On Decidability and Tractability of Querying in Temporal EL

Roman Kontchakov

Department of Computer Science and Inf. Systems, Birkbeck College, London

http://www.dcs.bbk.ac.uk/~roman

joint work with Víctor Gutiérrez-Basulto and Jean Christoph Jung
(Universität Bremen)

OBDA with Temporal Data

query $\quad q(x)=$ RequiresBloodTest $(x$, today $)$

ontology

Patient $\sqcap \bigcirc_{P}^{5} \exists$ vaccinated.LiveVirus \sqsubseteq ViableParticipant
Patient \sqcap RequiresBloodTest $\sqsubseteq \bigcirc_{F}^{3}$ RequiresBloodTest
Patient(john, 21/04/16)
RequiresBloodTest(john, 18/04/16)
ABOX vaccinated(john, measles, 16/04/16)
LiveVirus(measles, 01/01/16)
timestamped data: vaccinations, blood tests, etc.

Temporal $\mathcal{E L}$

concepts $C, D::=A|C \sqcap D| \exists r . C \mid$

roles r are partitioned into local and rigid (time-invariant)

Temporal $\mathcal{E L}$

concepts $\boldsymbol{C}, \boldsymbol{D}::=\boldsymbol{A}|\boldsymbol{C} \sqcap \boldsymbol{D}| \exists r . \boldsymbol{C}|\underbrace{\underbrace{\diamond_{F} \boldsymbol{C}}_{\text {ext moment }}}_{\text {at the }}| \underbrace{\diamond_{F} \boldsymbol{C}}_{\text {sometime in the future }} \mid \underbrace{\bigcirc_{\text {on }} \boldsymbol{C}}_{\text {at the previous moment in the past }}$ roles r are partitioned into local and rigid (time-invariant) concept inclusions: $\quad C \sqcap \mathrm{O}_{F} C \sqcap \mathrm{O}_{F} \bigcirc_{F} C \sqsubseteq B \quad$ and $\quad \diamond_{P} D \sqsubseteq U$

Temporal $\mathcal{E L}$

concepts $C, D::=A|C \sqcap D| \exists r . C \mid$

roles r are partitioned into local and rigid (time-invariant) concept inclusions: $\quad C \sqcap \mathrm{O}_{F} C \sqcap \mathrm{O}_{F} \bigcirc_{F} C \sqsubseteq B \quad$ and $\quad \diamond_{P} D \sqsubseteq U$

- constant domains with rigid interpretation of individuals under the standard name assumption
- concept inclusions hold at all moments of time (globally)

Temporal $\mathcal{E L}$

concepts $C, D::=A|C \sqcap D| \exists r . C \mid$

roles r are partitioned into local and rigid (time-invariant) concept inclusions: $\quad \boldsymbol{C} \sqcap \mathrm{O}_{F} C \sqcap \bigcirc_{F} \bigcirc_{F} C \sqsubseteq B \quad$ and $\quad \diamond_{P} D \sqsubseteq U$ $D \sqsubseteq D^{\prime}, \quad D^{\prime} \sqsubseteq \bigcirc_{F} U, \quad \bigcirc_{P} D^{\prime} \sqsubseteq D^{\prime}$

- constant domains with rigid interpretation of individuals under the standard name assumption
- concept inclusions hold at all moments of time (globally)

Querying Temporal $\mathcal{E L}$

temporal atomic query $\boldsymbol{A}(\boldsymbol{x}, \boldsymbol{t}) \quad \boldsymbol{A}$ is a concept name
entailment for $a \in \operatorname{ind}(\mathcal{A})$ and $i \in \mathbb{Z} \quad$ time instants are represented in unary

$$
\mathcal{T}, \mathcal{A} \models A(a, i) \quad \text { iff } \quad \mathfrak{J} \models A(a, i), \quad \text { for all models } \mathfrak{J} \text { of } \mathcal{T}, \mathcal{A}
$$

certain answers $(a, n) \in \operatorname{ind}(\mathcal{A}) \times \underbrace{\dagger \operatorname{tem}(\mathcal{A})}_{\min \mathcal{A} \leq n \leq \max \mathcal{A}}$ such that $\mathcal{T}, \mathcal{A} \models A(a, n)$

Querying Temporal $\mathcal{E L}$

temporal atomic query $\boldsymbol{A}(\boldsymbol{x}, \boldsymbol{t}) \quad \boldsymbol{A}$ is a concept name
entailment for $a \in \operatorname{ind}(\mathcal{A})$ and $i \in \mathbb{Z} \quad$ time instants are represented in unary

$$
\mathcal{T}, \mathcal{A} \models A(a, i) \quad \text { iff } \quad \mathfrak{J} \models A(a, i), \quad \text { for all models } \mathfrak{J} \text { of } \mathcal{T}, \mathcal{A}
$$

certain answers $\quad(a, n) \in \operatorname{ind}(\mathcal{A}) \times \underbrace{\dagger \operatorname{tem}(\mathcal{A})}_{\min \mathcal{A} \leq n \leq \max \mathcal{A}}$ such that $\mathcal{T}, \mathcal{A} \models A(a, n)$

Bad News

Theorem TAQ answering over full $\mathcal{T E L}$ is undecidable
(even for data complexity, with a fixed TBox and a fixed query)
$\underline{\text { hint: }}$ express \sqcup using \diamond_{F} on the right-hand side of Cl

Querying Temporal $\mathcal{E L}$

temporal atomic query $\boldsymbol{A}(\boldsymbol{x}, \boldsymbol{t}) \quad \boldsymbol{A}$ is a concept name
entailment for $a \in \operatorname{ind}(\mathcal{A})$ and $i \in \mathbb{Z} \quad$ time instants are represented in unary

$$
\mathcal{T}, \mathcal{A} \models A(a, i) \quad \text { iff } \quad \mathfrak{J} \models \boldsymbol{A}(a, i), \quad \text { for all models } \mathfrak{J} \text { of } \mathcal{T}, \mathcal{A}
$$

certain answers $\quad(a, n) \in \operatorname{ind}(\mathcal{A}) \times \underbrace{\dagger \operatorname{tem}(\mathcal{A})}_{\min \mathcal{A} \leq n \leq \max \mathcal{A}}$ such that $\mathcal{T}, \mathcal{A} \vDash A(a, n)$

Bad News

Theorem TAQ answering over full $\mathcal{T E L}$ is undecidable
(even for data complexity, with a fixed TBox and a fixed query)
hint: express \sqcup using \diamond_{F} on the right-hand side of Cls
$\mathcal{T E L}{ }^{\circ}$ is $\mathcal{T E L}$ without \diamond_{*}
Theorem TAQ answering over $\mathcal{E E L}^{\circ}$ with functional roles
is undecidable for data complexity
Theorem TAQ answering over $\mathcal{T E L}^{\circ}$ with inverse roles is undecidable for data complexity

(Some) Good News

normal form: $A \sqcap A^{\prime} \sqsubseteq B, \quad \bigcirc_{\star} B \sqsubseteq A, \quad A \sqsubseteq \exists r . B, \quad \exists r . B \sqsubseteq A$

(Some) Good News

normal form: $A \sqcap A^{\prime} \sqsubseteq B, \quad \bigcirc_{*} B \sqsubseteq A, \quad A \sqsubseteq \exists r . B, \quad \exists r . B \sqsubseteq A$
Example: $\bigcirc_{P} B \sqsubseteq C, \bigcirc_{P} C \sqsubseteq B, A \sqsubseteq \exists r . B, \exists r . C \sqsubseteq D$ with rigid r

(Some) Good News

normal form: $A \sqcap A^{\prime} \sqsubseteq B, \quad \bigcirc_{*} B \sqsubseteq A, \quad A \sqsubseteq \exists r . B, \quad \exists r . B \sqsubseteq A$

Example: $\bigcirc_{P} B \sqsubseteq C, \bigcirc_{P} C \sqsubseteq B, \quad A \sqsubseteq \exists r . B, \exists r . C \sqsubseteq D$ with rigid r
two copies

a trace is a map $\pi: \mathbb{Z} \rightarrow \mathrm{CN}$ that respects all $A \sqcap A^{\prime} \sqsubseteq B$ and $\mathrm{O}_{*} B \sqsubseteq A$

(Some) Good News

normal form: $A \sqcap A^{\prime} \sqsubseteq B, \quad \bigcirc_{\star} B \sqsubseteq A, \quad A \sqsubseteq \exists r . B, \quad \exists r . B \sqsubseteq A$
Example: $\bigcirc_{P} B \sqsubseteq C, \bigcirc_{P} C \sqsubseteq B, \quad A \sqsubseteq \exists r . B, \exists r . C \sqsubseteq D$ with rigid r
two copies

a trace is a map $\pi: \mathbb{Z} \rightarrow \mathrm{CN}$ that respects all $\boldsymbol{A} \sqcap \boldsymbol{A}^{\prime} \sqsubseteq B$ and $\mathrm{O}_{*} B \sqsubseteq A$
quasimodel $=\operatorname{traces} \boldsymbol{\pi}_{\boldsymbol{a}}$ for $\boldsymbol{a} \in \operatorname{ind}(\mathcal{A})+\operatorname{traces} \boldsymbol{\pi}_{\boldsymbol{B}}$ for $\boldsymbol{B} \in \mathrm{CN}$ that contains the $\mathrm{ABox} \mathcal{A}$ in the $\pi_{a} \quad$ and $\quad B \in \pi_{B}(0)$ and respects all $\exists r . B \sqsubseteq A$

(Some) Good News

normal form: $A \sqcap A^{\prime} \sqsubseteq B, \quad \bigcirc_{\star} B \sqsubseteq A, \quad A \sqsubseteq \exists r . B, \quad \exists r . B \sqsubseteq A$
Example: $\bigcirc_{P} B \sqsubseteq C, \bigcirc_{P} C \sqsubseteq B, \quad A \sqsubseteq \exists r . B, \exists r . C \sqsubseteq D$ with rigid r
two copies

a trace is a map $\pi: \mathbb{Z} \rightarrow \mathrm{CN}$ that respects all $\boldsymbol{A} \sqcap \boldsymbol{A}^{\prime} \sqsubseteq B$ and $\mathrm{O}_{*} B \sqsubseteq A$
quasimodel $=\operatorname{traces} \boldsymbol{\pi}_{\boldsymbol{a}}$ for $\boldsymbol{a} \in \operatorname{ind}(\mathcal{A})+\operatorname{traces} \boldsymbol{\pi}_{\boldsymbol{B}}$ for $\boldsymbol{B} \in \mathrm{CN}$ that contains the $\mathrm{ABox} \mathcal{A}$ in the $\pi_{a} \quad$ and $\quad B \in \pi_{B}(0)$ and respects all $\exists r . B \sqsubseteq A$
Theorem $\mathcal{T}, \mathcal{A} \models A(a, i)$ iff $\boldsymbol{A} \in \pi_{a}(i)$, for $a \in \operatorname{ind}(\mathcal{A})$ and $i \in \mathbb{Z}$

(Some) Good News

normal form: $A \sqcap A^{\prime} \sqsubseteq B, \quad \bigcirc_{*} B \sqsubseteq A, \quad A \sqsubseteq \exists r . B, \quad \exists r . B \sqsubseteq A$
Example: $\bigcirc_{P} B \sqsubseteq C, \bigcirc_{P} C \sqsubseteq B, \quad A \sqsubseteq \exists r . B, \exists r . C \sqsubseteq D$ with rigid r
two copies

a trace is a map $\pi: \mathbb{Z} \rightarrow \mathrm{CN}$ that respects all $\boldsymbol{A} \sqcap \boldsymbol{A}^{\prime} \sqsubseteq B$ and $\mathrm{O}_{*} B \sqsubseteq A$
quasimodel $=\operatorname{traces} \boldsymbol{\pi}_{\boldsymbol{a}}$ for $\boldsymbol{a} \in \operatorname{ind}(\mathcal{A})+\operatorname{traces} \boldsymbol{\pi}_{\boldsymbol{B}}$ for $\boldsymbol{B} \in \mathrm{CN}$ that contains the $\mathrm{ABox} \mathcal{A}$ in the $\pi_{a} \quad$ and $\quad B \in \pi_{B}(0)$ and respects all $\exists r . B \sqsubseteq A$
Theorem $\mathcal{T}, \mathcal{A} \models \boldsymbol{A}(a, i)$ iff $\boldsymbol{A} \in \pi_{a}(i)$, for $a \in \operatorname{ind}(\mathcal{A})$ and $i \in \mathbb{Z}$

Ultimate Periodicity

a quasimodel is ultimately p-periodic if
for each trace $\boldsymbol{\pi}$, there are positive integers $\boldsymbol{m}_{P}, \boldsymbol{p}_{P}, \boldsymbol{m}_{\boldsymbol{F}}, \boldsymbol{p}_{\boldsymbol{F}} \leq \boldsymbol{p}$ such that $\pi_{B}\left(n-p_{P}\right)=\pi_{B}(n)$, for all $n \leq-m_{P}$

$$
\pi_{B}\left(n+p_{F}\right)=\pi_{B}(n), \text { for all } n \geq m_{F}
$$

Ultimate Periodicity

a quasimodel is ultimately p-periodic if
for each trace $\boldsymbol{\pi}$, there are positive integers $\boldsymbol{m}_{P}, \boldsymbol{p}_{P}, \boldsymbol{m}_{F}, \boldsymbol{p}_{F} \leq \boldsymbol{p}$ such that $\pi_{B}\left(n-p_{P}\right)=\pi_{B}(n)$, for all $n \leq-m_{P}$ $\pi_{B}\left(n+p_{F}\right)=\pi_{B}(n)$, for all $n \geq m_{F}$

Theorem TAQ answering over ultimately periodic $\mathcal{T E L}^{\circ}$ TBoxes is PSpace-complete in data complexity

Ultimate Periodicity

a quasimodel is ultimately p-periodic if
for each trace π, there are positive integers $\boldsymbol{m}_{P}, \boldsymbol{p}_{P}, \boldsymbol{m}_{F}, \boldsymbol{p}_{F} \leq \boldsymbol{p}$ such that
$\pi_{B}\left(n-p_{P}\right)=\pi_{B}(n)$, for all $n \leq-m_{P}$

$$
\pi_{B}\left(n+p_{F}\right)=\pi_{B}(n), \text { for all } n \geq m_{F}
$$

Theorem TAQ answering over ultimately periodic $\mathcal{T E L}{ }^{\circ}$ TBoxes is PSpace-complete in data complexity
rewriting into DATALOG ${ }_{1 S}$ an extension of datalog with one successor function [Chomicki \& Imielinski, 1988]
terms $t+i$ and $t-i$
for a 'temporal variable' t and i is a non-negative integer constant
DATALOG $_{1 S}$ is PSpace-complete in data complexity (encoded in unary) and ExpTime-complete in combined complexity

Ultimate Periodicity

a quasimodel is ultimately p-periodic if
for each trace $\boldsymbol{\pi}$, there are positive integers $\boldsymbol{m}_{P}, \boldsymbol{p}_{P}, \boldsymbol{m}_{\boldsymbol{F}}, \boldsymbol{p}_{\boldsymbol{F}} \leq \boldsymbol{p}$ such that

$$
\begin{array}{ccccc}
\pi_{B}\left(n-p_{P}\right)=\pi_{B}(n), \text { for all } n \leq-m_{P} \\
\\
\hline-m_{P}-2 p_{P} & -m_{P}-p_{P} & -m_{P} & 0 & \pi_{B}\left(n+p_{F}\right)=\pi_{B}(n), \text { for all } n \geq m_{F} \\
\hline
\end{array}
$$

Theorem TAQ answering over ultimately periodic $\mathcal{T E L}{ }^{\circ}$ TBoxes is PSpace-complete in data complexity
rewriting into DATALOG ${ }_{1 S}$
an extension of datalog with one successor function [Chomicki \& Imielinski, 1988]
terms $t+i$ and $t-i$
for a 'temporal variable' t and i is a non-negative integer constant
DATALOG $_{1 S}$ is PSpace-complete in data complexity
(encoded in unary) and ExpTime-complete in combined complexity

Restricted Use of Rigid Roles

Theorem TAQ answering over $\mathcal{T E L}^{\circ}$ without rigid roles is
PSpace-complete in combined and PTime-complete in data complexity
observation: traces are ultimately periodic with the 'prefix' $|\mathcal{A}|+2^{O(|\mathcal{T}|)}$ and period $2^{O(|\mathcal{T}|)}$

Restricted Use of Rigid Roles

Theorem TAQ answering over $\mathcal{T E L}^{\circ}$ without rigid roles is
PSpace-complete in combined and PTime-complete in data complexity
observation: traces are ultimately periodic with the 'prefix' $|\mathcal{A}|+2^{O(|\mathcal{T}|)}$ and period $2^{O(|\mathcal{T}|)}$

Theorem TAQ answering over $\mathcal{T E L}^{\circ}$ without rigid roles on the right of Cls is in ExpTime in combined and PSpace-complete in data complexity
proof: rewriting into DATALOG $_{1 S}$

Standard Acyclicity

acyclic TBoxes: definitions $\boldsymbol{A} \equiv \boldsymbol{C} \quad$ (the relation 'defined by' is acyclic)
Theorem TAQ answering over acyclic $\mathcal{T E L}^{\circ}$ is in LOGTIme-uniform AC^{0} in data and in PTime in combined complexity
proof: rewriting into FO with one successor relation
acyclicity restricts both dimensions

Standard Acyclicity

acyclic TBoxes: definitions $\boldsymbol{A} \equiv \boldsymbol{C} \quad$ (the relation 'defined by' is acyclic)
Theorem TAQ answering over acyclic $\mathcal{T E L}^{\circ}$ is in LOGTIME-uniform AC 0 in data and in PTime in combined complexity
proof: rewriting into FO with one successor relation
acyclicity restricts both dimensions

- rigid concepts are not expressible
- no recurring patterns

Standard Acyclicity

acyclic TBoxes: definitions $\boldsymbol{A} \equiv \boldsymbol{C} \quad$ (the relation 'defined by' is acyclic)
Theorem TAQ answering over acyclic $\mathcal{T E L}^{\circ}$ is in LOGTIME-uniform AC^{0} in data and in PTime in combined complexity
proof: rewriting into FO with one successor relation
acyclicity restricts both dimensions

- rigid concepts are not expressible
- no recurring patterns

Temporal Acyclicity

Theorem TAQ answering over temporally acyclic $\mathcal{T E L}{ }^{\circ}$ (with rigid concepts) is PTime-complete in data and combined complexity
$\bigcirc_{P} \boldsymbol{A} \sqsubseteq \boldsymbol{B}$ or $\bigcirc_{F} \boldsymbol{B} \sqsubseteq \boldsymbol{A} \Longrightarrow$
the 'rank' of $\boldsymbol{B}=$ the rank of $\boldsymbol{A}+1$

Standard Acyclicity

acyclic TBoxes: definitions $\boldsymbol{A} \equiv \boldsymbol{C} \quad$ (the relation 'defined by' is acyclic)
Theorem TAQ answering over acyclic $\mathcal{T E L}^{\circ}$ is in LOGTIME-uniform AC^{0} in data and in PTime in combined complexity
proof: rewriting into FO with one successor relation
acyclicity restricts both dimensions

- rigid concepts are not expressible
- no recurring patterns

Temporal Acyclicity

Theorem TAQ answering over temporally acyclic $\mathcal{T E L} \mathcal{L}^{\circ}$ (with rigid concepts) is PTime-complete in data and combined complexity
$\bigcirc_{P} \boldsymbol{A} \sqsubseteq \boldsymbol{B}$ or $\bigcirc_{F} \boldsymbol{B} \sqsubseteq \boldsymbol{A} \Longrightarrow$ the 'rank' of $\boldsymbol{B}=$ the rank of $\boldsymbol{A}+1$
$N B$: contains full $\mathcal{E L}$

DL Acyclicity

Theorem TAQ answering over DL-acyclic $\mathcal{T E L}{ }^{\circ}$ TBoxes of depth $k \geq 1$ is k-EXPSPACE-complete in combined complexity and NC^{1}-complete in data complexity

DL Acyclicity

Theorem TAQ answering over DL-acyclic $\mathcal{T E L}{ }^{\circ}$ TBoxes of depth $k \geq 1$ is k-EXPSPACE-complete in combined complexity and NC^{1}-complete in data complexity
$A \sqsubseteq \exists r . B \Longrightarrow$ the rank of $B>$ the rank of \boldsymbol{A} + bound on the ranks \Longrightarrow ultimately periodic (and so, in \boldsymbol{k}-EXPSPACE) the matching lower bound is by 'yardsticks'

DL Acyclicity

Theorem TAQ answering over DL-acyclic $\mathcal{T E L}{ }^{\circ}$ TBoxes of depth $k \geq 1$ is k-EXPSPACE-Complete in combined complexity and NC^{1}-complete in data complexity
$\boldsymbol{A} \sqsubseteq \exists r \cdot \boldsymbol{B} \quad \Longrightarrow \quad$ the rank of $\boldsymbol{B}>$ the rank of \boldsymbol{A} + bound on the ranks \Longrightarrow ultimately periodic (and so, in k-EXPSPACE) the matching lower bound is by 'yardsticks'
$N C^{1}$ comes from the temporal component alone
NB: contains the full Horn-LTL and can express rigid concepts

DL Acyclicity

Theorem TAQ answering over DL-acyclic $\mathcal{T E L}{ }^{\circ}$ TBoxes of depth $k \geq 1$ is k-EXPSPACE-Complete in combined complexity and NC^{1}-complete in data complexity
$A \sqsubseteq \exists r . B \Longrightarrow$ the rank of $B>$ the rank of \boldsymbol{A} + bound on the ranks \Longrightarrow ultimately periodic (and so, in \boldsymbol{k}-EXPSPACE) the matching lower bound is by 'yardsticks'
NC ${ }^{1}$ comes from the temporal component alone
NB: contains the full Horn-LTL and can express rigid concepts

Inflationary $\mathcal{T E L}$

$\mathcal{T E} \mathcal{L}_{\text {infl }}^{\diamond}$ is $\mathcal{T E L}$ without \bigcirc_{*} but with \diamond_{*} on the left-hand side of Cls only similar to TQL for DL-Lite [Artale et al., 2013] and inflationary DATALOG ${ }_{1 S}$ [Chomicki, 1990]

Theorem TAQ answering over $\mathcal{T E L}_{\text {inff }}^{\diamond}$ is PTime-complete in both data
 and combined complexity

DL Acyclicity

Theorem TAQ answering over DL-acyclic $\mathcal{T E L}{ }^{\circ}$ TBoxes of depth $k \geq 1$ is k-EXPSPACE-Complete in combined complexity and NC^{1}-complete in data complexity
$A \sqsubseteq \exists r . B \Longrightarrow$ the rank of $B>$ the rank of \boldsymbol{A} + bound on the ranks \Longrightarrow ultimately periodic (and so, in \boldsymbol{k}-EXPSPACE) the matching lower bound is by 'yardsticks'
NC ${ }^{1}$ comes from the temporal component alone
NB: contains the full Horn-LTL and can express rigid concepts

Inflationary $\mathcal{T E L}$

$\mathcal{T E} \mathcal{L}_{\text {infl }}^{\diamond}$ is $\mathcal{T E L}$ without \bigcirc_{*} but with \diamond_{*} on the left-hand side of Cls only similar to TQL for DL-Lite [Artale et al., 2013] and inflationary DATALOG ${ }_{1 S}$ [Chomicki, 1990]

Theorem TAQ answering over $\mathcal{T E L}_{\text {inff }}^{\diamond}$ is PTime-complete in both data
 and combined complexity

NB: can express rigid concepts $\diamond_{P} \diamond_{F} C \sqsubseteq C$

Summary

- full $\mathcal{T E L}^{\circ}$
- conjunctive queries
- binary representation of time instants / interval encoding, e.g., $\boldsymbol{A}\left(a,\left[n_{1}, n_{2}\right]\right)$

