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Basic SPARQL

SPARQL query

SELECT ?d WHERE {
?d a :Department

}

Basic Graph Pattern (BGP)
(a set of triple patterns)

a = rdf:type
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answer is a set of solution mappings
?d

:CS
:Maths

solution mapping µ is a partial map from

set of variables︷︸︸︷
V to T

dom(µ) is the domain of µ

JP KG =
{
µ : var(P )→ T | µ(P ) ⊆ G

}
for a BGP P

NB: we consider set semantics (SPARQL uses bag semantics, but our negative results hold)
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Monotone SPARQL: FILTER

SELECT ?p1 ?p2 ?d WHERE {
?p1 :worksIn ?d .
?p2 :worksIn ?d
FILTER (?p1 != ?p2)

}
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:Brown a :Prof
:Clarke a :Prof
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a
ns

w
e

r ?p1 ?p2 ?d
µ1 :Davies :Brown :CS
µ2 :Brown :Davies :CS

JFILTERF P KG =
{
µ ∈ JP KG | F µ = true

}
filters F are Boolean combinations of ?v1 =?v2, ?v = d, etc.
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NB: slight simplification, see Effective Boolean Value in SPARQL Specification

NB: SPARQL uses 3-valued logic (like SQL)
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Monotone SPARQL: UNION

SELECT ?p ?d WHERE {
{ ?p a :Prof .

?p :worksIn ?d }
UNION
{ ?p a :Prof }

}
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Monotone SPARQL: JOIN

µ1 and µ2 are compatible µ1 ∼ µ2 if

µ1(?v) = µ2(?v), for all ?v ∈ dom(µ1) ∩ dom(µ2)
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:Clarke NULL 8506
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NB: careful use of COALESCE (or IF) is required, see Prud’hommeaux & Bertails (2008)
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Monotone SPARQL: Algebraic View

uniqueµ∅ with dom(µ∅) = ∅ is compatible with any solution mapping

empty BGP {} J{}KG = {µ∅}, for any G
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Monotone SPARQL: Algebraic View

uniqueµ∅ with dom(µ∅) = ∅ is compatible with any solution mapping

empty BGP {} J{}KG = {µ∅}, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)
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Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE {
?p a :Prof
OPTIONAL { ?p :worksIn ?d

FILTER (?d != :CS) }
}

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths
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}
IBM TJ Watson, New York, 08.07.16 6



On DIFF and OPT (1)

equivalent patterns P1 ≡ P2 ⇐⇒ JP1KG = JP2KG, for all G
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On DIFF and OPT (1)

equivalent patterns P1 ≡ P2 ⇐⇒ JP1KG = JP2KG, for all G

Angles & Gutierrez (2008)

P1 DIFF> P2 ≡ FILTER¬bound(?u)(P1 OPT> (P2 JOIN {?u ?v ?w}))

‘universal’ triple pattern
‘always’ gives a binding for ?u

is not quite correct: if P1 = P2 = {} and G = ∅, then JPiKG = {µ∅}

so, JP1 DIFF> P2KG = ∅ (as µ∅ is compatible with µ∅)

but J{?u ?v ?w}KG = ∅ and so, JP1 OPTF . . .KG = {µ∅}
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On DIFF and OPT (1)

equivalent patterns P1 ≡ P2 ⇐⇒ JP1KG = JP2KG, for all G

Angles & Gutierrez (2008)

P1 DIFF> P2 ≡ FILTER¬bound(?u)(P1 OPT> (P2 JOIN {?u ?v ?w}))

‘universal’ triple pattern
‘always’ gives a binding for ?u

is not quite correct: if P1 = P2 = {} and G = ∅, then JPiKG = {µ∅}

so, JP1 DIFF> P2KG = ∅ (as µ∅ is compatible with µ∅)

but J{?u ?v ?w}KG = ∅ and so, JP1 OPTF . . .KG = {µ∅}

Polleres (2009): a fix that avoids the problem
by effectively making the dataset non-empty (GRAPH operation)
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On DIFF and OPT (2)

S is a set of SPARQL operators e.g., S = { FILTER, UNION, JOIN }
operator O is S-expressible if,

for any pattern over S ∪ {O}, there is an equivalent pattern over S
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On DIFF and OPT (2)

S is a set of SPARQL operators e.g., S = { FILTER, UNION, JOIN }
operator O is S-expressible if,

for any pattern over S ∪ {O}, there is an equivalent pattern over S

Zhang & Van den Bussche (2014) JOIN is {FILTER, OPT>}-expressible;
all other operators in the set { JOIN, UNION, OPT>, FILTER, PROJ }

are not expressible via the rest.

proof idea: P1 JOIN P2 ≡ (P1 OPT> P2) DIFF> (P1 DIFF> P2)

and then DIFF> carefully via FILTER and OPT>
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Zhang & Van den Bussche (2014) JOIN is {FILTER, OPT>}-expressible;
all other operators in the set { JOIN, UNION, OPT>, FILTER, PROJ }

are not expressible via the rest.

proof idea: P1 JOIN P2 ≡ (P1 OPT> P2) DIFF> (P1 DIFF> P2)

and then DIFF> carefully via FILTER and OPT>

Theorem DIFF> is not S ∪ {OPTF}-expressible

proof idea: P over S ∪ {OPTF} =⇒ if µ∅ ∈ JP KG then µ∅ ∈ JP K∅
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On DIFF and OPT (2)

S is a set of SPARQL operators e.g., S = { FILTER, UNION, JOIN }
operator O is S-expressible if,

for any pattern over S ∪ {O}, there is an equivalent pattern over S

Zhang & Van den Bussche (2014) JOIN is {FILTER, OPT>}-expressible;
all other operators in the set { JOIN, UNION, OPT>, FILTER, PROJ }

are not expressible via the rest.

proof idea: P1 JOIN P2 ≡ (P1 OPT> P2) DIFF> (P1 DIFF> P2)

and then DIFF> carefully via FILTER and OPT>

Theorem DIFF> is not S ∪ {OPTF}-expressible

proof idea: P over S ∪ {OPTF} =⇒ if µ∅ ∈ JP KG then µ∅ ∈ JP K∅

P = {} DIFF> FILTER¬bound(?u)({} OPT> {?u ?v ?w})

JP K∅ = ∅ but JP KG = {µ∅}, for any G 6= ∅

IBM TJ Watson, New York, 08.07.16 8



Projection in SPARQL. On DIFF and OPT (3)

SELECT ?p WHERE {
?p :worksIn ?d

}
?d is projected away

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths
:Davies :worksIn :CS
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where µ|V is the restriction of µ to V

NB: projection in SPARQL is only at the top level
however, PROJ can always be pushed up (by careful variable renaming)
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NB: projection in SPARQL is only at the top level
however, PROJ can always be pushed up (by careful variable renaming)

Theorem DIFFF is {FILTER, UNION, PROJ, OPTF}-expressible
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:Brown
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JPROJV P KG =
{
µ|V | µ ∈ JP KG

}
where µ|V is the restriction of µ to V

NB: projection in SPARQL is only at the top level
however, PROJ can always be pushed up (by careful variable renaming)

Theorem DIFFF is {FILTER, UNION, PROJ, OPTF}-expressible

P1 DIFFF P2 ≡ ON_EMPTYP1DIFFFP2
UNION

PROJvar(P1) FILTER¬bound(?u2)

(
(P1 JOIN {?u1 ?v1 ?w1}) OPTF

(P2 JOIN {?u2 ?v2 ?w2})
)
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Projection in SPARQL. On DIFF and OPT (3)

SELECT ?p WHERE {
?p :worksIn ?d

}
?d is projected away

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths
:Davies :worksIn :CS

a
ns
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r ?p
:Brown
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:Davies

JPROJV P KG =
{
µ|V | µ ∈ JP KG

}
where µ|V is the restriction of µ to V

NB: projection in SPARQL is only at the top level
however, PROJ can always be pushed up (by careful variable renaming)

Theorem DIFFF is {FILTER, UNION, PROJ, OPTF}-expressible

P1 DIFFF P2 ≡ ON_EMPTYP1DIFFFP2
UNION

PROJvar(P1) FILTER¬bound(?u2)

(
(P1 JOIN {?u1 ?v1 ?w1}) OPTF

(P2 JOIN {?u2 ?v2 ?w2})
)

P1 DIFFF P2 on the empty graph

IBM TJ Watson, New York, 08.07.16 9



Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
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Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
JP1KG
?u ?v
:a :b
:a

JP2KG
?u ?w
:a :c

F = bound(?v)
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Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
JP1KG
?u ?v
:a :b
:a

JP2KG
?u ?w
:a :c

F = bound(?v)

JP1 OPTF P2KG
?u ?v ?w
:a :b :c
:a

IBM TJ Watson, New York, 08.07.16 10



Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
JP1KG
?u ?v
:a :b
:a

JP2KG
?u ?w
:a :c

F = bound(?v)

JP1 OPTF P2KG
?u ?v ?w
:a :b :c
:a

JP1 JOIN P2KG
?u ?v ?w
:a :b :c
:a :c

IBM TJ Watson, New York, 08.07.16 10



Ternary OPTIONAL of SPARQL
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P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
JP1KG
?u ?v
:a :b
:a
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?u ?w
:a :c

F = bound(?v)
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Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
JP1KG
?u ?v
:a :b
:a

JP2KG
?u ?w
:a :c

F = bound(?v)

JP1 OPTF P2KG
?u ?v ?w
:a :b :c
:a

JP1 JOIN P2KG
?u ?v ?w
:a :b :c
:a :c

6=
JP1 OPT> . . .KG
?u ?v ?w
:a :b :c

Theorem OPTF is {FILTER, UNION, OPT>}-expressible
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Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
JP1KG
?u ?v
:a :b
:a

JP2KG
?u ?w
:a :c

F = bound(?v)

JP1 OPTF P2KG
?u ?v ?w
:a :b :c
:a

JP1 JOIN P2KG
?u ?v ?w
:a :b :c
:a :c

6=
JP1 OPT> . . .KG
?u ?v ?w
:a :b :c

Theorem OPTF is {FILTER, UNION, OPT>}-expressible

P1 OPTF P2 ≡ UNION
V⊆var(P1)∩var(P2)

[
(FILTERFV

P1) OPT> FILTERF ((FILTERFV
P1) JOIN P2)

]
FV selects the V -uniform slice ofP1: FV =

∧
?v∈V

bound(?v) ∧
∧

?v∈(var(P1)∩var(P2))\V

¬bound(?v)

horizontal decomposition in DBs
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Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
JP1KG
?u ?v
:a :b
:a

JP2KG
?u ?w
:a :c

F = bound(?v)

JP1 OPTF P2KG
?u ?v ?w
:a :b :c
:a

JP1 JOIN P2KG
?u ?v ?w
:a :b :c
:a :c

6=
JP1 OPT> . . .KG
?u ?v ?w
:a :b :c

Theorem OPTF is {FILTER, UNION, OPT>}-expressible

P1 OPTF P2 ≡ UNION
V⊆var(P1)∩var(P2)

[
(FILTERFV

P1) OPT> FILTERF ((FILTERFV
P1) JOIN P2)

]
FV selects the V -uniform slice ofP1: FV =

∧
?v∈V

bound(?v) ∧
∧

?v∈(var(P1)∩var(P2))\V

¬bound(?v)

horizontal decomposition in DBs

the UNION is exponential. . . is it unavoidable?
IBM TJ Watson, New York, 08.07.16 10



Polynomial Expressibility

operator O is polynomially S-expressible if there is a polynomial f such that,

for any P = O(P1, . . . , Pn) with the Pi over S,
there is an equivalent pattern P ′ over S with |P ′| = f(|P |)

IBM TJ Watson, New York, 08.07.16 11



Polynomial Expressibility

operator O is polynomially S-expressible if there is a polynomial f such that,

for any P = O(P1, . . . , Pn) with the Pi over S,
there is an equivalent pattern P ′ over S with |P ′| = f(|P |)

So far:

• DIFF> is not S ∪ {OPTF}-expressible

• DIFFF is polynomially {FILTER, UNION, PROJ, OPTF}-expressible

• OPTF is {FILTER, UNION, OPT>}-expressible
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Polynomial Expressibility

operator O is polynomially S-expressible if there is a polynomial f such that,

for any P = O(P1, . . . , Pn) with the Pi over S,
there is an equivalent pattern P ′ over S with |P ′| = f(|P |)

So far:

• DIFF> is not S ∪ {OPTF}-expressible

• DIFFF is polynomially {FILTER, UNION, PROJ, OPTF}-expressible

• OPTF is {FILTER, UNION, OPT>}-expressible

but not polynomially (under the standard complexity-theoretic assumptions)
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Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph Ga = {(:a :a :a)}

L1 ‘JP KGa 6= ∅’ for patterns P over S∪{OPTF} of o-rank︸ ︷︷ ︸
nesting depth of OPTF

≤ n is Σp
n+1-hard
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L1 ‘JP KGa 6= ∅’ for patterns P over S∪{OPTF} of o-rank︸ ︷︷ ︸
nesting depth of OPTF

≤ n is Σp
n+1-hard

Proof by encoding QBF ∃~x1∀~x2 . . . Q~xn+1 ψ

if n is odd and Q = ∀, then φn+1 = ¬ψ and φk = ∀~xk+1 ¬φk+1, for k ≤ n
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nesting depth of OPTF
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if n is odd and Q = ∀, then φn+1 = ¬ψ and φk = ∀~xk+1 ¬φk+1, for k ≤ n

φk ≈ Pk = FILTER¬bound(?vk+1)(Bk OPTFk
Pk+1 )
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if n is odd and Q = ∀, then φn+1 = ¬ψ and φk = ∀~xk+1 ¬φk+1, for k ≤ n

φk ≈ Pk = FILTER¬bound(?vk+1)(Bk OPTFk
Pk+1 )

L2 ‘JP KGa 6= ∅’ for patterns P over S ∪ { PROJ, OPT> } is in ∆p
2

polynomial deterministic algorithm with |P |+ 1 calls to an NP-oracle (PNP)

Proof
JP1 OPT> P2KGa =

{
JP1 JOIN P2KGa, if JP2KGa 6= ∅
JP1KGa, if JP2KGa = ∅
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Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph Ga = {(:a :a :a)}
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φk ≈ Pk = FILTER¬bound(?vk+1)(Bk OPTFk
Pk+1 )

L2 ‘JP KGa 6= ∅’ for patterns P over S ∪ { PROJ, OPT> } is in ∆p
2

polynomial deterministic algorithm with |P |+ 1 calls to an NP-oracle (PNP)

Proof
JP1 OPT> P2KGa =

{
JP1 JOIN P2KGa, if JP2KGa 6= ∅
JP1KGa, if JP2KGa = ∅

checking ‘JP2KGa = ∅’ for a pattern P2 over S ∪ {PROJ} is NP-complete
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Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph Ga = {(:a :a :a)}

L1 ‘JP KGa 6= ∅’ for patterns P over S∪{OPTF} of o-rank︸ ︷︷ ︸
nesting depth of OPTF

≤ n is Σp
n+1-hard

Proof by encoding QBF ∃~x1∀~x2 . . . Q~xn+1 ψ

if n is odd and Q = ∀, then φn+1 = ¬ψ and φk = ∀~xk+1 ¬φk+1, for k ≤ n

φk ≈ Pk = FILTER¬bound(?vk+1)(Bk OPTFk
Pk+1 )

L2 ‘JP KGa 6= ∅’ for patterns P over S ∪ { PROJ, OPT> } is in ∆p
2

polynomial deterministic algorithm with |P |+ 1 calls to an NP-oracle (PNP)

Proof
JP1 OPT> P2KGa =

{
JP1 JOIN P2KGa, if JP2KGa 6= ∅
JP1KGa, if JP2KGa = ∅

checking ‘JP2KGa = ∅’ for a pattern P2 over S ∪ {PROJ} is NP-complete

L1 + L2 for P1 OPTF P2 not poly-expressible (unless ∆p
2 = Σp

2)
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Expressing Ternary OPT via Binary OPT

E1 P1 DIFFF P2 ≡ P1 SETMINUS
pattern that selects µ1 ∈ JP1KG

that have a compatible µ2 ∈ JP2KG
with Fµ1⊕µ2 = true

where JP1 SETMINUS P2KG = JP1KG \ JP2KG not the MINUS of SPARQL
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Expressing Ternary OPT via Binary OPT

E1 P1 DIFFF P2 ≡ P1 SETMINUS
pattern that selects µ1 ∈ JP1KG

that have a compatible µ2 ∈ JP2KG
with Fµ1⊕µ2 = true

where JP1 SETMINUS P2KG = JP1KG \ JP2KG not the MINUS of SPARQL

E2 P1 SETMINUS P2 ≡
ON_EMPTYP1SETMINUSP2

UNION

(P1 MONOMINUS P2) JOIN ONE UNION

pattern that uses two distinct elements
as indicators for ‘not bound’

JOIN TWO
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Expressing Ternary OPT via Binary OPT

E1 P1 DIFFF P2 ≡ P1 SETMINUS
pattern that selects µ1 ∈ JP1KG

that have a compatible µ2 ∈ JP2KG
with Fµ1⊕µ2 = true

where JP1 SETMINUS P2KG = JP1KG \ JP2KG not the MINUS of SPARQL

E2 P1 SETMINUS P2 ≡
ON_EMPTYP1SETMINUSP2

UNION

(P1 MONOMINUS P2) JOIN ONE UNION

pattern that uses two distinct elements
as indicators for ‘not bound’

JOIN TWO

polynomial
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Expressing Ternary OPT via Binary OPT

E1 P1 DIFFF P2 ≡ P1 SETMINUS
pattern that selects µ1 ∈ JP1KG

that have a compatible µ2 ∈ JP2KG
with Fµ1⊕µ2 = true

where JP1 SETMINUS P2KG = JP1KG \ JP2KG not the MINUS of SPARQL

E2 P1 SETMINUS P2 ≡
ON_EMPTYP1SETMINUSP2

UNION

(P1 MONOMINUS P2) JOIN ONE UNION

pattern that uses two distinct elements
as indicators for ‘not bound’

JOIN TWO

polynomial

polynomial
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Expressing Ternary OPT via Binary OPT

E1 P1 DIFFF P2 ≡ P1 SETMINUS
pattern that selects µ1 ∈ JP1KG

that have a compatible µ2 ∈ JP2KG
with Fµ1⊕µ2 = true

where JP1 SETMINUS P2KG = JP1KG \ JP2KG not the MINUS of SPARQL

E2 P1 SETMINUS P2 ≡
ON_EMPTYP1SETMINUSP2

UNION

(P1 MONOMINUS P2) JOIN ONE UNION

pattern that uses two distinct elements
as indicators for ‘not bound’

JOIN TWO

polynomial

polynomial

E3 if NP = CONP then,
for every pattern P1 MONOMINUS P2, with the Pi over S ∪ {PROJ}, there is
a polynomial pattern over S ∪ {PROJ} that gives the same answers

on singular graphs
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MINUS of SPARQL 1.1

not to be confused with
• MINUS of (Angles & Gutierrez, 2008)
• set-theoretic complement SETMINUS, or \

JP1 MINUS P2KG =
{
µ1 ∈ JP1KG | there is no µ2 ∈ JP2KG with

µ1 ∼ µ2 and dom(µ1) ∩ dom(µ2) 6= ∅
}

JP1 DIFFF P2KG =
{
µ1 ∈ JP1KG | there is no µ2 ∈ JP2KG with

µ1 ∼ µ2 and Fµ1⊕µ2 = true
}
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MINUS of SPARQL 1.1

not to be confused with
• MINUS of (Angles & Gutierrez, 2008)
• set-theoretic complement SETMINUS, or \

JP1 MINUS P2KG =
{
µ1 ∈ JP1KG | there is no µ2 ∈ JP2KG with

µ1 ∼ µ2 and dom(µ1) ∩ dom(µ2) 6= ∅
}

JP1 DIFFF P2KG =
{
µ1 ∈ JP1KG | there is no µ2 ∈ JP2KG with

µ1 ∼ µ2 and Fµ1⊕µ2 = true
}

Theorem MINUS is polynomially {DIFFF}- and {OPTF , FILTER}-expressible

DIFF> and OPT> are not S ∪ {PROJ, MINUS}-expressible
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S ∪ {O′}- and Sπ ∪ {O′}-expressibility of O

S = { FILTER, UNION, JOIN }
O′\O DIFFF OPTF DIFF> OPT> MINUS

DIFFF + + + +
OPTF − − + +
DIFF> ± ± + +?

OPT> − ± − +?

MINUS − − − −

Sπ = S ∪ { PROJ }
O′\O DIFFF OPTF DIFF> OPT> MINUS

DIFFF + + + +
OPTF + + + +
DIFF> ±† ±† + +?

†

OPT> ±† ±† + +?
†

MINUS − − − −

− not expressible
+ polynomially expressible
± expressible, but not polynomially if ∆p

2 6= Σp
2

+? expressible, but not known if polynomially
the results with † become + if NP = CONP
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Summary and Open Problems

• the ternary OPTIONAL in SPARQL is more complex than commonly assumed

• some widely-known SPARQL equivalences are false
or use assumptions different from SPARQL specification
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Summary and Open Problems

• the ternary OPTIONAL in SPARQL is more complex than commonly assumed

• some widely-known SPARQL equivalences are false
or use assumptions different from SPARQL specification

• stronger notion of polynomial expressibility: every pattern over S ∪ {O}
has an equivalent polynomially-sized pattern over S

P1 OPTF P2 ≡ FILTERF (P1 JOIN P2) UNION (P1 DIFFF P2)

• expressive power of NOT EXISTS

• expressiveness over non-empty RDF graphs
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Summary and Open Problems

• the ternary OPTIONAL in SPARQL is more complex than commonly assumed

• some widely-known SPARQL equivalences are false
or use assumptions different from SPARQL specification

• stronger notion of polynomial expressibility: every pattern over S ∪ {O}
has an equivalent polynomially-sized pattern over S

P1 OPTF P2 ≡ FILTERF (P1 JOIN P2) UNION (P1 DIFFF P2)

• expressive power of NOT EXISTS

• expressiveness over non-empty RDF graphs

Is SPARQL intuitive?
or is it just confusing names, e.g., OPTIONAL v LEFTJOIN?

MINUS v \
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