Topological Logics over Euclidean Spaces

Roman Kontchakov

Department of Computer Science and Inf. Systems, Birkbeck College, London

http://www.dcs.bbk.ac.uk/~roman

joint work with

Ian Pratt-Hartmann and Michael Zakharyaschev

RCC-8

(Egenhofer & Franzosa, 91): 9-intersections

	$(A \cap B)$	$A\cap \delta B$	$A\cap B'$			
IS	$\delta A \cap B$ $A' \cap B$	$\delta A \cap \delta B \ A' \cap \delta B$	$\left. \begin{array}{c} \delta A \cap B' \\ A' \cap B' \end{array} \right)$			

"The binary topological relation between two objects, A and B, in \mathbb{R}^2 is based upon the intersection of A's interior, boundary and exterior with B's interior, boundary and exterior."

regions = `homogenously 2-dimensional objects with connected boundaries'

8 relations are possible between a pair of regions (out of 29)

(Randell, Cui & Cohn, 92): first-order theory of connection C(x, y)

(Whitehead, 1929)

Regular closed sets

 $X \subseteq T$ is regular closed if $X = X^{\circ -}_{(i)}$

(i.e., the set coincides with the closure of its interior)

(Bennett 94): \mathcal{RCC} -8 is a fragment of $\mathcal{S}4_u$:

regions = variables, which are interpreted by regular closed sets $\Box_u(p \leftrightarrow \Diamond \Box p)$ $\mathsf{DC}(r,s) = \Box_u(r \land s \to \bot)$ $\mathsf{IPP}(r,s) = \Box_u(r \to s) \land \neg \Box_u(s \to r) \land \Diamond_u(r \land \neg s)$

(Renz 98): Satisfiability of *RCC*-8-formulas in the class of all topological spaces is NP-complete

Every consistent \mathcal{RCC} -8-formula is satisfied in a model over \mathbb{R}^n , $n \ge 3$, where all variables are interpreted as internally-connected closed polyhedra

Topological logics

$$\begin{aligned} & \mathsf{RC}(T) \text{ is a Boolean algebra } (\mathsf{RC}(T), +, \cdot, -, \emptyset, T), \\ & \text{where } X + Y = X \cup Y, \quad X \cdot Y = (X \cap Y)^{\circ^-} \quad \text{and} \quad -X = (\overline{X})^- \\ & \text{topological model } \mathfrak{M} = (T, \cdot^{\mathfrak{M}}) \\ & T \quad \text{a topological space} \\ & \mathfrak{M} \quad \text{a valuation} \end{aligned}$$

$$\begin{aligned} & \mathsf{true or false} \\ \varphi & \mathrel{ ::= } & \tau_1 \subseteq \tau_2 \mid C(\tau_1, \tau_2) \mid c(\tau) \mid c^\circ(\tau) \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \ldots \end{aligned}$$

$$\begin{aligned} & \mathfrak{M} \models \tau_1 \subseteq \tau_2 \quad \text{iff } \tau_1^{\mathfrak{M}} \subseteq \tau_2^{\mathfrak{M}} \\ & \mathfrak{M} \models c(\tau_1, \tau_2) \quad \text{iff } \tau_1^{\mathfrak{M}} \cap \tau_2^{\mathfrak{M}} \neq \emptyset \\ & \mathfrak{M} \models c^\circ(\tau) \quad \text{iff } (\tau^\circ)^{\mathfrak{M}} \text{ is connected} \end{aligned}$$

. . .

NB. \mathcal{RCC} -8 is a topological logic:

$$egin{aligned} \mathsf{DC}(r,s) &= \neg C(r,s) \ \mathsf{TPP}(r,s) &= (r \subseteq s) \land \neg (s \subseteq r) \land C(r,-s) \end{aligned}$$

$\mathcal{B}c^\circ$ over arbitrary topological spaces

 $\mathcal{B}c^{\circ}$ is the language with predicates \subseteq and c° and full Boolean terms **Theorem.** Satisfiability of $\mathcal{B}c^{\circ}$ -formulas in the class of **all** topological spaces is NP-complete

Proof. Normal form:

$$\varphi = (\rho = \mathbf{0}) \land \bigwedge_{1 \leq j \leq m} (\sigma_j \neq \mathbf{0}) \land \bigwedge_{1 \leq i \leq n} (c^{\circ}(\pi_i) \land (\pi_i \neq \mathbf{0})) \land \bigwedge_{1 \leq k \leq p} \neg c^{\circ}(\tau_k)$$

Step 1. If φ is satisfiable then it is satisfiable in a **saturated** Aleksandrov model:

Step 2. Select m + 2p + 2n points and,

for each $1 \le k \le p$, select $\le n$ points $y_{\overline{\tau_k},\pi_i} \in \pi_i^{\mathfrak{A}} \cap (-\tau_k)^{\mathfrak{A}}$ (if the set is not empty) polynomial finite model property

ALCOP London 26.01.10

$\mathcal{B}c$ over arbitrary topological spaces

 $\mathcal{B}c$ is the language with predicates \subseteq and c and full Boolean terms

Theorem. Satisfiability of $\mathcal{B}c$ -formulas in the class of **all** topological spaces is **ExpTIME**-complete

Proof. (lower bound) Every satisfiable f-la is satisfied in a finite Aleskandrov space

connectedness in an Aleksandrov space (W, R) = graph-theoretic connectedness of $(W, R \cup R^{-1})$

Euclidean spaces

Theorem. Satisfiability of $\mathcal{B}c$ - and $\mathcal{C}c^{\circ}$ -formulas in $\mathbb{RC}(\mathbb{R}^n)$, $n \geq 2$, is **EXPTIME**-hard

Proof. *a*) finite trees are enough to encode alternating TM with polynomial tape b) $\neg c(\tau_1 + \tau_2) = \neg C(\tau_1, \tau_2)$, for internally-connected τ_1, τ_2

NB. This proof does not work for $\mathcal{B}c^\circ$

 $(\neg c^\circ(au_1+ au_2)$ is too weak)

Polygons v Regular Closed Sets

However, this $\mathcal{B}c^{\circ}$ -formula is valid if the r_i are semi-linear sets (i.e., polygons)

 $\mathbf{RCP}(\mathbb{R}^n)$ is the class of models over \mathbb{R}^n with valuations assigning n-dimensional polyhedra to variables

ALCOP London 26.01.10

$\mathcal{B}c^\circ$ over $\mathsf{RCP}(\mathbb{R}^n)$

A graph model $\mathfrak{G} = (G, \cdot^{\mathfrak{G}})$: G = (V, E) is a (finite undirected simple) graph $r_i^{\mathfrak{G}} \subseteq V$ $+, \cdot$ and - are the union, intersection and complement $\mathfrak{G} \models c(\tau)$ iff $\tau^{\mathfrak{G}}$ is connected

A neighbourhood graph of an internally-connected partition X_1, \ldots, X_n is G = (V, E), where $G = \{1, \ldots, n\}$ $E = \{(i, j) \mid (X_i + X_j)^\circ \text{ connected}\}$

A $\mathcal{B}c^{\circ}$ -formula is satisfiable over $\mathsf{RCP}(\mathbb{R}^n)$, $n \geq 3$, iff it has a graph model EXPTIME-complete

> is satisfiable over $RCP(\mathbb{R}^2)$ iff it has a **planar** graph model EXPTIME-hard

NB. Upper complexity bound for $RCP(\mathbb{R}^2)$ is not known

Summary of results

lang.	\mathbb{R}			\mathbb{R}^2		\mathbb{R}^3				RC	
	$RCP(\mathbb{R})$		$RC(\mathbb{R})$	$RCP(\mathbb{R}^2)$)	$RC(\mathbb{R}^2)$	$RCP(\mathbb{R}^3)$		$RC(\mathbb{R}^3)$		
$\mathcal{RCC} ext{-}8c^\circ$	NP	\neq	NP		NP				NP		
$\mathcal{RCC} ext{-}8c$					NP						
$\mathcal{B}c^{\circ}$		NP		\geq EXP	\neq	?	Ехр	\neq	?	?	NP
$\mathcal{B}c$				\geq Exp	\neq	\geq Exp	\geq Exp	?	\geq EXP	?	EXP
$\mathcal{C}c^{\circ}$	PS PACE	\neq	PS PACE	\geq EXP	\neq	\geq Exp	\geq Exp	\neq	\geq Exp	\neq	EXP
$\mathcal{C}c$				≥ E XP	\neq	$\geq EXP$?	\geq Exp	?	EXP

References

1) R. Kontchakov, I. Pratt-Hartmann and M. Zakharyaschev. *Interpreting Topological Logics over Euclidean Spaces*. In Proceedings of KR, 2010.

2) R. Kontchakov, I. Pratt-Hartmann, F. Wolter and M. Zakharyaschev. *Topology, connectedness, and modal logic*. In C. Areces and R. Goldblatt, editors, Advances in Modal Logic, vol. 7, pp. 151–176. College Publications, London, 2008

3) M. Schaefer, E. Sedgwick and D. Štefankovič. *Recognizing string graphs in NP*. Journal of Computer and System Sciences, 67:365–380, 2003

4) J. Renz. A Canonical Model of the Region Connection Calculus. In Proceedings of KR, pp. 330–341, 1998.