = ∅, the answer to q is ‘yes’ if K |= q and ‘no’ otherwise.

For combined complexity, the problem ‘K |= q(~a)?’ is
NP-complete for the DL-Lite logics (Calvanese et al. 2007),
EL and ELH (Rosati 2007), and EXPTIME-complete for the
remaining Horn DLs above (Eiter et al. 2008). For data com-
plexity (with fixed T and q), this problem is in AC0 for the
DL-Lite logics (Calvanese et al. 2007) and P-complete for
the remaining DLs (Rosati 2007; Eiter et al. 2008).

A signature, Σ, is a set of concept and role names. By a
Σ-concept, Σ-role, Σ-CQ, etc. we understand any concept,
role, CQ, etc. constructed using the names from Σ.

Σ-Query Entailment and Inseparability
We define the central notions of this paper.
Definition 1 Let K1 and K2 be KBs and Σ a signature.
– K1 Σ-query entails K2 if K2 |= q(~a) implies K1 |= q(~a)

for all Σ-CQs q(~x) and all ~a ⊆ ind(K2).
– K1 andK2 are Σ-query inseparable if they Σ-query entail

each other. In this case we write K1 ≡Σ K2.
Observe that Σ-query inseparability is weaker than log-

ical equivalence even if Σ = sig(K1) ∪ sig(K2), where
sig(Ki) is the signature of Ki. For example, (∅, {A(a)}) is
{A,B}-query inseparable from ({B v A}, {A(a)}) but the
two KBs are clearly not logically equivalent. Since check-
ing Σ-query inseparability can be reduced to two Σ-query
entailment checks, we can prove complexity upper bounds
for entailment. Conversely, for most languages we have a
semantically transparent reduction of Σ-query entailment to
Σ-query inseparability:
Theorem 2 Let L be any of our DLs containing EL or hav-
ing role inclusions. Then Σ-query entailment for L-KBs is
LOGSPACE-reducible to Σ-query inseparability for L-KBs.
Proof sketch. Let Ki = (Ti,Ai), i = 1, 2, and Σ be given.
We may assume that Σ = sig(K1) ∩ sig(K2). We also
assume that L has role inclusions, K1 and K2 are consis-
tent and the trivial interpretation I∅ (with |∆I∅ | = 1 and
SI∅ = ∅, for any S) is a model of the Ti (a proof without
those assumptions is given in the full version). Let K′i be a
copy of Ki in which all symbols S are replaced by fresh Si,
and let KΣ

i extend K′i with Si v S, for S ∈ Σ. One can
show that K1 Σ-query entails K2 iff K1 ≡Σ KΣ

1 ∪ KΣ
2 . q

That I∅ |= Ki is essential in the reduction above. Take
T1 = {A v B,A v ∃R.C}, T2 = {> v B,C u B v ⊥}
and Σ = {A,B,R,C}. Then K1 = (T1, {A(a)}) Σ-query
entails K2 = (T2, {A(a)}) but K1 6≡Σ KΣ

1 ∪ KΣ
2 .

We now consider the relationship between inseparability
and universal UCQ-solutions in knowledge exchange. Sup-
pose K1 and K2 are KBs in disjoint signatures Σ1 and Σ2.
Let T12 be a mapping consisting of inclusions of the form
S1 v S2, where the Si are concept (or role) names in Σi.
Then K2 is a universal UCQ-solution for (K1, T12,Σ2) if
K1 ∪ T12 ≡Σ2

K2. Deciding the latter is called the member-
ship problem for universal UCQ-solutions. For DLs L with
role inclusions, the problem whether K1 ∪ T12 ≡Σ2 K2 is a
Σ2-query inseparability problem in L. Conversely, we have:
Theorem 3 Σ-query entailment for any of our DLs L is
LOGSPACE-reducible to the membership problem for uni-
versal UCQ-solutions in L.
Proof sketch. We want do decide whether K1 Σ-query
entails K2. We again assume that I∅ |= Ti and use the
proof of Theorem 2 (for the general case, see the full ver-
sion). We may assume that Σ = sig(K1) ∩ sig(K2). Let
Σ1 = sig(K1). Then K1 Σ-query entails K2 iff K1 Σ1-
query entails K2. By the proof of Theorem 2, the latter
is the case iff K1 Σ1-query entails KΣ1

1 ∪ KΣ1
2 . Clearly,

KΣ1
1 ∪ KΣ1

2 Σ1-query entails K1, and so the two KBs are
Σ1-query inseparable. Then K1 Σ-query entails K2 iff K1

is a universal UCQ-solution for (K′1 ∪ K′2, T12,Σ1), where
T12 = {S1 v S, S2 v S | S ∈ Σ1}. q

Semantic Characterisation
In this section, we give a semantic characterisation of KB
Σ-query entailment based on an abstract notion of material-
isation and finite homomorphisms between such models.

Let K be a KB. An interpretation I is called a materiali-
sation of K if, for all CQs q(~x) and tuples ~a ⊆ ind(K),

K |= q(~a) iff I |= q(~a).

We say that K is materialisable if it has a materialisation.
Materialisations can be used to characterise KB Σ-query

entailment by means of Σ-homomorphisms. For an interpre-
tation I and a signature Σ, the Σ-types tIΣ(x) and rIΣ(x, y)
of x, y ∈ ∆I are defined by taking:

tIΣ(x) = {Σ-concept name A | x ∈ AI },
rIΣ(x, y) = {Σ-role R | (x, y) ∈ RI }.

Suppose Ii is a materialisation of Ki, i = 1, 2. A function
h : ∆I2 → ∆I1 is a Σ-homomorphism from I2 to I1 if, for
any a ∈ ind(K2) and any x, y ∈ ∆I2 ,

– h(aI2) = aI1 whenever tI2

Σ (a) 6= ∅ or rI2

Σ (a, y) 6= ∅ for
some y ∈ ∆I2 , and

– tI2

Σ (x) ⊆ tI1

Σ (h(x)), rI2

Σ (x, y) ⊆ rI1

Σ (h(x), h(y)).
As answers to Σ-CQs are preserved under Σ-homomorph-
isms, K1 Σ-query entails K2 if there is a Σ-homomorphism
from I2 to I1. However, the converse does not hold:
Example 4 Suppose I2 and I1 below are materialisations
of KBs K2 and K1, where a is the only ABox individual:

a u

P R S T S T

Q

Q Q Q

a

x

T,Q

R

S,Q

R

T,Q

R

S,Q

I2

I1

Let Σ = {Q,R, S, T}. Then there is no Σ-homomorphism
from I2 to I1 (as rI2

Σ (a, u) = ∅, we can map u to, say,
x but then only the shaded part of I2 can be mapped Σ-
homomorphically to I1). However, for any Σ-query q(~x),
I2 |= q(~a) implies I1 |= q(~a) as any finite subinterpretation
of I2 can be Σ-homomorphically mapped to I1.

We say that I2 is finitely Σ-homomorphically embeddable
into I1 if, for every finite subinterpretation I ′2 of I2, there
exists a Σ-homomorphism from I ′2 to I1.

To prove the following theorem, one can regard any finite
subinterpretation of I2 as a CQ whose variables are elements
of ∆I2 , with the answer variables being in ind(K2).
Theorem 5 Suppose Ki is a consistent KB with a material-
isation Ii, i = 1, 2. Then K1 Σ-query entails K2 iff I2 is
finitely Σ-homomorphically embeddable into I1.

One problem with applying Theorem 5 is that materiali-
sations are in general infinite for any of the DLs considered
in this paper. We address this problem by introducing finite
representations of materialisations. Let K = (T ,A) be a
KB and let G = (∆G , ·G ,) be a finite structure such that
∆G = ind(K)∪Ω, for ind(K)∩Ω = ∅, ·G is an interpretation

function on ∆G withAGi ⊆ ∆G , PGi ⊆ ind(K)×ind(K), and
(∆G ,) is a directed graph (containing loops) with nodes
∆G and edges ⊆ ∆G × Ω, in which every edge u v is
labelled with a set (u, v)G 6= ∅ of roles satisfying the condi-
tion: if u1 v and u2 v, then (u1, v)G = (u2, v)G. We
call G a generating structure for K if the interpretation M
defined below is a materialisation of K.

A path in G is a sequence σ = u0 . . . un with u0 ∈ ind(K)
and ui ui+1 for i < n. Let tail(σ) = un and let path(G)
be the set of paths in G. The materialisationM is given by:

∆M = path(G), aM = a, for a ∈ ind(K),

AM = {σ | tail(σ) ∈ AG},
PM = PG ∪ {(σ, σu) | tail(σ) u, P ∈ (tail(σ), u)G}

∪ {(σu, σ) | tail(σ) u, P− ∈ (tail(σ), u)G}.
We say that a DL L has finitely generated materialisations
if every L-KB has a generating structure.

Theorem 6 Horn-ALCHI and all of its fragments defined
above have finitely generated materialisations. Moreover,
– for any L ∈ {ALCHI,ALCI,ALCH,ALC} and any

Horn-L KB (T ,A), a generating structure can be con-
structed in time |A| · 2p(|T |), p a polynomial;

– for any L in the EL and DL-Lite families and any L KB
(T ,A), a generating structure can be constructed in time
|A| · p(|T |), p a polynomial.

Finite generating structures have been defined for
EL (Lutz, Toman, and Wolter 2009), DL-Lite (Kontchakov
et al. 2010) and more expressive Horn DLs (Eiter et al.
2008). With the exception of DL-Lite, however, the relation
 guiding the construction of materialisations was implicit.
We show how the existing constructions can be converted to
generating structures in the full version.
Example 7 The materialisation I2 from Example 4 can be
generated by the structure G2 shown below:

a

P R−

S−

T−

S−

Q
−

Q−

G2

For a generating structure G for K and a signature Σ, the
Σ-types tGΣ(u) and rGΣ(u, v) of u, v ∈ ∆G are defined by:

tGΣ(u) = {Σ-concept name A | u ∈ AG },

rGΣ(u, v) =


{Σ-role R | (u, v) ∈ RG }, if u, v ∈ ind(K),

{Σ-role R | R ∈ (u, v)G }, if u v,

∅, otherwise,

where (P−)G is the converse ofPG . We also define r̄GΣ(u, v)
to contain the inverses of the roles in rGΣ(u, v); note that
r̄GΣ(u, v) is not the same as rGΣ(v, u); cf. the T−, S−-cycle
in Example 7. We write u Σ v if u v and rGΣ(u, v) 6= ∅.

In the next section, we show that, for a DL L having
finitely generated materialisations, the problem of checking
Σ-query entailment between L-KBs can be reduced to the
problem of finding a winning strategy in a game played on
the generating structures for these KBs.

Σ-Query Entailment by Games
Suppose a DL L has finitely generated materialisations, Ki
is a consistent L-KB, for i = 1, 2, and Σ a signature. Let
Gi = (∆Gi , ·Gi , i) be a generating structure for Ki and let
Mi be its materialisation; GΣ

i and MΣ
i denote the restric-

tions of Gi andMi to Σ.
We begin with a very simple game on the finite generating

structure GΣ
2 and the possibly infinite materialisationMΣ

1 .

Infinite game GΣ(G2,M1). This game is played by two
players: player 2 and player 1. The states of the game are of
the form si = (ui 7→ σi), for i ≥ 0, where ui ∈ ∆G2 and
σi ∈ ∆M1 satisfy the following condition:

(s1) tG2

Σ (ui) ⊆ tM1

Σ (σi).

The game starts in a state s0 = (u0 7→ σ0) with σ0 = u0

in case u0 ∈ ind(K2). In each round i > 0, player 2 chal-
lenges player 1 with some ui ∈ ∆G2 such that ui−1 Σ

2 ui.
Player 1 has to respond with a σi ∈ ∆M1 satisfying (s1) and

(s2) rG2

Σ (ui−1, ui) ⊆ rM1

Σ (σi−1, σi).

This gives the next state si = (ui 7→ σi). Note that of all the
ui only u0 may be an ABox individual; however, there is no
such a restriction on the σi. A play of length n ≥ 0 starting
from s0 is any sequence s0, . . . , sn of states obtained as de-
scribed above. For an ordinal λ ≤ ω, we say that player 1
has a λ-winning strategy in the game GΣ(G2,M1) starting
from a state s0 if, for any play of length i < λ, which starts
from s0 and conforms with this strategy, and any challenge
of player 2 in round i+ 1, player 1 has a response.

The following theorem gives a game-theoretic flavour to
the criterion of Theorem 5 (see the full paper for a proof).

Theorem 8 M2 is finitely Σ-homomorphically embeddable
intoM1 iff the following conditions hold:

(abox) rM2

Σ (a, b) ⊆ rM1

Σ (a, b), for any a, b ∈ ind(K2);
(win) for any u0 ∈ ∆G2 and n < ω, there exists σ0 ∈ ∆M1

such that player 1 has an n-winning strategy in the game
GΣ(G2,M1) starting from (u0 7→ σ0).

Example 9 Let Σ = {Q,R, S, T}. Consider GΣ
2 andMΣ

2
shown in the picture below:

a

u

R− S−

T−

S−

Q
−

Q−

a

σ

T,Q

R

S,Q

R

T,Q

R

S,Q

0 1 2 2 3

3

4

4

GΣ
2

MΣ
1

For any n < ω and u ∈ ∆G2 , player 1 has an n-winning
strategy inGΣ(G2,M1). A 4-winning strategy starting from
(u 7→ σ) is shown by dotted lines (in round 2, player 2 has
two possible challenges). For a larger n, a suitable σ can be
chosen further away from the root a ofM1.

The criterion of Theorem 8 does not seem to be a big im-
provement on Theorem 5 as we still have to deal with an
infinite materialisation. Our aim now is to show that condi-
tion (win) in the infinite game GΣ(G2,M1) can be checked

by analysing a more complex game on the finite generat-
ing structures G2 and G1. We consider four types of strate-
gies in GΣ(G2,M1). For each type, τ , we define a game
GτΣ(G2,G1) such that, for any u0 ∈ ∆G2 , the following con-
ditions are equivalent:

(< ω) for every n < ω, player 1 has an n-winning strategy
of type τ in GΣ(G2,M1) starting from some (u0 7→ σn0);

(ω) player 1 has an ω-winning strategy in GτΣ(G2,G1) start-
ing from some state depending on u0 and τ .

We start by considering ‘forward’ winning strategies that
are sufficient for the DLs without inverse roles.

Forward strategy and game GfΣ(G2,G1). We say that a λ-
strategy (λ ≤ ω) for player 1 in the game GΣ(G2,M1) is
forward if, for any play of length i − 1 < λ, which con-
forms with this strategy, and any challenge ui−1 Σ

2 ui
by player 2, the response σi of player 1 is such that either
σi−1, σi ∈ ind(K1) or σi = σi−1v, for some v ∈ ∆G1 .

For example, if the Gi, i = 1, 2, satisfy the condition

(f) the Σ-labels on i-edges contain no inverse roles,

then every strategy in GΣ(G2,M1) is forward. This is
clearly the case for Horn-ALCH, Horn-ALC, ELH and EL,
which by definition do not have inverse roles.

The existence of a forward λ-winning strategy for player 1
in GΣ(G2,M1) is equivalent to the existence of such a
strategy in the game GfΣ(G2,G1), which is defined simi-
larly to GΣ(G2,M1) but with two modifications: (1) it is
played on G2 and G1; and (2) the response xi ∈ ∆G1 of
player 1 to a challenge ui−1 Σ

2 ui must be such that either
xi−1, xi ∈ ind(K1) or xi−1 1 xi, and (s1)–(s2) hold (with
G1 and xi in place ofM1 and σi).

Example 10 Let G2 and G1 be as shown below. Then, for
any u ∈ ∆G2 , there is x ∈ ∆G1 such that player 1 has an
ω-winning strategy in GfΣ(G2,G1) starting from (u 7→ x).

a
R

R
Q

R R

a
R

R
Q

0
1

1
2

GΣ
2

GΣ
1

The next theorem follows from König’s Lemma:

Lemma 11 For u0 ∈ ∆G2 , condition (< ω) holds for for-
ward strategies in GΣ(G2,M1) iff (ω) holds in GfΣ(G2,G1)
for some state (u0 7→ x0).

GfΣ(G2,G1) is a standard simulation or reachability game
on finite graphs, where the existence of ω-winning strate-
gies for player 1 follows from the existence of n-winning
strategies for n = O(|G2| × |G1|), which can be checked in
polynomial time (Mazala 2001; Baier and Katoen 2007). By
Theorem 6 and (f), we obtain:

Theorem 12 For combined complexity, checking Σ-query
entailment is in P for EL and ELH KBs, and in EXPTIME
for Horn-ALC and Horn-ALCH KBs. For data complexity,
it is in P for all these DLs.

In comparison to forward strategies, the winning strate-
gies used in Example 9 can be described as ‘backward.’
Backward strategy and game GbΣ(G2,G1). A λ-strategy
for player 1 in GΣ(G2,M1) is backward if, for any play
of length i − 1 < λ, which conforms with this strategy,
and any challenge ui−1 Σ

2 ui by player 2, the response σi
of player 1 is the immediate predecessor of σi−1 inM1 in
the sense that σi−1 = σiw, for some w ∈ ∆G1 (player 1
loses in case σi−1 ∈ ind(K1)). Note that, sinceM1 is tree-
shaped, the response of player 1 to any different challenge
ui−1 Σ

2 u′i must be the same σi; cf. Example 9.
That is why the states of the game GbΣ(G2,G1) are of the

form si = (Ξi 7→ xi), where Ξi ⊆ ∆G2 , Ξi 6= ∅, and
xi ∈ ∆G1 satisfy the following condition:
(s′1) tG2

Σ (u) ⊆ tG1

Σ (xi), for all u ∈ Ξi.
The game starts in a state s0 = (Ξ0 7→ x0) such that
(s′0) if u ∈ Ξ0 ∩ ind(K2), then x0 = u ∈ ind(K1).
For each i > 0, player 2 always challenges player 1 with the
set Ξi = Ξ i−1, where

Ξ = {v ∈ ∆G2 | u Σ
2 v, for some u ∈ Ξ},

provided that it is not empty (otherwise, player 2 loses).
Player 1 responds with xi ∈ ∆G1 such that xi 1 xi−1

and (s′1) and the following condition hold:

(s′2) rG2

Σ (u, v) ⊆ r̄G1

Σ (xi−1, xi), for all u ∈ Ξi−1, v ∈ Ξi.

Lemma 13 For u0 ∈ ∆G2 , condition (< ω) holds for back-
ward strategies in GΣ(G2,M1) iff (ω) holds in GbΣ(G2,G1)
for some state ({u0} 7→ x0).

Although Lemmas 11 and 13 look similar, the game
GbΣ(G2,G1) turns out to be more complex than GfΣ(G2,G1).

Example 14 To illustrate, consider GΣ
2 shown below (with

concepts and roles omitted) and an arbitrary G1:

GΣ
2

a u

w1

v1

w2

v2
v3

A play in GbΣ(G2,G1) may proceed as: ({u} 7→ x0),
({v1, w1} 7→ x1), ({v2, w2} 7→ x2), ({v3, w1} 7→ x3), etc.
This gives at least 6 different sets Ξi. But if G2 contained
k cycles of lengths p1, . . . , pk, where pi is the ith prime
number, then the number of states in GbΣ(G2,G1) could be
exponential (p1 × · · · × pk). In fact, we have the following:
Lemma 15 Checking (ω) in Lemma 13 is CONP-hard.

Observe that in the case of DL-Litecore and DL-Litehorn
(which have inverse roles but no RIs), generating structures
G = (∆G , ·G ,) can be defined so that, for any u ∈ ∆G

and R, there is at most one v with u v and R ∈ rG(u, v)
(Kontchakov et al. 2010). As a result, any n-winning strat-
egy starting from (u0 7→ σ0) in GΣ(G2,M1) consists of
a (possibly empty) backward part followed by a (possibly
empty) forward part. Moreover, in the backward games for
these DLs, the sets Ξi are always singletons. Thus, the num-
ber of states in the combined backward/forward games on
the Gi is polynomial, and the existence of winning strategies
can be checked in polynomial time.

Theorem 16 Checking Σ-query entailment for DL-Litecore
and DL-Litehorn KBs is in P for both combined and data
complexity.

An arbitrary strategy for player 1 in GΣ(G2,M1) is a
combination of a backward strategy and a number of start-
bounded strategies to be defined next.
Start-bounded strategy and game GsΣ(G2,G1). A strategy
for player 1 in the game GΣ(G2,M1) starting from a state
(u0 7→ σ0) is start-bounded if it never leads to (ui 7→ σi)
such that σ0 = σiv, for some v and i > 0. In other words,
player 1 cannot use those elements of M1 that are located
closer to the ABox than σ0; the ABox individuals inM1 can
only be used if σ0 ∈ ind(K1).

Example 17 The strategy starting from (u2 7→ σ1) and
shown below is start-bounded:

u2
T W W−1 T−1

σ1 T, T1 W,W1

0

4

1

3

2
GΣ

2

MΣ
1

In the game GsΣ(G2,G1), player 1 will have to guess all the
points of G2 that are mapped to the same point ofM1.

The states of GsΣ(G2,G1) are of the form (Γi,Ξi 7→ xi),
i ≥ 0, where Γi,Ξi ⊆ ∆G2 , Ξi 6= ∅, xi ∈ ∆G1 and (s′1)
holds. The initial state is of the form (∅,Ξ0 7→ x0) such that
(s′0) holds. In each round i > 0, player 2 challenges player 1
with some u Σ

2 v such that u ∈ Ξi−1 and

(nbk) if v ∈ Γi−1 then rG2

Σ (u, v) 6⊆ r̄G1

Σ (xi−2, xi−1).

Player 1 responds with either a state (Ξi−1,Ξi 7→ xi) such
that xi−1 1 xi (and so xi /∈ ind(K1)) and (s′′2) holds, or a
state (∅,Ξi 7→ xi) such that xi−1, xi ∈ ind(K1) and

(s′′2) rG2

Σ (u, v) ⊆ rG1

Σ (xi−1, xi).

We make challenges u Σ
2 v, for which u ∈ Ξi−1 and

(nbk) does not hold, ‘illegitimate’ because xi−2 can always
be used as a response. Because of this, player 1 always
moves ‘forward’ in G1, but has to guess appropriate sets Ξi
in advance. Note that Γi is always uniquely determined by
xi−1, xi and Ξi−1 (and it is either Ξi−1 or empty).

Example 18 Let GΣ
2 and GΣ

1 be as follows (cf. Example 17):
u2 u6T u7W u8W−1 u9T−1

x1 x3T, T1 x4W,W1

a 0

0

1

1

2

GΣ
2

GΣ
1

We show that player 1 has an ω-winning strategy in
GsΣ(G2,G1) starting from (∅, {u2, u9} 7→ x1). Player 2
challenges with u2 Σ

2 u6, and player 1 responds with
({u2, u9}, {u6, u8} 7→ x3). Then player 2 picks u6 Σ

2 u7

and player 1 responds with ({u6, u8}, {u7} 7→ x4), where
the game ends. Note the crucial guesses {u2, u9} 7→ x1 and
{u6, u8} 7→ x3 made by player 1. If player 1 responded with
({u2, u9}, {u6} 7→ x3) (and failed to guess that u8 must
also be mapped to x3), then after the challenge u6 Σ

2 u7

and response ({u6, u8}, {u7} 7→ x4)), player 2 would pick
u7 Σ

2 u8, to which player 1 could not respond.

Lemma 19 For any u0 ∈ ∆G2 , condition (< ω) holds for
start-bounded strategies in GΣ(G2,M1) iff (ω) holds in
GsΣ(G2,G1) for some state (∅,Ξ0 7→ x0) with u0 ∈ Ξ0.

As we shall see in the next section, the problem of check-
ing the conditions of this lemma is EXPTIME-hard.
Arbitrary strategies and game GaΣ(G2,G1). An arbitrary
winning strategy in the gameGΣ(G2,M1) can be composed
of one backward and a number of start-bounded strategies.

Example 20 Consider GΣ
2 andMΣ

1 shown below:

u1 u2

R−

u3

u6

S
−

T u7

W

u8

W−1

u9

T−1

u10

S−1

u4

U
u5

U−

σ2

σ1

R

σ3

T,
T1

σ4

W,W1

aS, S1

bU

0

1 1 2 2

GΣ
2

MΣ
1

Starting from (u1 7→ σ2), player 1 can respond to the chal-
lenges u1 Σ

2 u2 Σ
2 u3 according to the backward

strategy; the challenges u2 Σ
2 u6 Σ

2 u7 Σ
2 u8 Σ

2 u9

according to the start-bounded strategy as in Example 17;
the challenges u3 Σ

2 u4 Σ
2 u5 also according to

the obvious start-bounded strategy; finally, the challenge
u9 Σ

2 u10 needs a response according to the backward
strategy. We will combine the two backward strategies into
a single one, but keep the start-bounded ones separate.

The game GaΣ(G2,G1) begins as GbΣ(G2,G1), but with
states of the form (Ξi 7→ xi,Ψi), i ≥ 0, where Ξi ⊆ ∆G2

and xi ∈ ∆G1 satisfy (s′1) and Ψi is a (possibly empty)
subset of Ξ i , which indicates initial challenges in start-
bounded games. The initial state satisfies (s′0). In each
round i > 0, if xi−1 ∈ ind(K1) then player 2 launches
the start-bounded game GsΣ(G2,G1) with the initial state
(∅,Ξi−1 7→ xi−1). Otherwise, if xi−1 /∈ ind(K1), player 2
has two options. First, he can challenge player 1 with the set
Ψi−1 (that is, similar to the backward game but with a possi-
bly smaller Ψi−1 in place of Ξ i−1); player 1 responds to this
challenge with a state (Ξi 7→ xi,Ψi) such that Ψi−1 ⊆ Ξi,
xi 1 xi−1 and (s′2) holds. Second, player 2 can launch
the start-bounded game GsΣ(G2,G1) with the initial state
(∅,Ξi−1 7→ xi−1), where the first challenge of player 2 must
be picked from Φi−1 = Ξ i−1 \Ψi−1.

Example 21 We illustrate the ω-winning strategy for
player 1 in GaΣ(G2,G1) starting from ({u1} 7→ x2, {u2}),
where GΣ

2 is from Example 20 and GΣ
1 looks likeMΣ

1 from
Example 20 (but with xi in place of σi):

{u1} 7→ x2, {u2}

{u2, u9} 7→ x1, {u3,u10}

{u3, u10} 7→ a, ∅ ∅, {u3, u10} 7→ a

∅, {u4} 7→ b

u3 u4

∅, {u5} 7→ a

u4 u5

∅, {u2, u9} 7→ x1

{u2,u9}, {u6, u8} 7→ x3

u2 u6

{u6,u8}, {u7} 7→ x4

u6 u7

Lemma 22 For any u0 ∈ ∆G2 , condition (< ω) holds
for arbitrary strategies in GΣ(G2,M1) iff (ω) holds in
GaΣ(G2,G1) for some state (Ξ0 7→ x0,Ψ0) with u0 ∈ Ξ0.

Condition (ω) in the lemma above is checked in time
O(|ind(K2)|×2|∆

G2\ind(K2)|×|∆G1 |), which can be readily
seen by analysing the full game graph for GaΣ(G2,G1) (sim-
ilar to that in Example 21). By Theorem 6, we then obtain:

Theorem 23 For combined complexity, Σ-query entailment
is in 2EXPTIME for Horn-ALCHI and Horn-ALCI KBs,
and in EXPTIME for DL-LiteHhorn and DL-LiteHcore KBs. For
data complexity, these problems are all in P.

Lower Bounds
We have shown that, for all of our DLs, Σ-query entailment
and inseparability are in P for data complexity. The next
theorem establishes a matching lower bound:

Theorem 24 For data complexity, Σ-query entailment and
inseparability are P-hard for DL-Litecore and EL KBs.

Proof. The proof is by reduction of the P-complete entail-
ment problem for acyclic Horn ternary clauses: given a con-
junction ϕ of clauses of the form ai and ai ∧ ai′ → aj ,
i, i′ < j, decide whether an is true in every model of ϕ.
Consider the EL TBox T = {V v ∃P.(∃R1.V u ∃R2.V)}
and an ABox A comprised of F (an) and

P (ai, ai), R1(ai, ai), R2(ai, ai), for each clause ai in ϕ,
P (aj , c), R1(c, ai), R2(c, ai′), for c = ai ∧ ai′ → aj in ϕ.

Set Σ = {F, P,R1, R2}, K2 = (T ,A ∪ {V (an)}) and
K1 = (∅,A). Obviously, K2 Σ-query entails K1. On
the other hand, the materialisation of K2 is (finitely) Σ-
homomorphically embeddable in the materialisation of K1

iff ϕ derives an (see the full version for details). For
DL-Litecore, we take T to contain V v ∃P , ∃P− v ∃Ri
and ∃R−i v V , for i = 1, 2. q

For combined complexity, EXPTIME-hardness of Σ-
query inseparability for Horn-ALC can be proved by reduc-
tion of the subsumption problem: we have T |= A v B iff
(T , {A(a)}) and (T ∪ {A v B}, {A(a)}) are {B}-query
inseparable. We now establish matching lower bounds in
the technically challenging cases.
Theorem 25 For combined complexity, Σ-query entailment
and inseparability are (i) 2EXPTIME-hard for Horn-ALCI
KBs and (ii) EXPTIME-hard for DL-LiteHcore KBs.
Proof. The proof of (i) is by encoding alternating Turing
machines (ATMs) with exponential tape and using the fact
that AEXPSPACE = 2EXPTIME; see, e.g. (Kozen 2006).

Let M = (Γ, Q, q0, q1, δ) be an ATM with a tape alpha-
bet Γ, a set of states Q partitioned into existential Q∃ and
universal Q∀ states, an initial state q0 ∈ Q∃, an accepting
state q1 ∈ Q, and a transition function

δ : (Q \ {q1})× Γ× {1, 2} → Q× Γ× {−1, 0,+1},
which, for a state q and symbol a, gives two instructions,
δ(q, a, 1) and δ(q, a, 2). We assume that existential and uni-
versal states strictly alternate: any transition from an exis-
tential state results in a universal state, and vice versa. We

extend δ with the instructions δ(q1, a, k) = (q1, a, 0), for
a ∈ Γ and k = 1, 2, which go into an infinite loop if M
reaches the accepting state q1. Thus, assuming that M ter-
minates on every input, it accepts ~w iff the modified ATM
M ′ has a run on ~w, all branches of which are infinite.

Our aim is to construct, given M and ~w, TBoxes T1 and
T2 and a signature Σ such that M ′ has a run with only in-
finite branches iff the materialisation M2 of (T2, {A(c)})
is finitely Σ-homomorphically embeddable into the materi-
alisationM1 of (T1, {A(c)}). Let f be a polynomial such
that, on any input of length m, M uses at most 2n − 2 tape
cells, with n = f(m), which are numbered from 1 to 2n−2,
and the head stays to the right of cell 0, which contains the
marker [∈ Γ. The construction proceeds in five steps.
Step 0. We use tuples of 2n concepts to represent distances
of up to 2n between the cells on the tape in consecutive con-
figurations. We refer to a tuple Yn−1, Y n−1, . . . , Y0, Y 0 of
concept names as Y and assume that the TBox contains the
following CIs to encode an n-bit R-counter on Y :
Y k u Yk−1 u · · · u Y0 v ∀R.(Yk u Y k−1 u · · · u Y 0),

n > k ≥ 0,

Y i u Y k v ∀R.Y i and Yi u Y k v ∀R.Yi, n > i > k.

We use the expression ifY=2n−1 on the left-hand side of CIs
to say that the Y -value is 2n − 1 (which is a shortcut for
Yn−1 u · · · u Y0); we also use ifY<2n−1 on the left-hand side
of CIs for the complementary statement (which is a shortcut
for n CIs with ifY<2n−1 replaced by each of Y n−1, . . . , Y 0).
Finally, we use setY0 on the right-hand side of CIs for the
reset command (which is equivalent to Y n−1 u · · · u Y 0).
Note that the counter stops at 2n − 1: the R-successors of a
domain element in ifY=2n−1 do not have to encode any value.
Step 1. First we encode configurations and transitions ofM ′
using T1. We represent a configuration by a block, which is a
sequence of 2n + 1 domain elements connected by a role P .
The first element distinguishes the blocks for the two alter-
native transitions; using a P -counter on a tuple T , we assign
indices from 0 to 2n − 1 to all other elements in each block.
The element with index 0 is needed for padding. Each of
the remaining 2n − 1 elements belongs to a concept Ca, for
some a ∈ Γ: if the element with index i + 1 is in Ca, then
the cell i is assumed to contain a in the configuration repre-
sented by the block (in particular, the element with index 1
contains [for cell 0) as shown below:

M1
A

setT0

C[Ca1

setH0

Ca2 Cam

I

C

I

C

I

C

I
ifT=2n−1

The first block represents the initial configuration: the input
~w = a1 . . . am is followed by 2n −m − 2 blank symbols
and the head is positioned over cell 1, which is indicated by
the 0 value of the P -counter on a tuple H . This is achieved
by the following CIs in the TBox T1:
A v ∃P.(setT0 u ∃P.(C[u ∃P.(Ca1

u setH0 u
∃P.(Ca2

u ∃P.(. . . ∃P.(Cam u I) . . .))))), (T1-1)

ifT<2n−1 u I v ∃P.(I u C), (T1-2)

ifT=2n−1 u I v Z0
q0a1

. (T1-3)

Step 2. The contents of the tape and the head position in
each configuration is encoded in a block of length 2n + 1;
the current state q ∈ Q is recorded in the concept Z0

qa that
contains the last element of the block (a ∈ Γ specifies the
contents of the active cell scanned by the head). At the end
of the block, when the T -value reaches 2n−1, we branch out
one block for each of the two transitions, reset the P -counter
on T , and propagate via Z1

qa and Z2
qa the current state and

symbol in the active cell: for q ∈ Q and a ∈ Γ, we add to
T1 the CI

ifT=2n−1 u Z0
qa v

l

k=1,2

∃P.(Xk u ∃P.(setT0 u Zkqa)), (T1-4)

where X1 and X2 are two fresh concept names.
The acceptance condition for M ′ is enforced by means

of T2, which uses a P -counter on a tuple T 0 for a block
representing the initial configuration (a T 0-block):

A v ∃P.setT
0

0 , (T2-1)

ifT
0

<2n−1 v ∃P. (T2-2)
Two P -counters, on T 1 and T 2, are used for blocks rep-
resenting configurations with universal sates (T 1- and T 2-
blocks respectively) and one P -counter, on a tuple T 3, suf-
fices for blocks representing configurations with existential
states (T 3-blocks). These blocks are arranged into an infi-
nite tree-like structure: the T 0-block is the root, from which
a T 1- and a T 2-blocks branch out (successors of the initial
state q0 are universal). Each of them is followed by a T 3-
block, which branches out a T 1- and a T 2-blocks, and so
on. This is achieved by adding to T2 the following CIs:

ifT
k

=2n−1 v
l

j=1,2

∃P.(Xj u ∃P.setT
j

0), for k = 0, 3, (T2-3)

ifT
k

<2n−1 v ∃P.G, for k = 1, 2, 3, (T2-4)

ifT
k

=2n−1 v ∃P.∃P.setT
3

0 , for k = 1, 2, (T2-5)
where G is a concept name. If Σ = {A,X1, X2, P} then
there is a unique Σ-homomorphism from the T 0-block in
M2 to the block of the initial configuration in M1. Next,
concepts X1 and X2 ensure that the T 1- and T 2-blocks are
Σ-homomorphically mapped (in a unique way) into the re-
spective blocks in M1, which reflects the acceptance con-
dition of universal states. The following T 3-block, how-
ever, contains neither X1 nor X2 and can be mapped to
either of the blocks in M1, which reflects the choice in
existential states; see the picture below, where possible Σ-
homomorphisms are shown by thick dashed arrows:

M2

M1

A

0
1

2

3

3
A

X1

X2

Step 3. Recall that the P -counter on H measures the dis-
tance from the head: if the active cell in the current configu-
ration is k, then its H-value is 0 and the H-value of the cell
k − 2 in a successor configuration is 2n − 1. So, until the
H-counter reaches 2n−1, the following CIs in T1 propagate
the state and symbol in the active cell along the blocks: for
q ∈ Q, a ∈ Γ and k = 0, 1, 2,

ifT<2n−1 u ifH<2n−1 u Zkqa v
l

b∈Γ

∃P.(Cb u Zkqa) (T1-5)

(for each b ∈ Γ, these CIs generate a branch inM1 to rep-
resent the same cell but with a different symbol, b, tenta-
tively assigned to the cell—Step 4 will ensure that the cor-
rect branch and symbol are selected to match the cell con-
tents in the preceding configuration). When the distance
from the last head position is 2n, the contents of the cell
and the current state are changed according to δ:

ifT<2n−1 u ifH=2n−1 u Zkqa v
l

b∈Γ

∃P.(Cb u∆k
qa,b), (T1-6)

where δ(q, a, k) = (q′, a′, σ) and ∆k
qa,b is the concept

setH0 u Z0
q′b u ∃P.(Ca′ uGa′), if σ = −1,

∃P.(Ca′ uGa′ u setH0 u Z0
q′a′), if σ = 0,

∃P.(Ca′ uGa′ u
l

b′∈Γ

∃P.(Cb′ u setH0 u Z0
q′b′)), if σ = +1

(the symbol in the active cell is changed according to the in-
struction, and the current state and symbol in the next active
cell are then recorded in Z0

qa). Since the head never visits
cell 0, this happens over cells 0 to 2n−1, that is, at least one
element after the P -counter on T is reset to 0. These three
situations are shown below, where grey and hatched nodes
denote domain elements withH-values 2n−1 and 0, respec-
tively, and the domain elements in the dashed oval represent
the active cell of the preceding configuration:

C
a ′, G

a ′

(a)
Zk

qa

Cb, Z
0
q′b

Cb′ , Z
0
q′b′

Z0
q′b

Z0
q′b′

Cb, Z
0
q′b

Cb′ , Z
0
q′b

(b)
Zk

qa

Cb

Cb′
Z0

q′a′

Z0
q′a′ Cb, Z

0
q′a′

Cb′ , Z
0
q′a′

(c)
Zk

qa

Cb

Cb′

Cb, Z
0
q′b

Cb′ , Z
0
q′b′

(Note that there is only one branch for the modified cell,
which corresponds to the new symbol, a′, in that cell; see
explanations below.) Then, the current state and the symbol
in the active cell are propagated along the tape using (T1-5).

Step 4. The CIs (T1-5)–(T1-6) generate a separate P -
successor for each b ∈ Γ. The correct one is chosen by a

finite Σ-homomorphism, h, from M2 to M1. To exclude
wrong choices, we take

Σ = {A,P,X1, X2} ∪ {Da | a ∈ Γ}.
Recall that if d1 ∈ CM1

a , for some a ∈ Γ, then it represents
a cell containing a. The following CIs in T1 ensure that, for
each b ∈ Γ different from a, there is a block of (2n + 1)-
many P−-connected elements that ends in the concept Db

(called a Db-block in the sequel):

Ca v Da u
l

b∈Γ\{a}
Gb, (T1-7)

Gb v ∃P−.(Sb u setB0), (T -1)

ifB<2n−1 u Sb v ∃P−.Sb, (T -2)

ifB=2n−1 u Sb v ∃P−.Db, (T -3)

where we use a P−-counter on a tupleB (unlike P -counters
in all other cases) and a concept Sb to propagate b along the
whole block. Suppose h(d2) = d1 and d2 belongs to G in
M2 (it represents a cell in a non-initial configuration). Then
the following CI and (T -1)–(T -3), added to T2, generate a
Db-block, for each b ∈ Γ (including a):

G v
l

b∈Γ
Gb. (T2-6)

Each of the Db-blocks in M2, for b ∈ Γ with b 6= a, can
be mapped by h to the respective Db-block inM1. By the
choice of Σ, the only remainingDa-block, in case a is tenta-
tively contained in this cell, could be mapped (in the reverse
order) along the branch inM1 but only if the cell contains a
in the preceding configuration (that is, the element which is
2n + 1 steps closer to the root ofM1 belongs to Da):

M2

M1

cell kcell k
2n + 2

G

setB0

ifB=2n−1Da

Db

Db′

setB0

ifB=2n−1

CaDa

Db

Db′

setB0 ifB=2n−1

Note (see ∆k
qa,b) that the cell whose content is changed gen-

erates the additionalDa-block inM1 to allow the respective
Da-block fromM2 to be mapped there.

One can show that M ′ has a run with only infinite
branches iff (T1, {A(c)}) Σ-query entails (T2, {A(c)}). It
follows, by Theorem 2, that deciding Σ-query inseparability
is 2EXPTIME-hard.

(ii) A proof of EXPTIME-hardness of Σ-query insepara-
bility for DL-LiteHcore KBs is given in the full paper. It uses
the same idea of encoding computations of ATMs. One es-
sential difference is that the expressive power of DL-LiteHcore
is not enough to represent n-bit counters in Step 0, and so
we can only encode computations on polynomial tape. q

As a consequence of Theorems 3, 23 and 25 we obtain:

Theorem 26 For combined complexity, the membership
problem for universal UCQ-solutions is 2EXPTIME-
complete for Horn-ALCHI and Horn-ALCI; EXPTIME-
complete for Horn-ALCH, Horn-ALC, DL-LiteHhorn and
DL-LiteHcore; and P-complete for EL and ELH. For data
complexity, all these problems are P-complete.

In the case of DL-LiteHcore, we also obtain an EXPTIME
algorithm for checking the existence and computing univer-
sal UCQ-solutions. Indeed, given a KB K1, a target signa-
ture Σ2 and a mapping T12, we first compute the Σ2-ABox
over ind(K1) that is implied by K1 and T12, and then check
whether at least one KB K2 in Σ2 with this ABox is a uni-
versal UCQ-solution (there are ≤ O(2|Σ2|) such KBs). This
gives an EXPTIME upper bound for the non-emptiness prob-
lem for universal UCQ-solutions in DL-LiteHcore (Arenas et
al. 2013). Similarly, we can check in EXPTIME whether the
result of forgetting a signature in a DL-LiteHcore KB exists.

Σ-query inseparability of DL-LiteHcore TBoxes was known
to sit between PSPACE and EXPTIME (Konev et al. 2011).
Using the fact that witness ABoxes for DL-LiteHcore TBox
separability can always be chosen among the singleton
ABoxes (Konev et al. 2011, Theorem 8), we can modify the
proof of Theorem 25 to improve the PSPACE lower bound:
Theorem 27 Σ-query inseparability of DL-LiteHcore TBoxes
is EXPTIME-complete.

For more expressive DLs, TBox Σ-query inseparability
is often harder than KB inseparability: for DL-Litehorn, the
space of relevant witness ABoxes for TBox separability is
of exponential size and, in fact, TBox inseparability is NP-
hard, while KB inseparability is in P. Similarly, Σ-query in-
separability of EL KBs is tractable, while Σ-query insepa-
rability of TBoxes is EXPTIME-complete (Lutz and Wolter
2010). The complexity of TBox inseparability for Horn-DLs
extending Horn-ALC is not known.

Future Work
From a theoretical point of view, it would be of interest to
investigate the complexity of Σ-query inseparability for KBs
in more expressive Horn DLs (e.g., Horn-SHIQ) and non-
Horn DLs extending ALC. We conjecture that the game
technique developed in this paper can be extended to those
DLs as well. Our games can also be used to define efficient
approximations of Σ-query entailment and inseparability for
KBs. The existence of a forward strategy, for example, pro-
vides a sufficient condition for Σ-query entailment for all of
our DLs. Thus, one can extract a Σ-query module of a given
KB K by exhaustively removing from K those inclusions
and assertions α for which player 1 has a winning strategy
in the game GfΣ(G1,G2), where G1 is a generating structure
for K \ {α} and G2 for K. The resulting modules are min-
imal for our DLs without inverse roles, and we conjecture
that in practice they are often minimal for DLs with inverse
roles as well; see (Konev et al. 2011) for experiments testing
similar ideas for module extraction from TBoxes.

Finally, we plan to use the developed technique to inves-
tigate the complexity of the non-emptiness problem for uni-
versal UCQ-solutions in data exchange as well as algorithms
for computing universal UCQ-solutions in various DLs.

References
Arenas, M.; Botoeva, E.; Calvanese, D.; Ryzhikov, V.; and
Sherkhonov, E. 2012. Exchanging description logic knowl-
edge bases. In Proc. of the 13th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR 2012).
AAAI Press.
Arenas, M.; Botoeva, E.; Calvanese, D.; and Ryzhikov, V.
2013. Exchanging OWL 2 QL knowledge bases. In Proc.
of the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI
2013).
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds. 2003. The Description Logic
Handbook: Theory, Implementation and Applications. Cam-
bridge University Press. (2nd edition, 2007).
Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
envelope. In Proc. of the 19th Int. Joint Conf. on Artificial
Intelligence (IJCAI-05), 364–369.
Baier, C., and Katoen, J.-P. 2007. Principles of Model
Checking. MIT Press.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. Jour-
nal of Automated Reasoning 39(3):385–429.
Cuenca Grau, B.; Horrocks, I.; Kazakov, Y.; and Sattler, U.
2008. Modular reuse of ontologies: theory and practice.
Journal of Artificial Intelligence Research (JAIR) 31:273–
318.
Del Vescovo, C.; Parsia, B.; Sattler, U.; and Schneider, T.
2011. The modular structure of an ontology: Atomic decom-
position. In Proc. of the 22nd Int. Joint Conf. on Artificial
Intelligence (IJCAI 2011), 2232–2237. AAAI Press.
Eiter, T.; Gottlob, G.; Ortiz, M.; and Simkus, M. 2008.
Query answering in the description logic Horn-SHIQ. In
Proc. of the 11th European Conf. on Logics in Artificial In-
telligence (JELIA 2008), volume 5293 of Lecture Notes in
Computer Science, 166–179. Springer.
Hustadt, U.; Motik, B.; and Sattler, U. 2005. Data com-
plexity of reasoning in very expressive description logics.
In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI-05), 466–471.
Jiménez-Ruiz, E.; Cuenca Grau, B.; Horrocks, I.; and
Berlanga Llavori, R. 2011. Supporting concurrent ontol-
ogy development: Framework, algorithms and tool. Data
Knowl. Eng. 70(1):146–164.
Kazakov, Y. 2009. Consequence-driven reasoning for Horn
SHIQ ontologies. In Proc. of the 21st Int. Joint Conf. on
Artificial Intelligence (IJCAI 2009), 2040–2045.
Konev, B.; Kontchakov, R.; Ludwig, M.; Schneider, T.;
Wolter, F.; and Zakharyaschev, M. 2011. Conjunctive query
inseparability of OWL 2 QL TBoxes. In Proc. of the 25th
AAAI Conf. on Artificial Intelligence (AAAI 2011). AAAI
Press.
Konev, B.; Ludwig, M.; Walther, D.; and Wolter, F. 2012.
The logical difference for the lightweight description logic
EL. Journal of Artificial Intelligence Research (JAIR)
44:633–708.

Konev, B.; Walther, D.; and Wolter, F. 2009. Forgetting and
uniform interpolation in large-scale description logic termi-
nologies. In Proc. of the 21st Int. Joint Conf. on Artificial
Intelligence (IJCAI 2009), 830–835. AAAI Press.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2010. The combined approach to query
answering in DL-Lite. In Proc. of the 12th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR
2010). AAAI Press.
Kontchakov, R.; Wolter, F.; and Zakharyaschev, M. 2010.
Logic-based ontology comparison and module extraction,
with an application to DL-Lite. Artificial Intelligence
174:1093–1141.
Kozen, D. 2006. Theory of Computation. Springer.
Krötzsch, M.; Rudolph, S.; and Hitzler, P. 2013. Complex-
ities of horn description logics. ACM Trans. Comput. Log.
14(1):2.
Lin, F., and Reiter, R. 1994. Forget it! In In Proc. of the
AAAI Fall Symposium on Relevance, 154–159.
Lutz, C., and Wolter, F. 2010. Deciding inseparability and
conservative extensions in the description logic EL. Journal
of Symbolic Computation 45(2):194–228.
Lutz, C.; Seylan, I.; and Wolter, F. 2012. An automata-
theoretic approach to uniform interpolation and approxi-
mation in the description logic EL. In Proc. of the 13th
Int. Conf. on Principles of Knowledge Representation (KR
2012). AAAI Press.
Lutz, C.; Toman, D.; and Wolter, F. 2009. Conjunctive
query answering in the description logic EL using a rela-
tional database system. In Proc. of the 21st Int. Joint Conf.
on Artificial Intelligence (IJCAI-09), 2070–2075.
Mazala, R. 2001. Infinite games. In Automata, Logics, and
Infinite Games, 23–42.
Nikitina, N., and Glimm, B. 2012. Hitting the sweetspot:
Economic rewriting of knowledge bases. In Proc. of the 11th
Int. Semantic Web Conf. (ISWC 2012), Part I, volume 7649
of Lecture Notes in Computer Science, 394–409. Springer.
Nikitina, N., and Rudolph, S. 2012. ExpExpExplosion: Uni-
form interpolation in general EL terminologies. In Proc.
of the 20th European Conf. on Artificial Intelligence (ECAI
2012), 618–623. IOS Press.
Rosati, R. 2007. On conjunctive query answering in EL. In
Proc. of the 2007 Int. Workshop on Description Logics (DL
2007).
Stuckenschmidt, H.; Parent, C.; and Spaccapietra, S., eds.
2009. Modular Ontologies: Concepts, Theories and Tech-
niques for Knowledge Modularization, volume 5445 of Lec-
ture Notes in Computer Science. Springer.
Wang, Z.; Wang, K.; Topor, R. W.; and Pan, J. Z. 2010. For-
getting for knowledge bases in DL-Lite. Ann. Math. Artif.
Intell. 58(1-2):117–151.
Wang, Z.; Wang, K.; and Topor, R. W. 2010. Revising gen-
eral knowledge bases in description logics. In Proc. of the
12th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR 2010). AAAI Press.

Appendix
The proofs of the theorems and lemmas from the paper

are presented in the following order. We begin by proving
Theorem 6, where we show how to construct finite generat-
ing structures for each of the languages and check that these
structures give rise to materialisations. Theorem 6 is then
used to prove Theorem 5, which characterises Σ-query en-
tailment through finite Σ-homomorphisms. After that we
prove Theorems 2 and 3 that establish a connection between
query entailment, query inseparability and universal UCQ-
solutions.

Next, we prove the results for our games: first, Theorem 8
relating finite Σ-homomorphisms with infinite games, and
second, Lemma 22 saying that arbitrary games cover and
admit arbitrary strategies. Proofs of Lemmas 11, 13 and 19
are obtained as corollaries of the proof of Lemma 22. Fi-
nally, we prove Lemma 19, establishing CONP-hardness of
backward strategies.

We conclude with the proofs of lower bounds. First,
we prove Theorem 24. Then, in the proof of Theo-
rem 25 we show EXPTIME-hardness of Σ-query entailment
in DL-LiteHcore.

Proof of Theorem 6: construction of
generating structures

Theorem 6 Horn-ALCHI and all of its fragments defined
above have finitely generated materialisations. Moreover,

– for any L ∈ {ALCHI,ALCI,ALCH,ALC} and any
Horn-L KB (T ,A), a generating structure can be con-
structed in time |A| · 2p(|T |), p a polynomial;

– for any L in the EL and DL-Lite families and any L KB
(T ,A), a generating structure can be constructed in time
|A| · p(|T |), p a polynomial.

We construct the generating structures first for
Horn-ALCHI, then for ELH, and finally for DL-LiteHhorn.
The construction for Horn-ALCI, Horn-ALCH, and
Horn-ALC is the same as for Horn-ALCHI, the construc-
tion for EL is the same as for ELH, and the construction
for DL-Litecore, DL-LiteHcore, and DL-Litehorn is the same as
for DL-LiteHhorn and therefore omitted.

Horn-ALCHI
To construct the generating structure for Horn-ALCHI
TBoxes we first transform the TBox into normal form
(Krötzsch, Rudolph, and Hitzler 2007). A Horn-ALCHI
TBox is in normal form if its concept inclusions are of the
following form

A v B, A1 uA2 v B,
A v ⊥, > v B,
A v ∃R.B, A v ∀R.B,

∃R.A v B, R1 v R2,

where A,A1, A2, B are concept names and R,R1, R2 are
roles. The following result is well-known (Krötzsch,
Rudolph, and Hitzler 2007; Eiter et al. 2008):

Theorem A.28 For every Horn-ALCHI TBox T one can
construct in polynomial time a Horn-ALCHI TBox T ′ in
normal form such that T and T ′ are Σ-query inseparable
for the signature Σ of T . Moreover,
• if T does not contain any role inclusions then T ′ does not

contain any role inclusions;
• if T does not contain any inverse roles then T ′ does not

contain any inverse roles.
Now assume a consistent KB K = (T ,A) with a
Horn-ALCHI TBox T in normal form is given. By sub(T)
we denote the set of subconcepts of concepts in T . The T -
type of d in I is defined by taking

hI(d) = {C ∈ sub(T) | d ∈ CI}.
We say that t is a T -type if there exists a model I of T such
that t = hI(d), for some d ∈ ∆I . Denote by type(T)
the set of all T -types. It is well known that type(T) can be
computed in exponential time in |T |. We now construct the
finitely generating structure G = (∆G , ·G ,) for K, where
∆G = ind(K) ∪ Ω.

For any role R in T , we set
[R] = {S | T |= R v S, T |= S v R}.

We write [R] ≤T [S] if T |= R v S; thus, ≤T is a partial
order on the set {[R] | R a role in T }. Ω will be a subset of
the set of pairs ([R], t) with t ∈ type(T). First define as
follows:
• a ([R], t) if a ∈ ind(K) and t is a maximal

(with respect to set-inclusion) T -type such that K |=
∃R.(

d
C∈t C)(a) and K 6|= R(a, b) for any b ∈ ind(K)

with t ⊆ {C ∈ sub(T) | K |= C(b)};
• ([R1], t1) ([R2], t2) if t2 is a maximal T -type such

that T |= (
d
C∈t1 C) v ∃R2.(

d
C∈t2 C).

Ω is defined as the set of all pairs ([R], t) such that there are
a ∈ ind(K), R1, . . . , Rn = R and t1, . . . , tn = t such that

a ([R1], t1) · · · ([Rn], tn).

We define the interpretation function ·G by setting

AG = {a ∈ ind(K) | K |= A(a)} ∪ {([R], t) ∈ Ω | A ∈ t},
PG = {(a, b) | there is R(a, b) ∈ A with T |= R v P},
and for every edge u v with v = (R, t), we set

(u, v)G = {S | [R] ≤T [S]}.
It can now be proved that G is a generating structure for K.
LetM be the interpretation defined by unravelling G.
Proposition A.29 M is a model of K.
Proof. Clearly,M is a model of A. We showM |= T by
verifyingM |= α for each α ∈ T .
α = A v B. Here we consider A to be either a concept

name A, or >. Let x ∈ AM. If x = a ∈ ind(K), then
K |= A(a) by construction of AM. Since A v B ∈ T , it
follows K |= B(a), hence a ∈ BM. If x = x′ · ([R], t),
then A ∈ t and by construction of G, t is a maximal T -
type such that T |= (

d
C∈t′ C) v ∃R.(

d
C∈t C), where

tail(x′) = ([R′], t′). As T |= A v B, we have B ∈ t, so
x ∈ BM.

α = A1 uA2 v B. The argument is analogous for x ∈
AM1 ∩AM2 .

α = A v ∃R.B. Let x ∈ AM. If x = a ∈ ind(K),
then K |= A(a) by construction of AM. Since A v
∃R.B ∈ T , it follows K |= ∃R.B(a). Assume K |=
{R(a, b), B(b)} for some b ∈ ind(K), then (a, b) ∈ RM
and b ∈ BM, so M |= α. Otherwise, take a maximal
T -type t with B ∈ t such that K |= ∃R.(

d
C∈t C)(a)

and K 6|= R(a, b) for any b ∈ ind(K) with t ⊆ {C ∈
sub(T) | K |= C(b)}. Then it holds that a ([R], t)
and B ∈ t. From the construction of RM, we have that
(a, a · ([R], t)) ∈ RM, and since B ∈ t, ([R], t) ∈ BM.
For the case tail(x) = ([R], t), the proof is similar.

α = A v ∀R.B. Let x ∈ AM, and assume (x, y) ∈ RM.
We consider various cases of x and y:

• x = a, y = b for a, b ∈ ind(K). Then K |= R(a, b)
and K |= A(a), consequently K |= B(b), so b ∈ BM
by construction ofM.

• x = a ∈ ind(K), y = a · ([S], t) such that T |=
S v R. Then t is a maximal T -type such that K |=
∃S.(

d
C∈t C)(a). Moreover, from A v ∀R.B ∈ T

it follows that B ∈ t. So, by definition of BM,
([S], t) ∈ BM.

• tail(x) /∈ ind(K), y = x·([S], t) such that T |= S v R.
The proof is as for the case above.

• y = b ∈ ind(K) and x = y · ([S], t) such that
T |= S− v R. Then A ∈ t and so K |= ∃S.A(b),
consequently K |= ∃R−.A(b), and as A v ∀R.B is
equivalent to ∃R−.A v B, finally, K |= B(b). Hence,
b ∈ BM.

• tail(y) /∈ ind(K) and x = y · ([S], t) such that T |=
S− v R. Let tail(y) = ([Q], t′), then t is a maximal
T -type such that T |= (

d
C∈t′ C) v ∃S.(

d
C∈t C),

moreover A ∈ t. If follows T |= ∃S.(
d
C∈t C) v

∃R−.A, and as before, T |= ∃R−.A v B. Therefore,
T |= (

d
C∈t′ C) v B. t′ is a maximal T -type and so

we can conclude that B ∈ t′. Hence, y ∈ BM.

α = ∃R.A v B. Observe that α is equivalent to the axiom
A v ∀R−.B, whose satisfaction was shown above. That
proof can be adjusted to the case of α.

α = A v ⊥. Assume AM 6= ∅ and x ∈ AM. If x = a ∈
ind(K), then K |= A(a), and, since α ∈ T , we get a con-
tradiction with K being consistent. If tail(x) = ([R], t)
for some role R and T -type t, then it follows A ∈ t,
which contradicts the definition of a T -type. Therefore,
AM = ∅.

α = R1 v R2. Assume (x, y) ∈ RM1 . If x = a and y = b
for a, b ∈ ind(K), it follows K |= R1(a, b). From α we
obtain that K |= R2(a, b), therefore (a, b) ∈ RM2 . If
y = x · ([R], t) for some R and t, by construction of RM1 ,
T |= R v R1. Then because of α, T |= R v R2, so
finally, (x, y) ∈ RM2 . If x = y · ([R], t), then T |= R− v
R1 and T |= R− v R2, so again (x, y) ∈ RM2 .

This finishes the proof. q

The proof above also shows that T -types of a node inM
coincide with the T -types used in the construction of the
node.
Lemma A.30 LetM be the unravelling of G. Then

1. for all a ∈ ind(K), hM(a) = {C ∈ sub(T) | K |=
C(a)};

2. For all σ · ([R], t) ∈ ∆M, hM(σ · ([R], t)) = t.

Proposition A.31 If I is a model of K, then there exists a
homomorphism fromM to I.

Proof. We define a function h : ∆M → ∆I for each σ ∈
∆M by induction on the length of σ, and simultaneously
show it is a homomorphism, i.e.,
(1) h(aM) = aI for a ∈ ind(K),

(2) hM(σ) ⊆ hI(h(σ)) for σ ∈ ∆M,
(3) rM(σ, σ′) ⊆ rI(h(σ), h(σ′)) for σ, σ′ ∈ ∆M.
First, for each a ∈ ind(K), we set h(aM) = aI . This en-
sures (1). Conditions 2 and 3 follow for σ, σ′ ∈ ind(K) from
Lemma A.30, the condition that I is a model of K, and the
construction ofM.

Let σ · ([S], t) ∈ ∆M such that h(σ) is defined. By con-
struction ofM, it follows K |= ∃S.(

d
C∈t C)(a) if σ = a,

or T |= (
d
C∈t′ C) v ∃S.(

d
C∈t C) if tail(σ) = ([Q], t′).

By the condition that I is a model of K, by Lemma A.30,
and by the induction hypothesis hM(σ) ⊆ hI(h(σ)), it fol-
lows that there exists z ∈ ∆I such that S ∈ rI(h(σ), z)

and t ⊆ hI(z). We set h(σ · ([S], t)) = z and show that
(2) and (3) hold. (2) follows immediately from the fact
that hM(σ · ([S], t)) = t (by Lemma A.30). For (3), from
R ∈ rM(σ, σ · ([S], t)) it follows T |= S v R, and since I
is a model of T , we get R ∈ rI(h(σ), z). q

ELH
We now construct generating structures for ELH. Again we
first transform the TBox into normal form (Baader, Brandt,
and Lutz 2005). An ELH TBox is in normal form if its
concept inclusions are of the following form:

A v B, A1 uA2 v B,
> v B,
A v ∃P.B,

∃P.A v B, P1 v P2,

where A,A1, A2, B are concept names and P, P1, P2 are
role names. The following result is well known (Baader,
Brandt, and Lutz 2005):
Theorem A.32 For every ELH TBox T one can construct
in polynomial time an ELH TBox T ′ in normal form such
that T and T ′ are Σ-query inseparable for the signature Σ
of T .
Assume K = (T ,A) with T an ELH TBox in normal
form is given. We construct the generating structure G =
(∆G , ·G ,) for K as follows, where ∆G = ind(K) ∪ Ω and
Ω is a subset of the set of pairs ([P], A), for A and P , con-
cept and role names in T , respectively. (The class [P] is

defined in the construction for Horn-ALCHI.) Define as
follows:

• a ([P], A) if a ∈ ind(K) and A is a concept name
in T such that K |= ∃P.A(a) and K 6|= P (a, b) for any
b ∈ ind(K) with K |= A(b)};

• ([P1], A1) ([P2], A2) if T |= A1 v ∃P2.A2.

Ω is defined as the set of all pairs ([P], A) such that there
are a ∈ ind(K), P1, . . . , Pn = P and A1, . . . , An = A such
that

a ([P1], A1) · · · ([Pn], An).

We define the interpretation function ·G by setting

AG = {a ∈ ind(K) | K |= A(a)} ∪
{([P], B) ∈ Ω | T |= B v A},

PG = {(a, b) | there is P ′(a, b) ∈ A with T |= P ′ v P}

and for every edge u v with v = ([P], A), we set

(u, v)G = {P ′ | [P] ≤T [P ′]}.

It can be shown that G is a generating structure for K. Let
M be the interpretation defined by unravelling G.

Proposition A.33 M is a model of K.

Proof. Clearly,M is a model of A. We showM |= T by
verifyingM |= α for each α ∈ T .

α = A v B. Here we consider A to be either a concept
name A, or >. Let x ∈ AM. If x = a ∈ ind(K), then
K |= A(a) by construction of AM. Since A v B ∈ T , it
follows K |= B(a), hence a ∈ BM. If x = x′ · ([R], C),
then T |= C v A. Because of α, we have that T |= C v
B, therefore x ∈ BM.

α = A1 uA2 v B. The argument is analogous for x ∈
AM1 ∩AM2 .

α = A v ∃P .B. Let x ∈ AM. If x = a ∈ ind(K), then
K |= A(a) by construction of AM. Since α ∈ T , it
follows K |= ∃P .B(a). Assume K |= {P (a, b), B(b)}
for some b ∈ ind(K), then (a, b) ∈ PM and b ∈ BM, so
M |= α. Otherwise, we have that a ([P], B). From
the construction of M, we have that (a, a · ([P], B)) ∈
PM, and ([P], B) ∈ BM. For the case tail(x) = ([R], t),
the proof is similar.

α = ∃P .A v B. Assume (x, y) ∈ PM and y ∈ AM. We
consider various cases of x and y:

• x = b, y = a for a, b ∈ ind(K). Then K |= P (b, a)
and K |= A(a), consequently K |= B(b), so b ∈ BM
by construction ofM.
• x = b ∈ ind(K), y = b · ([S], C). Then by construction

of M, K |= ∃S.C(b), moreover T |= {S v P,C v
A}. Next, K |= ∃P .A(b), and finally K |= B(b), so
b ∈ BM.
• tail(x) = ([Q], D), y = x · ([S], C). Then by construc-

tion of M, T |= D v ∃S.C, moreover T |= {S v
P,C v A}. It follows T |= D v ∃P .A, and because
of α, T |= D v B. Hence, by construction of BM,
x ∈ BM.

Observe that the case x = y · ([S], C) for some S and C
is not possible as it would required that T |= S− v R,
which is not possible in ELH.

α = P1 v P2. Assume (x, y) ∈ PM1 . If x = a and y = b
for a, b ∈ ind(K), it follows K |= P1(a, b). From α we
obtain that K |= P2(a, b), therefore (a, b) ∈ PM2 . If
y = x · ([P], t) for some P and t, by construction of PM1 ,
T |= P v P1. Then because of α, T |= P v P2, so
finally, (x, y) ∈ RM2 .

q

Proposition A.34 If I is a model of K, then there exists a
homomorphism fromM to I.

Proof. Analogous to the proof of Proposition A.31. q

DL-LiteHhorn
Finally, assume K = (T ,A) with a DL-LiteHhorn TBox T is
given. We construct the finitely generating structure G =
(∆G , ·G ,) for K as follows, where ∆G = ind(K)∪Ω. For
each [R] with R are role in T , we introduce a witness w[R].
Ω will be a subset of the set of all w[R]. First define as
follows:

• a w[R] if a ∈ ind(K) and [R] is ≤T -minimal such that
K |= ∃R(a) and K 6|= R(a, b) for any b ∈ ind(K);

• w[S] w[R] if [R] is ≤T -minimal with T |= ∃S− v ∃R
and [S−] 6= [R].

Ω is defined as the set of all w[R] such that there are a ∈
ind(K) and R1, . . . , Rn = R such that

a w[R1] · · · w[Rn].

We define the interpretation function ·G by setting

AG = {a ∈ ind(K) | K |= A(a)} ∪
{w[R] ∈ Ω | T |= ∃R− v A},

PG = {(a, b) | there is R(a, b) ∈ A with T |= R v P},

and for every edge u v with v = w[R], we set

(u, v)G = {R′ | [R] ≤T [R′]}.

One can show that G is a generating structure for K. LetM
be the interpretation defined by unravelling G. The follow-
ing two propositions can be proved by analogy with Propo-
sition 17 and Lemma 18 in the full version of (Konev et al.
2011).

Proposition A.35 M is a model of K.

Proposition A.36 If I is a model of K, then there exists a
homomorphism fromM to I.

Finally, we show thatM is indeed a materialisation.

Theorem A.37 Let K = (T ,A) be a consistent L-KB, and
M the interpretation defined by unravelling the generating
structure for K. ThenM is a materialisation of K.

Proof. We show that K |= q[~a] iffM |= q[~a], for each CQ
q(~x) and each tuple of constants ~a ⊆ ind(K).

(⇒) Assume K |= q[~a]. Then for each model I of K,
we have I |= q[~a]. Since M is a model of K, we obtain
M |= q[~a].

(⇐) LetM |= q[~a], moreover assume ~a = (a1, . . . , ak)
for ai ∈ ind(K), and

q(~x) = ∃y1 . . . ∃ym ϕ(x1, . . . , xk, y1, . . . , ym).

Then there exist σ1, . . . , σm ∈ ∆M such that M |=
ϕ[a1, . . . , ak, σ1, . . . , σm].

Let I be a model ofK, we show that I |= q[~a]. By Propo-
sitions A.31, A.34, A.36, there exists a homomorphism h
fromM to I. Then it is easy to see that

I |= ϕ[a1, . . . , ak, h(σ1), . . . , h(σm)].

As I was an arbitrary model of K, it follows that K |= q[~a].
q

Proof of Theorem 5
Theorem 5 Suppose Ki is a consistent KB with a material-
isationMi, i = 1, 2. Then K1 Σ-query entails K2 iffM2 is
finitely Σ-homomorphically embeddable intoM1.
Proof. (⇒) Assume K1 Σ-query entails K2. Let ∆ be a fi-
nite subset of ∆M2 such that ∆ = {a1, . . . , ak, σ1, . . . , σm}
with ai ∈ Ind(K2). Consider a query q = ∃y1 . . . ∃ym ϕ,
where for 1 ≤ i, i′ ≤ k and 1 ≤ j, j′ ≤ m,

ϕ =
∧

A∈tM2
Σ (ai)

A(ai) ∧
∧

R∈rM2
Σ (ai,ai′)

R(ai, ai′) ∧

∧
R∈rM2

Σ (ai,σj)

R(ai, yj) ∧

∧
A∈tM2

Σ (σj)

A(yj) ∧
∧

R∈rM2
Σ (σj ,σj′)

R(yj , yj′)

Clearly, M2 |= q, as M2 |= ϕ[σ1, . . . , σm]. By Theo-
rem A.37, M1 |= q, and thus, M1 |= ϕ[σ′1, . . . , σ

′
m], for

some σ′1, . . . , σ
′
m ∈ ∆M1 . We define h : ∆ → ∆M1 by

taking h(ai) = (ai) and h(σi) = σ′i. This function is a
homomorphism: it maps every constant to itself, and from
M1 |= ϕ[σ′1, . . . , σ

′
m] it follows that for each d, d′ ∈ ∆,

tM2

Σ (d) ⊆ tM1

Σ (h(d)) and rM2

Σ (d, d′) ⊆ rM1

Σ (d, d′)

(⇐) AssumeM2 is finitely Σ-homomorphically embed-
dable into M1. Let K2 = (T2,A2), q be a Σ-query
and (a1, . . . , ak) ⊆ ind(K2), k ≥ 0, such that K2 |=
q(a1, . . . , ak) and q(x1, . . . , xk) = ∃y1, . . . ,∃ym ϕ(~x, ~y),
where ϕ(~x, ~y) is a conjunction of atoms over variables
x1, . . . , xk and y1, . . . , ym. By Theorem A.37, M2 |=
ϕ[a1, . . . , ak, σ1, . . . , σm] for some σj ∈ ∆M2 . Let ∆ be
{a1, . . . , ak, σ1, . . . , σm} and h a Σ-homomorphism from
M2|∆, the restriction ofM2 to ∆, toM1 with h(ai) = ai
for 1 ≤ i ≤ k. By definition of homomorphism, we have
h(d) ∈ AM1 if d ∈ AM2 , for each concept A over Σ and
d ∈ ∆, and (h(d), h(d′)) ∈ RM1 if (d, d′) ∈ RM2 , for
each role R over Σ and d, d′ ∈ ∆. Which in turns im-
plies that M1 |= ϕ[a1, . . . , ak, h(σ1), . . . , h(σm)], hence,
K1 |= q(a1, . . . , ak). q

Proof of Theorem 2
Theorem 2 Let L be any of our DLs containing EL or hav-
ing role inclusions. Then Σ-query entailment for L-KBs is
LOGSPACE-reducible to Σ-query inseparability for L-KBs.
Proof. We complete the proof given in the paper by showing

Claim 1. K1 Σ-query entails K2 iff K1 and KΣ
1 ∪ KΣ

2 are
Σ-query inseparable.

The interesting direction is to show that if K1 Σ-query en-
tailsK2, thenK1 Σ-query entailsKΣ

1 ∪KΣ
2 . Assume thatK1

Σ-query entails K2. Consider materialisations C1, C2, and
D1 of KΣ

1 , KΣ
2 , and K1, respectively. The construction of

the materialisations above shows that we may assume that
– Ci is a model of KΣ

i , for i = 1, 2;

– aC1 = aC2 for all a ∈ ind(K1) ∩ ind(K2);
– d ∈ ∆C1 ∩ ∆C2 iff d = aC1 for some a ∈ ind(K1) ∩

ind(K2).
Denote by C the union of C1 and C2 defined by setting ∆C =
∆C1 ∪ ∆C2 and XC = XC1 ∪ XC2 for all symbols X . We
show that

(i) C is a model of KΣ
1 ∪ KΣ

2 , and
(ii) C is finitely Σ-homomorphically embeddable into D1.

By (i) and (ii),K1 Σ-query entailsKΣ
1 ∪KΣ

2 . Item (i) follows
from the assumption that the Ci are models of KΣ

i and the
assumption that the trivial interpretation is a model of Ti.

For (ii), let Y ⊆ ∆C be finite. Since K1 Σ-query en-
tails K2 and K1 trivially Σ-query entails KΣ

1 we have Σ-
homomorphisms
– f1 : Y ∩∆C1 → ∆D1 from the Y -restriction of C1 to D1

and
– f2 : Y ∩∆C2 → ∆D1 from the Y -restriction of C2 to D1.
We may assume f1(aC1) = f2(aC2) for all a ∈ Ind(K1) ∩
ind(K2). Then f1 ∪ f2 is a Σ-homomorphism from the Y -
restriction of C to D1, as required.

We now consider the case when the trivial interpretation
is not a model of Ti. Assume K1 and K2 are given. We
construct K′1 and K′2 such that the trivial interpretation is a
model of T ′1 and T ′2 , respectively, and such that K1 Σ-query
entails K2 iff K′1 Σ-query entails K′2. The construction is by
careful relativisation.

Let Ai> be fresh concept names, for i = 1, 2. Set A′i =
A ∪ {Ai>(a) | a ∈ ind(Ki)}.
Case 1. The Ti are Horn-ALCHI-TBoxes. We assume they
are in normal form. Now replace
– any inclusion > v B by Ai> v B;

– any inclusion A v ∃R.B by A v ∃R.(Ai> uB).
The remaining inclusions are not modified. Below we show
that the K′i = (T ′i ,A′i) are as required.

Note that the K′i are consistent. Consider materialisations
(and models) Ci and Di of Ki and K′i respectively. For a
subset S ⊆ ∆Di , denote by (S)\A

i
> the set

{av′1 · · · v′n | av1 · · · vn ∈ S, n ≥ 0},

where, if vj = ([Rj], tj), then v′j = ([Rj], tj \ {Ai>}), and
similarly for a set S ⊆ ∆Di × ∆Di . We show ∆Di =

(Ai>)Di , ∆Ci = (∆Di)\A
i
> , XCi = (XDi)\A

i
> for each

symbol X distinct from Ai>, from which the required fol-
lows. First, by construction of K′i and definition of the gen-
erating structure and materialisation, we have

(Ai>)Di = ind(Ki) ∪
{av1 · · · vn | a ∈ ind(Ki), vj ∈ Ω, a v1, vj vj+1},

thus ∆Di = (Ai>)Di . On the other hand, clearly ∆Ci =
{av′1 · · · v′n | av1 · · · vn ∈ ∆Di} for vj = ([Rj], tj) and
v′j = ([Rj], tj \ {Ai>}). Next, let Ti |= > v C for some
concept C such that C is a concept name B, or a concept of
the form ∃R.B or ∃R.>, since Ti is in normal form, it fol-
lows that > v A ∈ Ti for some concept name A and Ti |=
A v C. Then, T ′i contains axiom Ai> v A, and therefore
ADi = BDi = ∆Di if C is a concept name B and RDi =
{(x, x · ([R], t) | x ∈ ∆Di , t is defined accordingly to x} if
C is a concept of the form ∃R.B or ∃R.>. On the other
hand, BCi = ∆Ci , or RCi = {(x, x · ([R], t)) | x ∈
∆Ci , t is defined accordingly to x}. Now, if Ti 6|= > v C, it
is easy to see that the required holds as well.

Case 2. The Ti are ELH-TBoxes. We assume they are in
normal form. Now replace
– any inclusion > v B by Ai> v B;

– any inclusion A v ∃R.B by A v ∃R.(Ai> uB).
Thus, the construction is the same as above (we do not have
to consider this case separately). One can show that the K′i
are as required.

Case 3. The Ti are DL-LiteHcore or DL-LiteHhorn-TBoxes. Now
replace
– any inclusion > v B by Ai> v B;

– any inclusion B v ∃R by B v ∃R and ∃R− v Ai>.
One can show that the K′i are as required.

Next, we consider the case when L is a DL without role
inclusions (with conjunction of concepts on the left-hand
side). Assume K1 and K2 are given. We construct now K′1
andK′2 such thatK1 Σ-query entailsK2 iffK′1 ≡Σ K′1∪K′2.
Define A′i as the union of
– Ai ∪ {Ai>(a) | a ∈ ind(Ki)} and
– {A(a) | Ki |= A(a)} ∪ {P (a, b) | Ki |= P (a, b)}.
Define T ′i as follows:

Case 1. If Ti are Horn-ALCI-TBoxes in normal form then
replace
– any inclusion > v B by Ai> v B;

– any inclusion A v B by A uAi> v B;

– any inclusion A v ∃R.B by A uAi> v ∃R.(Ai> uB);

– any inclusion A1 uA2 v B by A1 uA2 uAi> v B;

– any inclusion ∃R.A v B by Ai> u ∃R.(A uAi>) v B;

– any inclusion A v ∀R.B by A uAi> v ∀R.(¬Ai> tB).

Note that we are not in normal form, but still in Horn-ALCI.

Case 2. If the Ti are EL-TBoxes in normal form then the
construction is the same except that the final clause does not
occur.
Observe that the trivial interpretation is a model of Ti. We
show that K1 Σ-query entails K2 iff K′1 and K′1 ∪ K′2 are
Σ-query inseparable.

Consider materialisations (and models), Ci and Di, of Ki
and K′i, respectively. As in the case with careful relativisa-
tion, one can show ∆Di = (Ai>)Di , ∆Ci = (∆Di)\A

i
> and

XCi = (XDi)\A
i
> for each symbol X distinct from Ai>.

Note that in the case of Horn-ALCHI, (∆D1 \ ind(K1)) ∩
(∆D2 \ ind(K2)) = ∅ as for each d ∈ ∆D1 \ ind(K1) such
that tail(d) = ([S], t), we have A1

> ∈ t and A2
> /∈ t, and the

other way around. And in the case of EL, we can assume
(∆D1 \ ind(K1)) ∩ (∆D2 \ ind(K2)) = ∅ as we can rename
the elements of ∆Di to achieve that. Denote by D the union
of D1 and D2 defined by setting ∆D = ∆D1 ∪ ∆D2 and
XD = XD1 ∪XD2 for all symbols X . Then D is a model
of K′1 ∪ K′2.

Again, the interesting direction is to show that if K1 Σ-
query entails K2, then K′1 Σ-query entails K′1 ∪ K′2. As-
sume that K1 Σ-query entails K2, we show D is finitely Σ-
homomorphically embeddable into D1. Let Y ⊆ ∆D be fi-
nite. Since K1 Σ-query entails K2 and K′1 trivially Σ-query
entails K′1 we have Σ-homomorphisms

– f1 : Y ∩∆D1 → ∆D1 from the Y -restriction of D1 to D1

and

– f2 : Y ∩ ∆D2 → ∆D1 from the Y -restriction of D2 to
D1.

We may assume f1(aD1) = f2(aD2) for all a ∈ ind(K1) ∩
ind(K2). Then f1 ∪ f2 is a Σ-homomorphism from the Y -
restriction of D to D1, as required.

Finally, we consider the case K1 is inconsistent. Let A′1
be the ABox extending A1 with

{A(a) | a ∈ ind(K2) and K2 6|= q(a) for any Σ-query q}

for some fresh concept name A. We show that K1 Σ-
query entails K2 iff K′1 = (T1,A′1) and K1 ∪ K2 are Σ-
query inseparable. Note that K′1 and K1 ∪ K2 are incon-
sistent. First, from K1 Σ-query entails K2 we obtain that
ind(K′1) = ind(K1) ∪ ind(K2), so the “only-if” direction
follows immediately. Assume K′1 ≡Σ K1 ∪ K2, then from
their inconsistency, it follows ind(K′1) = ind(K1)∪ind(K2).
By construction of A′1, for each Σ-query q and tuple of
constants ~a ⊆ ind(K2) such that K2 |= q(~a), we obtain
~a ⊆ ind(K1). So we conclude K1 Σ-query entails K2. q

Proof of Theorem 3
Theorem 3 Σ-query entailment for any of our DLs L is
LOGSPACE-reducible to the membership problem for uni-
versal UCQ-solutions in L.

Proof. We complete the proof given in the paper by consid-
ering the case when I∅ is not a model of Ti. As before, we
may assume that Σ = sig(K1)∩sig(K2). Let Σ1 = sig(K1).
Then K1 Σ-query entails K2 iff K1 Σ1-query entails K2.

Define K′i = (T ′i ,A′i) to be as in the case L is a DL
without role inclusions in the proof of Theorem 2, where
if L is DL-Litecore or DL-Litehorn, T ′i is defined by replac-
ing in Ti any inclusion > v B by Ai> v B, and adding
∃R− v Ai> for each role R. Moreover, define K′′i to be
a copy of K′i in which all symbols S except for Ai> are
replaced by fresh Si. Then K1 Σ-query entails K2 iff K1

is a universal UCQ-solution for (K′′1 ∪ K′′2 , T12,Σ1), where
T12 = {Si v S | S ∈ Σ1, i = 1, 2}. q

Proof of Theorem 8
Theorem 8M2 is finitely Σ-homomorphically embeddable
intoM1 iff the following conditions hold:

(abox) rM2

Σ (a, b) ⊆ rM1

Σ (a, b), for any a, b ∈ ind(K2);

(win) for any u0 ∈ ∆G2 and n < ω, there exists σ0 ∈ ∆M1

such that player 1 has an n-winning strategy in the game
GΣ(G2,M1) starting from (u0 7→ σ0).

Proof. (⇒) Suppose M2 is finitely Σ-homomorphically
embeddable intoM1. Then (abox) holds by the definition
of Σ-homomorphism. To show that (win) holds, suppose
u0 ∈ ∆G2 and n < ω are given. Take the sub-interpretation
Mu0,n

2 of M2 that contains σu0, for some (say, the short-
est) word σ, and all those elements of M2 whose distance
from σu0 does not exceed n. Let h : Mu0,n

2 → M1 be
a Σ-homomorphism. Take σ0 = h(σu0). Clearly, u0 and
σ0 satisfy (s1) and (s2). We show that player 1 has an n-
winning strategy in the game GΣ(G2,M1) starting from the
state (u0 7→ σ0). Suppose player 2 takes u0 Σ

2 u1. Then
σu0u1 is an element ofMu0,n

2 , and player 1 responds with
σ1 = h(σu0u1). Conditions (s1) and (s2) hold because h is
a Σ-homomorphism. In the same way player 1 uses h to find
responses to all challenges of player 2 in any round k < n
of the game GΣ(G2,M1).

(⇐) Let M′2 be a sub-interpretation of M2 containing
n elements, or M2 itself if such a sub-interpretation does
not exist. Consider first the case when M′2 is a tree with
root σu0 for some u0 ∈ ∆G2 . We define, by induction,
a Σ-homomorphism h : M′2 →M1 as follows. Take an n-
winning strategy for player 1 in the gameGΣ(G2,M1) start-
ing from a suitable state (u0 7→ σ0) and set h(σu0) = σ0.
Suppose now that σu0 . . . uk is an element ofM′2 such that
whenever ui Σ

2 · · · Σ
2 uj for some 0 ≤ i ≤ j < k there

is a play (ui 7→ σi), . . . , (uj 7→ σj), which conforms with
some n-winning strategy. Assume uk−1 Σ

2 uk, the current
state is (uk−1 7→ σk−1) and the current n-winning strategy
is S, then uk−1 Σ

2 uk is a valid challenge of player 2.
Consider the reply (uk 7→ σk) of player 1 according to
S. Then we set h(σu0 . . . uk) = σk. Conditions (s1) and
(s2) make sure that h is a Σ-homomorphism. If however it
is not the case that uk−1 Σ

2 u for each u ∈ ∆G2 , then
h(σu0 . . . uk) can be defined equal to σ′, where σ′ ∈ ∆M1

is such that there is an n-winning strategy in GΣ(G2,M1)
from (uk 7→ σ′) (such σ′ exists by (win)).

An arbitrary finite sub-interpretation of M2 can be rep-
resented as a union of finitely many maximal rooted ones
in which ABox individuals can only be roots. Let h be
the union of the corresponding Σ-homomorphisms for all
these rooted sub-interpretations. In view of (abox), h is a
Σ-homomorphism. q

Proof of Lemma 22
Lemma 22 For any u0 ∈ ∆G2 , condition (< ω) holds
for arbitrary strategies in GΣ(G2,M1) iff (ω) holds in
GaΣ(G2,G1) for some state (Ξ0 7→ x0,Ψ0) with u0 ∈ Ξ0.
Proof. (⇒) Let S = {Sn | n < ω} be the set of the given
n-winning strategies in GΣ(G2,M1) and suppose that Sn
begins with (u0 7→ σn0), n < ω.

We define a (possibly infinite) tree T whose nodes are of
the form (u 7→ z, k), where u ∈ ∆G2 , z is a suffix of some
element in ∆M1 , k < ω, whose edges are labelled with
u Σ

2 u′, and the following conditions hold:

(1) the root of T is of the form (u0 7→ w, 0), w ∈ ∆G1 ;

(2) tG2

Σ (u) ⊆ tG1

Σ (tail(z));

(3) for any node (u 7→ z, k) in T and any u Σ
2 u′, there

is exactly one (u Σ
2 u′)-successor of (u 7→ z, k) in T,

which can be of the following forms:

– (u′ 7→ w′, k + 1), if z = w ∈ ∆G1 , w′ Σ
1 w and

rG2

Σ (u, u′) ⊆ r̄G1(w′, w);
– (u′ 7→ z′, k), if z = z′w, for w ∈ ∆G1 , w′ = tail(z′),
w′ Σ

1 w and rG2

Σ (u, u′) ⊆ r̄G1

Σ (w′, w);

– (u′ 7→ zw′, k), if z = z′w, w Σ
1 w′ and rG2

Σ (u, u′) ⊆
rG1

Σ (w,w′);
– (u′ 7→ b,−1), if z = a ∈ ind(K1), b ∈ ind(K1) and
rG2

Σ (u, u′) ⊆ rG1

Σ (a, b);

(4) for any k ≥ 0 and any nodes (u 7→ w, k), (u′ 7→ w′, k)
in T with w,w′ ∈ ∆G1 , it follows w = w′.

We call the tree T complete if whenever a node (u 7→ z, k)
is in T and u Σ

2 u′ then some node (u′ 7→ z′, k′) is its
(u Σ

2 u′)-successor in T. It will be shown later that given
a complete tree T we can construct an ω-winning strategy
starting from some (Ξ0 7→ x0,Ψ0) in the game GΣ(G2,G1).
But first we show how to construct such a tree using S.

For S ∈ S, we say that S respects T if there exists a map

fS : {(z, k) | (u 7→ z, k) ∈ T} → ∆M1

such that:

1. fS(z, k) = δz, for some δ;

2. (u 7→ fS(z, k)) is in S, for any (u 7→ z, k) in T;

3. if (u′ 7→ z′, k′) is a (u Σ
2 u′)-successor of (u 7→ z, k) in

T, then, according to S, player 1 responds to the challenge
u Σ

2 u′ of player 2 in the state (u 7→ fS(z, k)) with
(u′ 7→ fS(z′, k′)).

The set S contains an n-winning strategy starting from
(u0 7→ σn0), for any n < ω. As G1 is finite, we can find
some x0 such that x0 = tail(σn0) for infinitely many n. De-
note by S0 the set of the corresponding strategies from S.
As an m-winning strategy is also an l-winning strategy for
any l ≤ m, S0 contains an n-winning strategy starting from
some (u0 7→ δnx0), for any n < ω. Define T0 to be a tree
with a single node (u0 7→ x0, 0). For every S ∈ S0, we set
fS(x0, 0) = δSx0, where δS is the corresponding δn. Thus,
all the strategies in S0 respect T0.

Suppose we have already constructed Ti and Si such that
Si contains an n-winning strategy for any n < ω, and all
of them respect Ti. If Ti is incomplete then it contains a
state (u 7→ z, k) without a (u Σ

2 u′)-successor, for some
u Σ

2 u′. (We always take such a state that is nearest to
the root.) Suppose fS(z, k) = δSw. Consider the responses
u′ 7→ σn to the challenge u Σ

2 u′ according to the n-
winning strategies in Si, for n < ω. Take some w′ ∈ ∆G1

such that w′ = tail(σn) for infinitely many n. Denote by
Si+1 the set of the corresponding strategies from Si.

Suppose w′ Σ
1 w. If z = w then we add the node

(u′ 7→ w′, k + 1) as a (u Σ
2 u′)-successor of (u 7→ z, k)

to Ti, thus obtaining Ti+1. By the definition of the materi-
alisations, we also have δS = δ′Sw

′, for all S ∈ Si+1. We
then set fS(w′, k + 1) = δS . If |z| > 1 then z = z′w′w
and z′w′ is a suffix of δS . In this case, we add the node
(u′ 7→ z′w′, k) as a (u Σ

2 u′)-successor of (u 7→ z, k) to
Ti, thus obtaining Ti+1, and we set fS(z′w′, k) = δS .

Suppose w Σ
1 w′. In this case, we add (u′ 7→ zw′, k) as

a (u Σ
2 u′)-successor of (u 7→ z, k) to Ti, thus obtaining

Ti+1, and we set fS(zw′, k) = δSww
′.

Suppose w,w′ ∈ ind(K1) (hence, δS is empty). In this
case, we add (u′ 7→ w′,−1) as a (u Σ

2 u′)-successor of
(u 7→ z, k) to Ti, thus obtaining Ti+1, and set fS(w′,−1) =
w′.

All S ∈ Si+1 clearly respect Ti+1. It is easy to see that it
satisfies (4).

We proceed in the same way and construct a sequence of
growing trees T0 ⊆ T1 ⊆ . . . until we reach a complete
finite tree Tk; otherwise we take T =

⋃
n<ω Tn, which is

obviously complete.
Now we show that player 1 has an ω-winning strategy

starting from some (Ξ0 7→ x0,Ψ0) in the game GaΣ(G2,G1).
Suppose that we have a complete tree T with the root (u0 7→
x0, 0). We then set:

Ξ0 = {u | (u 7→ x0, 0) ∈ T},
Φ0 = {u′ | u Σ

2 u′, u ∈ Ξ0, (u′ 7→ x0w, 0) ∈ T},
∪ {u′ | (u′ 7→ b,−1) ∈ T is a (u Σ

2 u′)-successor
of (u 7→ x0, 0) ∈ T},

Ψ0 = {u′ | u Σ
2 u′, u ∈ Ξ0, (u′ 7→ w, 1) ∈ T}.

Note that, by (4), if (u 7→ x, 0) ∈ T (and |x| = 1, that is,
x ∈ ∆G1) then x = x0. Moreover, if x0 ∈ ind(K1), then
Ψ0 = ∅.

More generally, for any i > 0 such that T contains some

(u 7→ x, i), |x| = 1, and xi−1 /∈ ind(K1), we set

Ξi = {u | (u 7→ x, i) ∈ T},
Φi = {u′ | u Σ

2 u′, u ∈ Ξi, (u′ 7→ xw, i) ∈ T}
∪ {u′ | (u′ 7→ b,−1) ∈ T is a (u Σ

2 u′)-successor
of (u 7→ x, i) ∈ T},

Ψi = {u′ | u Σ
2 u′, u ∈ Ξi, (u′ 7→ w, i+ 1) ∈ T}.

Note that, by (4), all (u 7→ x, i) ∈ T with x ∈ ∆G1 share the
same x, which we denote by xi. And again, if xi ∈ ind(K1),
then Ψi = ∅.

By (3), the states si = (Ξi 7→ xi,Ψi) clearly define the
backward part of an ω-winning strategy for player 1 in the
game GaΣ(G2,G1) starting from s0.

Thus, it remains to define ω-winning strategies for the
start-bounded game GsΣ(G2,G1) starting from states of the
form (∅,Ξk 7→ xk) and first-round challenges u Σ

2 v such
that u ∈ Ξk and v ∈ Φk.

Let k ≥ 0 be such that Φk 6= ∅. We now transform T into
a tree Wk representing an ω-winning strategy for player 1 in
the game GsΣ(G2,G1) starting from (∅,Ξk 7→ xk) and first-
round challenges u Σ

2 v such that u ∈ Ξk and v ∈ Φk.
Thus, (∅,Ξk 7→ xk) is the root of Wk associated with xk.
Suppose that we have already defined a node (Γ,Ξ 7→ w)
associated with a word δw. Let u ∈ Ξ and u Σ

2 v be such
that the node (u 7→ δw, k′) in T, where k′ equals to k or
-1 has a (u Σ

2 v)-successor of the form (v 7→ δww′, k′)
(if (Γ,Ξ 7→ w) is the root, we also require that v ∈ Φk).
Then we add to Wk the node (Γ′,Ξ′ 7→ w′), associated with
δww′, as a (u Σ

2 v)-successor of (Γ,Ξ 7→ w), where

– Ξ′ = {v′ | (v′ 7→ δww′, k′) ∈ T},
– Γ′ = Ξ.

If (Γ,Ξ 7→ a) is associated with a ∈ ind(K1) and the node
(u 7→ a, k′), for u ∈ Ξ, where k′ equals to k or −1, has
a (u Σ

2 v)-successor of the form (v 7→ b,−1) with b ∈
ind(K1) (note that if (Γ,Ξ 7→ a) is the root, then Φk =
Ξ k), then we add to Wk the node (∅,Ξ′ 7→ b), associated
with b, as a (u Σ

2 v)-successor of (Γ,Ξ 7→ w), where
Ξ′ = {v′ | (v′ 7→ b,−1) ∈ T}.

We claim that Wk thus constructed represents an ω-
winning strategy for player 1 in the game GsΣ(G2,G1) start-
ing from (∅,Ξk 7→ xk) and first-round challenges u Σ

2 v
such that u ∈ Ξk and v ∈ Φk.

(⇐) Given GaΣ(G2,G1) and u0 ∈ ∆G2 suppose (ω) holds
for some x0, Ξ0 and Ψ0 such that u0 ∈ Ξ0. Let n < ω, we
are going to show there is σ0 ∈ ∆M1 such that player 1 has
an n-winning strategy starting from (u0 7→ σ0) in the game
GΣ(G2,M1). To define σ0 consider aN -winning strategy S
of player 1 from (Ξ0 7→ x0,Ψ0) forN = 2×|2Ω2 |×|Ω1|+1,
where Ωi is such that ∆Gi = ind(Ki) ∪ Ωi, and a play

(Ξm 7→ xm,Ψm), . . . , (Ξ1 7→ x1,Ψ1)

conforming with S such that Ξm = Ξ0, xm = x0, and
Ψm = Ψ0. Denote by si the state (Ξi 7→ xi,Ψi) for 1 ≤
i ≤ m.

Ξm 7→ xm, Ψmsm =

Ξ2 7→ x2, Ψ2s2 =

Ξ1 7→ x1, Ψ1s1 =

···

Then, either m < N and Ψ1 = ∅, or m = N and since the
number of all possible states in GaΣ(G2,G1) is less than N ,
there are integers c, r such that m ≥ c > c − r ≥ 1 and
sc = sc−r.

Now, we set σ0 = δ′δ, where δ and δ′ are obtained as
follows. In the fist case above, δ is equal to x1 . . . xm and
δ′ is any (possibly empty) sequence such that δ′δ ∈ ∆M1

(such δ′ obviously exists). In the second case δ is equal to
the sequence of length n+ 1:

δ = xc−oxc−o+1 · · ·xc · δc,r · · · δc,r · xc+1 · · ·xm
where o = (n − (m − c)) mod r, δc,r =
xc−r+1xc−r+2 · · ·xc, and δ′ is obtained as before.

Let k be the length of δ, and yi denote the i-th element of
the sequence δ, 1 ≤ i ≤ k. We define µ(i) ∈ {1, . . . ,m} to
be the number such that yi = xµ(i). In the first case above
µ(i) = i, whereas in the second case µ(i) equals to{
c−

(
(o− i+ 1) mod r

)
, for 1 ≤ i ≤ n− (m− c) + 1,

c+ i− 1− (n− (m− c)), for n− (m− c) + 2 ≤ i ≤ n+ 1,

which can be presented graphically:

δ = xc−o

1

xc−o−1

2

· · · xc

o+ 1

xc−r+1

o+ 2

· · · xc

o+ r + 1

xc−r+1

o+ r + 2

· · · xc

o+ 2r + 1

· · · xc+1

n−m+ c+ 2

· · · xm

n+ 1

Finally, it remains to produce an n-winning strategy S ′ of
player 1 from (u0 7→ σ0). For each challenge ui−1 Σ

2 ui
from a state (ui−1 7→ σi−1) by player 2 inGΣ(G2,M1), we
are going to define σi ∈ ∆M1 so that to set the response of
player 1 according to S ′ to be (ui 7→ σi). We will also define
auxiliary f -values for these states (ui 7→ σi) that relate them
with the “original” states in GaΣ(G1,G2).

We first set f(u0 7→ σ0) = (Ξµ(k) 7→ xµ(k),Ψµ(k))

and consider the challenge u0 Σ
2 u1 by player 2 in

GΣ(G2,M1). If u1 ∈ Ψµ(k) then k > 1 by the con-
struction of δ. We set σ1 = δ′y1 . . . yk−1 and f(u1 7→
σ1) = (Ξµ(k−1) 7→ xµ(k−1),Ψµ(k−1)). If u1 /∈ Ψµ(k), then
consider the start-bounded game GsΣ(G2,G1) with the ini-
tial state (∅,Ξµ(k) 7→ xµ(k)) and the first-round challenge
u0 Σ

2 u1 (by the structure of the states in GaΣ(G2,G1)
this challenge is valid). Let (Γ,Ξ 7→ z) be the response of
player 1 according to S, for some z ∈ ∆G1 . If z ∈ ind(K1),
we set σ1 = z (note, in this case σ0 ∈ ind(K1)), otherwise
we set σ1 = σ0z. The f -value is defined as f(u1 7→ σ1) =
(Γ,Ξ 7→ z).

Suppose now we defined S ′ for a number of steps h < n
and the response of player 1 to the challenge uh−1 Σ

2 uh+1

from a state (uh−1 7→ σh−1) was defined as the state (uh 7→
σh), moreover assume σh = δ′y1 . . . yk′z1 . . . zl for 0 ≤

k′ ≤ k and l ≥ 0 (we have also the value of f for this state).
If now there is no valid challenge uh Σ

2 uh+1 then further
moves of player 1 need not be defined. Otherwise consider
the challenge uh Σ

2 uh+1 of player 2 in GΣ(G2,M1).
Suppose, first, f(uh 7→ σh) = (Γ′,Ξ′ 7→ x′) where

x′ = tail(σh) = zl, and by induction hypothesis uh ∈ Ξ′.
Note that in this case, l ≥ 1. If uh Σ

2 uh+1 is a chal-
lenge also from (Γ′,Ξ′ 7→ x′) in GsΣ(G2,G1), consider
the response (Γ,Ξ 7→ z) of player 1 to this challenge ac-
cording to S. If z ∈ ind(K1) we set σh+1 = z, oth-
erwise we set σh+1 = σhz. The f -value is defined as
f(uh+1 7→ σh+1) = (Γ,Ξ 7→ z). If uh Σ

2 uh+1 is
not a valid challenge from (Γ′,Ξ′ 7→ x′) in GsΣ(G2,G1),
then (nbk) does not hold for this challenge, which means
x′ /∈ ind(K1), uh+1 ∈ Γ′, and rG2

Σ (uh, uh+1) ⊆ r̄G1

Σ (z, x′),
where z is the element preceding zl in σh. Two cases are
possible:

– l = 1, therefore the predecessor of (Γ′,Ξ′ 7→ x′) ac-
cording to S is the starting state (∅,Ξµ(k′) 7→ xµ(k′))
of the game GsΣ(G2,G1), which has been launched from
(Ξµ(k′) 7→ xµ(k′),Ψµ(k′)) in GaΣ(G2,G1). It follows,
rG2

Σ (uh, uh+1) ⊆ r̄G1

Σ (yk′ , z1), and as Γ′ = Ξµ(k′), we
have uh+1 ∈ Ξµ(k′). So we set σh+1 = δ′y1 · · · yk′ , and
f(uh+1 7→ σh+1) = (Ξµ(k′) 7→ xµ(k′),Ψµ(k′)).

– l > 1, we consider the predecessor (Γ,Ξ 7→ x) of
(Γ′,Ξ′ 7→ x′) in GsΣ(G2,G1) according to S, with x =
zl−1. We have Γ′ = Ξ, hence uh+1 ∈ Ξ, so we set
σh+1 = δ′y1 . . . yk′z1 . . . zl−1 and f(uh+1 7→ σh+1) =
(Γ,Ξ 7→ x).

Alternatively, suppose f(uh 7→ σh) = (Ξ′ 7→ x′,Ψ′),
where x′ = tail(σh), and by induction hypothesis uh ∈ Ξ′.
Then l = 0 and (Ξ′ 7→ x′,Ψ′) = (Ξµ(k′) 7→ xµ(k′),Ψµ(k′)).
We proceed here as in the base case. If uh+1 ∈ Ψµ(k′),
then k′ > 1: indeed, by construction of δ, if k = m, then
Ψ1 = ∅, otherwise k = n + 1, so provided that h ≤ n, it
cannot be the case k′ = 1. We set σh+1 = δ′y1 · · · yk′−1,
and f(uh+1 7→ σh+1) = (Ξµ(k′−1) 7→ xµ(k′−1),Ψµ(k′−1)).
If uh+1 /∈ Ψµ(k′), then consider the start-bounded game
GsΣ(G2,G1) with the initial state (∅,Ξµ(k′) 7→ xµ(k′)) and
the first-round challenge uh Σ

2 uh+1. Let (Γ,Ξ 7→ z) be
the response of player 1 according to S , for some z ∈ ∆G1 ,
uh+1 ∈ Ξ. If z ∈ Ind(K1), we set σh+1 = z, oth-
erwise we set σh+1 = σhz. The f -value is defined as
f(uh+1 7→ σh+1) = (Γ,Ξ 7→ z).

We have constructed the strategy S ′ from (u0 7→ σ0) in
the game GΣ(G2,M1). It can be straightforwardly verified
that S ′ is n-winning. q

Proofs of Lemmas 11, 13 and 19
Lemma 11 For u0 ∈ ∆G2 , condition (< ω) holds for for-
ward strategies in GΣ(G2,M1) iff (ω) holds in GfΣ(G2,G1)
for some state (u0 7→ x0).
Proof. Can be obtained as a corollary of the proof of
Lemma 22. Given u0 ∈ ∆G2 , it suffices to observe that con-
dition (< ω) holds for forward strategies in GΣ(G2,M1)

iff (ω) holds in GaΣ(G2,G1), where all the states of the kinds
(Ξi 7→ xi,Ψi) and (Γi,Ξi 7→ xi) are such that Ξi = {u} for
u ∈ ∆G2 and Ψi = Γi = ∅, for some state ({u0} 7→ x0, ∅).
Such restricted GaΣ(G2,G1) can be straightforwardly con-
verted to GfΣ(G2,G1). q

Lemma 13 For u0 ∈ ∆G2 , condition (< ω) holds for back-
ward strategies in GΣ(G2,M1) iff (ω) holds in GbΣ(G2,G1)
for some state ({u0} 7→ x0).
Proof. Can be obtained as a corollary of the proof of
Lemma 22. Given u0 ∈ ∆G2 , it suffices to observe that con-
dition (< ω) holds for backward strategies in GΣ(G2,M1)
iff (ω) holds in GaΣ(G2,G1), where only the states of the
kind (Ξi 7→ xi,Ψi) occur and Ψi = Ξ i , for some state
({u0} 7→ x0, {u0}). Such restricted GaΣ(G2,G1) can be
straightforwardly converted to GbΣ(G2,G1). q

Lemma 19 For any u0 ∈ ∆G2 , condition (< ω) holds for
start-bounded strategies in GΣ(G2,M1) iff (ω) holds in
GsΣ(G2,G1) for some state (∅,Ξ0 7→ x0) with u0 ∈ Ξ0.
Proof. Can be obtained as a corollary of the proof of
Lemma 22. Given u0 ∈ ∆G2 , it suffices to observe
that condition (< ω) holds for start-bounded strategies in
GΣ(G2,M1) iff (ω) holds in GaΣ(G2,G1), where all the
states of the kind (Ξi 7→ xi,Ψi) are such that Ψi = ∅,
for some state (Ξ0 7→ x0, ∅) with u0 ∈ Ξ0. Such re-
stricted GaΣ(G2,G1) can be straightforwardly converted to
GsΣ(G2,G1). q

Proof of Lemma 15
Lemma 15 Checking (ω) in Lemma 13 is CONP-hard.
Proof. The proof is by reduction of the unsatisfiability prob-
lem for 3CNFs ϕ =

∧m
i=1 ci, where ci = li1 ∨ li2 ∨ li3 and

each lij is either one of the propositional variables v1, . . . vk
or a negation of such a variable.

Let p1, . . . , pk be the first k prime numbers (observe that
1 < pj ≤ k2, for all j). We take a role name R, a role
name Ci, for each clause ci in ϕ, and role names Sj`, for
1 ≤ j ≤ k and 1 ≤ ` ≤ pj . Now we define a KB K1 =
(T2, {∃R(a)}), where T2 contains the following inclusions,
for 1 ≤ j ≤ k and 1 ≤ ` < pj ,

∃R− v ∃Sj1, ∃S−j` v ∃Sj`+1, ∃S−jpj v ∃Sj1,

and the following inclusions, for 1 ≤ j ≤ k and 1 ≤ i ≤ m:

Sj1 v Ci, if vj is a literal of ci,
Sj2 v Ci, if ¬vj is a literal of ci.

Intuitively,M2 is a tree with k branches with a common root
edge R. The jth branch is obtained by unravelling the loop
of pj arrows Sj1, . . . , Sjpj : the first arrow, Sj1, corresponds
to vj being true (in an assignment), while the second arrow,
Sj2, to vj being false. Therefore, p1 × p2 × · · · × pk layers
(a layer i consists of all edges from points at the distance i
from the root) contain representations of all possible assign-
ments to v1, . . . , vk (see figure below). The last two types of

role inclusions make sure that roles C1, . . . , Cm, which con-
stitute the signature Σ, mark those assignments on which ϕ
is true.

layer 1

layer 2

layer 3

a

We define K1 = (T1, {A(a)}), where T1 consists of the
following inclusions, for 1 ≤ i, i′ ≤ m,

A v ∃Ti, ∃T−i v ∃Ti′ ,
Ti v C−i′ , if i′ 6= i.

InM1, the path from each point to the root contains edges
that are labelled by all of C1, . . . , Cm but one (note that
the Ci edges point towards to root, in the opposite direc-
tion to the Ci edges of M2). Therefore, there is a finite
Σ-homomorphism iff in each of the assignments one of the
clauses is false (that is, iff ϕ is unsatisfiable).

The generating structure G1 is essentially a set of loops
each of which is missing precisely one of the Ci. Therefore,
the responses of player 1 correspond to choices of the miss-
ing Ci. Challenges by player 2, on the other hand, corre-
spond to the subsets of C1, . . . , Cm in the layers ofM2, the
number of which may be exponential in k. Thus, player 2
can go through a sequence of exponentially many distinct
challenges (assignments), to each of which player 1 will
have to find a clause that is false under the assignment. The
sequence, however, repeats itself after p1 × p2 × · · · × pk
steps. q

Proof of Theorem 24
Theorem 24 For data complexity, Σ-query entailment and
inseparability are P-hard for DL-Litecore and EL-KBs.
Proof. The proof is by reduction of the P-complete entail-
ment problem for acyclic Horn ternary clauses: given a con-
junction ϕ of clauses of the form ai and ai ∧ ai′ → aj ,
i, i′ < j, decide whether an is true in every model of ϕ.
Consider a DL-Litecore TBox T containing the CIs

V v ∃P, ∃P− v ∃Ri and ∃R−i v V, for i = 1, 2,

and let an ABox A be comprised of F (an) and

P (ai, ai), R1(ai, ai), R2(ai, ai), for each clause ai in ϕ,
P (aj , c), R1(c, ai), R2(c, ai′), for c = ai ∧ ai′ → aj in ϕ.

Set Σ = {F, P,R1, R2}, K2 = (T ,A ∪ {V (an)}) and
K1 = (∅,A). Obviously, K2 Σ-query entails K1. On
the other hand, the materialisation of K2 is (finitely) Σ-
homomorphically embeddable in the materialisation of K1

iff ϕ derives an. Indeed, the materialisationM2 ofK2 is in-
finite, while finite materialisationM1 ofK1 is finite. So, the
only way to embed finite prefixes ofM2 of arbitrary depth
into M1 is by mapping subtrees of unbounded depth into
the loops in M1 for unary clauses ai in ϕ, which is only
possible if there is a tree of rules of the form ai ∧ ai′ → aj
with root an and leaves among the clauses ai of ϕ (that is, if
there is a derivation of an from ϕ).

For EL, we can take T = {V v ∃P.(∃R1.V u ∃R2.V)}.
q

Proof of Theorem 25

Theorem 25 For combined complexity, Σ-query entailment
and inseparability are (i) 2EXPTIME-hard for Horn-ALCI
KBs and (ii) EXPTIME-hard for DL-LiteHcore KBs.

Proof. The proof of (ii) is by encoding alternating Turing
machines (ATMs) with polynomial tape and using the fact
that APSPACE = EXPTIME.

As in the proof of (i), let M = (Γ, Q, q0, q1, δ) be an
ATM and let M ′ be the ATM obtained from M by extend-
ing it with two instructions that go into an infinite loop if M
reaches the accepting state. Our aim is to construct, given
M and an input ~w, two TBoxes, T1 and T2, and a signa-
ture Σ such that M ′ has a run with only infinite branches
iff the materialisation M2 of (T2, {A(c)}) is finitely Σ-
homomorphically embeddable into the materialisation C1 of
(T1, {A(c)}). Let f be a polynomial such that, on any input
of length m, M ′ uses at most n = f(m) cells.

The construction proceeds in four steps. In the definition
of the TBoxes T1 and T2, we use concept inclusions of the
form B v ∃R.(C1 u · · · u Ck) as an abbreviation for

B v ∃R0, R0 v R and ∃R−0 v Ci, for 1 ≤ i ≤ k,

where R0 is a fresh role name. If Ci is a complex concept
then ∃R−0 v Ci is also treated as an abbreviation for the
respective concept and role inclusions.

Step 1. First we encode configurations and transitions ofM ′
using T1. We represent a configuration (that is, the contents
of every cell on the tape, the state and the position of the
head) by a sequence of (n+ 2) domain elements connected
by some role R, which will be called a block. More pre-
cisely, the first element in each block is used to distinguish
the type of the block. Each of the remaining n elements is
assigned an index from 0 to n. They encode the contents of
the tape: if the element with index i belongs to Ca, for some
a ∈ Γ, then the ith cell of the tape is assumed to contain
a in the configuration defined by the block (cell 0 contains
marker [∈ Γ) as shown below:

M1 A
C[Ca1 Ca2 Can−1 Can

Z0,n
q0,a1,1

P P P P

The first block represents the initial configuration, that is,
symbols a1, . . . , an written in the n cells of the tape (com-
prising the input ~w in the first m cells padded with the

blanks) and the initial state q0, which is achieved by the fol-
lowing inclusion in T1:

A v ∃P.(C[u ∃P.(Ca1 u ∃P.(Ca2 u ∃P.(. . .
∃P.(Can u Z

0,n
q0,a1,1

) . . .)))). (T1-1)

Step 2. The contents of the tape and the head position in
each configuration is encoded in a block of length n + 2;
the current state q ∈ Q and the position k of the head are
recorded in the concept Z0,n

q,a,k that contains the last element
of the block (a ∈ Γ specifies the contents of the active cell
scanned by the head). At the end of the block we branch out
one block for each of the two transitions and propagate via
the Z1,i

q,a,k and the Z2,i
q,a,k the current state, head position and

symbol in the active cell: for q ∈ Q, a ∈ Γ and 1 ≤ k ≤ n,
we add to T1 the inclusions

Z0,n
q,a,k v

l

j=1,2

∃P.(Xj u Zj,−1
q,a,k), (T1-2)

where X1 and X2 are two fresh concept names (distinguish-
ing the two branches).

The acceptance condition for M ′ is enforced by means of
T2, which uses four types of blocks. The initial configuration
is encoded by the following inclusion in T2:

A v ∃P.∃P. · · · ∃P.︸ ︷︷ ︸
n times

(∃P.X1 u ∃P.X2). (T2-1)

Two types of blocks, starting with X1 and X2, respectively,
represent configurations with universal sates; and one more
type of blocks, starting with X3, suffices for representing
configurations with existential states. These blocks are ar-
ranged into an infinite tree-like structure: the block starting
with A is the root, from which an X1- and an X2-blocks
branch out (successors of the initial state q0 are universal).
Each of them is followed by an X3-block (an existential
state), which branches out an X1- and an X2-blocks, and
so on. This is achieved by adding to T2 the following inclu-
sions: for j = 1, 2,

Xjv∃P.∃P.(G u ∃P.(· · · ∃P.(G u︸ ︷︷ ︸
n times

∃P.X3))), (T2-2)

X3v∃P.
︷ ︸︸ ︷
∃P.(G u ∃P.(· · · ∃P.(G u

l

j=1,2

∃P.Xj))), (T2-3)

where G is a concept name (containing all domain elements
representing the tape). If Σ = {A,X1, X2, P} then there
is a unique Σ-homomorphism from the A-block in M2 to
the block of the initial configuration inM1. Next, concepts
X1 and X2 ensure that the following X1- and X2-blocks
are Σ-homomorphically mapped (in a unique way) into the
respective blocks inM1, which reflects the acceptance con-
dition of universal states. The following block, however,
begins with X3, which is not in the signature, and thus can
be mapped to either of the blocks inM1, which reflects the
choice in existential states; see the picture below, where pos-
sible Σ-homomorphisms are shown by thick dashed arrows:

M2

M1

A

0
1

2

3

3
A

X1

X2

X3

Step 3. Recall that the Zj,iq,a,k, for −1 ≤ i ≤ n, specify the
position k of the head on the tape. Let the active cell in the
current configuration be k; then until the cell k−2 is reached
in a successive configuration, the following inclusions in T1

propagate the state (q ∈ Q), the symbol in the active cell
(a ∈ Γ), the head position (1 ≤ k ≤ n) and the branch
marker (j = 0, 1, 2) along the domain elements constituting
blocks: for −1 < i ≤ n with i 6= k − 1,

Zj,i−1
q,a,k v

l

b∈Γ

∃P.(Cb u Zj,iq,a,k) (T1-3)

(for each b ∈ Γ, these inclusions generate a branch inM1 to
represent the same cell but with a different symbol, b, tenta-
tively assigned to the cell; Step 4 will ensure that the correct
branch and symbol are selected to match the cell contents
in the preceding configuration). We point out that, since the
size of the tape is polynomial in the length of the input, we
can use the subscripts of the Zj,iq,a,k to specify the head po-
sition, k, and the cell number, i; in the proof of item (i),
we had to use P -counters over H and the T j , respectively.
When the cell k−2 is reached, the contents of the active cell,
the current state and the head position are changed according
to δ:

Zj,k−2
q,a,k v

l

b∈Γ

∃P.(Cb u∆k
qa,b), (T1-4)

where δ(q, a, j) = (q′, a′, σ) and ∆k
qa,b is the concept

∃P.(Ca′ uGa′ u Z0,k
q′,b,k−1), if σ = −1,

∃P.(Ca′ uGa′ u Z0,k
q′,a′,k), if σ = 0,

∃P.(Ca′ uGa′ u
l

b′∈Γ

∃P.(Cb′ u Z0,k+1
q′,b′,k+1)), if σ = +1

(the symbol in the active cell is changed according to the in-
struction, and the current state, symbol in the next active cell
and the head position are then recorded in Z0,i

q,a,k; note that
the branch marker, j = 1, 2, is replaced by 0). These three
situations are shown below, where hatched nodes denote do-
main elements for the active cell in a current configuration
(where the symbol is recorded in the Z0,i

q,a,k); the domain
elements in the dashed oval represent the active cell of the
preceding configuration and the grey nodes denote domain
elements two cells before the active cell of that configuration
(where inclusion (T1-4) becomes ‘active’):

Ca′ , Ga′

(a)

Zj,k−2
q,a,k

Cb, Z
0,k−1
q′,b,k−1

Cb′ , Z
0,k−1

q′,b′,k−1

Z0,k
q′,b,k−1

Z0,k

q′,b′,k−1

Cb, Z
0,k+1

q′,b,k−1

Cb′ , Z
0,k+1
q′,b,k−1

(b)

Zj,k−2
q,a,k

Cb

Cb′
Z0,k

q′,a′,k

Z0,k
q′,a′,k Cb, Z

0,k+1

q′,a′,k

Cb′ , Z
0,k+1
q′,a′,k

(c)
Zj,k−2

q,a,k

Cb

Cb′

Cb, Z
0,k+1

q′,b,k+1

Cb′ , Z
0,k+1
q′,b′,k+1

(Note that there is only one branch for the modified cell,
which corresponds to the new symbol, a′, in that cell; see
explanations below.) Then the current state and the symbol
in the active cell are further propagated along the tape us-
ing (T1-3) with j = 0 and i > k − 1.

Step 4. The inclusons (T1-3)–(T1-4) generate a separate P -
successor for each b ∈ Γ. The correct one is chosen by a
finite Σ-homomorphism, h, from M2 to M1. To exclude
wrong choices, we take

Σ = {A,P,X1, X2, P} ∪ {Da | a ∈ Γ}.

Recall that if d1 ∈ CM1
a , for some a ∈ Γ, then it represents a

cell containing a. The following inclusions in T1 ensure that,
for each b ∈ Γ different from a, there is a block of n + 2-
many P−-connected elements that ends in the concept Db

(called a Db-block in the sequel):

Ca v Da u
l

b∈Γ\{a}

Gb, (T1-5)

Gb v ∃P−.∃P−. · · · ∃P−.︸ ︷︷ ︸
n times

∃P−.Db, for b ∈ Γ. (T -1)

(Note that in this proof we do not need to use binary counters
to reach the end of the block.) Suppose h(d2) = d1 and
d2 belongs to G inM2 (it represents a cell in a non-initial
configuration). Then (T -1) and the inclusions

G v
l

b∈Γ

Gb (T2-4)

added to T2 generate a Db-block, for each b ∈ Γ (including
a). Each of the Db-blocks inM2, for b ∈ Γ with b 6= a, can
be mapped by h to the respective Db-block inM1. By the
choice of Σ, the only remainingDa-block, in case a is tenta-
tively contained in this cell, could be mapped (in the reverse
order) along the branch inM1 but only if the cell contains a
in the preceding configuration (that is, the element which is
n+ 2 steps closer to the root ofM1 belongs to Da):

M2

M1

cell kcell k
n+ 2

G

Da

Db

Db′

CaDa

Db

Db′

Note (see ∆k
qa,b) that the cell whose contents is changed gen-

erates the additionalDa-block inM1 to allow the respective
Da-block fromM2 to be mapped there.

One can show now that T1 and T2 are as required: M ′
has a run with only infinite branches iff the materialisation
M2 of (T2, {A(c)}) is finitely Σ-homomorphically embed-
dable into the materialisationM1 of (T1, {A(c)}), where Σ
contains the concept and role names in T2. It remains to use
Theorem 5 and the fact that APSPACE = EXPTIME. By
Theorem 2, Σ-query inseparability is also EXPTIME-hard.

q

References
Krötzsch, M.; Rudolph, S.; and Hitzler, P. 2007. Complexity
boundaries for horn description logics. In Proc. of the 22nd
Nat. Conf. on Artificial Intelligence (AAAI 2007), 452–457.

