
On Expressibility of
Non-Monotone Operators

in SPARQL

Roman Kontchakov
Department of Computer Science and Inf. Systems, Birkbeck College, London

http://www.dcs.bbk.ac.uk/~roman

joint work with Egor V. Kostylev (University of Oxford)

http://www.dcs.bbk.ac.uk/~roman

Basic SPARQL

SPARQL query

SELECT ?d WHERE {
?d a :Department

}

Basic Graph Pattern (BGP)
(a set of triple patterns)

a = rdf:type

IBM TJ Watson, New York, 08.07.16 1

Basic SPARQL

SPARQL query

SELECT ?d WHERE {
?d a :Department

}

Basic Graph Pattern (BGP)
(a set of triple patterns)

a = rdf:type

data instance
(an RDF graph

= a set of triples)

T is the set of terms, i.e.,
IRIs and literals (integers, strings, etc.)

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS
:Davies :worksIn :CS

IBM TJ Watson, New York, 08.07.16 1

Basic SPARQL

SPARQL query

SELECT ?d WHERE {
?d a :Department

}

Basic Graph Pattern (BGP)
(a set of triple patterns)

a = rdf:type

data instance
(an RDF graph

= a set of triples)

T is the set of terms, i.e.,
IRIs and literals (integers, strings, etc.)

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS
:Davies :worksIn :CS

answer is a set of solution mappings
?d

:CS
:Maths

solution mapping µ is a partial map from

set of variables︷︸︸︷
V to T

dom(µ) is the domain of µ

JP KG =
{
µ : var(P)→ T | µ(P) ⊆ G

}
for a BGP P

IBM TJ Watson, New York, 08.07.16 1

Basic SPARQL

SPARQL query

SELECT ?d WHERE {
?d a :Department

}

Basic Graph Pattern (BGP)
(a set of triple patterns)

a = rdf:type

data instance
(an RDF graph

= a set of triples)

T is the set of terms, i.e.,
IRIs and literals (integers, strings, etc.)

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS
:Davies :worksIn :CS

answer is a set of solution mappings
?d

:CS
:Maths

solution mapping µ is a partial map from

set of variables︷︸︸︷
V to T

dom(µ) is the domain of µ

JP KG =
{
µ : var(P)→ T | µ(P) ⊆ G

}
for a BGP P

NB: we consider set semantics (SPARQL uses bag semantics, but our negative results hold)

IBM TJ Watson, New York, 08.07.16 1

Monotone SPARQL: FILTER

SELECT ?p1 ?p2 ?d WHERE {
?p1 :worksIn ?d .
?p2 :worksIn ?d
FILTER (?p1 != ?p2)

}

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS
:Davies :worksIn :CS

IBM TJ Watson, New York, 08.07.16 2

Monotone SPARQL: FILTER

SELECT ?p1 ?p2 ?d WHERE {
?p1 :worksIn ?d .
?p2 :worksIn ?d
FILTER (?p1 != ?p2)

}

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS
:Davies :worksIn :CS

a
ns

w
e

r ?p1 ?p2 ?d
µ1 :Davies :Brown :CS
µ2 :Brown :Davies :CS

JFILTERF P KG =
{
µ ∈ JP KG | F µ = true

}
filters F are Boolean combinations of ?v1 =?v2, ?v = d, etc.

IBM TJ Watson, New York, 08.07.16 2

Monotone SPARQL: FILTER

SELECT ?p1 ?p2 ?d WHERE {
?p1 :worksIn ?d .
?p2 :worksIn ?d
FILTER (?p1 != ?p2)

}

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS
:Davies :worksIn :CS

a
ns

w
e

r ?p1 ?p2 ?d
µ1 :Davies :Brown :CS
µ2 :Brown :Davies :CS

JFILTERF P KG =
{
µ ∈ JP KG | F µ = true

}
filters F are Boolean combinations of ?v1 =?v2, ?v = d, etc.

NB: slight simplification, see Effective Boolean Value in SPARQL Specification

IBM TJ Watson, New York, 08.07.16 2

Monotone SPARQL: FILTER

SELECT ?p1 ?p2 ?d WHERE {
?p1 :worksIn ?d .
?p2 :worksIn ?d
FILTER (?p1 != ?p2)

}

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS
:Davies :worksIn :CS

a
ns

w
e

r ?p1 ?p2 ?d
µ1 :Davies :Brown :CS
µ2 :Brown :Davies :CS

JFILTERF P KG =
{
µ ∈ JP KG | F µ = true

}
filters F are Boolean combinations of ?v1 =?v2, ?v = d, etc.

NB: slight simplification, see Effective Boolean Value in SPARQL Specification

NB: SPARQL uses 3-valued logic (like SQL)

IBM TJ Watson, New York, 08.07.16 2

Monotone SPARQL: UNION

SELECT ?p ?d WHERE {
{ ?p a :Prof .

?p :worksIn ?d }
UNION
{ ?p a :Prof }

}

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS
:Davies :worksIn :CS

IBM TJ Watson, New York, 08.07.16 3

Monotone SPARQL: UNION

SELECT ?p ?d WHERE {
{ ?p a :Prof .

?p :worksIn ?d }
UNION
{ ?p a :Prof }

}

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS
:Davies :worksIn :CS

a
ns

w
e

r ?p ?d
µ1 :Clarke :Maths
µ2 :Brown :CS
µ3 :Davies :CS
µ4 :Adams
µ5 :Brown
µ6 :Clarke

JP1 UNION P2KG = JP1KG ∪ JP2KG

IBM TJ Watson, New York, 08.07.16 3

Monotone SPARQL: UNION

SELECT ?p ?d WHERE {
{ ?p a :Prof .

?p :worksIn ?d }
UNION
{ ?p a :Prof }

}

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS
:Davies :worksIn :CS

a
ns

w
e

r ?p ?d
µ1 :Clarke :Maths
µ2 :Brown :CS
µ3 :Davies :CS
µ4 :Adams
µ5 :Brown
µ6 :Clarke

JP1 UNION P2KG = JP1KG ∪ JP2KG

NB: unlike in SQL, the two arguments do not have to have the same ‘schema’

IBM TJ Watson, New York, 08.07.16 3

Monotone SPARQL: UNION

SELECT ?p ?d WHERE {
{ ?p a :Prof .

?p :worksIn ?d }
UNION
{ ?p a :Prof }

}

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS
:Davies :worksIn :CS

a
ns

w
e

r ?p ?d
µ1 :Clarke :Maths
µ2 :Brown :CS
µ3 :Davies :CS
µ4 :Adams
µ5 :Brown
µ6 :Clarke

JP1 UNION P2KG = JP1KG ∪ JP2KG

NB: unlike in SQL, the two arguments do not have to have the same ‘schema’

• the ‘missing’ values are like NULL in SQL with the 3-valued logic
(?d = :CS)µ4 is ε→ false and (?d != :CS)µ4 is ε→ false

IBM TJ Watson, New York, 08.07.16 3

Monotone SPARQL: UNION

SELECT ?p ?d WHERE {
{ ?p a :Prof .

?p :worksIn ?d }
UNION
{ ?p a :Prof }

}

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS
:Davies :worksIn :CS

a
ns

w
e

r ?p ?d
µ1 :Clarke :Maths
µ2 :Brown :CS
µ3 :Davies :CS
µ4 :Adams
µ5 :Brown
µ6 :Clarke

JP1 UNION P2KG = JP1KG ∪ JP2KG

NB: unlike in SQL, the two arguments do not have to have the same ‘schema’

• the ‘missing’ values are like NULL in SQL with the 3-valued logic
(?d = :CS)µ4 is ε→ false and (?d != :CS)µ4 is ε→ false

(bound(?v))µ is true ⇔ ?v ∈ dom(µ) (similar to IS NOT NULL in SQL)

IBM TJ Watson, New York, 08.07.16 3

Monotone SPARQL: UNION

SELECT ?p ?d WHERE {
{ ?p a :Prof .

?p :worksIn ?d }
UNION
{ ?p a :Prof }

}

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS
:Davies :worksIn :CS

a
ns

w
e

r ?p ?d
µ1 :Clarke :Maths
µ2 :Brown :CS
µ3 :Davies :CS
µ4 :Adams
µ5 :Brown
µ6 :Clarke

JP1 UNION P2KG = JP1KG ∪ JP2KG

NB: unlike in SQL, the two arguments do not have to have the same ‘schema’

• the ‘missing’ values are like NULL in SQL with the 3-valued logic
(?d = :CS)µ4 is ε→ false and (?d != :CS)µ4 is ε→ false

(bound(?v))µ is true ⇔ ?v ∈ dom(µ) (similar to IS NOT NULL in SQL)

NB: the 3-valued logic it is not essential — see Zhang & Van den Bussche (2014)

IBM TJ Watson, New York, 08.07.16 3

Monotone SPARQL: JOIN

µ1 and µ2 are compatible µ1 ∼ µ2 if

µ1(?v) = µ2(?v), for all ?v ∈ dom(µ1) ∩ dom(µ2)

IBM TJ Watson, New York, 08.07.16 4

Monotone SPARQL: JOIN

µ1 and µ2 are compatible µ1 ∼ µ2 if

µ1(?v) = µ2(?v), for all ?v ∈ dom(µ1) ∩ dom(µ2)

JP1 JOIN P2KG =
{
µ1 ⊕ µ2 | µ1 ∈ JP1KG and µ2 ∈ JP2KG with µ1 ∼ µ2

}

?p ?d ?t
:Adams :Maths
:Clarke 8506

JOIN

?p ?d
:Adams
:Clarke :Maths
:Clarke :CS
:Davies :CS

=

IBM TJ Watson, New York, 08.07.16 4

Monotone SPARQL: JOIN

µ1 and µ2 are compatible µ1 ∼ µ2 if

µ1(?v) = µ2(?v), for all ?v ∈ dom(µ1) ∩ dom(µ2)

JP1 JOIN P2KG =
{
µ1 ⊕ µ2 | µ1 ∈ JP1KG and µ2 ∈ JP2KG with µ1 ∼ µ2

}

?p ?d ?t
:Adams :Maths
:Clarke 8506

JOIN

?p ?d
:Adams
:Clarke :Maths
:Clarke :CS
:Davies :CS

=

?p ?d ?t
:Adams :Maths
:Clarke :Maths 8506
:Clarke :CS 8506

IBM TJ Watson, New York, 08.07.16 4

Monotone SPARQL: JOIN

µ1 and µ2 are compatible µ1 ∼ µ2 if

µ1(?v) = µ2(?v), for all ?v ∈ dom(µ1) ∩ dom(µ2)

JP1 JOIN P2KG =
{
µ1 ⊕ µ2 | µ1 ∈ JP1KG and µ2 ∈ JP2KG with µ1 ∼ µ2

}

?p ?d ?t
:Adams :Maths
:Clarke 8506

JOIN

?p ?d
:Adams
:Clarke :Maths
:Clarke :CS
:Davies :CS

=

?p ?d ?t
:Adams :Maths
:Clarke :Maths 8506
:Clarke :CS 8506

compatibility in SQL is quite different!

?p ?d ?t
:Adams :Maths NULL
:Clarke NULL 8506

JOINDB

?p ?d
:Adams NULL
:Clarke :Maths
:Clarke :CS
:Davies :CS

=

IBM TJ Watson, New York, 08.07.16 4

Monotone SPARQL: JOIN

µ1 and µ2 are compatible µ1 ∼ µ2 if

µ1(?v) = µ2(?v), for all ?v ∈ dom(µ1) ∩ dom(µ2)

JP1 JOIN P2KG =
{
µ1 ⊕ µ2 | µ1 ∈ JP1KG and µ2 ∈ JP2KG with µ1 ∼ µ2

}

?p ?d ?t
:Adams :Maths
:Clarke 8506

JOIN

?p ?d
:Adams
:Clarke :Maths
:Clarke :CS
:Davies :CS

=

?p ?d ?t
:Adams :Maths
:Clarke :Maths 8506
:Clarke :CS 8506

compatibility in SQL is quite different!

?p ?d ?t
:Adams :Maths NULL
:Clarke NULL 8506

JOINDB

?p ?d
:Adams NULL
:Clarke :Maths
:Clarke :CS
:Davies :CS

= ?p ?d ?t

NB: careful use of COALESCE (or IF) is required, see Prud’hommeaux & Bertails (2008)
IBM TJ Watson, New York, 08.07.16 4

Monotone SPARQL: Algebraic View

uniqueµ∅ with dom(µ∅) = ∅ is compatible with any solution mapping

empty BGP {} J{}KG = {µ∅}, for any G

IBM TJ Watson, New York, 08.07.16 5

Monotone SPARQL: Algebraic View

uniqueµ∅ with dom(µ∅) = ∅ is compatible with any solution mapping

empty BGP {} J{}KG = {µ∅}, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)
1. Bags of solution mappings form a commutative semiring with operations

UNION and JOIN (∅ is the identity for UNION and {µ∅} is the identity for JOIN)

IBM TJ Watson, New York, 08.07.16 5

Monotone SPARQL: Algebraic View

uniqueµ∅ with dom(µ∅) = ∅ is compatible with any solution mapping

empty BGP {} J{}KG = {µ∅}, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)
1. Bags of solution mappings form a commutative semiring with operations

UNION and JOIN (∅ is the identity for UNION and {µ∅} is the identity for JOIN)

S1 UNION S2 = S2 UNION S1 S1 UNION (S2 JOIN S3) = (S1 UNION S2) JOIN S3

S UNION ∅ = S

S1 JOIN S2 = S2 JOIN S1 S1 JOIN (S2 JOIN S3) = (S1 JOIN S2) JOIN S3

S JOIN {µ∅} = S

S JOIN ∅ = ∅ S1 JOIN (S2 UNION S3) = (S1 JOIN S2) JOIN (S1 JOIN S3)

IBM TJ Watson, New York, 08.07.16 5

Monotone SPARQL: Algebraic View

uniqueµ∅ with dom(µ∅) = ∅ is compatible with any solution mapping

empty BGP {} J{}KG = {µ∅}, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)
1. Bags of solution mappings form a commutative semiring with operations

UNION and JOIN (∅ is the identity for UNION and {µ∅} is the identity for JOIN)

S1 UNION S2 = S2 UNION S1 S1 UNION (S2 JOIN S3) = (S1 UNION S2) JOIN S3

S UNION ∅ = S

S1 JOIN S2 = S2 JOIN S1 S1 JOIN (S2 JOIN S3) = (S1 JOIN S2) JOIN S3

S JOIN {µ∅} = S

S JOIN ∅ = ∅ S1 JOIN (S2 UNION S3) = (S1 JOIN S2) JOIN (S1 JOIN S3)

under the set semantics: S UNION S = S

IBM TJ Watson, New York, 08.07.16 5

Monotone SPARQL: Algebraic View

uniqueµ∅ with dom(µ∅) = ∅ is compatible with any solution mapping

empty BGP {} J{}KG = {µ∅}, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)
1. Bags of solution mappings form a commutative semiring with operations

UNION and JOIN (∅ is the identity for UNION and {µ∅} is the identity for JOIN)

S1 UNION S2 = S2 UNION S1 S1 UNION (S2 JOIN S3) = (S1 UNION S2) JOIN S3

S UNION ∅ = S

S1 JOIN S2 = S2 JOIN S1 S1 JOIN (S2 JOIN S3) = (S1 JOIN S2) JOIN S3

S JOIN {µ∅} = S

S JOIN ∅ = ∅ S1 JOIN (S2 UNION S3) = (S1 JOIN S2) JOIN (S1 JOIN S3)

under the set semantics: S UNION S = S S JOIN S = S

IBM TJ Watson, New York, 08.07.16 5

Monotone SPARQL: Algebraic View

uniqueµ∅ with dom(µ∅) = ∅ is compatible with any solution mapping

empty BGP {} J{}KG = {µ∅}, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)
1. Bags of solution mappings form a commutative semiring with operations

UNION and JOIN (∅ is the identity for UNION and {µ∅} is the identity for JOIN)

S1 UNION S2 = S2 UNION S1 S1 UNION (S2 JOIN S3) = (S1 UNION S2) JOIN S3

S UNION ∅ = S

S1 JOIN S2 = S2 JOIN S1 S1 JOIN (S2 JOIN S3) = (S1 JOIN S2) JOIN S3

S JOIN {µ∅} = S

S JOIN ∅ = ∅ S1 JOIN (S2 UNION S3) = (S1 JOIN S2) JOIN (S1 JOIN S3)

under the set semantics: S UNION S = S S JOIN S = S only ⊇

IBM TJ Watson, New York, 08.07.16 5

Monotone SPARQL: Algebraic View

uniqueµ∅ with dom(µ∅) = ∅ is compatible with any solution mapping

empty BGP {} J{}KG = {µ∅}, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)
1. Bags of solution mappings form a commutative semiring with operations

UNION and JOIN (∅ is the identity for UNION and {µ∅} is the identity for JOIN)

S1 UNION S2 = S2 UNION S1 S1 UNION (S2 JOIN S3) = (S1 UNION S2) JOIN S3

S UNION ∅ = S

S1 JOIN S2 = S2 JOIN S1 S1 JOIN (S2 JOIN S3) = (S1 JOIN S2) JOIN S3

S JOIN {µ∅} = S

S JOIN ∅ = ∅ S1 JOIN (S2 UNION S3) = (S1 JOIN S2) JOIN (S1 JOIN S3)

under the set semantics: S UNION S = S S JOIN S = S only ⊇

2. FILTER distributes over UNION

FILTERF (S1 UNION S2) = FILTERF S1 UNION FILTERF S2

FILTERF (S1 JOIN S2) = FILTERF S1 JOIN FILTERF S2

IBM TJ Watson, New York, 08.07.16 5

Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE {
?p a :Prof
OPTIONAL { ?p :worksIn ?d

FILTER (?d != :CS) }
}

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths

IBM TJ Watson, New York, 08.07.16 6

Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE {
?p a :Prof
OPTIONAL { ?p :worksIn ?d

FILTER (?d != :CS) }
}

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths

P1 OPTF P2 = FILTERF (P1 JOIN P2) UNION P1 DIFFF P2︷ ︸︸ ︷
‘P1 that have a compatible P2 with F ’︷ ︸︸ ︷

‘P1 that have no compatible P2 with F ’

IBM TJ Watson, New York, 08.07.16 6

Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE {
?p a :Prof
OPTIONAL { ?p :worksIn ?d

FILTER (?d != :CS) }
}

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths

P1 OPTF P2 = FILTERF (P1 JOIN P2) UNION P1 DIFFF P2︷ ︸︸ ︷
‘P1 that have a compatible P2 with F ’︷ ︸︸ ︷

‘P1 that have no compatible P2 with F ’

JP1 DIFFF P2KG =
{
µ1 ∈ JP1KG | there is no µ2 ∈ JP2KG with

µ1 ∼ µ2 and F µ1⊕µ2 = true
}

IBM TJ Watson, New York, 08.07.16 6

Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE {
?p a :Prof
OPTIONAL { ?p :worksIn ?d

FILTER (?d != :CS) }
}

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths

P1 OPTF P2 = FILTERF (P1 JOIN P2) UNION P1 DIFFF P2︷ ︸︸ ︷
‘P1 that have a compatible P2 with F ’︷ ︸︸ ︷

‘P1 that have no compatible P2 with F ’

JP1 DIFFF P2KG =
{
µ1 ∈ JP1KG | there is no µ2 ∈ JP2KG with

µ1 ∼ µ2 and F µ1⊕µ2 = true
}

a
ns

w
e

r ?p ?d
µ1 :Adams
µ2 :Clarke :Maths
µ3 :Brown

IBM TJ Watson, New York, 08.07.16 6

Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE {
?p a :Prof
OPTIONAL { ?p :worksIn ?d

FILTER (?d != :CS) }
}

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths

P1 OPTF P2 = FILTERF (P1 JOIN P2) UNION P1 DIFFF P2︷ ︸︸ ︷
‘P1 that have a compatible P2 with F ’︷ ︸︸ ︷

‘P1 that have no compatible P2 with F ’

JP1 DIFFF P2KG =
{
µ1 ∈ JP1KG | there is no µ2 ∈ JP2KG with

µ1 ∼ µ2 and F µ1⊕µ2 = true
}

a
ns

w
e

r ?p ?d
µ1 :Adams
µ2 :Clarke :Maths
µ3 :Brown

NB: SPARQL 1.1 specification incorrectly says ‘Written in full that is:

JP1 OPTF P2KG =
{
µ1 ⊕ µ2 | µ1 ∈ JP1KG, µ2 ∈ JP2KG and Fµ1⊕µ2 = true

}
∪
{
µ1 ∈ JP1KG | µ1 6∼ µ2, for all µ2 ∈ JP2KG, or JP2KG = ∅

}
∪
{
µ1 ∈ JP1KG | there is µ2 ∈ JP2KG with µ1 ∼ µ2 and Fµ1⊕µ2 = false

}
IBM TJ Watson, New York, 08.07.16 6

Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE {
?p a :Prof
OPTIONAL { ?p :worksIn ?d

FILTER (?d != :CS) }
}

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths

P1 OPTF P2 = FILTERF (P1 JOIN P2) UNION P1 DIFFF P2︷ ︸︸ ︷
‘P1 that have a compatible P2 with F ’︷ ︸︸ ︷

‘P1 that have no compatible P2 with F ’

JP1 DIFFF P2KG =
{
µ1 ∈ JP1KG | there is no µ2 ∈ JP2KG with

µ1 ∼ µ2 and F µ1⊕µ2 = true
}

a
ns

w
e

r ?p ?d
µ1 :Adams
µ2 :Clarke :Maths
µ3 :Brown

NB: SPARQL 1.1 specification incorrectly says ‘Written in full that is:

JP1 OPTF P2KG =
{
µ1 ⊕ µ2 | µ1 ∈ JP1KG, µ2 ∈ JP2KG and Fµ1⊕µ2 = true

}
∪
{
µ1 ∈ JP1KG | µ1 6∼ µ2, for all µ2 ∈ JP2KG, or JP2KG = ∅

}
∪
{
µ1 ∈ JP1KG | there is µ2 ∈ JP2KG with µ1 ∼ µ2 and Fµ1⊕µ2 = false

}
IBM TJ Watson, New York, 08.07.16 6

Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE {
?p a :Prof
OPTIONAL { ?p :worksIn ?d

FILTER (?d != :CS) }
}

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths

P1 OPTF P2 = FILTERF (P1 JOIN P2) UNION P1 DIFFF P2︷ ︸︸ ︷
‘P1 that have a compatible P2 with F ’︷ ︸︸ ︷

‘P1 that have no compatible P2 with F ’

JP1 DIFFF P2KG =
{
µ1 ∈ JP1KG | there is no µ2 ∈ JP2KG with

µ1 ∼ µ2 and F µ1⊕µ2 = true
}

a
ns

w
e

r ?p ?d
µ1 :Adams
µ2 :Clarke :Maths
µ3 :Brown

NB: SPARQL 1.1 specification incorrectly says ‘Written in full that is:

JP1 OPTF P2KG =
{
µ1 ⊕ µ2 | µ1 ∈ JP1KG, µ2 ∈ JP2KG and Fµ1⊕µ2 = true

}
∪
{
µ1 ∈ JP1KG | µ1 6∼ µ2, for all µ2 ∈ JP2KG, or JP2KG = ∅

}
∪
{
µ1 ∈ JP1KG | there is µ2 ∈ JP2KG with µ1 ∼ µ2 and Fµ1⊕µ2 = false

}
IBM TJ Watson, New York, 08.07.16 6

On DIFF and OPT (1)

equivalent patterns P1 ≡ P2 ⇐⇒ JP1KG = JP2KG, for all G

IBM TJ Watson, New York, 08.07.16 7

On DIFF and OPT (1)

equivalent patterns P1 ≡ P2 ⇐⇒ JP1KG = JP2KG, for all G

Angles & Gutierrez (2008)

P1 DIFF> P2 ≡ FILTER¬bound(?u)(P1 OPT> (P2 JOIN {?u ?v ?w}))

IBM TJ Watson, New York, 08.07.16 7

On DIFF and OPT (1)

equivalent patterns P1 ≡ P2 ⇐⇒ JP1KG = JP2KG, for all G

Angles & Gutierrez (2008)

P1 DIFF> P2 ≡ FILTER¬bound(?u)(P1 OPT> (P2 JOIN {?u ?v ?w}))

‘universal’ triple pattern
‘always’ gives a binding for ?u

IBM TJ Watson, New York, 08.07.16 7

On DIFF and OPT (1)

equivalent patterns P1 ≡ P2 ⇐⇒ JP1KG = JP2KG, for all G

Angles & Gutierrez (2008)

P1 DIFF> P2 ≡ FILTER¬bound(?u)(P1 OPT> (P2 JOIN {?u ?v ?w}))

‘universal’ triple pattern
‘always’ gives a binding for ?u

is not quite correct: if P1 = P2 = {} and G = ∅, then JPiKG = {µ∅}

IBM TJ Watson, New York, 08.07.16 7

On DIFF and OPT (1)

equivalent patterns P1 ≡ P2 ⇐⇒ JP1KG = JP2KG, for all G

Angles & Gutierrez (2008)

P1 DIFF> P2 ≡ FILTER¬bound(?u)(P1 OPT> (P2 JOIN {?u ?v ?w}))

‘universal’ triple pattern
‘always’ gives a binding for ?u

is not quite correct: if P1 = P2 = {} and G = ∅, then JPiKG = {µ∅}

so, JP1 DIFF> P2KG = ∅ (as µ∅ is compatible with µ∅)

but J{?u ?v ?w}KG = ∅ and so, JP1 OPTF . . .KG = {µ∅}

IBM TJ Watson, New York, 08.07.16 7

On DIFF and OPT (1)

equivalent patterns P1 ≡ P2 ⇐⇒ JP1KG = JP2KG, for all G

Angles & Gutierrez (2008)

P1 DIFF> P2 ≡ FILTER¬bound(?u)(P1 OPT> (P2 JOIN {?u ?v ?w}))

‘universal’ triple pattern
‘always’ gives a binding for ?u

is not quite correct: if P1 = P2 = {} and G = ∅, then JPiKG = {µ∅}

so, JP1 DIFF> P2KG = ∅ (as µ∅ is compatible with µ∅)

but J{?u ?v ?w}KG = ∅ and so, JP1 OPTF . . .KG = {µ∅}

Polleres (2009): a fix that avoids the problem
by effectively making the dataset non-empty (GRAPH operation)

IBM TJ Watson, New York, 08.07.16 7

On DIFF and OPT (2)

S is a set of SPARQL operators e.g., S = { FILTER, UNION, JOIN }
operator O is S-expressible if,

for any pattern over S ∪ {O}, there is an equivalent pattern over S

IBM TJ Watson, New York, 08.07.16 8

On DIFF and OPT (2)

S is a set of SPARQL operators e.g., S = { FILTER, UNION, JOIN }
operator O is S-expressible if,

for any pattern over S ∪ {O}, there is an equivalent pattern over S

Zhang & Van den Bussche (2014) JOIN is {FILTER, OPT>}-expressible;
all other operators in the set { JOIN, UNION, OPT>, FILTER, PROJ }

are not expressible via the rest.

proof idea: P1 JOIN P2 ≡ (P1 OPT> P2) DIFF> (P1 DIFF> P2)

and then DIFF> carefully via FILTER and OPT>

IBM TJ Watson, New York, 08.07.16 8

On DIFF and OPT (2)

S is a set of SPARQL operators e.g., S = { FILTER, UNION, JOIN }
operator O is S-expressible if,

for any pattern over S ∪ {O}, there is an equivalent pattern over S

Zhang & Van den Bussche (2014) JOIN is {FILTER, OPT>}-expressible;
all other operators in the set { JOIN, UNION, OPT>, FILTER, PROJ }

are not expressible via the rest.

proof idea: P1 JOIN P2 ≡ (P1 OPT> P2) DIFF> (P1 DIFF> P2)

and then DIFF> carefully via FILTER and OPT>

Theorem DIFF> is not S ∪ {OPTF}-expressible

proof idea: P over S ∪ {OPTF} =⇒ if µ∅ ∈ JP KG then µ∅ ∈ JP K∅

IBM TJ Watson, New York, 08.07.16 8

On DIFF and OPT (2)

S is a set of SPARQL operators e.g., S = { FILTER, UNION, JOIN }
operator O is S-expressible if,

for any pattern over S ∪ {O}, there is an equivalent pattern over S

Zhang & Van den Bussche (2014) JOIN is {FILTER, OPT>}-expressible;
all other operators in the set { JOIN, UNION, OPT>, FILTER, PROJ }

are not expressible via the rest.

proof idea: P1 JOIN P2 ≡ (P1 OPT> P2) DIFF> (P1 DIFF> P2)

and then DIFF> carefully via FILTER and OPT>

Theorem DIFF> is not S ∪ {OPTF}-expressible

proof idea: P over S ∪ {OPTF} =⇒ if µ∅ ∈ JP KG then µ∅ ∈ JP K∅

P = {} DIFF> FILTER¬bound(?u)({} OPT> {?u ?v ?w})

JP K∅ = ∅ but JP KG = {µ∅}, for any G 6= ∅

IBM TJ Watson, New York, 08.07.16 8

Projection in SPARQL. On DIFF and OPT (3)

SELECT ?p WHERE {
?p :worksIn ?d

}
?d is projected away

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths
:Davies :worksIn :CS

IBM TJ Watson, New York, 08.07.16 9

Projection in SPARQL. On DIFF and OPT (3)

SELECT ?p WHERE {
?p :worksIn ?d

}
?d is projected away

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths
:Davies :worksIn :CS

a
ns

w
e

r ?p
:Brown
:Clarke
:Davies

JPROJV P KG =
{
µ|V | µ ∈ JP KG

}
where µ|V is the restriction of µ to V

IBM TJ Watson, New York, 08.07.16 9

Projection in SPARQL. On DIFF and OPT (3)

SELECT ?p WHERE {
?p :worksIn ?d

}
?d is projected away

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths
:Davies :worksIn :CS

a
ns

w
e

r ?p
:Brown
:Clarke
:Davies

JPROJV P KG =
{
µ|V | µ ∈ JP KG

}
where µ|V is the restriction of µ to V

NB: projection in SPARQL is only at the top level
however, PROJ can always be pushed up (by careful variable renaming)

IBM TJ Watson, New York, 08.07.16 9

Projection in SPARQL. On DIFF and OPT (3)

SELECT ?p WHERE {
?p :worksIn ?d

}
?d is projected away

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths
:Davies :worksIn :CS

a
ns

w
e

r ?p
:Brown
:Clarke
:Davies

JPROJV P KG =
{
µ|V | µ ∈ JP KG

}
where µ|V is the restriction of µ to V

NB: projection in SPARQL is only at the top level
however, PROJ can always be pushed up (by careful variable renaming)

Theorem DIFFF is {FILTER, UNION, PROJ, OPTF}-expressible

IBM TJ Watson, New York, 08.07.16 9

Projection in SPARQL. On DIFF and OPT (3)

SELECT ?p WHERE {
?p :worksIn ?d

}
?d is projected away

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths
:Davies :worksIn :CS

a
ns

w
e

r ?p
:Brown
:Clarke
:Davies

JPROJV P KG =
{
µ|V | µ ∈ JP KG

}
where µ|V is the restriction of µ to V

NB: projection in SPARQL is only at the top level
however, PROJ can always be pushed up (by careful variable renaming)

Theorem DIFFF is {FILTER, UNION, PROJ, OPTF}-expressible

P1 DIFFF P2 ≡ ON_EMPTYP1DIFFFP2
UNION

PROJvar(P1) FILTER¬bound(?u2)

(
(P1 JOIN {?u1 ?v1 ?w1}) OPTF

(P2 JOIN {?u2 ?v2 ?w2})
)

IBM TJ Watson, New York, 08.07.16 9

Projection in SPARQL. On DIFF and OPT (3)

SELECT ?p WHERE {
?p :worksIn ?d

}
?d is projected away

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS
:Clarke :worksIn :Maths
:Davies :worksIn :CS

a
ns

w
e

r ?p
:Brown
:Clarke
:Davies

JPROJV P KG =
{
µ|V | µ ∈ JP KG

}
where µ|V is the restriction of µ to V

NB: projection in SPARQL is only at the top level
however, PROJ can always be pushed up (by careful variable renaming)

Theorem DIFFF is {FILTER, UNION, PROJ, OPTF}-expressible

P1 DIFFF P2 ≡ ON_EMPTYP1DIFFFP2
UNION

PROJvar(P1) FILTER¬bound(?u2)

(
(P1 JOIN {?u1 ?v1 ?w1}) OPTF

(P2 JOIN {?u2 ?v2 ?w2})
)

P1 DIFFF P2 on the empty graph

IBM TJ Watson, New York, 08.07.16 9

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)

IBM TJ Watson, New York, 08.07.16 10

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
JP1KG
?u ?v
:a :b
:a

JP2KG
?u ?w
:a :c

F = bound(?v)

IBM TJ Watson, New York, 08.07.16 10

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
JP1KG
?u ?v
:a :b
:a

JP2KG
?u ?w
:a :c

F = bound(?v)

JP1 OPTF P2KG
?u ?v ?w
:a :b :c
:a

IBM TJ Watson, New York, 08.07.16 10

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
JP1KG
?u ?v
:a :b
:a

JP2KG
?u ?w
:a :c

F = bound(?v)

JP1 OPTF P2KG
?u ?v ?w
:a :b :c
:a

JP1 JOIN P2KG
?u ?v ?w
:a :b :c
:a :c

IBM TJ Watson, New York, 08.07.16 10

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
JP1KG
?u ?v
:a :b
:a

JP2KG
?u ?w
:a :c

F = bound(?v)

JP1 OPTF P2KG
?u ?v ?w
:a :b :c
:a

JP1 JOIN P2KG
?u ?v ?w
:a :b :c
:a :c

6=
JP1 OPT> . . .KG
?u ?v ?w
:a :b :c

IBM TJ Watson, New York, 08.07.16 10

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
JP1KG
?u ?v
:a :b
:a

JP2KG
?u ?w
:a :c

F = bound(?v)

JP1 OPTF P2KG
?u ?v ?w
:a :b :c
:a

JP1 JOIN P2KG
?u ?v ?w
:a :b :c
:a :c

6=
JP1 OPT> . . .KG
?u ?v ?w
:a :b :c

Theorem OPTF is {FILTER, UNION, OPT>}-expressible

IBM TJ Watson, New York, 08.07.16 10

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
JP1KG
?u ?v
:a :b
:a

JP2KG
?u ?w
:a :c

F = bound(?v)

JP1 OPTF P2KG
?u ?v ?w
:a :b :c
:a

JP1 JOIN P2KG
?u ?v ?w
:a :b :c
:a :c

6=
JP1 OPT> . . .KG
?u ?v ?w
:a :b :c

Theorem OPTF is {FILTER, UNION, OPT>}-expressible

P1 OPTF P2 ≡ UNION
V⊆var(P1)∩var(P2)

[
(FILTERFV

P1) OPT> FILTERF ((FILTERFV
P1) JOIN P2)

]
FV selects the V -uniform slice ofP1: FV =

∧
?v∈V

bound(?v) ∧
∧

?v∈(var(P1)∩var(P2))\V

¬bound(?v)

horizontal decomposition in DBs

IBM TJ Watson, New York, 08.07.16 10

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

P1 OPTF P2 ≡ P1 OPT> FILTERF (P1 JOIN P2)
JP1KG
?u ?v
:a :b
:a

JP2KG
?u ?w
:a :c

F = bound(?v)

JP1 OPTF P2KG
?u ?v ?w
:a :b :c
:a

JP1 JOIN P2KG
?u ?v ?w
:a :b :c
:a :c

6=
JP1 OPT> . . .KG
?u ?v ?w
:a :b :c

Theorem OPTF is {FILTER, UNION, OPT>}-expressible

P1 OPTF P2 ≡ UNION
V⊆var(P1)∩var(P2)

[
(FILTERFV

P1) OPT> FILTERF ((FILTERFV
P1) JOIN P2)

]
FV selects the V -uniform slice ofP1: FV =

∧
?v∈V

bound(?v) ∧
∧

?v∈(var(P1)∩var(P2))\V

¬bound(?v)

horizontal decomposition in DBs

the UNION is exponential. . . is it unavoidable?
IBM TJ Watson, New York, 08.07.16 10

Polynomial Expressibility

operator O is polynomially S-expressible if there is a polynomial f such that,

for any P = O(P1, . . . , Pn) with the Pi over S,
there is an equivalent pattern P ′ over S with |P ′| = f(|P |)

IBM TJ Watson, New York, 08.07.16 11

Polynomial Expressibility

operator O is polynomially S-expressible if there is a polynomial f such that,

for any P = O(P1, . . . , Pn) with the Pi over S,
there is an equivalent pattern P ′ over S with |P ′| = f(|P |)

So far:

• DIFF> is not S ∪ {OPTF}-expressible

• DIFFF is polynomially {FILTER, UNION, PROJ, OPTF}-expressible

• OPTF is {FILTER, UNION, OPT>}-expressible

IBM TJ Watson, New York, 08.07.16 11

Polynomial Expressibility

operator O is polynomially S-expressible if there is a polynomial f such that,

for any P = O(P1, . . . , Pn) with the Pi over S,
there is an equivalent pattern P ′ over S with |P ′| = f(|P |)

So far:

• DIFF> is not S ∪ {OPTF}-expressible

• DIFFF is polynomially {FILTER, UNION, PROJ, OPTF}-expressible

• OPTF is {FILTER, UNION, OPT>}-expressible

but not polynomially (under the standard complexity-theoretic assumptions)

IBM TJ Watson, New York, 08.07.16 11

Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph Ga = {(:a :a :a)}

L1 ‘JP KGa 6= ∅’ for patterns P over S∪{OPTF} of o-rank︸ ︷︷ ︸
nesting depth of OPTF

≤ n is Σp
n+1-hard

IBM TJ Watson, New York, 08.07.16 12

Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph Ga = {(:a :a :a)}

L1 ‘JP KGa 6= ∅’ for patterns P over S∪{OPTF} of o-rank︸ ︷︷ ︸
nesting depth of OPTF

≤ n is Σp
n+1-hard

Proof by encoding QBF ∃~x1∀~x2 . . . Q~xn+1 ψ

if n is odd and Q = ∀, then φn+1 = ¬ψ and φk = ∀~xk+1 ¬φk+1, for k ≤ n

IBM TJ Watson, New York, 08.07.16 12

Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph Ga = {(:a :a :a)}

L1 ‘JP KGa 6= ∅’ for patterns P over S∪{OPTF} of o-rank︸ ︷︷ ︸
nesting depth of OPTF

≤ n is Σp
n+1-hard

Proof by encoding QBF ∃~x1∀~x2 . . . Q~xn+1 ψ

if n is odd and Q = ∀, then φn+1 = ¬ψ and φk = ∀~xk+1 ¬φk+1, for k ≤ n

φk ≈ Pk = FILTER¬bound(?vk+1)(Bk OPTFk
Pk+1)

IBM TJ Watson, New York, 08.07.16 12

Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph Ga = {(:a :a :a)}

L1 ‘JP KGa 6= ∅’ for patterns P over S∪{OPTF} of o-rank︸ ︷︷ ︸
nesting depth of OPTF

≤ n is Σp
n+1-hard

Proof by encoding QBF ∃~x1∀~x2 . . . Q~xn+1 ψ

if n is odd and Q = ∀, then φn+1 = ¬ψ and φk = ∀~xk+1 ¬φk+1, for k ≤ n

φk ≈ Pk = FILTER¬bound(?vk+1)(Bk OPTFk
Pk+1)

L2 ‘JP KGa 6= ∅’ for patterns P over S ∪ { PROJ, OPT> } is in ∆p
2

polynomial deterministic algorithm with |P |+ 1 calls to an NP-oracle (PNP)

IBM TJ Watson, New York, 08.07.16 12

Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph Ga = {(:a :a :a)}

L1 ‘JP KGa 6= ∅’ for patterns P over S∪{OPTF} of o-rank︸ ︷︷ ︸
nesting depth of OPTF

≤ n is Σp
n+1-hard

Proof by encoding QBF ∃~x1∀~x2 . . . Q~xn+1 ψ

if n is odd and Q = ∀, then φn+1 = ¬ψ and φk = ∀~xk+1 ¬φk+1, for k ≤ n

φk ≈ Pk = FILTER¬bound(?vk+1)(Bk OPTFk
Pk+1)

L2 ‘JP KGa 6= ∅’ for patterns P over S ∪ { PROJ, OPT> } is in ∆p
2

polynomial deterministic algorithm with |P |+ 1 calls to an NP-oracle (PNP)

Proof
JP1 OPT> P2KGa =

{
JP1 JOIN P2KGa, if JP2KGa 6= ∅
JP1KGa, if JP2KGa = ∅

IBM TJ Watson, New York, 08.07.16 12

Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph Ga = {(:a :a :a)}

L1 ‘JP KGa 6= ∅’ for patterns P over S∪{OPTF} of o-rank︸ ︷︷ ︸
nesting depth of OPTF

≤ n is Σp
n+1-hard

Proof by encoding QBF ∃~x1∀~x2 . . . Q~xn+1 ψ

if n is odd and Q = ∀, then φn+1 = ¬ψ and φk = ∀~xk+1 ¬φk+1, for k ≤ n

φk ≈ Pk = FILTER¬bound(?vk+1)(Bk OPTFk
Pk+1)

L2 ‘JP KGa 6= ∅’ for patterns P over S ∪ { PROJ, OPT> } is in ∆p
2

polynomial deterministic algorithm with |P |+ 1 calls to an NP-oracle (PNP)

Proof
JP1 OPT> P2KGa =

{
JP1 JOIN P2KGa, if JP2KGa 6= ∅
JP1KGa, if JP2KGa = ∅

checking ‘JP2KGa = ∅’ for a pattern P2 over S ∪ {PROJ} is NP-complete

IBM TJ Watson, New York, 08.07.16 12

Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph Ga = {(:a :a :a)}

L1 ‘JP KGa 6= ∅’ for patterns P over S∪{OPTF} of o-rank︸ ︷︷ ︸
nesting depth of OPTF

≤ n is Σp
n+1-hard

Proof by encoding QBF ∃~x1∀~x2 . . . Q~xn+1 ψ

if n is odd and Q = ∀, then φn+1 = ¬ψ and φk = ∀~xk+1 ¬φk+1, for k ≤ n

φk ≈ Pk = FILTER¬bound(?vk+1)(Bk OPTFk
Pk+1)

L2 ‘JP KGa 6= ∅’ for patterns P over S ∪ { PROJ, OPT> } is in ∆p
2

polynomial deterministic algorithm with |P |+ 1 calls to an NP-oracle (PNP)

Proof
JP1 OPT> P2KGa =

{
JP1 JOIN P2KGa, if JP2KGa 6= ∅
JP1KGa, if JP2KGa = ∅

checking ‘JP2KGa = ∅’ for a pattern P2 over S ∪ {PROJ} is NP-complete

L1 + L2 for P1 OPTF P2 not poly-expressible (unless ∆p
2 = Σp

2)

IBM TJ Watson, New York, 08.07.16 12

Expressing Ternary OPT via Binary OPT

E1 P1 DIFFF P2 ≡ P1 SETMINUS
pattern that selects µ1 ∈ JP1KG

that have a compatible µ2 ∈ JP2KG
with Fµ1⊕µ2 = true

where JP1 SETMINUS P2KG = JP1KG \ JP2KG not the MINUS of SPARQL

IBM TJ Watson, New York, 08.07.16 13

Expressing Ternary OPT via Binary OPT

E1 P1 DIFFF P2 ≡ P1 SETMINUS
pattern that selects µ1 ∈ JP1KG

that have a compatible µ2 ∈ JP2KG
with Fµ1⊕µ2 = true

where JP1 SETMINUS P2KG = JP1KG \ JP2KG not the MINUS of SPARQL

E2 P1 SETMINUS P2 ≡
ON_EMPTYP1SETMINUSP2

UNION

(P1 MONOMINUS P2) JOIN ONE UNION

pattern that uses two distinct elements
as indicators for ‘not bound’

JOIN TWO

IBM TJ Watson, New York, 08.07.16 13

Expressing Ternary OPT via Binary OPT

E1 P1 DIFFF P2 ≡ P1 SETMINUS
pattern that selects µ1 ∈ JP1KG

that have a compatible µ2 ∈ JP2KG
with Fµ1⊕µ2 = true

where JP1 SETMINUS P2KG = JP1KG \ JP2KG not the MINUS of SPARQL

E2 P1 SETMINUS P2 ≡
ON_EMPTYP1SETMINUSP2

UNION

(P1 MONOMINUS P2) JOIN ONE UNION

pattern that uses two distinct elements
as indicators for ‘not bound’

JOIN TWO

polynomial

IBM TJ Watson, New York, 08.07.16 13

Expressing Ternary OPT via Binary OPT

E1 P1 DIFFF P2 ≡ P1 SETMINUS
pattern that selects µ1 ∈ JP1KG

that have a compatible µ2 ∈ JP2KG
with Fµ1⊕µ2 = true

where JP1 SETMINUS P2KG = JP1KG \ JP2KG not the MINUS of SPARQL

E2 P1 SETMINUS P2 ≡
ON_EMPTYP1SETMINUSP2

UNION

(P1 MONOMINUS P2) JOIN ONE UNION

pattern that uses two distinct elements
as indicators for ‘not bound’

JOIN TWO

polynomial

polynomial

IBM TJ Watson, New York, 08.07.16 13

Expressing Ternary OPT via Binary OPT

E1 P1 DIFFF P2 ≡ P1 SETMINUS
pattern that selects µ1 ∈ JP1KG

that have a compatible µ2 ∈ JP2KG
with Fµ1⊕µ2 = true

where JP1 SETMINUS P2KG = JP1KG \ JP2KG not the MINUS of SPARQL

E2 P1 SETMINUS P2 ≡
ON_EMPTYP1SETMINUSP2

UNION

(P1 MONOMINUS P2) JOIN ONE UNION

pattern that uses two distinct elements
as indicators for ‘not bound’

JOIN TWO

polynomial

polynomial

E3 if NP = CONP then,
for every pattern P1 MONOMINUS P2, with the Pi over S ∪ {PROJ}, there is
a polynomial pattern over S ∪ {PROJ} that gives the same answers

on singular graphs

IBM TJ Watson, New York, 08.07.16 13

MINUS of SPARQL 1.1

not to be confused with
• MINUS of (Angles & Gutierrez, 2008)
• set-theoretic complement SETMINUS, or \

JP1 MINUS P2KG =
{
µ1 ∈ JP1KG | there is no µ2 ∈ JP2KG with

µ1 ∼ µ2 and dom(µ1) ∩ dom(µ2) 6= ∅
}

JP1 DIFFF P2KG =
{
µ1 ∈ JP1KG | there is no µ2 ∈ JP2KG with

µ1 ∼ µ2 and Fµ1⊕µ2 = true
}

IBM TJ Watson, New York, 08.07.16 14

MINUS of SPARQL 1.1

not to be confused with
• MINUS of (Angles & Gutierrez, 2008)
• set-theoretic complement SETMINUS, or \

JP1 MINUS P2KG =
{
µ1 ∈ JP1KG | there is no µ2 ∈ JP2KG with

µ1 ∼ µ2 and dom(µ1) ∩ dom(µ2) 6= ∅
}

JP1 DIFFF P2KG =
{
µ1 ∈ JP1KG | there is no µ2 ∈ JP2KG with

µ1 ∼ µ2 and Fµ1⊕µ2 = true
}

Theorem MINUS is polynomially {DIFFF}- and {OPTF , FILTER}-expressible

DIFF> and OPT> are not S ∪ {PROJ, MINUS}-expressible

IBM TJ Watson, New York, 08.07.16 14

S ∪ {O′}- and Sπ ∪ {O′}-expressibility of O

S = { FILTER, UNION, JOIN }
O′\O DIFFF OPTF DIFF> OPT> MINUS

DIFFF + + + +
OPTF − − + +
DIFF> ± ± + +?

OPT> − ± − +?

MINUS − − − −

Sπ = S ∪ { PROJ }
O′\O DIFFF OPTF DIFF> OPT> MINUS

DIFFF + + + +
OPTF + + + +
DIFF> ±† ±† + +?

†

OPT> ±† ±† + +?
†

MINUS − − − −

− not expressible
+ polynomially expressible
± expressible, but not polynomially if ∆p

2 6= Σp
2

+? expressible, but not known if polynomially
the results with † become + if NP = CONP

IBM TJ Watson, New York, 08.07.16 15

Summary and Open Problems

• the ternary OPTIONAL in SPARQL is more complex than commonly assumed

• some widely-known SPARQL equivalences are false
or use assumptions different from SPARQL specification

IBM TJ Watson, New York, 08.07.16 16

Summary and Open Problems

• the ternary OPTIONAL in SPARQL is more complex than commonly assumed

• some widely-known SPARQL equivalences are false
or use assumptions different from SPARQL specification

• stronger notion of polynomial expressibility: every pattern over S ∪ {O}
has an equivalent polynomially-sized pattern over S

P1 OPTF P2 ≡ FILTERF (P1 JOIN P2) UNION (P1 DIFFF P2)

• expressive power of NOT EXISTS

• expressiveness over non-empty RDF graphs

IBM TJ Watson, New York, 08.07.16 16

Summary and Open Problems

• the ternary OPTIONAL in SPARQL is more complex than commonly assumed

• some widely-known SPARQL equivalences are false
or use assumptions different from SPARQL specification

• stronger notion of polynomial expressibility: every pattern over S ∪ {O}
has an equivalent polynomially-sized pattern over S

P1 OPTF P2 ≡ FILTERF (P1 JOIN P2) UNION (P1 DIFFF P2)

• expressive power of NOT EXISTS

• expressiveness over non-empty RDF graphs

Is SPARQL intuitive?
or is it just confusing names, e.g., OPTIONAL v LEFTJOIN?

MINUS v \
IBM TJ Watson, New York, 08.07.16 16

