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Abstract

We design minimal temporal description logics that are capa-
ble of expressing various aspects of temporal conceptual data
models and investigate their computational complexity. We
show that, depending on the required types of temporal and
atemporal constraints, the satisfiability problem for temporal
knowledge bases in the resulting logics can be NLOGSPACE-,
NP- and PSPACE-complete, as well as undecidable.

Introduction
Conceptual data modelling formalisms such as the Entity-
Relationship model (ER) and Unified Modelling Language
(UML) have become a de facto standard in database design
by providing visual means to describe application domains
in a declarative and reusable way. On the other hand, both
ER and UML turned out to be closely connected with de-
scription logics (DLs) developed in the area of knowledge
representation, underpinned by formal semantics and thus
capable of providing services for effective reasoning over
conceptual models; see, e.g., (Berardi, Calvanese, & De Gi-
acomo 2005; Artale et al. 2007b).

Temporal conceptual data models (Gregersen & Jensen
1999; Spaccapietra, Parent, & Zimanyi 2006) have been
introduced in the context of temporal databases (Jensen
& Snodgrass 2000; Date, Darwen, & Lorentzos 2002;
Chomicki & Toman 2009). In this case, apart from the
‘classical’ constructs—such as inheritance between classes
and relationships, attributes, cardinality constraints restrict-
ing participation in relationships, and disjointness and cov-
ering constraints—temporal constructs are used to cap-
ture the temporal behaviour of various components of con-
ceptual schemas. Such constructs can be grouped into
three categories. Timestamping constraints discriminate be-
tween those classes, relationships and attributes that change
over time and those that are time-invariant (Theodoulidis,
Loucopoulos, & Wangler 1991; Gregersen & Jensen 1999;
Finger & McBrien 2000; Artale & Franconi 2009; Spac-
capietra, Parent, & Zimanyi 2006). Evolution constraints
control how the domain elements evolve over time by ‘mi-
grating’ from one class to another (Hall & Gupta 1991;
Mendelzon, Milo, & Waller 1994; Su 1997; Spaccapietra,
Parent, & Zimanyi 2006; Artale, Parent, & Spaccapietra
2007). We distinguish between qualitative evolution con-

straints describing generic temporal behaviour, and quanti-
tative ones specifying the exact time of migration. Temporal
cardinality constraints restrict the number of times an in-
stance of a class participates in a relationship. Snapshot car-
dinality constraints do it at each moment of time, while lifes-
pan cardinality constraints impose restrictions over the en-
tire existence of the instance as a member of the class (Tau-
zovich 1991; McBrien, Seltveit, & Wangler 1992).

Temporal conceptual data models (TCMs) can be en-
coded in various temporal description logics (TDLs), which
have been designed and investigated since the seminal pa-
per (Schild 1993) with the aim of understanding the compu-
tational price of introducing a temporal dimension in DLs;
see (Lutz, Wolter, & Zakharyaschev 2008) for a recent sur-
vey. A general conclusion one can draw from the obtained
results is that—as far as there is nontrivial interaction be-
tween the temporal and DL components—TDLs based on
full-fledged DLs like ALC turn out to be too complex for
effective reasoning (see the end of this section for details).

The aim of this paper is to tailor ‘minimal’ TDLs that
are capable of representing various aspects of TCMs and in-
vestigate their computational behaviour. First of all, as the
DL component we choose the ‘light-weight’ DL-Lite logic
DL-LiteNbool, which was shown to be adequate for capturing
conceptual models without relationship inheritance1 (Artale
et al. 2007b), and its fragment DL-LiteNcore with most prim-
itive concept inclusions, which are nevertheless enough to
represent almost all types of constraints (apart from cover-
ing). To discuss our choice of the temporal constructs, con-
sider a toy TCM describing a company.

For the timestamping constraint ‘employee is a snapshot
class’ (according to the standard TCM terminology, such
a class never changes in time) one can use the TDL ax-
iom Employee v 2∗ Employee with the temporal operator
2∗ ‘always.’ Similarly, the constraint ‘manager is a tem-
porary class’ in the sense that each of its instances must
leave the class, an axiom Manager v 3∗ ¬Manager is re-
quired, where 3∗ stands for ‘some time.’ Both of these ax-
ioms are regarded as global, that is, applicable to all mo-
ments of time. Note that to express 3∗ using more standard
temporal constructs, we need both ‘some time in the past’

1The extension of DL-LiteNbool with relationship inclusions re-
gains the full expressive power of ALC.



3P and ‘some time in the future’ 3F . To capture a snap-
shot n-ary relationship, one can reify it into a snapshot class
with n auxiliary rigid—that is, time-independent—roles; for
a temporary relationship, the reifying class should be tem-
porary and the roles local (Artale, Lutz, & Toman 2007;
Artale et al. 2007c).

The qualitative evolution constraints ‘each manager was
once an employee’ and ‘a manager will always remain a
manager’ can be expressed as Manager v 3PEmployee and
Manager v 2FManager, while ‘an approved project keeps
its status until a later date when it starts’ requires the ‘until’
operator: ApprovedProject v ApprovedProject U Project.
The quantitative evolution constraint ‘each project must be
finished in 3 years’ is expressed using the next-time operator
©F : Project v ©F©F©FFinishedProject.

The snapshot cardinality constraint ‘an employee can
work on at most 2 projects at each moment of time’ can be
expressed by the (global) axiom Employee v ≤ 2worksOn,
while the lifespan constraints like ‘over the whole career, an
employee can work on at most 5 projects’ require temporal
operators on roles: Employee v ≤ 53∗ worksOn. Note that
‘temporalised’ roles of the form 3∗ R and 2∗R are rigid.

Finally, to represent a temporal database instance of a
TCM, we use assertions like©PManager(bob) for ‘Bob was
a manager last year’ and©Fmanages(bob, cronos) for ‘Bob
will manage project Cronos next year.’ As usual, n-ary ta-
bles are represented via reification.

These considerations lead us to TDLs based on the DLs
DL-LiteNbool and DL-LiteNcore and interpreted over the flow of
time (Z, <), in which (1) the future and past temporal op-
erators can be applied to concepts; (2) roles can be declared
local or rigid; (3) the ‘undirected’ temporal operators ‘al-
ways’ and ‘some time’ can be applied to roles; (4) the con-
cept inclusions (TBox axioms) are global and the database
(ABox) assertions are specified to hold at particular mo-
ments of time.

Unfortunately, and to our surprise, the most expressive
TDL based on DL-LiteNbool and featuring all of (1)–(4) turns
out to be undecidable. As follows from the proof of The-
orem 5 below, it is a subtle interaction of functionality
constraints on temporalised roles with the next-time oper-
ator and full Booleans on concepts that causes undecidabil-
ity. This ‘negative’ result motivates consideration of vari-
ous fragments of our full TDL by restricting not only the
DL but also the temporal component. The table below illus-
trates the expressive power of the resulting fragments in the
context of TCMs. We also note that both DL-LiteNbool and
DL-LiteNcore with global axioms can capture snapshot cardi-
nality constraints, while lifespan cardinality constraints re-
quire temporalised roles of the form 3∗ R.

concept
temporal
operators timestamping

evolution
qualitative quantitative

U/S + + +
2F/P ,©F/P + + +
2F/P + + −
2∗,©F/P + − +
2∗ + − −

The next table summarises the complexity results ob-

tained in this paper for satisfiability of temporal knowledge
bases formulated in our TDLs.

concept
temporal
operators

local & rigid roles only temporalised
roles

DL-LiteNbool DL-LiteNcore DL-LiteNbool

U/S PSPACE
Thm. 1

PSPACE
(Artale et al. 2009b)

undec.
Thm. 5

2F/P ,©F/P
PSPACE
Thm. 2 (ii)

NP
Thm. 3

undec.
Thm. 5

2F/P
NP

Thm. 2 (i)
NP

(Artale et al. 2009b) ?

2∗,©F/P
PSPACE
Thm. 2 (ii)

NP
Thm. 3

undec.
Thm. 5

2∗ NP
Thm. 2 (i)

NLOGSPACE
Thm. 4

NP
Thm. 6

Apart from the undecidability result of Theorem 5 discussed
above, quite surprising is NP-completeness of the tempo-
ral extension of DL-LiteNcore with the operators 2F and ©F

(and their past counterparts) on concepts provided by Theo-
rem 3. Indeed, if full Booleans are available, even the propo-
sitional temporal logic with these operators is PSPACE-
complete. Moreover, if the ‘until’ operator U is available
in the temporal component, disjunction is expressible even
with DL-LiteNcore as the underlying DL and the logic becomes
PSPACE-complete again (Artale et al. 2009b). In all other
cases, the complexity of TDL reasoning coincides with the
maximal complexity of reasoning in the component logics
(despite nontrivial interaction between them, as none of our
TDLs is a fusion of its components). It is also of interest to
observe the dramatic increase of complexity caused by the
addition of ©F to the logic in the lower right corner of the
table (from NP-completeness to undecidability).

To put this paper in the more general context of tem-
poral description logics, we note first that our TDLs ex-
tend those in (Artale et al. 2009b) with the past-time op-
erators S, 2P , 3P , ©P over Z (which are essential for
capturing timestamping constraints), universal modalities 2∗
and 3∗, and temporalised roles. Temporal operators on DL-
Lite axioms and concepts in the presence of rigid roles
were investigated in (Artale et al. 2007c), where it was
shown that the resulting temporalisations of DL-LiteNbool and
DL-LiteNhorn are EXPSPACE-complete. Temporal extensions
of the standard DL ALC feature the following computa-
tional behaviour: ALC with temporal operators on axioms,
rigid concepts and roles is 2EXPTIME-complete (Baader,
Ghilardi, & Lutz 2008). It is EXPSPACE-complete if tem-
poral operators on concepts and axioms are allowed but
no rigid or temporalised roles are available (Gabbay et
al. 2003), and EXPTIME-complete if the language allows
only temporalised concepts and global axioms (Schild 1993;
Artale et al. 2002). Finally, the ‘undirected’ temporal opera-
tors 2∗ and 3∗ on concepts and roles together with global ax-
ioms result in a 2EXPTIME-complete extension ofALC (Ar-
tale, Lutz, & Toman 2007).

The paper is organised as follows. In the next section,
we define the logic TUSDL-LiteNbool together with its frag-
ments and obtain tight complexity results for the second
column of the table above. Then we analyse DL-LiteNcore
and its fragments to fill in the third column. Finally, we
show that, when coupled with quantitative evolution con-
straints, temporalised roles cause undecidability in the case
of DL-LiteNbool, while when combined with the universal



modalities, they do not increase complexity.

TUSDL-LiteNbool
First we define our basic temporal extension TUSDL-LiteNbool
of the description logic DL-LiteNbool (Artale et al. 2007a;
2009a), which, in turn, extends DL-Liteu,F (Calvanese et
al. 2007) with full Booleans over concepts and cardinality
restrictions over roles.

The language of TUSDL-LiteNbool contains object names
a0, a1, . . . , concept names A0, A1, . . . , local role names
P0, P1, . . . and rigid role namesG0, G1, . . . . RolesR, basic
concepts B and concepts C are defined as follows:

S ::= Pi | Gi, R ::= S | S−,
B ::= ⊥ | Ai | ≥ q R,
C ::= B | ¬C | C1 u C2 | C1 U C2 | C1 S C2,

where q ≥ 1 is a natural number (the results obtained below
do not depend on whether q is given in unary or binary).

A TUSDL-LiteNbool interpretation is a function I on the
integers Z (the intended flow of time):

I(n) =
(
∆I , aI0 , . . . , A

I(n)
0 , . . . , P

I(n)
0 , . . . , G

I(n)
0 , . . .

)
,

where ∆I is a nonempty set, the (constant) domain of I,
aIi ∈ ∆I , AI(n)

i ⊆ ∆I and P I(n)
i , G

I(n)
i ⊆ ∆I ×∆I with

G
I(n)
i = G

I(m)
i , for i ∈ N and n,m ∈ Z. We adopt the

unique name assumption according to which aIi 6= aIj , for
i 6= j, although our complexity results would not change if
we dropped it, apart from the NLOGSPACE bound of The-
orem 4, which would increase to NP (Artale et al. 2009a).
The role and concept constructs are interpreted in I as fol-
lows:

(S−)I(n) = {(y, x) | (x, y) ∈ SI(n)},
⊥I(n) = ∅, (¬C)I(n) = ∆I \ CI(n),

(C1 u C2)I(n) = C
I(n)
1 ∩ CI(n)

2 ,

(≥ q R)I(n) =
{
x | ]{y | (x, y) ∈ RI(n)} ≥ q

}
,

(C1 U C2)I(n) =
⋃

k>n

(
C
I(k)
2 ∩

⋂
n<m<k C

I(m)
1

)
,

(C1 S C2)I(n) =
⋃

k<n

(
C
I(k)
2 ∩

⋂
n>m>k C

I(m)
1

)
.

Note that our until and since operators are ‘strict’ in the
sense they do not include the current moment of time. We
also use the temporal operators 3F (‘some time in the fu-
ture’), 3P (‘some time in the past’), 3∗ (‘some time’), their
duals 2F , 2P and 2∗ , ©F (‘next time’) and ©P (‘previous
time’), which are all expressible by means of U and S, e.g.,

3FC = ¬⊥ U C, 2FC = ¬3F¬C, ©FC = ⊥ U C,
3∗ C = 3F3PC and 2∗ C = 2F2PC.

(Other standard abbreviations we use include C1 t C2, ∃R
and > = ¬⊥.) Apart from full TUSDL-LiteNbool, we con-
sider a few of its sublanguages allowing only some of the
(definable) temporal operators mentioned above:
– TFP DL-LiteNbool, which allows only 3FC, 3PC and their

duals (but no ©FC or C1 U C2), and its extension
TFPXDL-LiteNbool with ©FC and ©PC;

– TUDL-LiteNbool, which allows only 3∗ C and 2∗ C, and its
extension TUXDL-LiteNbool with ©FC and ©PC.
A TBox, T , in any of our languages L is a finite set of

concept inclusions (CIs) of the form C1 v C2, where the Ci

are L-concepts. An ABox, A, consists of assertions of the
form ©nB(a) and ©nS(a, b), where B is a basic concept,
S a (local or rigid) role name, a,b object names and ©n, for
n ∈ Z, is a sequence of n operators ©F if n ≥ 0 and |n|
operators ©P if n < 0. Taken together, the TBox T and
ABox A form the knowledge base (KB) K = (T ,A) in L.

The truth-relation |= is defined as follows:

I |= C1 v C2 iff C
I(n)
1 ⊆ CI(n)

2 for all n ∈ Z,

(that is, we interpret concept inclusions globally)

I |= ©nB(a) iff aI ∈ BI(n),

I |= ©nS(a, b) iff (aI , bI) ∈ SI(n).

We call I a model of a KB K and write I |= K if I |= α for
all α in K. If K has a model then it is said to be satisfiable.
A concept C (role R) is satisfiable w.r.t. K if there are a
model I of K and n ∈ Z such that CI(n) 6= ∅ (respectively,
RI(n) 6= ∅). Clearly, the concept and role satisfiability prob-
lems are equivalent to KB satisfiability.

Our first result states that, in the worst case, the satisfi-
ability problem for TUSDL-LiteNbool KBs is as complex as
satisfiability in propositional temporal logic LTL.
Theorem 1. The satisfiability problem for TUSDL-LiteNbool
KBs is PSPACE-complete.

The proof is by a two-step (non-deterministic polyno-
mial) reduction to LTL. First, we reduce satisfiability of a
TUSDL-LiteNbool KB K = (T ,A) to satisfiability in the one-
variable first-order temporal logic in a way similar to (Artale
et al. 2009b). For each basic concept B (6= ⊥), we take a
fresh unary predicate B∗(x) and encode T as the formula

T † =
∧

C1vC2∈T 2∗ ∀x
(
C∗1 (x)→ C∗2 (x)

)
,

where the C∗i are the results of replacing eachB withB∗(x)
(u with ∧, etc.). We assume that T contains CIs of the form
≥ q R v ≥ q′R, for ≥ q R, ≥ q′R in T such that q > q′

and there is no q′′ with q > q′′ > q′ and ≥ q′′R in T .
We also assume that T contains ≥ q R ≡ 2∗ ≥ q R if ≥ q R
occurs in T , for a rigid role R (i.e., for Gi or G−i ). To take
account of the fact that roles are binary relations, we add to
T † the following formula, for each role name S:

εS = 2∗
(
∃x (∃S)∗(x)↔ ∃x (∃S−)∗(x)

)
(which says that at each moment of time the domain of S
is nonempty iff its range is nonempty). The ABox A is en-
coded by the conjunction A† of ground atoms of the form
©nB∗(a) and©n(≥ q R)∗(a) in the same way as in (Artale
et al. 2009b). Thus, K is satisfiable iff the formula

K† = T † ∧
∧

S εS ∧ A†

is satisfiable. The second step of our reduction is based on
the observation that ifK† is satisfiable then it can be satisfied
in an interpretation such that



(R) if (∃S)∗(x) is true at some moment (on some domain
element) then it is true at all moments of time (perhaps on
different domain elements).

Indeed, ifK† is satisfied in I then it is satisfied in the disjoint
union I∗ of all In, n ∈ Z, obtained from I by shifting its
time line n moments forward. It follows from (R) that K† is
satisfiable iff there is a set Σ of role names such that

K†Σ = T † ∧
∧

S∈Σ

(
(∃S)∗(dS) ∧ (∃S−)∗(dS−)

)
∧∧

S/∈Σ 2∗ ∀x¬
(
(∃S)∗(x) ∨ (∃S−)∗(x)

)
∧ A†

is satisfiable, where the dS are fresh constants (informally,
the roles in Σ are nonempty at some moment, and so can be
made always nonempty, whereas all other roles are always
empty). Finally, as K†Σ contains no existential quantifiers,
it can be regarded as an LTL-formula because all the univer-
sal quantifiers can be instantiated by all the constants occur-
ring in the formula (i.e., the object names in A and the dS ,
S ∈ Σ), which results only in a polynomial blow-up of the
formula.

This reduction can also be used to obtain complexity re-
sults for the fragments of TUSDL-LiteNbool mentioned above.
Using the well-known facts that satisfiability in the frag-
ments of LTL with 3F /3P and with 3∗ is NP-complete, and
that the extension of any of these fragments with ©F /©P

becomes PSPACE-complete again, we obtain:
Theorem 2. (i) Satisfiability of TFP DL-LiteNbool and
TUDL-LiteNbool KBs is NP-complete.

(ii) Satisfiability of TFPXDL-LiteNbool and TUXDL-LiteNbool
KBs is PSPACE-complete.

TUSDL-LiteNcore
To decrease complexity we consider the logic DL-LiteNcore
able to capture conceptual models with the exception of
sub-relations and covering between entities (Artale et al.
2007b). DL-LiteNcore is a fragment of DL-LiteNbool contain-
ing only CIs of the form B1 v B2 and B1 uB2 v ⊥, where
the Bi are basic concepts. Satisfiability of DL-LiteNcore KBs
is NLOGSPACE-complete (Artale et al. 2009a).

Let TUSDL-LiteNcore be the fragment of TUSDL-LiteNbool
with CIs of the form D1 v D2 and D1 u D2 v ⊥, where
the Di are defined by the rule:

D ::= B | B1 U B2 | B1 S B2.

By restricting D1 and D2 to concepts of the form:
D ::= B | 3FB | 3PB | 2FB | 2PB

we obtain TFP DL-LiteNcore. These restrictions do not
improve the complexity of reasoning: satisfiability of
TUSDL-LiteNcore KBs is PSPACE-complete, while for
TFP DL-LiteNcore it is NP-complete (Artale et al. 2009b).

What is really surprising and nontrivial is that the exten-
sion of TFP DL-LiteNcore with the next- and previous-time op-
erators does not increase the complexity; cf. Theorem 2 (ii).
More formally, define TFPXDL-LiteNcore by restricting D1

and D2 to concepts of the form:
D ::= B | 3FB | 3PB | 2FB | 2PB | ©FB | ©PB,

and let TUXDL-LiteNcore be the logic with the Di of the form:
D ::= B | 3∗ B | 2∗B | ©FB | ©PB.

Theorem 3. Satisfiability for TFPXDL-LiteNcore and
TUXDL-LiteNcore KBs is NP-complete.

In a way similar to the proof of Theorem 1, one can (non-
deterministically and polynomially) reduce satisfiability of a
TFPXDL-LiteNcore KB to satisfiability of an LTL-formula

ϕ =
∧

i 2∗(Ei ∨ E′i) ∧ ψ,

where the Ei and E′i are of the form p, 3F p, 3P p, 2F p,
2P p,©F p,©P p or a negation thereof, and ψ is a conjunction
of formulas of the form©np, p a propositional variable. Let
Γ be the set of all subformulas of ϕ of the form 3F p, 3P p,
2F p or 2P p. It should be clear that if ϕ is satisfied in an
interpretation then the flow of time can be partitioned into
|Γ| + 1 intervals I0, . . . , I|Γ| such that, for each γ ∈ Γ and
each Ii, γ is true at some point in Ii iff γ is true at every point
in Ii. The existence of such intervals can be expressed by
certain syntactic conditions on their ‘states,’ the most crucial
of which is satisfiability of a formula of the form

χ = Ψ ∧2≤mΦ ∧©m(Ψ′ ∧©Ψ′′),

for Φ =
∧

i(Di ∨ D′i), with each of the Di and D′i being
a literal L (a propositional variable or its negation) or ©L,
conjunctions Ψ, Ψ′ and Ψ′′ of literals, and m ≥ 0, where
©nΨ is the result of attaching n operators © to each literal
in Ψ and 2≤mΦ =

∧
0≤i≤m©

iΦ. Intuitively,m is the num-
ber of distinct states in an interval Ii, Ψ and Ψ′ are the first
and the last states in Ii, Ψ′′ is the first state of the next inter-
val Ii+1, and Φ a set of binary clauses that describe possible
transitions between the states. For details consult the tech-
nical report (Artale et al. 2010).

Let consmΦ (Ψ) be the set of all literals L that are true at
the moment m ≥ 0 in every model of Ψ ∧ 2≤mΦ. As the
formula Ψ∧2≤mΦ is essentially a 2CNF, one can compute
consmΦ (Ψ) inductively as follows:

cons0
Φ(Ψ) = {L | Φ ∪Ψ |= L},

consmΦ (Ψ) = {L | Φ |= L′ → ©L,L′ ∈ consm−1
Φ (Ψ)}

∪ {L | Φ |= L}.

Now, for each L, we construct a non-deterministic finite au-
tomaton AL = (Q,Q0, σ, FL) over the alphabet {0} that ac-
cepts 0m iff L ∈ consmΦ (Ψ). Define the states in Q to be all
the literals from χ, the set of initial states Q0 = cons0

Φ(Ψ),
the accepting states FL = {L}, and the transition relation

σ = {(L′′, L′) | Φ |= L′′ → ©L′} ∪ {(L′, L′) | Φ |= L′}.

Then a state L is reachable in m σ-steps from a state in Q0

iff L ∈ consmΦ (Ψ), and so the automaton AL is as required.
Every such AL can be converted into an equivalent automa-
ton in the Chrobak normal form (Chrobak 1986) using Mar-
tinez’s algorithm (To 2009). The automaton in the Chrobak
normal form gives rise to ML-many arithmetic progressions

aL1 + bL1 N, . . . , aLML
+ bLML

N,

where a+ bN = {a+ bn | n ∈ N}, such that
(A1) ML, a

L
i , b

L
i ≤ |Φ ∪Ψ|2, for 1 ≤ i ≤ML, and

(A2) L ∈ consmΦ (Ψ) iff m ∈
⋃ML

i=1(aLi + bLi N).



Satisfiability of χ can now be established by a poly-
nomial-time algorithm which checks whether the following
three conditions hold:
1. p,¬p ∈ consnΦ(Ψ), for no variable p and no n ≤ m+ 1;
2. ¬L ∈ consmΦ (Ψ), for no literal L ∈ Ψ′;

3. ¬L ∈ consm+1
Φ (Ψ), for no literal L ∈ Ψ′′.

To verify Condition 1, we check, for each variable p,
whether the linear Diophantine equations

api + bpi x = a¬pj + b¬pj y,

for 1 ≤ i ≤Mp and 1 ≤ j ≤M¬p, have a solution (x0, y0)
such that 0 ≤ api +bpi x0 ≤ m+1. Set a = bpi , b = −b¬pj and
c = a¬pj − a

p
i , which gives us the equation ax + by = c. If

a 6= 0 and b 6= 0 then, by Bézout’s lemma, it has a solution
iff c is a multiple of the greatest common divisor d of a and
b, which can be checked in polynomial time using the Eu-
clidean algorithm (provided that the numbers are encoded in
unary, which can be assumed in view of (A1)). Moreover,
if the equation has a solution, then the Euclidean algorithm
also gives us a pair (u0, v0) such that d = au0 + bv0, in
which case all the solutions of the above equation form the
set {(

(cu0 + bk)/d, (cv0 − ak)/d
)
| k ∈ Z

}
.

Thus, it remains to check whether a number between 0 and
m+ 1 is contained in api + bpi (a¬pj − a

p
i )u0/d+ bpi b

¬p
j /dN.

The case a = 0 or b = 0 is left to the reader.
To verify Condition 2, we check, for each L ∈ Ψ′,

whether m belongs to one of a¬Li + b¬Li N, for 1 ≤ i ≤ML,
which can be done in polynomial time. Condition 3 is anal-
ogous.

This gives us the NP upper bound for the logics men-
tioned in Theorem 3. The lower bound can be proved by
reduction of the 3-colourability problem to satisfiability of
TUXDL-LiteNcore KBs; see (Artale et al. 2009b, Lemma 6).

Theorem 3 shows that TFPXDL-LiteNcore can be regarded
as a good candidate for representing temporal conceptual
data models. Although not able to express covering con-
straints, TFPXDL-LiteNcore still appears to be a reasonable
compromise compared to the full PSPACE-complete logic
TFPXDL-LiteNbool (cf. Theorem 2 (ii)).

By restricting the temporal constructs to the undirected
universal modalities 2∗ and 3∗ , we obtain an even simpler
logic:
Theorem 4. Satisfiability of TUDL-LiteNcore KBs is
NLOGSPACE-complete.

The proof of the upper bound is by embedding into the
universal Krom fragment of first-order logic.

Logics with Temporalised Roles
As we have seen before, in order to express lifespan cardi-
nalities, temporal operators on roles are required. Modalised
roles are known to be ‘dangerous’ and very difficult to deal
with when temporalising expressive DLs such asALC (Gab-
bay et al. 2003, Section 14.2). To our surprise, even in
the case of DL-Lite temporal operators on roles may cause
undecidability. Denote by TRXDL-LiteNbool the fragment of

TUSDL-LiteNbool with ©F as the only temporal operator over
concepts and with roles R of the form

R ::= S | S− | 3∗ R | 2∗R.

The extensions of 3∗ R and 2∗R in an interpretation I are
defined as follows:

(3∗ R)I(n) =
⋃
k∈Z

RI(k) and (2∗R)I(n) =
⋂
k∈Z

RI(k).

Theorem 5. Satisfiability of TRXDL-LiteNbool KBs is undecid-
able.

The proof is by reduction of the N×N-tiling problem; see,
e.g., (Börger, Grädel, & Gurevich 1997): given a finite set T
of tile types t = (up(t), down(t), left(t), right(t)), decide
whether T can tile the N× N-grid. We assume that the tiles
use k colours numbered from 1 to k.

We construct a TRXDL-LiteNbool KB KT such that KT is
satisfiable iff T tiles the N×N-grid. The temporal dimension
clearly provides us with one of the two axes of the grid. The
other axis is constructed from the domain elements: letR be
a role such that

≥ 23∗ R v ⊥ and ≥ 23∗ R− v ⊥.
In other words, if xRy at some moment of time then there is
no y′ 6= y with xRy′ at any moment of time (and the same
forR−). We can generate an infinite sequence of the domain
elements by saying that ∃R− u©F∃R− is nonempty and

∃R− u©F∃R− v ∃R u©F∃R.
(The reason for generating the R-arrows at two consecutive
moments of time will become apparent below.) It should
also be noted that the produced sequence may in fact be ei-
ther a finite loop or an infinite sequence of distinct elements.
Now, let t be a fresh concept name for each t ∈ T and let tile
types be disjoint, i.e., tu t′ v ⊥ for t 6= t′. After the double
R-arrows we place the first column of tiles, and every k + 1
moments afterwards we place a column of tiles that matches
the colours of the previous column:

∃R− u©F∃R− v
⊔

t∈T ©F©F t,

t v
⊔

right(t)=left(t′)©
k+1
F t′, for each t ∈ T.

It remains to ensure that the tiles are arranged in a proper
grid and have matching top-bottom colours. It is for this
purpose that we have (i) used the double R-arrows to gen-
erate the sequence of domain elements and (ii) placed the
columns of tiles every k + 1 moments of time (not every
moment). Consider the following CIs, for t ∈ T :
t v ¬∃R− and t v ¬©i

F∃R−, for 1 ≤ i ≤ k, i 6= down(t),

t v ©up(t)
F ∃R.

The CIs in first line ensure that between any two tiles k + 1
moments apart there may be only one incoming R-arrow.
This, in particular, means that after the double R-arrows no
other two consecutive R-arrows are possible, and thus the
proper N × N-grid is ensured. Moreover, the exact posi-
tion of the incoming R-arrow is uniquely determined by the
down-colour of the tile, which in conjunction with the sec-
ond line guarantees that this colour matches the tile below.
The following picture can serve as an illustration of the con-
struction:
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... ... ... ...

...

t′

t

R

0 1 2 k + 3

time

up(t)

up(t′) = down(t)

Note that the next-time operator©F is heavily used in the
encoding above. If we replace it with 3∗ and 2∗ on concepts,
then reasoning in the resulting logic TRU DL-LiteNbool becomes
decidable:

Theorem 6. Satisfiability of TRU DL-LiteNbool KBs is NP-
complete.

The proof uses a rather involved quasimodel construction;
for details the reader is referred to the technical report (Ar-
tale et al. 2010).

Conclusion
From the complexity-theoretic point of view, the best can-
didates for reasoning about TCMs appear to be the TDLs
TFPXDL-LiteNcore and TFPXDL-LiteNbool, the former of which
is NP-complete and the latter PSPACE-complete. Moreover,
we believe that the reduction of TFPXDL-LiteNcore to LTL
in the proof of Theorem 3 can be done deterministically, in
which case one can use standard LTL provers for TCM rea-
soning. We also believe that TFPXDL-LiteNcore extended with
temporalised roles can be decidable, which remains one of
the most challenging open problems. But it seems to be next
to impossible to reason in an effective way about all TCM
constraints without any restrictions.
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