Rewriting OWL 2 QL Ontology-Mediated Queries: Succinctness

Roman Kontchakov

Department of Computer Science and Inf. Systems, Birkbeck College, London

http://www.dcs.bbk.ac.uk/~roman

an OMQ = an ontology + a CQ

an OMQ = an ontology + a CQ

an OWL 2 QL ontology is a finite set of axioms of the form

$$egin{aligned} &orall x\left(au(x) o au'(x)
ight) \ &orall x, y\left(arrho(x,y) o arrho'(x,y)
ight) \ &orall x \,arrho(x,x) \end{aligned}$$

properties or roles

$$egin{aligned} &orall x \left(au(x) \wedge au'(x)
ightarrow ot) \ &orall x, y \left(arrho(x,y) \wedge arrho'(x,y)
ightarrow ot) \ &orall x \left(arrho(x,x)
ightarrow ot) \ & au(x) ::= ot \mid A(x) \mid \exists y \, arrho(x,y) \end{aligned}$$

$$arrho(x,y) \, ::= \, \top \, \mid \, P(x,y) \, \mid \, P(y,x)$$

an OMQ = an ontology + a CQ

an OWL 2 QL ontology is a finite set of axioms of the form

$$\begin{split} &\forall x \left(\tau(x) \to \tau'(x)\right) & \forall x \left(\tau(x) \land \tau'(x) \to \bot\right) \\ &\forall x, y \left(\varrho(x, y) \to \varrho'(x, y)\right) & \forall x, y \left(\varrho(x, y) \land \varrho'(x, y) \to \bot\right) \\ &\forall x \varrho(x, x) & \forall x \left(\varrho(x, x) \to \bot\right) \end{split}$$

classes or concepts

properties or roles

 $egin{array}{lll} au(x) &::= \ oldsymbol{ au} &| \ A(x) &| \ \exists y \, arrho(x,y) \ arrho(x,y) &::= \ oldsymbol{ au} &| \ P(x,y) &| \ P(y,x) \end{array}$

an data instance ${\cal A}$ is a finite set of ground atoms $S({ec a})$

a conjunctive query (CQ) $q(ec{x})$ is $\exists ec{y} \, \varphi(ec{x}, ec{y})$,

where arphi is a conjunction of atoms $S(ec{z})$ all of whose variables are among $ec{x}, ec{y}$

an OMQ = an ontology + a CQ

an OWL 2 QL ontology is a finite set of axioms of the form

$$\begin{split} &\forall x \left(\tau(x) \to \tau'(x)\right) & \forall x \left(\tau(x) \land \tau'(x) \to \bot\right) \\ &\forall x, y \left(\varrho(x, y) \to \varrho'(x, y)\right) & \forall x, y \left(\varrho(x, y) \land \varrho'(x, y) \to \bot\right) \\ &\forall x \varrho(x, x) & \forall x \left(\varrho(x, x) \to \bot\right) \end{split}$$

classes or concepts

properties or roles

 $egin{array}{lll} au(x) &::= \ op & \mid A(x) \ \mid \ \exists y \, arrho(x,y) \ & arrho(x,y) &::= \ op & \mid P(x,y) \ \mid \ P(y,x) \end{array}$

an data instance ${\cal A}$ is a finite set of ground atoms $S({ec a})$

a conjunctive query (CQ) $q(ec{x})$ is $\exists ec{y} \, \varphi(ec{x}, ec{y})$,

where arphi is a conjunction of atoms $S(ec{z})$ all of whose variables are among $ec{x}$, $ec{y}$

 $\mathcal{C}_{\mathcal{T},\mathcal{A}}$ is the **canonical model** (chase) of $(\mathcal{T},\mathcal{A})$ and $\mathcal{C}_{\mathcal{T}}^{\tau(a)} = \mathcal{C}_{\mathcal{T},\{\tau(a)\}}$

UCQ

as produced, e.g., by PerfectRef

= unions of SPJ queries size $|q|^{|\mathcal{T}|} \cdot 2^{O(|q|^2)}$

UCQ

as produced, e.g., by PerfectRef

PE (positive existential formulas)

= unions of SPJ queries size $|q|^{|\mathcal{T}|} \cdot 2^{O(|q|^2)}$

= SPJU queries

UCQ

as produced, e.g., by PerfectRef

PE (positive existential formulas)

 Π_2 -PE have matrix of the form $\wedge \vee$

= unions of SPJ queries size $|q|^{|\mathcal{T}|} \cdot 2^{O(|q|^2)}$

= SPJU queries

= semiconjunctive queries (SCQs)

for ontologies without $\exists y$ on RHS, the size is $|q| \cdot |\mathcal{T}|$

UCQ as produced, e.g., by PerfectRef	= unions of SPJ queries size $ q ^{ \mathcal{T} } \cdot 2^{O(q ^2)}$			
PE (positive existential formulas)	= SPJU queries			
Π_2 -PE have matrix of the form $\land \lor$ = semiconjunctive queries (SC				
for ontologies without $\exists y$ on RHS, the size is $ q \cdot \mathcal{T} $				
Σ_3 -PE have matrix of the form $\lor \land \lor$ = unions				
e.g., tree-witness rewriting	size $O(2^{ \Theta_Q } \cdot Q ^2)$ with $ \Theta_Q \leq 3^{ q }$			

number of tree witnesses

UCQ as produced, e.g., by PerfectRef	= unions of SPJ queries size $ q ^{ \mathcal{T} } \cdot 2^{O(q ^2)}$		
PE (positive existential formulas)	= SPJU queries		
$\Pi_2 extsf{-PE}$ have matrix of the form $\wedge \vee$	= semiconjunctive queries (SCQs)		
for ontologies without $\exists y$ on RHS, the size is $ q \cdot \mathcal{T} $			
$\Sigma_3 extsf{-PE}$ have matrix of the form $ee \wedge ee$	= unions of SCQs		
e.g., tree-witness rewriting	size $O(2^{ \Theta_Q } \cdot Q ^2)$ with $ \Theta_Q \leq 3^{ q }$		
Π_4 - PE have matrix of the form AVAN	number of tree witnesses		

e.g., modified tree-witness rewriting without conflicts has size $O(|\Theta_Q| \cdot |Q|^2)$

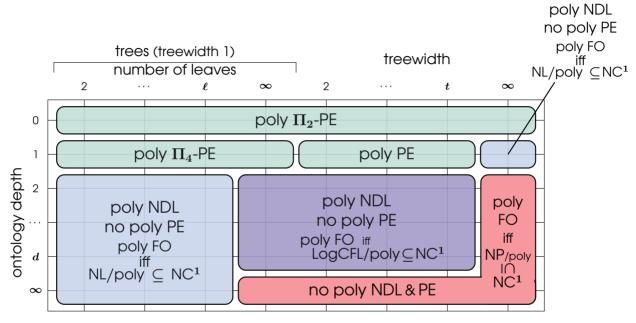
UCQ as produced, e.g., by PerfectRef	= unions of SPJ queries size $ q ^{ \mathcal{T} } \cdot 2^{O(q ^2)}$			
PE (positive existential formulas)	= SPJU queries			
$\Pi_2 extsf{-PE}$ have matrix of the form $\wedge \vee$	= semiconjunctive queries (SCQs)			
for ontologies without $\exists y$ on RHS, the size is $ q \cdot \mathcal{T} $				
Σ_3 -PE have matrix of the form VAV	= unions of SCQs			
e.g., tree-witness rewriting	size $O(2^{ \Theta_Q } \cdot Q ^2)$ with $ert \Theta_Q ert \leq 3^{ q }$			
number of tree witnesses $\Pi_4 extsf{-PE}$ have matrix of the form $\wedge\vee\wedge\vee$				
e.g., modified tree-witness rewriting without conflicts has size $O(\Theta_Q \cdot Q ^2)$				
NDL (non-recursive datalog) e.g., Presto produced rewriting	= PE + shared subformulas = SPJU + views s of size $ \mathcal{T} ^{O(1)} \cdot 2^{ q }$			

UCQ as produced, e.g., by PerfectRef	= unions of SPJ queries size $ q ^{ \mathcal{T} } \cdot 2^{O(q ^2)}$		
PE (positive existential formulas)	= SPJU queries		
$\Pi_2 extsf{-PE}$ have matrix of the form $\wedge ee$	= semiconjunctive queries (SCQs)		
for ontologies without $\exists y$ on RHS, the size is $ q \cdot \mathcal{T} $			
$\Sigma_3 extsf{-PE}$ have matrix of the form $ee \wedge ee$	= unions of SCQs		
e.g., tree-witness rewriting	size $O(2^{ \Theta_Q } \cdot Q ^2)$ with $ert \Theta_Q ert \leq 3^{ q }$		
number of tree witnesses Π_4 -PE have matrix of the form AVAV			
e.g., modified tree-witness rewriting without conflicts has size $O(\Theta_Q \cdot Q ^2)$			
NDL (non-recursive datalog) e.g., Presto produced rewritings	= PE + shared subformulas = SPJU + views s of size $ \mathcal{T} ^{O(1)}\cdot 2^{ q }$		
FO (first-order formulas)	= PE + negation \approx RA		

UCQ as produced, e.g., by PerfectRef	= unions of SPJ queries size $ q ^{ \mathcal{T} } \cdot 2^{O(q ^2)}$		
PE (positive existential formulas)	= SPJU queries		
$\Pi_2 extsf{-PE}$ have matrix of the form $\wedge arphi$	= semiconjunctive queries (SCQs)		
for ontologies without $\exists y$ on RHS, the size is $ q \cdot \mathcal{T} $			
$\Sigma_3 extsf{-PE}$ have matrix of the form VAV	= unions of SCQs		
e.g., tree-witness rewriting	size $O(2^{ \Theta_Q } \cdot Q ^2)$ with $ \Theta_Q \leq 3^{ q }$		
$\Pi_4\text{-PE}$ have matrix of the form $\wedge\vee\wedge\vee$			
e.g., modified tree-witness rewriting without conflicts has size $O(\Theta_Q \cdot Q ^2)$			
NDL (non-recursive datalog) = PE + shared subformulas = SPJU + views e.g., Presto produced rewritings of size $ \mathcal{T} ^{O(1)} \cdot 2^{ q }$			
FO (first-order formulas) no additional constants, I	= PE + negation \approx RA no assumptions on data		

Montpellier, 17.07.2017

Succinctness Landscape

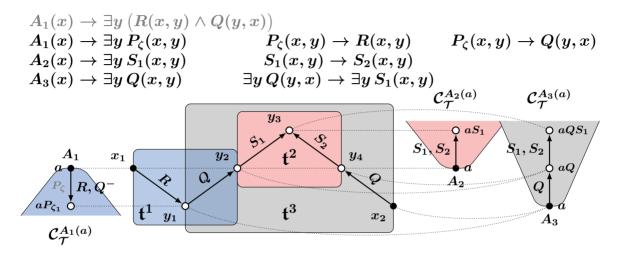


ontology depth

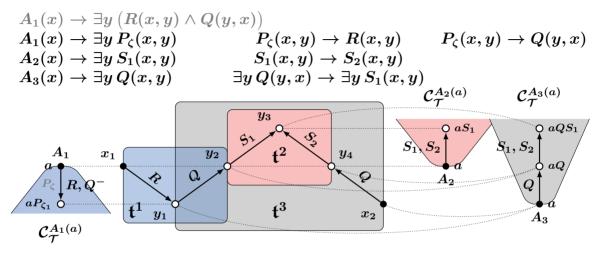
- 0 = no axioms with $\exists y$ on the right-hand side
- d~pprox~ trees $\mathcal{C}_{\mathcal{T}}^{ au(a)}$ of labelled nulls are of depth at most d

Hypergraphs for OMQs

Hypergraphs for OMQs



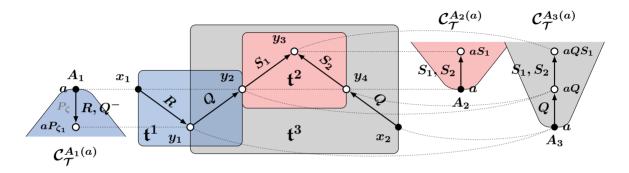
Hypergraphs for OMQs



query atoms = vertices

hypergraph $\mathcal{H}(Q)$ sets of query atoms that can be mapped to trees = hyperedges

OMQ Answering and Hypergraphs

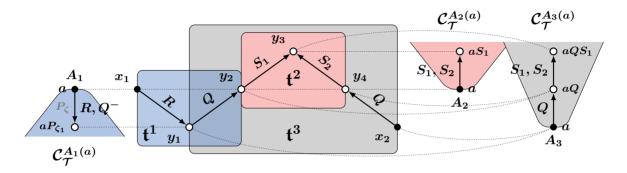


a map from variables of q to $ind(\mathcal{A})$

a homomorphism $q
ightarrow {\mathcal C}_{{\mathcal T},{\mathcal A}}$

an independent subset of $\mathcal{H}(Q)$ such that 1. each hyperedge is `generated' by the data 2. each vertex outside hyperedges is `present' in the data

OMQ Answering and Hypergraphs



a map from variables of q to $ind(\mathcal{A})$

a homomorphism $q
ightarrow {\mathcal C}_{{\mathcal T},{\mathcal A}}$

an independent subset of $\mathcal{H}(Q)$ such that 1. each hyperedge is `generated' by the data 2. each vertex outside hyperedges is `present' in the data

hypergraph function

$$f_{H} = igvee_{E' ext{ independent }} igl(igwee_{v \in V \setminus V_{E'}} p_v \ \land igwee_{e \in E'} p_e igr)$$

a HGP P is a hypergraph H whose vertices are labelled by 0, 1, or a literal over p_1, \ldots, p_n

P returns 1 on an assignment $\alpha \colon \{p_1, \dots, p_n\} \to \{0, 1\}$ if there is an independent subset in H that covers all zeroes under α

a HGP P is a hypergraph H whose vertices are labelled by 0, 1, or a literal over p_1, \ldots, p_n

 $P \text{ returns 1 on an assignment } \alpha \colon \{p_1, \dots, p_n\} \to \{0, 1\}$ if there is an independent subset in H that covers all zeroes under α

a HGP is monotone if none of the labels is negative

a HGP P is a hypergraph H whose vertices are labelled by 0, 1, or a literal over p_1, \ldots, p_n

P returns 1 on an assignment $\alpha : \{p_1, \dots, p_n\} \rightarrow \{0, 1\}$ if there is an independent subset in H that covers all zeroes under α a HGP is **monotone** if none of the labels is negative

degree of a hypergraph = the maximum number of hyperedges that contain a vertex

a HGP P is a hypergraph H whose vertices are labelled by 0, 1, or a literal over p_1, \ldots, p_n

P returns 1 on an assignment $\alpha : \{p_1, \dots, p_n\} \rightarrow \{0, 1\}$ if there is an independent subset in H that covers all zeroes under α a HGP is **monotone** if none of the labels is negative

degree of a hypergraph = the maximum number of hyperedges that contain a vertex

Proposition For every hypergraph H of degree d, there is monotone HGP that computes f_H and is of degree $\leq \max(2, d)$ and size O(|H|)

a HGP P is a hypergraph H whose vertices are labelled by 0, 1, or a literal over p_1, \ldots, p_n

P returns 1 on an assignment $\alpha : \{p_1, \dots, p_n\} \rightarrow \{0, 1\}$ if there is an independent subset in H that covers all zeroes under α a HGP is **monotone** if none of the labels is negative

degree of a hypergraph = the maximum number of hyperedges that contain a vertex

Proposition For every hypergraph H of degree d, there is monotone HGP that computes f_H and is of degree $\leq \max(2, d)$ and size O(|H|)

$OMQQ=(\mathcal{T},q)$	monotone HGP	of size	computes
${\cal T}$ of depth 1	HGP of degree 2	O(q)	$\boldsymbol{f_{Q}^{\triangledown}}$
tree-shaped q with ℓ leaves	linear THGP	$ q ^{O(\ell^2)}$	$\boldsymbol{f}_{\boldsymbol{Q}}^{\triangledown}$
q of treewidth t and $\mathcal T$ of depth d	THGP	$ q ^{O(1)}\cdot 2^{O(dt)}$	f_Q^{ullet}
q of treewidth t and $\mathcal T$ of depth 1 THGP of degree $2^{O(t)}$ $ q ^{O(1)}$		$ q ^{O(1)}\cdot 2^{O(t)}$	$f_{\boldsymbol{Q}}^{\triangledown}$
tree-shaped q and ${\mathcal T}$ of depth 1	THGP of degree ${f 2}$	$ q ^{O(1)}$	$\boldsymbol{f}_{\boldsymbol{Q}}^{\triangledown}$

 $f_Q^{\scriptscriptstyle
abla} = f_{\mathcal{H}(Q)}$ and $f_Q^{f v}$ is its modification for exponential $\mathcal{H}(Q)$

Montpellier, 17.07.2017

Theorem If either f_O^{\vee} or f_O^{\vee} is in

• NC^1 , then Q has a polynomial FO-rewriting

Boolean formulas

• mP/poly, then Q has a polynomial NDL-rewriting

monotone Boolean circuits

• mNC^1 , then Q has a polynomial PE-rewriting Boolean formulas

Theorem If either f_O^{\vee} or f_O^{\checkmark} is in

• NC¹, then Q has a polynomial FO-rewriting

Boolean formulas

• mP/poly, then Q has a polynomial NDL-rewriting

monotone Boolean circuits

• mNC^1 , then Q has a polynomial PE-rewriting Boolean formulas

<u>Hint</u>: replace each p_v by the respective atom and each p_e by a formula for `generating' the tree-witness

Theorem If either f_Q^{\vee} or f_Q^{\checkmark} is in

- NC¹, then Q has a polynomial FO-rewriting
- mP/poly, then Q has a polynomial NDL-rewriting

monotone Boolean circuits

Boolean formulas

• mNC^1 , then Q has a polynomial PE-rewriting Boolean formulas

<u>Hint</u>: replace each p_v by the respective atom and each p_e by a formula for `generating' the tree-witness

$f_Q^{\scriptscriptstyle riangle}$ is the primitive evaluation function of Q

— evaluating Q on a single-object ABoxes

Theorem If Q has a polynomial

- FO-rewriting, then $f_{Q}^{\scriptscriptstyle {\bigtriangleup}} \in \mathbb{NC}^{1}$
- NDL-rewriting, then $f_Q^{\scriptscriptstyle riangle} \in \mathsf{mP}/\mathsf{poly}$
- PE-rewriting, then $f_Q^{\scriptscriptstyle riangle} \in \mathsf{mNC}^1$

Theorem If either f_Q^{\vee} or f_Q^{\checkmark} is in

- NC¹, then Q has a polynomial FO-rewriting
- mP/poly, then Q has a polynomial NDL-rewriting

monotone Boolean circuits

Boolean formulas

• mNC^1 , then Q has a polynomial PE-rewriting Boolean formulas

<u>Hint</u>: replace each p_v by the respective atom and each p_e by a formula for `generating' the tree-witness

$f_Q^{\scriptscriptstyle riangle}$ is the primitive evaluation function of Q

— evaluating Q on a single-object ABoxes

Theorem If Q has a polynomial

- FO-rewriting, then $f_{Q}^{\scriptscriptstyle {\bigtriangleup}} \in \mathbb{NC}^{1}$
- NDL-rewriting, then $f_Q^{\scriptscriptstyle riangle} \in \mathsf{mP}/\mathsf{poly}$
- PE-rewriting, then $f_Q^{\scriptscriptstyle riangle} \in \mathsf{mNC}^1$

<u>Hint</u>: on a single-object ABox, quantifiers are `meaningless' and the rewriting boils down to a propositional f-la, etc.

Representation Results for Hypergraphs

Theorem (*i*) Any hypergraph *H* is isomorphic to a subgraph of $\mathcal{H}(Q_H)$ for a polynomial-size Q_H with an ontology of **depth 2** (*ii*) And any HGP based on *H* computes a subfunction of $f_{Q_H}^{\wedge}$

Representation Results for Hypergraphs

Theorem (*i*) Any hypergraph *H* is isomorphic to a subgraph of $\mathcal{H}(Q_H)$ for a polynomial-size Q_H with an ontology of **depth 2** (*ii*) And any HGP based on *H* computes a subfunction of $f_{Q_H}^{\wedge}$

Theorem (i) Any hypergraph H of degree 2 is isomorphic to $\mathcal{H}(S_H)$ for a polynomial-size S_H with an ontology of depth 1

(*ii*) . . .

Representation Results for Hypergraphs

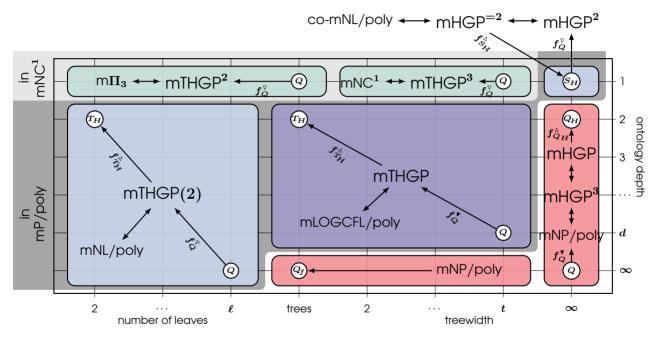
Theorem (*i*) Any hypergraph *H* is isomorphic to a subgraph of $\mathcal{H}(Q_H)$ for a polynomial-size Q_H with an ontology of **depth 2** (*ii*) And any HGP based on *H* computes a subfunction of $f_{Q_H}^{\wedge}$

Theorem (*i*) Any hypergraph H of **degree 2** is isomorphic to $\mathcal{H}(S_H)$ for a polynomial-size S_H with an ontology of **depth 1** (*ii*)...

Theorem Any **tree** hypergraph H with ℓ leaves is isomorphic to a subgraph of $\mathcal{H}(T_H)$ for a polynomial-size T_H with an of ontology of **depth 2** and a **tree-shaped CQ** with ℓ leaves

(*ii*) . . .

Roadmap for Succinctness Proofs



 $\mathsf{m}\Pi_{3} \subsetneqq \mathsf{mAC}^{0} \subsetneqq \mathsf{mNC}^{1} \subsetneqq \mathsf{mNL/poly} \subseteq \mathsf{mLOGCFL/poly} \gneqq \mathsf{mP/poly} \subsetneqq \mathsf{mNP/poly}$

Boolean formulas

nondeterministic Boolean circuits

Conclusions

- HGPs provide a natural link between complexity classes and hypergraph functions
- polynomial PE-rewritings exists only in for very restricted cases
 of ontologies of depth 0 & 1 (except unbounded treewidth)
- polynomial NDL-rewritings exists for most cases where

query answering is tractable

optimal NDL-rewritings in Stas's talk

 existence of polynomial PE-, NDL- and FO-rewritings is closely related to circuit complexity