On Decidability and Tractability of Querying in Temporal EL

Roman Kontchakov

Department of Computer Science and Inf. Systems, Birkbeck College, London

http://www.dcs.bbk.ac.uk/~roman

joint work with Víctor Gutiérrez-Basulto and Jean Christoph Jung (Universität Bremen)

OBDA with Temporal Data

constant domains with rigid interpretation of individuals

under the standard name assumption

• concept inclusions hold at all moments of time (globally)

constant domains with rigid interpretation of individuals

under the standard name assumption

• concept inclusions hold at all moments of time (globally)

Querying Temporal $\mathcal{E\!L}$

temporal atomic queryA(x,t)A is a concept nameentailment for $a \in ind(\mathcal{A})$ and $i \in \mathbb{Z}$ time instants are represented in unary $\mathcal{T}, \mathcal{A} \models A(a, i)$ iff $\mathfrak{J} \models A(a, i)$, for all models \mathfrak{J} of \mathcal{T}, \mathcal{A} certain answers $(a, n) \in ind(\mathcal{A}) \times tem(\mathcal{A})$ such that $\mathcal{T}, \mathcal{A} \models A(a, n)$

Querying Temporal $\mathcal{E\!L}$

temporal atomic queryA(x,t)A is a concept nameentailment for $a \in ind(\mathcal{A})$ and $i \in \mathbb{Z}$ time instants are represented in unary $\mathcal{T}, \mathcal{A} \models A(a, i)$ iff $\mathfrak{J} \models A(a, i)$, for all models \mathfrak{J} of \mathcal{T}, \mathcal{A} certain answers $(a, n) \in ind(\mathcal{A}) \times tem(\mathcal{A})$ such that $\mathcal{T}, \mathcal{A} \models A(a, n)$

Bad News

Theorem TAQ answering over full \mathcal{TEL} is undecidable (even for data complexity, with a fixed TBox and a fixed query) <u>hint:</u> express \sqcup using \diamond_F on the right-hand side of Cls

Querying Temporal $\mathcal{E\!L}$

temporal atomic queryA(x,t)A is a concept nameentailment for $a \in ind(\mathcal{A})$ and $i \in \mathbb{Z}$ time instants are represented in unary $\mathcal{T}, \mathcal{A} \models A(a, i)$ iff $\mathfrak{J} \models A(a, i)$, for all models \mathfrak{J} of \mathcal{T}, \mathcal{A} certain answers $(a, n) \in ind(\mathcal{A}) \times tem(\mathcal{A})$ such that $\mathcal{T}, \mathcal{A} \models A(a, n)$

Bad News

Theorem TAQ answering over full \mathcal{TEL} is undecidable (even for data complexity, with a fixed TBox and a fixed query) <u>hint:</u> express \sqcup using \diamond_F on the right-hand side of CIs

 \mathcal{TEL}^{\bigcirc} is \mathcal{TEL} without \diamondsuit_*

Theorem TAQ answering over \mathcal{TEL}^{\bigcirc} with functional roles is undecidable for data complexity

Theorem TAQ answering over \mathcal{TEL}^{\bigcirc} with inverse roles is undecidable for data complexity

normal form: $A \sqcap A' \sqsubseteq B$, $\bigcirc_* B \sqsubseteq A$, $A \sqsubseteq \exists r.B$, $\exists r.B \sqsubseteq A$

normal form: $A \sqcap A' \sqsubseteq B$, $\bigcirc_* B \sqsubseteq A$, $A \sqsubseteq \exists r.B$, $\exists r.B \sqsubseteq A$

Example: $\bigcirc_P B \sqsubseteq C$, $\bigcirc_P C \sqsubseteq B$, $A \sqsubseteq \exists r.B$, $\exists r.C \sqsubseteq D$ with rigid r

normal form: $A \sqcap A' \sqsubseteq B$, $\bigcirc_* B \sqsubseteq A$, $A \sqsubseteq \exists r.B$, $\exists r.B \sqsubseteq A$

Example: $\bigcirc_P B \sqsubseteq C$, $\bigcirc_P C \sqsubseteq B$, $A \sqsubseteq \exists r.B$, $\exists r.C \sqsubseteq D$ with rigid r

a trace is a map $\pi: \mathbb{Z} \to CN$ that respects all $A \sqcap A' \sqsubseteq B$ and $\bigcirc_* B \sqsubseteq A$

normal form: $A \sqcap A' \sqsubseteq B$, $\bigcirc_* B \sqsubseteq A$, $A \sqsubseteq \exists r.B$, $\exists r.B \sqsubseteq A$

Example: $\bigcirc_{P}B \sqsubseteq C$, $\bigcirc_{P}C \sqsubseteq B$, $A \sqsubseteq \exists r.B$, $\exists r.C \sqsubseteq D$ with rigid rtwo copies $v \cdot \bigcirc \cdots & B \\ u \cdot \bigcirc \cdots & \bigcirc \cdots & \bigcirc \cdots & \bigcirc \cdots & \bigcirc & \cdots & 0 \\ a \cdot \bigcirc & a \cdot \bigcirc & 0 & \cdots & 0 & 0 & \cdots & \bigcirc & 0 & \cdots &$

a trace is a map $\pi: \mathbb{Z} \to \mathsf{CN}$ that respects all $A \sqcap A' \sqsubseteq B$ and $\bigcirc_* B \sqsubseteq A$

quasimodel = traces π_a for $a \in ind(A)$ + traces π_B for $B \in CN$ that contains the ABox A in the π_a and $B \in \pi_B(0)$ and respects all $\exists r.B \sqsubseteq A$

normal form: $A \sqcap A' \sqsubseteq B$, $\bigcirc_* B \sqsubseteq A$, $A \sqsubseteq \exists r.B$, $\exists r.B \sqsubseteq A$

Example: $\bigcirc_{P}B \sqsubseteq C$, $\bigcirc_{P}C \sqsubseteq B$, $A \sqsubseteq \exists r.B$, $\exists r.C \sqsubseteq D$ with rigid rtwo copies $v \cdot \bigcirc \cdots & \bigcirc \cdots &$

a trace is a map $\pi: \mathbb{Z} \to \mathsf{CN}$ that respects all $A \sqcap A' \sqsubseteq B$ and $\bigcirc_* B \sqsubseteq A$

quasimodel = traces π_a for $a \in ind(\mathcal{A})$ + traces π_B for $B \in CN$ that contains the ABox \mathcal{A} in the π_a and $B \in \pi_B(0)$ and respects all $\exists r.B \sqsubseteq A$

Theorem $\mathcal{T}, \mathcal{A} \models A(a, i)$ iff $A \in \pi_a(i)$, for $a \in ind(\mathcal{A})$ and $i \in \mathbb{Z}$

normal form: $A \sqcap A' \sqsubseteq B$, $\bigcirc_* B \sqsubseteq A$, $A \sqsubseteq \exists r.B$, $\exists r.B \sqsubseteq A$

Example: $\bigcirc_{P}B \sqsubseteq C$, $\bigcirc_{P}C \sqsubseteq B$, $A \sqsubseteq \exists r.B$, $\exists r.C \sqsubseteq D$ with rigid rtwo copies $v \cdot \bigcirc \cdots & B \\ u \cdot \bigcirc \cdots & \bigcirc \cdots & \bigcirc \cdots & \bigcirc \cdots & \bigcirc & \cdots & 0 \\ a \cdot \bigcirc & a \cdot \bigcirc & 0 & \cdots & 0 & \cdots & 0 & \cdots & \bigcirc & 0 & \cdots & 0 &$

a trace is a map $\pi: \mathbb{Z} \to \mathsf{CN}$ that respects all $A \sqcap A' \sqsubseteq B$ and $\bigcirc_* B \sqsubseteq A$

Theorem $\mathcal{T}, \mathcal{A} \models A(a, i)$ iff $A \in \pi_a(i)$, for $a \in \operatorname{ind}(\mathcal{A})$ and $i \in \mathbb{Z}$

traces are infinite structures

a quasimodel is ultimately *p*-periodic if

for each trace π , there are positive integers $m_P, p_P, m_F, p_F \leq p$ such that $\pi_B(n-p_P) = \pi_B(n)$, for all $n \leq -m_P$ $\pi_B(n+p_F) = \pi_B(n)$, for all $n \geq m_F$

a quasimodel is ultimately *p*-periodic if

for each trace π , there are positive integers $m_P, p_P, m_F, p_F \leq p$ such that $\pi_B(n - p_P) = \pi_B(n)$, for all $n \leq -m_P$ $\pi_B(n + p_F) = \pi_B(n)$, for all $n \geq m_F$

Theorem TAQ answering over ultimately periodic \mathcal{TEL}^{\bigcirc} TBoxes is **PSpace**-complete in data complexity

a quasimodel is ultimately *p*-periodic if

for each trace π , there are positive integers $m_P, p_P, m_F, p_F \leq p$ such that $\pi_B(n - p_P) = \pi_B(n)$, for all $n \leq -m_P$ $\pi_B(n + p_F) = \pi_B(n)$, for all $n \geq m_F$

rewriting into DATALOG_{1S} an extension of datalog with one successor function [Chomicki & Imielinski, 1988]

terms t+i and t-i

for a `temporal variable' t and i is a non-negative integer constant DATALOG_{1S} is **PSpace**-complete in data complexity and **ExpTime**-complete in combined complexity

a quasimodel is ultimately *p*-periodic if

for each trace π , there are positive integers $m_P, p_P, m_F, p_F \leq p$ such that $\pi_B(n - p_P) = \pi_B(n)$, for all $n \leq -m_P$ $\pi_B(n + p_F) = \pi_B(n)$, for all $n \geq m_F$

Theorem TAQ answering over ultimately periodic \mathcal{TEL}^{\bigcirc} TBoxes is **PSpace**-complete in data complexity

rewriting into DATALOG_{1S}

an extension of datalog with one successor function [Chomicki & Imielinski, 1988]

terms t+i and t-i

for a `temporal variable' t and i is a non-negative integer constant

DATALOG₁₅ is **PSpace**-complete in data complexity (encoded in unary)

and ExpTime-complete in combined complexity

are all TEL° TBoxes ultimately periodic?

DL 2016, Cape Town, 22.04.16

Restricted Use of Rigid Roles

Theorem TAQ answering over *TEL*^o without rigid roles is **PSpace**-complete in combined and **PTime**-complete in data complexity

observation: traces are ultimately periodic with the `prefix' $|\mathcal{A}| + 2^{O(|\mathcal{T}|)}$ and period $2^{O(|\mathcal{T}|)}$

Restricted Use of Rigid Roles

Theorem TAQ answering over \mathcal{TEL}^{\bigcirc} without rigid roles is **PSpace**-complete in combined and **PTime**-complete in data complexity <u>observation</u>: traces are ultimately periodic with the `prefix' $|\mathcal{A}| + 2^{O(|\mathcal{T}|)}$ and period $2^{O(|\mathcal{T}|)}$

Theorem TAQ answering over \mathcal{TEL}° without rigid roles on the right of CIs is in **ExpTime** in combined and **PSpace**-complete in data complexity proof: rewriting into DATALOG_{1.5}

acyclic TBoxes: definitions $A\equiv C$ (the relation `defined by' is acyclic)

Theorem TAQ answering over acyclic TEL° is in LOGTIME-uniform AC⁰ in data and in PTime in combined complexity

acyclic TBoxes: definitions $A \equiv C$ (the relation `defined by' is acyclic)

Theorem TAQ answering over acyclic TEL° is in LOGTIME-uniform AC⁰ in data and in PTime in combined complexity

<u>proof:</u> rewriting into FO with one successor relation $\overline{}$

acyclicity restricts both dimensions

- rigid concepts are not expressible
- no recurring patterns

acyclic TBoxes: definitions $A \equiv C$ (the relation `defined by' is acyclic)

Theorem TAQ answering over acyclic TEL° is in LOGTIME-uniform AC⁰ in data and in PTime in combined complexity

Theorem TAQ answering over temporally acyclic \mathcal{TEL}^{\bigcirc} (with rigid concepts) is **PTime**-complete in data and combined complexity

acyclic TBoxes: definitions $A \equiv C$ (the relation `defined by' is acyclic)

Theorem TAQ answering over acyclic TEL° is in LOGTIME-uniform AC⁰ in data and in PTime in combined complexity

Theorem TAQ answering over temporally acyclic \mathcal{TEL}^{\bigcirc} (with rigid concepts) is **PTime**-complete in data and combined complexity

 $\bigcirc_P A \sqsubseteq B \text{ or } \bigcirc_F B \sqsubseteq A \implies$ the `rank' of B = the rank of A + 1

NB: contains full EL

Theorem TAQ answering over DL-acyclic \mathcal{TEL}^{\bigcirc} TBoxes of depth $k \ge 1$ is k-ExpSpace-complete in combined complexity and NC¹-complete in data complexity

Theorem TAQ answering over DL-acyclic \mathcal{TEL}^{\bigcirc} TBoxes of depth k > 1 is k-ExpSpace-complete in combined complexity and NC¹-complete in data complexity

 $A \sqsubset \exists r.B \implies$ the rank of B > the rank of A

+ bound on the ranks \implies ultimately periodic (and so, in k-EXPSPACE)

the matching lower bound is by 'yardsticks'

Theorem TAQ answering over DL-acyclic \mathcal{TEL}^{\bigcirc} TBoxes of depth $k \ge 1$ is k-ExpSpace-complete in combined complexity and NC¹-complete in data complexity

- $A \sqsubseteq \exists r.B \implies$ the rank of B > the rank of A
 - + bound on the ranks \implies ultimately periodic (and so, in k-EXPSPACE) the matching lower bound is by 'yardsticks'

NC¹ comes from the temporal component alone

NB: contains the full Horn-LTL and can express rigid concepts

Theorem TAQ answering over DL-acyclic \mathcal{TEL}^{\bigcirc} TBoxes of depth $k \ge 1$ is k-ExpSpace-complete in combined complexity and NC¹-complete in data complexity

- $A \sqsubseteq \exists r.B \implies$ the rank of B > the rank of A
 - + bound on the ranks \implies ultimately periodic (and so, in k-EXPSPACE) the matching lower bound is by 'yardsticks'
- NC¹ comes from the temporal component alone
- NB: contains the full Horn-LTL and can express rigid concepts

Inflationary TEL

 $\mathcal{TEL}_{infl}^{\diamond}$ is \mathcal{TEL} without \bigcirc_* but with \diamondsuit_* on the left-hand side of CIs only similar to TQL for DL-Lite [Artale et al., 2013] and inflationary DATALOG_{1S} [Chomicki, 1990]

Theorem TAQ answering over $\mathcal{TEL}_{infl}^{\circ}$ is **PTime**-complete in both data and combined complexity

Theorem TAQ answering over DL-acyclic \mathcal{TEL}^{\bigcirc} TBoxes of depth $k \ge 1$ is k-ExpSpace-complete in combined complexity and NC¹-complete in data complexity

- $A \sqsubseteq \exists r.B \implies$ the rank of B > the rank of A
 - + bound on the ranks \implies ultimately periodic (and so, in k-EXPSPACE) the matching lower bound is by 'yardsticks'
- NC¹ comes from the temporal component alone
- NB: contains the full Horn-LTL and can express rigid concepts

Inflationary \mathcal{TEL}

 $\mathcal{TEL}_{infl}^{\diamond}$ is \mathcal{TEL} without \bigcirc_* but with \diamondsuit_* on the left-hand side of CIs only similar to TQL for DL-Lite [Artale et al., 2013] and inflationary DATALOG_{1S} [Chomicki, 1990]

Theorem TAQ answering over $\mathcal{TEL}_{infl}^{\diamond}$ is **PTime**-complete in both data and combined complexity

NB: can express rigid concepts $\diamond_P \diamond_F C \sqsubseteq C$

Summary

- full *TEL*○
- conjunctive queries
- binary representation of time instants / interval encoding, e.g., $A(a, [n_1, n_2])$