Topological Logics

over Euclidean Spaces

Roman Kontchakov

Department of Computer Science and Inf. Systems, Birkbeck College, London
http://www.dcs.bbk.ac.uk/~roman
joint work with

Ian Pratt-Hartmann and Michael Zakharyaschev

RCC-8

(Egenhofer \& Franzosa, 91): 9-intersections $\left(\begin{array}{ccc}A \cap B & A \cap \delta B & A \cap B^{\prime} \\ \delta A \cap B & \delta A \cap \delta B & \delta A \cap B^{\prime} \\ A^{\prime} \cap B & A^{\prime} \cap \delta B & A^{\prime} \cap B^{\prime}\end{array}\right)$
"The binary topological relation between two objects, \boldsymbol{A} and \boldsymbol{B}, in \mathbb{R}^{2} is based upon the intersection of \boldsymbol{A}^{\prime} s interior, boundary and exterior with
\boldsymbol{B} 's interior, boundary and exterior."
regions = 'homogenously 2-dimensional objects with connected boundaries'
8 relations are possible between a pair of regions (out of 2^{9})
(Randell, Cui \& Cohn, 92): first-order theory of connection $C(x, y)$
(Whitehead, 1929)

". . . in terms of content, it seems odd that two regions can be distinct, but that each occupies the same amount of space..."

Regular closed sets

$\boldsymbol{X} \subseteq \boldsymbol{T}$ is regular closed if $\boldsymbol{X}=\boldsymbol{X}^{\circ-}$
(i.e., the set coincides with the closure of its interior)

$$
\operatorname{RC}(\boldsymbol{T})=\text { sets of the form } \boldsymbol{X}^{\circ-}, \text { for } \boldsymbol{X} \subseteq \boldsymbol{T}
$$

(Bennett 94): $\mathcal{R C C}-8$ is a fragment of $\mathcal{S H}_{u}$:
regions $=$ variables, which are interpreted by regular closed sets

$$
\square_{u}(p \leftrightarrow \diamond \square p)
$$

$$
\begin{aligned}
& \mathrm{DC}(r, s)=\square_{u}(r \wedge s \rightarrow \perp) \\
& \operatorname{TPP}(r, s)=\square_{u}(r \rightarrow s) \wedge \neg \square_{u}(s \rightarrow r) \wedge \diamond_{u}(r \wedge \neg s)
\end{aligned}
$$

(Renz 98): Satisfiability of $\mathcal{R C C}$-8-formulas in the class of all topological spaces is NP-complete
Every consistent $\mathcal{R C C}$-8-formula is satisfied in a model over $\mathbb{R}^{n}, n \geq 3$, where all variables are interpreted as internally-connected closed polyhedra

Topological logics

$\mathrm{RC}(T)$ is a Boolean algebra $(\operatorname{RC}(T),+, \cdot,-, \emptyset, T)$,

$$
\text { where } \quad \boldsymbol{X}+\boldsymbol{Y}=\boldsymbol{X} \cup \boldsymbol{Y}, \quad \boldsymbol{X} \cdot \boldsymbol{Y}=(\boldsymbol{X} \cap \boldsymbol{Y})^{\circ-} \quad \text { and } \quad-\boldsymbol{X}=(\overline{\boldsymbol{X}})^{-}
$$

$$
\text { topological model } \mathfrak{M}=\left(T,{ }^{\mathfrak{M}}\right)
$$

T a topological space
. \mathfrak{M} a valuation
terms: regular closed subsets of T

$$
\boldsymbol{\tau}:::=r_{i}\left|\tau_{1}+\tau_{2}\right| \begin{array}{ll|l|l|l}
& \tau_{1} \cdot \tau_{2} & \mid & -\tau & \mathbf{0}
\end{array} \mathbf{1}
$$

formulas: true or false

$$
\varphi \quad::=\tau_{1} \subseteq \tau_{2} \quad\left|\quad C\left(\tau_{1}, \tau_{2}\right) \quad\right| \quad c(\tau) \quad\left|\quad c^{\circ}(\tau) \quad\right| \quad \neg \varphi\left|\varphi_{1} \wedge \varphi_{2}\right| \ldots
$$

$$
\begin{array}{rll}
\mathfrak{M} \models \tau_{1} \subseteq \tau_{2} & \text { iff } & \tau_{1}^{\mathfrak{M}} \subseteq \tau_{2}^{\mathfrak{M}} \\
\mathfrak{M} \models C\left(\tau_{1}, \tau_{2}\right) & \text { iff } & \tau_{1}^{\mathfrak{M} \cap \tau_{2}^{\mathfrak{M}} \neq \emptyset} \\
\mathfrak{M} \models c(\tau) & \text { iff } & \tau^{\mathfrak{M}} \text { is connected } \\
\mathfrak{M} \models c^{\circ}(\tau) & \text { iff } & \left(\tau^{\circ}\right)^{\mathfrak{M}} \text { is connected }
\end{array}
$$

NB. $\mathcal{R C C}$-8 is a topological logic: $\mathrm{DC}(r, s)=\neg C(r, s)$

$$
\operatorname{TPP}(r, s)=(r \subseteq s) \wedge \neg(s \subseteq r) \wedge C(r,-s)
$$

$\mathcal{B} c^{\circ}$ over arbitrary topological spaces

$\mathcal{B} \boldsymbol{c}^{\circ}$ is the language with predicates \subseteq and \boldsymbol{c}° and full Boolean terms
Theorem. Satisfiability of $\mathcal{B} c^{\circ}$-formulas in the class of all topological spaces is NP-complete
Proof. Normal form:

$$
\varphi=(\rho=\mathbf{0}) \wedge \bigwedge_{1 \leq j \leq m}\left(\sigma_{j} \neq \mathbf{0}\right) \wedge \bigwedge_{1 \leq i \leq n}\left(c^{\circ}\left(\pi_{i}\right) \wedge\left(\pi_{i} \neq \mathbf{0}\right)\right) \wedge \bigwedge_{1 \leq k \leq p} \neg c^{\circ}\left(\tau_{k}\right)
$$

Step 1. If φ is satisfiable then it is satisfiable in a saturated Aleksandrov model:

Step 2. Select $m+2 p+2 n$ points and,
for each $1 \leq k \leq p$, select $\leq n$ points $y_{\bar{\tau}_{k}, \pi_{i}} \in \pi_{i}^{2 l} \cap\left(-\tau_{k}\right)^{21}$ (ff the set is not empty) polynomial finite model property

$\mathcal{B} c$ over arbitrary topological spaces

$\mathcal{B} \boldsymbol{c}$ is the language with predicates \subseteq and \boldsymbol{c} and full Boolean terms
Theorem. Satisfiability of $\mathcal{B} \boldsymbol{c}$-formulas in the class of all topological spaces
is ExpTıme-complete
Proof. (lower bound) Every satisfiable f-la is satisfied in a finite Aleskandrov space connectedness in an Aleksandrov space $(\boldsymbol{W}, \boldsymbol{R})=$ graph-theoretic connectedness of $\left(\boldsymbol{W}, \boldsymbol{R} \cup \boldsymbol{R}^{-1}\right)$
encoding of binary trees

$$
\left(r_{0} \neq \mathbf{0}\right) \wedge\left(r_{6} \neq \mathbf{0}\right) \wedge c\left(\sum_{i=0}^{6} r_{i}\right) \wedge \bigwedge_{|i-j|>1} \neg c\left(r_{i}+r_{j}\right) \quad \begin{aligned}
& \left(r_{2} \subseteq r_{0}^{\prime}\right) \\
& \left(r_{4} \subseteq r_{0}^{\prime}\right)
\end{aligned}
$$

Euclidean spaces

Theorem. Satisfiability of $\mathcal{B} c$ - and $\mathcal{C} c^{\circ}$-formulas in $\operatorname{RC}\left(\mathbb{R}^{n}\right), n \geq 2$, is ExpTime-hard

Proof. a) finite trees are enough to encode alternating TM with polynomial tape b) $\neg c\left(\tau_{1}+\tau_{2}\right)=\neg C\left(\tau_{1}, \tau_{2}\right)$, for internally-connected τ_{1}, τ_{2}
$N B$. This proof does not work for $\mathcal{B} c^{\circ}$

$$
\left(\neg c^{\circ}\left(\tau_{1}+\tau_{2}\right)\right. \text { is too weak) }
$$

Polygons v Regular Closed Sets

$$
\bigwedge_{i=1}^{3} c^{\circ}\left(r_{i}\right) \wedge c^{\circ}\left(r_{1}+r_{2}+r_{3}\right) \rightarrow \bigvee_{i=2}^{3} c^{\circ}\left(r_{1}+r_{i}\right)
$$

However, this $\mathcal{B} c^{\circ}$-formula is valid if the r_{i} are semi-linear sets (i.e., polygons)
$\operatorname{RCP}\left(\mathbb{R}^{n}\right)$ is the class of models over \mathbb{R}^{n} with valuations assigning \boldsymbol{n}-dimensional polyhedra to variables

$\mathcal{B} c^{\circ}$ over $\operatorname{RCP}\left(\mathbb{R}^{n}\right)$

A graph model $\mathfrak{G}=\left(\boldsymbol{G},{ }^{\mathfrak{H}}\right)$:
$\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ is a (finite undirected simple) graph
$r_{i}^{\mathfrak{G}} \subseteq V$
,$+ \cdot$ and - are the union, intersection and complement
$\mathfrak{G} \models c(\boldsymbol{\tau})$ iff $\tau^{\mathfrak{G}}$ is connected
A neighbourhood graph of
an internally-connected partition $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ is

$$
\begin{aligned}
& G=(V, E), \text { where } G=\{1, \ldots, n\} \\
& E=\left\{(i, j) \mid\left(X_{i}+X_{j}\right)^{\circ} \text { connected }\right\}
\end{aligned}
$$

A $\mathcal{B} \boldsymbol{c}^{\circ}$-formula is satisfiable over $\operatorname{RCP}\left(\mathbb{R}^{n}\right), n \geq 3$, iff it has a graph model ExpTime-complete

> is satisfiable over $\operatorname{RCP}\left(\mathbb{R}^{2}\right)$ iff it has a planar graph model EXPTıME-hard

NB . Upper complexity bound for $\operatorname{RCP}\left(\mathbb{R}^{2}\right)$ is not known

Summary of results

lang.	R			\mathbb{R}^{2}			\mathbb{R}^{3}				RC	
	$\operatorname{RCP}(\mathbb{R})$		$\mathrm{RC}(\mathbb{R})$	$\operatorname{RCP}\left(\mathbb{R}^{2}\right)$		$\mathrm{RC}\left(\mathbb{R}^{2}\right)$	$\mathrm{RCP}\left(\mathbb{R}^{3}\right)$		$\mathrm{RC}\left(\mathbb{R}^{3}\right)$			
$\underline{\mathcal{R C C}-8 c^{\circ}}$	NP	\neq	NP	NP			NP					
RCC-8c					NP							
$\mathcal{B} c^{\circ}$	NP			\geq EXP	\neq	?	EXP	F	?	?	NP	
$\mathcal{B} \boldsymbol{c}$				\geq EXP	\neq	\geq EXP	\geq EXP	?	\geq EXP	?	EXP	
$\mathcal{C} c^{\circ}$	PSPACE	\neq	PSPACE	\geq EXP	\neq	\geq EXP	\geq EXP	F	\geq EXP	\#	EXP	
\mathcal{C}				\geq EXP	\neq	\geq EXP	\geq EXP	?	\geq EXP	?	EXP	

References

1) R. Kontchakov, I. Pratt-Hartmann and M. Zakharyaschev. Interpreting Topological Logics over Euclidean Spaces. In Proceedings of KR, 2010.
2) R. Kontchakov, I. Pratt-Hartmann, F. Wolter and M. Zakharyaschev. Topology, connectedness, and modal logic. In C. Areces and R. Goldblatt, editors, Advances in Modal Logic, vol. 7, pp. 151-176. College Publications, London, 2008
3) M. Schaefer, E. Sedgwick and D. Štefankovič. Recognizing string graphs in NP. Journal of Computer and System Sciences, 67:365-380, 2003
4) J. Renz. A Canonical Model of the Region Connection Calculus.

In Proceedings of KR, pp. 330-341, 1998.

