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OBDA with Temporal Data

query q(x) = RequiresBloodTest(x, today)

ontology
Patient u©5

P
∃vaccinated.LiveVirus v ViableParticipant

Patient u RequiresBloodTest v ©3
F

RequiresBloodTest

ABox

Patient(john, 21/04/16)
RequiresBloodTest(john, 18/04/16)
vaccinated(john,measles, 16/04/16)
LiveVirus(measles, 01/01/16)
. . .

timestamped data: vaccinations, blood tests, etc.

mappings
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Temporal EL

concepts C,D ::= A | CuD | ∃r.C | ©
FC︸ ︷︷ ︸

at the next moment

| ©
FC︸ ︷︷ ︸

at the previous moment

3FC︸ ︷︷ ︸
sometime in the future

| 3PC︸ ︷︷ ︸
sometime in the past

roles r are partitioned into local and rigid (time-invariant)
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Temporal EL

concepts C,D ::= A | CuD | ∃r.C | ©
FC︸ ︷︷ ︸

at the next moment

| ©
FC︸ ︷︷ ︸

at the previous moment

3FC︸ ︷︷ ︸
sometime in the future

| 3PC︸ ︷︷ ︸
sometime in the past

roles r are partitioned into local and rigid (time-invariant)

concept inclusions: C u ©FC u ©F
©

FC v B and 3PD v U

Z-1 0 1 2

a D U U

C

B

b C C

c C C

• constant domains with rigid interpretation of individuals
under the standard name assumption

• concept inclusions hold at all moments of time (globally)
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concepts C,D ::= A | CuD | ∃r.C | ©
FC︸ ︷︷ ︸

at the next moment

| ©
FC︸ ︷︷ ︸

at the previous moment

3FC︸ ︷︷ ︸
sometime in the future

| 3PC︸ ︷︷ ︸
sometime in the past

roles r are partitioned into local and rigid (time-invariant)

concept inclusions: C u ©FC u ©F
©

FC v B and 3PD v U

Z-1 0 1 2

a D U U

C

B

b C C

c C C

• constant domains with rigid interpretation of individuals
under the standard name assumption

• concept inclusions hold at all moments of time (globally)

D v D′, D′ v ©FU , ©
PD
′ v D′
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Querying Temporal EL

temporal atomic query A(x, t) A is a concept name

entailment for a ∈ ind(A) and i ∈ Z time instants are represented in unary

T ,A |= A(a, i) iff J |= A(a, i), for all models J of T ,A

certain answers (a, n) ∈ ind(A)× tem(A)︸ ︷︷ ︸
minA≤n≤maxA

such that T ,A |= A(a, n)
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certain answers (a, n) ∈ ind(A)× tem(A)︸ ︷︷ ︸
minA≤n≤maxA

such that T ,A |= A(a, n)

Bad News

Theorem TAQ answering over full TEL is undecidable
(even for data complexity, with a fixed TBox and a fixed query)

hint: express t using 3F on the right-hand side of CIs
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Querying Temporal EL

temporal atomic query A(x, t) A is a concept name

entailment for a ∈ ind(A) and i ∈ Z time instants are represented in unary

T ,A |= A(a, i) iff J |= A(a, i), for all models J of T ,A

certain answers (a, n) ∈ ind(A)× tem(A)︸ ︷︷ ︸
minA≤n≤maxA

such that T ,A |= A(a, n)

Bad News

Theorem TAQ answering over full TEL is undecidable
(even for data complexity, with a fixed TBox and a fixed query)

hint: express t using 3F on the right-hand side of CIs

TEL© is TEL without 3∗

Theorem TAQ answering over TEL© with functional roles
is undecidable for data complexity

Theorem TAQ answering over TEL© with inverse roles
is undecidable for data complexity
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(Some) Good News

normal form: A uA′ v B, ©∗B v A, A v ∃r.B, ∃r.B v A
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a

u

v B C B C B C B

B C B C
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D

A
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a trace is a map π : Z→ CN that respects all A uA′ v B and ©∗B v A

two copies
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shifts

quasimodel = traces πa for a ∈ ind(A) + traces πB for B ∈ CN
that contains the ABox A in the πa and B ∈ πB(0)

and respects all ∃r.B v A
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(Some) Good News

normal form: A uA′ v B, ©∗B v A, A v ∃r.B, ∃r.B v A
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a trace is a map π : Z→ CN that respects all A uA′ v B and ©∗B v A

two copies
of the same

trace with
different

shifts

quasimodel = traces πa for a ∈ ind(A) + traces πB for B ∈ CN
that contains the ABox A in the πa and B ∈ πB(0)

and respects all ∃r.B v A

Theorem T ,A |= A(a, i) iff A ∈ πa(i), for a ∈ ind(A) and i ∈ Z

traces are infinite structures
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Ultimate Periodicity

a quasimodel is ultimately p-periodic if

for each trace π, there are positive integers mP , pP ,mF , pF ≤ p such that
πB(n− pP ) = πB(n), for all n ≤ −mP

πB(n+ pF ) = πB(n), for all n ≥ mF

0 mF−mP mF +pF−mP−pP mF +2pF−mP−2pP
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for each trace π, there are positive integers mP , pP ,mF , pF ≤ p such that
πB(n− pP ) = πB(n), for all n ≤ −mP

πB(n+ pF ) = πB(n), for all n ≥ mF

0 mF−mP mF +pF−mP−pP mF +2pF−mP−2pP

Theorem TAQ answering over ultimately periodic TEL© TBoxes is
PSpace-complete in data complexity

rewriting into DATALOG1S

an extension of datalog with one successor function [Chomicki & Imielinski, 1988]

terms t+ i and t− i
for a ‘temporal variable’ t and i is a non-negative integer constant

(encoded in unary)
DATALOG1S is PSpace-complete in data complexity

and ExpTime-complete in combined complexity
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PSpace-complete in data complexity

rewriting into DATALOG1S

an extension of datalog with one successor function [Chomicki & Imielinski, 1988]

terms t+ i and t− i
for a ‘temporal variable’ t and i is a non-negative integer constant

(encoded in unary)
DATALOG1S is PSpace-complete in data complexity

and ExpTime-complete in combined complexity

are all TEL© TBoxes ultimately periodic?
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Restricted Use of Rigid Roles

Theorem TAQ answering over TEL© without rigid roles is
PSpace-complete in combined and PTime-complete in data complexity

observation: traces are ultimately periodic with the ‘prefix’ |A|+ 2O(|T |)

and period 2O(|T |)
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Restricted Use of Rigid Roles

Theorem TAQ answering over TEL© without rigid roles is
PSpace-complete in combined and PTime-complete in data complexity

observation: traces are ultimately periodic with the ‘prefix’ |A|+ 2O(|T |)

and period 2O(|T |)

Theorem TAQ answering over TEL© without rigid roles on the right of CIs is
in ExpTime in combined and PSpace-complete in data complexity

proof: rewriting into DATALOG1S
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Standard Acyclicity

acyclic TBoxes: definitions A ≡ C (the relation ‘defined by’ is acyclic)

Theorem TAQ answering over acyclic TEL© is in LOGTIME-uniform AC0 in data
and in PTime in combined complexity

proof: rewriting into FO with one successor relation

acyclicity restricts both dimensions depth
of ∃r.C

time
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and in PTime in combined complexity

proof: rewriting into FO with one successor relation

acyclicity restricts both dimensions depth
of ∃r.C

time

– rigid concepts are not expressible

– no recurring patterns

Temporal Acyclicity

Theorem TAQ answering over temporally acyclic TEL© (with rigid concepts) is
PTime-complete in data and combined complexity

©
PA v B or ©FB v A =⇒

the ‘rank’ of B = the rank of A + 1 ABox
NB: contains full EL
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DL Acyclicity

Theorem TAQ answering over DL-acyclic TEL© TBoxes of depth k ≥ 1 is
k-EXPSPACE-complete in combined complexity

and NC1-complete in data complexity
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DL Acyclicity

Theorem TAQ answering over DL-acyclic TEL© TBoxes of depth k ≥ 1 is
k-EXPSPACE-complete in combined complexity

and NC1-complete in data complexity

A v ∃r.B =⇒ the rank of B > the rank of A
+ bound on the ranks =⇒ ultimately periodic (and so, in k-EXPSPACE)

the matching lower bound is by ‘yardsticks’
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NC1 comes from the temporal component alone

NB: contains the full Horn-LTL and can express rigid concepts

Inflationary TEL

TEL3

infl is TEL without ©∗ but with 3∗ on the left-hand side of CIs only
similar to TQL for DL-Lite [Artale et al., 2013] and inflationary DATALOG1S [Chomicki, 1990]

Theorem TAQ answering over TEL3

infl is PTime-complete in both data
and combined complexity

ABox
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NC1 comes from the temporal component alone
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Inflationary TEL

TEL3

infl is TEL without ©∗ but with 3∗ on the left-hand side of CIs only
similar to TQL for DL-Lite [Artale et al., 2013] and inflationary DATALOG1S [Chomicki, 1990]

Theorem TAQ answering over TEL3

infl is PTime-complete in both data
and combined complexity

ABox
NB: can express rigid concepts 3P3FC v C
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Summary

AC0

PSPACE

≥ PSPACE

NC1

PTIME

undecidableTEL©

≥ non-elem
TEL3

undecidableultim. period. TEL©

≥ non-elem

TEL3

infl
PTIME

DL-acyclic TEL©

non-elem

temp. acyclic TEL©

PTIME

TEL©
l-rig

in EXPTIME

TEL©
loc

PSPACE
acyclic TEL©

in PTIME EL
PTIME

acyclic EL
in PTIME

• full TEL©

• conjunctive queries

• binary representation of time instants / interval encoding, e.g.,A(a, [n1, n2])
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