On Expressibility of Non-Monotone Operators in SPARQL

Roman Kontchakov

Department of Computer Science and Inf. Systems, Birkbeck College, London

http://www.dcs.bbk.ac.uk/~roman

joint work with Egor V. Kostylev (University of Oxford)

SPARQL query

Basic Graph Pattern (BGP) (a set of triple patterns)

SPARQL query

SELECT ?d WHERE { ?d a :Department } a = rdf:type

data instance

(an RDF graph

= a set of triples)

T is the set of **terms**, i.e.,

IRIs and literals (integers, strings, etc.)

Basic Graph Pattern (BGP) (a set of triple patterns)

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

SPARQL query

data instance

(an RDF graph

```
= a set of triples)
```

T is the set of **terms**, i.e., IRIs and literals (integers, strings, etc.) Basic Graph Pattern (BGP) (a set of triple patterns)

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

answer is a set of solution mappingsset of variables?dsolution mapping
$$\mu$$
 is a partial map from \mathbf{V} to \mathbf{T} :CS:Mathsdom(μ) is the domain of μ

 $\llbracket P \rrbracket_G = ig\{ \mu \colon ext{Var}(P) o \mathsf{T} \mid \mu(P) \subseteq G ig\}$ for a BGP P

SPARQL query

data instance

(an RDF graph

= a set of triples)

T is the set of **terms**, i.e., IRIs and literals (integers, strings, etc.) Basic Graph Pattern (BGP) (a set of triple patterns)

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

 $\llbracket P \rrbracket_G = \left\{ \, \mu \colon \mathsf{Var}(P) o \mathsf{T} \mid \mu(P) \subseteq G \, \right\} \quad ext{for a BGP } P$

NB: we consider set semantics (SPARQL uses bag semantics, but our negative results hold)

```
SELECT ?p1 ?p2 ?d WHERE {
    ?p1 :worksIn ?d .
    ?p2 :worksIn ?d
    FILTER (?p1 != ?p2)
}
```

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

SELECI	?p1	?p2	?d	WHERE	{
?p1	:work	csIn	?d	•	
?p2	:worł	csIn	?d		
FILT	'ER (?	?p1 !	= 3	?p2)	
}					
FILT	'ER (?	?p1 !	= 7	?p2)	

er		?p1	?p2	?d
SV	μ_1	:Davies	:Brown	:CS
Ö	μ_2	:Brown	:Davies	:CS

:CS	a	:Department
:Maths	a	:Department
:Adams	а	:Prof
:Brown	а	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$$\llbracket extsf{Filter}_F P
rbracket_G = ig\{ \mu \in \llbracket P
rbracket_G \mid F^\mu = extsf{frue} ig\}$$

filters F are Boolean combinations of

$$?v_1=?v_2$$
, $?v=d$, etc.

SEI	LECT	?p1	?p2	?d	WHERE	{
-	?p1	:worl	ksIn	?d	•	
1	?p2	:wor]	ksIn	?d		
E	TLT	ER (p1 !	= 1	?p2)	
}						

er		?p1	?p2	?d
SV	μ_1	:Davies	:Brown	:CS
Ö	μ_2	:Brown	:Davies	:CS

:CS	a	:Department
:Maths	a	:Department
:Adams	а	:Prof
:Brown	а	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$$\llbracket extsf{Filter}_F P
rbracket_G = ig\{ \mu \in \llbracket P
rbracket_G \mid F^\mu = extsf{frue} ig\}$$

filters F are **Boolean combinations** of $v_1 = v_2$, $v_2 = d$, etc.

NB: slight simplification, see Effective Boolean Value in SPARQL Specification

SELECT ?	p1 ?p2	?d WHI	ERE {
?p1 :w	orksIn	?d .	
?p2 :w	orksIn	?d	
FILTER	(?p1 !	= ?p2)	1
}			

er		?p1	?p2	?d
SV	μ_1	:Davies	:Brown	:CS
Ö	μ_2	:Brown	:Davies	:CS

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	а	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$$\llbracket extsf{FILTER}_F P
rbracket_G = ig\{ \mu \in \llbracket P
rbracket_G \mid F^\mu = extsf{true} ig\}$$

filters F are Boolean combinations of $?v_1 = ?v_2$, ?v = d, etc.

NB: slight simplification, see Effective Boolean Value in SPARQL Specification

NB: SPARQL uses 3-valued logic (like SQL)

```
SELECT ?p ?d WHERE {
  { ?p a :Prof .
     ?p :worksIn ?d }
  UNION
  { ?p a :Prof }
}
```

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

SI	LEC	T ?p ?d)	WHERE {
	{ ?	p a :Pro	f.
	?	p :works	In ?d }
	UNI	ON	
	{ ?	p a :Pro	f }
}			
_		?p	?d
answei	μ_1	:Clarke	:Maths
US	μ_2	:Brown	:CS
ō	μ_3	:Davies	:CS
	μ_4	:Adams	
	μ_5	:Brown	
	μ_6	:Clarke	

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

 $\llbracket P_1 \text{ UNION } P_2
rbracket_G = \llbracket P_1
rbracket_G \cup \llbracket P_2
rbracket_G$

SE	LEC	T ?p ?d)	WHERE {
	{ ?	p a :Pro	f.
	?	p :works	In ?d }
	UNI	ON	
	{ ?	p a :Pro	f }
}			
_		?p	?d
answei	μ_1	:Clarke	:Maths
US/	μ_2	:Brown	:CS
a	μ_3	:Davies	:CS
	μ_4	:Adams	
	μ_5	:Brown	
	μ_6	:Clarke	

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	а	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$\llbracket P_1 \text{ UNION } P_2 \rrbracket_G = \llbracket P_1 \rrbracket_G \cup \llbracket P_2 \rrbracket_G$

NB: unlike in SQL, the two arguments do not have to have the same `schema'

SI		T ?p ?d	
	{ ?	p a :Pro	f.
	?	p :works	In ?d }
	UNI	ON	
	{ ?	p a :Pro	f }
}			
_		?p	?d
answei	μ_1	:Clarke	:Maths
NS/	μ_2	:Brown	:CS
₫	μ_3	:Davies	:CS
	μ_4	:Adams	
	μ_5	:Brown	
	μ_6	:Clarke	

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	а	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$$\llbracket P_1 \text{ Union } P_2 \rrbracket_G = \llbracket P_1 \rrbracket_G \cup \llbracket P_2 \rrbracket_G$$

NB: unlike in SQL, the two arguments do not have to have the same `schema'

the `missing' values are like NULL in SQL with the 3-valued logic

 $(?d = :CS)^{\mu_4}$ is $\varepsilon \to false$ and $(?d != :CS)^{\mu_4}$ is $\varepsilon \to false$

SI		T ?p ?d 1	
	{ ?	p a :Pro	t.
	?	p :works	In ?d }
	UNI	ON	
	{ ?	p a :Pro	£}
}		-	
_		?p	?d
answei	μ_1	:Clarke	:Maths
US/	μ_2	:Brown	:CS
₫	μ_3	:Davies	:CS
	μ_4	:Adams	
	μ_5	:Brown	
	μ_6	:Clarke	

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	а	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$$\llbracket P_1 \text{ Union } P_2 \rrbracket_G = \llbracket P_1 \rrbracket_G \cup \llbracket P_2 \rrbracket_G$$

NB: unlike in SQL, the two arguments do not have to have the same `schema'

• the `missing' values are like **NULL** in SQL with the 3-valued logic (?d = :CS)^{μ 4} is $\varepsilon \rightarrow$ false and (?d != :CS)^{μ 4} is $\varepsilon \rightarrow$ false (bound(?v))^{μ} is true \Leftrightarrow ?v \in dom(μ) (similar to IS NOT NULL in SQL)

SI		T ?p ?d 1	
	{ ?	p a :Pro	t.
	?	p :works	In ?d }
	UNI	ON	
	{ ?	p a :Pro	£}
}		-	
_		?p	?d
answei	μ_1	:Clarke	:Maths
US/	μ_2	:Brown	:CS
₫	μ_3	:Davies	:CS
	μ_4	:Adams	
	μ_5	:Brown	
	μ_6	:Clarke	

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	а	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$\llbracket P_1 \text{ Union } P_2 \rrbracket_G = \llbracket P_1 \rrbracket_G \cup \llbracket P_2 \rrbracket_G$

NB: unlike in SQL, the two arguments do not have to have the same `schema'

• the `missing' values are like **NULL** in SQL with the 3-valued logic (?d = :CS)^{μ_4} is $\varepsilon \rightarrow$ false and (?d != :CS)^{μ_4} is $\varepsilon \rightarrow$ false (bound(?v))^{μ} is true \Leftrightarrow ?v \in dom(μ) (similar to IS NOT NULL in SQL)

NB: the 3-valued logic it is not essential — see Zhang & Van den Bussche (2014)

 μ_1 and μ_2 are compatible $\mu_1 \sim \mu_2$ if $\mu_1(?v) = \mu_2(?v)$, for all $?v \in \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2)$

 μ_1 and μ_2 are ${f compatible}$

 $\mu_1 \sim \mu_2$ if

 $\mu_1(?v) = \mu_2(?v)$, for all $?v \in \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2)$

 $\llbracket P_1 \text{ JOIN } P_2 \rrbracket_G = \left\{ \left. \mu_1 \oplus \mu_2 \right. \mid \mu_1 \in \llbracket P_1 \rrbracket_G \text{ and } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with } \mu_1 \sim \mu_2 \right. \right\}$

 μ_1 and μ_2 are compatible $\mu_1 \sim \mu_2$ if

 $\mu_1(?v) = \mu_2(?v)$, for all $?v \in \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2)$

 $\llbracket P_1 \text{ JOIN } P_2 \rrbracket_G = \left\{ \mu_1 \oplus \mu_2 \mid \mu_1 \in \llbracket P_1 \rrbracket_G \text{ and } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with } \mu_1 \sim \mu_2 \right\}$

				2	24	1			
				?p	?d		q?	?d	?t
?p	?d	?t		:Adams			:Adams	:Maths	
:Adams	:Maths		Join	:Clarke	:Maths	=	:Clarke	:Maths	8506
:Clarke		8506		:Clarke	:CS		:Clarke		8506
		,		:Davies	:CS		·CIUIKC		0000

 μ_1 and μ_2 are **compatible**

 $\mu_1 \sim \mu_2$ if

 $\mu_1(?v) = \mu_2(?v)$, for all $?v \in \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2)$

 $\llbracket P_1 \text{ JOIN } P_2 \rrbracket_G = \left\{ \left. \mu_1 \oplus \mu_2 \right. \mid \mu_1 \in \llbracket P_1 \rrbracket_G \text{ and } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with } \mu_1 \sim \mu_2 \right. \right\}$

compatibility in SQL is quite different!

				?p	?d	
?p	?d	?t		:Adams	NULL	
:Adams	:Maths	NULL		:Clarke	:Maths	=
:Clarke	NULL	8506		:Clarke	:CS	
			-	:Davies	:CS	

 μ_1 and μ_2 are compatible

 $\mu_1 \sim \mu_2$ if

 $\mu_1(?v) = \mu_2(?v)$, for all $?v \in \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2)$

 $\llbracket P_1 \text{ JOIN } P_2 \rrbracket_G = \left\{ \left. \mu_1 \oplus \mu_2 \right. \mid \mu_1 \in \llbracket P_1 \rrbracket_G \text{ and } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with } \mu_1 \sim \mu_2 \right. \right\}$

compatibility in SQL is quite different!

NB: careful use of COALESCE (or IF) is required, see Prud'hommeaux & Bertails (2008)

unique μ_{\emptyset} with dom $(\mu_{\emptyset}) = \emptyset$ is compatible with **any** solution mapping empty BGP {} [[{}]]_G = {\mu_{\emptyset}}, for any G

unique μ_{\emptyset} with dom $(\mu_{\emptyset}) = \emptyset$ is compatible with **any** solution mapping empty BGP {} [[{}]]_G = {\mu_{\emptyset}}, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a **commutative semiring** with operations UNION and JOIN (\emptyset is the identity for UNION and { μ_{\emptyset} } is the identity for JOIN)

unique μ_{\emptyset} with dom $(\mu_{\emptyset}) = \emptyset$ is compatible with **any** solution mapping empty BGP {} [[{}]]_G = {\mu_{\emptyset}}, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

- 1. Bags of solution mappings form a **commutative semiring** with operations UNION and JOIN (\emptyset is the identity for UNION and { μ_{\emptyset} } is the identity for JOIN)
- S_1 Union $S_2 = S_2$ Union S_1 S_1 Union $(S_2$ Join $S_3) = (S_1$ Union $S_2)$ Join S_3 S Union $\emptyset = S$
 - S_1 Join $S_2 = S_2$ Join S_1 S_1 Join $(S_2$ Join $S_3) = (S_1$ Join $S_2)$ Join S_3 S Join $\{\mu_{\emptyset}\} = S$
 - S Join $\emptyset = \emptyset$ S_1 Join $(S_2$ Union $S_3) = (S_1$ Join $S_2)$ Join $(S_1$ Join $S_3)$

unique μ_{\emptyset} with dom $(\mu_{\emptyset}) = \emptyset$ is compatible with **any** solution mapping empty BGP {} [[{}]]_G = {\mu_{\emptyset}}, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

- 1. Bags of solution mappings form a **commutative semiring** with operations UNION and JOIN (\emptyset is the identity for UNION and { μ_{\emptyset} } is the identity for JOIN)
- S_1 Union $S_2 = S_2$ Union S_1 S_1 Union $(S_2$ Join $S_3) = (S_1$ Union $S_2)$ Join S_3 S Union $\emptyset = S$
 - $S_1 \text{ Join } S_2 = S_2 \text{ Join } S_1 \qquad \qquad S_1 \text{ Join } (S_2 \text{ Join } S_3) = (S_1 \text{ Join } S_2) \text{ Join } S_3$ $S \text{ Join } \{\mu_{\emptyset}\} = S$
 - S Join $\emptyset = \emptyset$ S_1 Join $(S_2$ Union $S_3) = (S_1$ Join $S_2)$ Join $(S_1$ Join $S_3)$

under the set semantics: S UNION S = S

unique μ_{\emptyset} with dom $(\mu_{\emptyset}) = \emptyset$ is compatible with **any** solution mapping empty BGP {} [[{}]]_G = {\mu_{\emptyset}}, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

- 1. Bags of solution mappings form a **commutative semiring** with operations UNION and JOIN (\emptyset is the identity for UNION and { μ_{\emptyset} } is the identity for JOIN)
- S_1 Union $S_2 = S_2$ Union S_1 S_1 Union $(S_2$ Join $S_3) = (S_1$ Union $S_2)$ Join S_3 S Union $\emptyset = S$
 - S_1 Join $S_2 = S_2$ Join S_1 S_1 Join $(S_2$ Join $S_3) = (S_1$ Join $S_2)$ Join S_3 S Join $\{\mu_{\emptyset}\} = S$
 - S Join $\emptyset = \emptyset$ S_1 Join $(S_2$ Union $S_3) = (S_1$ Join $S_2)$ Join $(S_1$ Join $S_3)$

under the set semantics: S UNION S = S S JOIN S = S

unique μ_{\emptyset} with dom $(\mu_{\emptyset}) = \emptyset$ is compatible with **any** solution mapping empty BGP {} [[{}]]_G = {\mu_{\emptyset}}, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

- **1.** Bags of solution mappings form a **commutative semiring** with operations UNION and JOIN (\emptyset is the identity for UNION and { μ_{\emptyset} } is the identity for JOIN)
- S_1 Union $S_2 = S_2$ Union S_1 S_1 Union $(S_2$ Join $S_3) = (S_1$ Union $S_2)$ Join S_3 S Union $\emptyset = S$
 - S_1 Join $S_2 = S_2$ Join S_1 S_1 Join $(S_2$ Join $S_3) = (S_1$ Join $S_2)$ Join S_3 S Join $\{\mu_{\emptyset}\} = S$
 - S Join $\emptyset = \emptyset$ S_1 Join $(S_2$ Union $S_3) = (S_1$ Join $S_2)$ Join $(S_1$ Join $S_3)$

under the set semantics: S UNION S = S is join S = S only \supseteq

unique μ_{\emptyset} with dom $(\mu_{\emptyset}) = \emptyset$ is compatible with **any** solution mapping empty BGP {} [[{}]]_G = {\mu_{\emptyset}}, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

- 1. Bags of solution mappings form a **commutative semiring** with operations UNION and JOIN (\emptyset is the identity for UNION and { μ_{\emptyset} } is the identity for JOIN)
- S_1 Union $S_2 = S_2$ Union S_1 S_1 Union $(S_2$ Join $S_3) = (S_1$ Union $S_2)$ Join S_3 S Union $\emptyset = S$
 - $S_1 \text{ Join } S_2 = S_2 \text{ Join } S_1 \qquad \qquad S_1 \text{ Join } (S_2 \text{ Join } S_3) = (S_1 \text{ Join } S_2) \text{ Join } S_3$ $S \text{ Join } \{\mu_{\emptyset}\} = S$

S Join $\emptyset = \emptyset$ S_1 Join $(S_2$ Union $S_3) = (S_1$ Join $S_2)$ Join $(S_1$ Join $S_3)$

under the set semantics: S UNION S = S only \supseteq

2. FILTER distributes over UNION

 $\mathsf{Filter}_F(S_1 \, \mathsf{UNION} \, S_2) = \mathsf{Filter}_F \, S_1 \, \mathsf{UNION} \, \mathsf{Filter}_F \, S_2$

 $\operatorname{Filter}_F(S_1 \operatorname{JOIN} S_2) = \operatorname{Filter}_F S_1 \operatorname{JOIN} \operatorname{Filter}_F S_2$

```
SELECT ?p ?d WHERE {
    ?p a :Prof
    OPTIONAL { ?p :worksIn ?d
        FILTER (?d != :CS) }
}
```

:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Brown	:worksIn	:CS
:Clarke	:worksIn	:Maths

SELECT ?p ?d WHE	RE {
?p a :Prof	
OPTIONAL { ?p	:worksIn ?d
FILTER	(?d != :CS) }
}	

:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Brown	:worksIn	:CS
:Clarke	:worksIn	:Maths

$P_1 ext{ Opt}_F P_2 = ext{Filter}_F(P_1 ext{ Join } P_2) ext{ Union } P_1 ext{ Diff}_F P_2$

 $\overline{P_1}$ that have a compatible P_2 with $\overline{F'}$

 P_1 that have no compatible P_2 with F'

SELECT ?p ?d WHERE {	:Adams	a	:Prof
?p a :Prof	:Brown	a	:Prof
-	:Clarke	a	:Prof
OPTIONAL { ?p :worksIn ?d		:worksIn	
FILTER (?d != :CS) }	:Clarke	:worksIn	:Maths
}			

 $\llbracket P_1 \operatorname{DIFF}_F P_2 \rrbracket_G = \left\{ \begin{array}{ll} \mu_1 \in \llbracket P_1 \rrbracket_G \mid \text{ there is no } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with} \\ \mu_1 \sim \mu_2 \quad \text{and} \quad F^{\mu_1 \oplus \mu_2} = \text{true} \end{array} \right\}$

 $P_1 ext{ Opt}_F P_2 = ext{Filter}_F(P_1 ext{ Join } P_2) ext{ Union } P_1 ext{ Diff}_F P_2$

 $\stackrel{\frown}{P_1}$ that have a compatible P_2 with $\overrightarrow{F'}$

 $\left(P_{1}
ight)$ that have no compatible P_{2} with $F^{'}$

SELECT ?p ?d WHERE {	:Adams	a	:Prof
?p a :Prof	:Brown	a	:Prof
-	:Clarke	а	:Prof
OPTIONAL { ?p :worksIn ?d	:Brown	:worksIn	:CS
FILTER (?d != :CS) }	:Clarke	:worksIn	:Maths
}			

 $\llbracket P_1 \operatorname{DIFF}_F P_2 \rrbracket_G = \left\{ \mu_1 \in \llbracket P_1 \rrbracket_G \mid \text{ there is no } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with} \\ \mu_1 \sim \mu_2 \text{ and } F^{\mu_1 \oplus \mu_2} = \text{true} \right\}$

 $P_1 ext{ Opt}_F P_2 = ext{Filter}_F(P_1 ext{ Join } P_2) ext{ Union } P_1 ext{ Diff}_F P_2$

_		?p	?d
× V	μ_1	:Adams	
nsı	μ_2	:Clarke	:Maths
ō	μ_3	:Brown	

 P_1 that have a compatible P_2 with $\vec{F'}$

 $\left(P_{1}
ight.$ that have no compatible P_{2} with $F^{'}$

SELECT ?p ?d WHERE {	:Adams	a	:Prof
?p a :Prof	:Brown	a	:Prof
-	:Clarke	a	:Prof
OPTIONAL { ?p :worksIn ?d	:Brown	:worksIn	:CS
FILTER (?d != :CS) }	:Clarke	:worksIn	:Maths
}			

 $\llbracket P_1 \operatorname{DIFF}_F P_2 \rrbracket_G = \left\{ \mu_1 \in \llbracket P_1 \rrbracket_G \mid \text{ there is no } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with} \\ \mu_1 \sim \mu_2 \text{ and } F^{\mu_1 \oplus \mu_2} = \text{true} \right\}$

$$P_1 \operatorname{OPT}_F P_2 = \operatorname{Filter}_F(P_1 \operatorname{JOIN} P_2)$$
 Union $P_1 \operatorname{Diff}_F P_2$

_		?p	?d	$\mathbf{\hat{P}_1}$ that have a compatible P_2 with F'
Ve	μ_1	:Adams		P_1 that have no compatible P_2 with F'
ns	μ_2	:Clarke	:Maths	
σ	μ_3	:Brown		

NB: SPARQL 1.1 specification incorrectly says 'Written in full that is:

$$\begin{split} \llbracket P_1 \operatorname{OPT}_F P_2 \rrbracket_G &= \left\{ \begin{array}{l} \mu_1 \oplus \mu_2 \mid \mu_1 \in \llbracket P_1 \rrbracket_G, \mu_2 \in \llbracket P_2 \rrbracket_G \text{ and } F^{\mu_1 \oplus \mu_2} = \mathsf{true} \right\} \\ & \cup \left\{ \begin{array}{l} \mu_1 \in \llbracket P_1 \rrbracket_G \mid \mu_1 \not\sim \mu_2, \text{ for all } \mu_2 \in \llbracket P_2 \rrbracket_G, \text{ or } \llbracket P_2 \rrbracket_G = \emptyset \right\} \\ & \cup \left\{ \begin{array}{l} \mu_1 \in \llbracket P_1 \rrbracket_G \mid \mathsf{there is } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with } \mu_1 \sim \mu_2 \text{ and } F^{\mu_1 \oplus \mu_2} = \mathsf{false} \right\} \end{split}$$

SELECT ?p ?d WHERE {	:Adams	a	:Prof
?p a :Prof	:Brown	a	:Prof
-	:Clarke	a	:Prof
OPTIONAL { ?p :worksIn ?d	:Brown	:worksIn	:CS
FILTER (?d != :CS) }	:Clarke	:worksIn	:Maths
}			

 $\llbracket P_1 \text{ DIFF}_F P_2 \rrbracket_G = \left\{ \mu_1 \in \llbracket P_1 \rrbracket_G \mid \text{ there is no } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with} \\ \mu_1 \sim \mu_2 \text{ and } F^{\mu_1 \oplus \mu_2} = \text{true} \right\}$

 $P_1 ext{ Opt}_F P_2 = ext{Filter}_F(P_1 ext{ Join } P_2) ext{ Union } P_1 ext{ Diff}_F P_2$

2		?p	?d	$\mathbf{\hat{P}}_1$ that have a $\mathbf{\hat{P}}_1$	compatible P_2 with F	
V O	μ_1	:Adams			P ₁	that have no compatible P_2 with $F^{'}$
NS	μ_2	:Clarke	:Maths			
σ	μ_3	:Brown				

NB: SPARQL 1.1 specification incorrectly says, Written in full that is:

$$\begin{split} \llbracket P_1 \ \mathsf{OPT}_F \ P_2 \rrbracket_G &= \left\{ \begin{array}{l} \mu_1 \oplus \mu_2 \mid \mu_1 \in \llbracket P_1 \rrbracket_G, \mu_2 \in \llbracket P_2 \rrbracket_G \text{ and } F^{\mu_1 \oplus \mu_2} = \mathsf{true} \right\} \\ &\cup \left\{ \begin{array}{l} \mu_1 \in \llbracket P_1 \rrbracket_G \mid \mu_1 \not\sim \mu_2, \text{ for all } \mu_2 \in \llbracket P_2 \rrbracket_G, \text{ or } \llbracket P_2 \rrbracket_G = \emptyset \right\} \\ &\cup \left\{ \begin{array}{l} \mu_1 \in \llbracket P_1 \rrbracket_G \mid \mathsf{there is } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with } \mu_1 \sim \mu_2 \text{ and } F^{\mu_1 \oplus \mu_2} = \mathsf{false} \right\} \end{split}$$

SELECT ?p ?d WHERE {	:Adams	a	:Prof
?p a :Prof	:Brown	a	:Prof
-	:Clarke	а	:Prof
<pre>OPTIONAL { ?p :worksIn ?d FILTER (?d != :CS) }</pre>	:Brown	:worksIn	:CS
	:Clarke	:worksIn	:Maths
}			

 $\llbracket P_1 \operatorname{DIFF}_F P_2 \rrbracket_G = \left\{ \mu_1 \in \llbracket P_1 \rrbracket_G \mid \text{ there is no } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with} \\ \mu_1 \sim \mu_2 \text{ and } F^{\mu_1 \oplus \mu_2} = \text{true} \right\}$

 $P_1 \operatorname{Opt}_F P_2 = \operatorname{Filter}_F(P_1 \operatorname{JOIN} P_2)$ Union $P_1 \operatorname{Diff}_F P_2$

		?p	?d	P_1 that have a compatible P_2 with F'	
Inswei	μ_1	:Adams		$\mathbf{\hat{P}_1}$ that have no	compatible P_2 with F'
	μ_2	:Clarke	:Maths		
ō	μ_3	:Brown			

NB: SPARQL 1.1 specification incorrectly says, Written in full that is:

$$\begin{split} \llbracket P_1 \operatorname{OPT}_F P_2 \rrbracket_G &= \left\{ \begin{array}{l} \mu_1 \oplus \mu_2 \mid \mu_1 \in \llbracket P_1 \rrbracket_G, \mu_2 \in \llbracket P_2 \rrbracket_G \text{ and } F^{\mu_1 \oplus \mu_2} = \mathsf{true} \right\} \\ &\cup \left\{ \begin{array}{l} \mu_1 \in \llbracket P_1 \rrbracket_G \mid \mu_1 \not\sim \mu_2, \text{ for all } \mu_2 \in \llbracket P_2 \rrbracket_G, \text{ or } \llbracket P_2 \rrbracket_G = \emptyset \right\} \\ &\cup \left\{ \begin{array}{l} \mu_1 \in \llbracket P_1 \rrbracket_G \mid \mathsf{there} \text{ is } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with } \mu_1 \sim \mu_2 \text{ and } F^{\mu_1 \oplus \mu_2} = \mathsf{false} \right\} \end{split}$$

On DIFF and OPT (1)

equivalent patterns $P_1 \equiv P_2 \iff \llbracket P_1 \rrbracket_G = \llbracket P_2 \rrbracket_G$, for all G

On DIFF and OPT (1)

equivalent patterns $P_1 \equiv P_2 \iff \llbracket P_1 \rrbracket_G = \llbracket P_2 \rrbracket_G$, for all G

Angles & Gutierrez (2008)

 $P_1 \operatorname{Diff}_{\top} P_2 \equiv \operatorname{Filter}_{\neg \operatorname{bound}(?u)}(P_1 \operatorname{Opt}_{\top} (P_2 \operatorname{JOIN} \{?u ?v ?w\}))$

equivalent patterns $P_1 \equiv P_2 \iff \llbracket P_1 \rrbracket_G = \llbracket P_2 \rrbracket_G$, for all G

Angles & Gutierrez (2008)

 $P_1 \operatorname{\mathsf{DIFF}}_{ op} P_2 \equiv \operatorname{\mathsf{FILTER}}_{\neg \operatorname{\mathsf{bound}}(?u)}(P_1 \operatorname{\mathsf{OPT}}_{ op} (P_2 \operatorname{\mathsf{JOIN}} \{?u ?v ?w\}))$

`universal' triple pattern `always' gives a binding for ?u

equivalent patterns $P_1 \equiv P_2 \iff \llbracket P_1 \rrbracket_G = \llbracket P_2 \rrbracket_G$, for all G

Angles & Gutierrez (2008)

 $P_1 \operatorname{DIFF}_{\top} P_2 \equiv \operatorname{FILTER}_{\neg \operatorname{bound}(?u)}(P_1 \operatorname{OPT}_{\top} (P_2 \operatorname{JOIN} \{?u ?v ?w\}))$ `universal' triple pattern `always' gives a binding for ?u

is **not** quite correct: if $P_1 = P_2 = \{\}$ and $G = \emptyset$, then $\llbracket P_i \rrbracket_G = \{\mu_\emptyset\}$

equivalent patterns $P_1 \equiv P_2 \iff \llbracket P_1 \rrbracket_G = \llbracket P_2 \rrbracket_G$, for all G

Angles & Gutierrez (2008)

 $P_{1} \text{ DIFF}_{\top} P_{2} \equiv \text{FILTER}_{\neg \text{bound}(?u)}(P_{1} \text{ OPT}_{\top} (P_{2} \text{ JOIN} \{?u ?v ?w\}))$ (universal' triple pattern `always' gives a binding for ?uis not quite correct: if $P_{1} = P_{2} = \{\}$ and $G = \emptyset$, then $[P_{i}]_{G} = \{\mu_{\emptyset}\}$ SO, $[P_{1} \text{ DIFF}_{\top} P_{2}]_{G} = \emptyset$ (as μ_{\emptyset} is compatible with μ_{\emptyset}) but $[\{?u ?v ?w\}]_{G} = \emptyset$ and so, $[P_{1} \text{ OPT}_{F} \dots]_{G} = \{\mu_{\emptyset}\}$

equivalent patterns $P_1 \equiv P_2 \iff \llbracket P_1 \rrbracket_G = \llbracket P_2 \rrbracket_G$, for all G

Polleres (2009): a fix that avoids the problem by effectively making the dataset non-empty (GRAPH operation)

 ${oldsymbol{\mathcal{S}}}$ is a set of SPARQL operators

e.g.,
$$\mathcal{S} = \{$$
 Filter, Union, Join $\}$

operator O is S-expressible if,

for any pattern over $\mathcal{S} \cup \{O\}$, there is an equivalent pattern over \mathcal{S}

S is a set of SPARQL operatorse.g., $S = \{$ FILTER, UNION, JOIN $\}$ operator O is S-expressible if,
for any pattern over $S \cup \{O\}$, there is an equivalent pattern over SZhang & Van den Bussche (2014)JOIN is $\{$ FILTER, OPT $_{T}\}$ -expressible;
all other operators in the set $\{$ JOIN, UNION, OPT $_{T}$, FILTER, PROJ $\}$
are not expressible via the rest.

proof idea: $P_1 \text{ JOIN } P_2 \equiv (P_1 \text{ OPT}_{\top} P_2) \text{ DIFF}_{\top} (P_1 \text{ DIFF}_{\top} P_2)$

and then DIFF_T carefully via FILTER and OPT_T

S is a set of SPARQL operatorse.g., $S = \{$ FILTER, UNION, JOIN $\}$ operator O is S-expressible if,
for any pattern over $S \cup \{O\}$, there is an equivalent pattern over SZhang & Van den Bussche (2014)JOIN is $\{$ FILTER, OPT $_{T}\}$ -expressible;
all other operators in the set $\{$ JOIN, UNION, OPT $_{T}$, FILTER, PROJ $\}$
are not expressible via the rest.proof idea: P_1 JOIN $P_2 \equiv (P_1 \text{ OPT}_T P_2)$ DIFF $_T$ (P_1 DIFF $_T$ P_2)

and then DIFF_{\top} carefully via FILTER and OPT_{\top}

Theorem DIFF_T is not $S \cup {OPT_F}$ -expressible

proof idea: P over $\mathcal{S} \cup \{ \mathsf{OPT}_F \} \implies$ if $\mu_{\emptyset} \in \llbracket P \rrbracket_G$ then $\mu_{\emptyset} \in \llbracket P \rrbracket_{\emptyset}$

e.g., $S = \{$ FILTER, UNION, JOIN $\}$ \mathcal{S} is a set of SPARQL operators operator O is *S*-expressible if, for any pattern over $\mathcal{S} \cup \{O\}$, there is an equivalent pattern over \mathcal{S} **Zhang & Van den Bussche (2014)** JOIN is {FILTER, OPT_{T} }-expressible; all other operators in the set { JOIN, UNION, OPT_{T} , FILTER, PROJ } are not expressible via the rest.

proof idea: $P_1 \text{ JOIN } P_2 \equiv (P_1 \text{ OPT}_\top P_2) \text{ Diff}_\top (P_1 \text{ Diff}_\top P_2)$

and then DIFF_T carefully via FILTER and OPT_T

Theorem DIFF_T is not $S \cup \{OPT_F\}$ -expressible

proof idea: P over $\mathcal{S} \cup \{\mathsf{OPT}_F\} \implies$ if $\mu_{\emptyset} \in \llbracket P \rrbracket_G$ then $\mu_{\emptyset} \in \llbracket P \rrbracket_{\emptyset}$

 $P = \{\} \mathsf{D}_{\mathsf{IFF}_{\mathsf{T}}} \mathsf{F}_{\mathsf{ILTER}_{\neg \mathsf{bound}(?u)}}(\{\} \mathsf{OPT}_{\mathsf{T}} \{?u ?v ?w\})$

 $\llbracket P \rrbracket_{\emptyset} = \emptyset$ but $\llbracket P \rrbracket_{G} = \{\mu_{\emptyset}\}$, for any $G \neq \emptyset$

:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	а	:Prof
:Brown	:worksIn	:CS
:Clarke	:worksIn	:Maths
:Davies	:worksIn	:CS

NB: projection in SPARQL is only at the top level

however, PROJ can always be pushed up (by careful variable renaming)

NB: projection in SPARQL is only at the top level however, PROJ can always be pushed up (by careful variable renaming)

Theorem DIFF_F is {FILTER, UNION, PROJ, OPT_F }-expressible

NB: projection in SPARQL is only at the top level however, PROJ can always be pushed up (by careful variable renaming)

Theorem DIFF_F is {FILTER, UNION, PROJ, OPT_F }-expressible

$$\begin{array}{rcl} P_1 \, \text{DIFF}_F \, P_2 &\equiv& \text{ON_EMPTY}_{P_1 \text{DIFF}_F P_2} & \text{UNION} \\ && & \text{PROJ}_{\text{Var}(P_1)} \, \text{FILTER}_{\neg \text{bound}(?u_2)} \big((P_1 \, \text{JOIN} \, \{?u_1 \, ?v_1 \, ?w_1\}) & \text{OPT}_F \\ && & & (P_2 \, \text{JOIN} \, \{?u_2 \, ?v_2 \, ?w_2\}) \big) \end{array}$$

NB: projection in SPARQL is only at the top level however, PROJ can always be pushed up (by careful variable renaming)

Theorem DIFF_F is {FILTER, UNION, PROJ, OPT_F }-expressible

$$\begin{array}{l} P_1 \, \text{DIFF}_F \, P_2 \, \text{ on the empty graph} \\ P_1 \, \text{DIFF}_F \, P_2 \, \equiv \, \underbrace{\text{ON_EMPTY}_{P_1 \text{DIFF}_F P_2}}_{\text{PROJ}_{\text{var}(P_1)} \, \text{FILTER}_{\neg \text{bound}(?u_2)} \big((P_1 \, \text{JOIN} \, \{?u_1 \, ?v_1 \, ?w_1\}) \, \, \text{OPT}_F \\ & \quad (P_2 \, \text{JOIN} \, \{?u_2 \, ?v_2 \, ?w_2\}) \big) \end{array}$$

Angles and Gutierrez (2008), (Pérez et al., 2009), ...

 $P_1 \operatorname{OPT}_F P_2 \equiv P_1 \operatorname{OPT}_\top \operatorname{Filter}_F(P_1 \operatorname{JOIN} P_2)$

Angles and Gutierrez (2008), (Pérez et al., 2009), ...

 $P_1 \operatorname{Opt}_F P_2 \equiv P_1 \operatorname{Opt}_{ op} \operatorname{Filter}_F(P_1 \operatorname{JOIN} P_2)$

$\llbracket P_1 rbracket_G$		$\llbracket P_2$	2]G
?u	?v	?u	?w
:a	:b	:a	:c
:a			

$$F = bound(?v)$$

Angles and Gutierrez (2008), (Pérez et al., 2009), ...

 $P_1 \operatorname{Opt}_F P_2 \equiv P_1 \operatorname{Opt}_{ op} \operatorname{Filter}_F(P_1 \operatorname{JOIN} P_2)$

$\llbracket P_1 rbracket_G$		$\llbracket P_2$	2]G
?u	?v	?u	?w
:a	:b	:a	:c
:a			

$\llbracket P_1$	OPT_F	$P_2]_G$
?u	?v	?w
:a	:b	:c
:a		

Angles and Gutierrez (2008), (Pérez et al., 2009), ...

 $P_1 \operatorname{Opt}_F P_2 \equiv P_1 \operatorname{Opt}_\top \operatorname{Filter}_F(P_1 \operatorname{Join} P_2)$

$\llbracket P_1 rbracket_G$		$\llbracket P_2$	\mathbb{G}
?u	?v	?u	?w
:a	:b	:a	:c
:a			

$\llbracket P_1$	OPT_F	$P_2]_G$
?u	?v	?w
:a	:b	:c
:a		

$\llbracket P_1$	Join	$P_2]\!]_G$
?u	?v	?w
:a	:b	:c
:a		:c

$$F = \mathsf{bound}(?v)$$

Theorem OPT_F is {FILTER, UNION, OPT_T }-expressible

Theorem OPT_F is {FILTER, UNION, OPT_{T} }-expressible

 $P_1 \operatorname{OPT}_F P_2 \equiv \bigcup_{V \subseteq \operatorname{var}(P_1) \cap \operatorname{var}(P_2)} \left[(\operatorname{FILTER}_{F_V} P_1) \operatorname{OPT}_{\top} \operatorname{FILTER}_F ((\operatorname{FILTER}_{F_V} P_1) \operatorname{JOIN} P_2) \right]$

 $F_V \text{ selects the } V \text{-uniform slice of } P_1: \quad F_V = \bigwedge_{?v \in V} \text{bound}(?v) \land \bigwedge_{?v \in (\text{Var}(P_1) \cap \text{Var}(P_2)) \setminus V} \text{-bound}(?v)$

horizontal decomposition in DBs

IBM TJ Watson, New York, 08.07.16

Theorem OPT_F is {FILTER, UNION, OPT_{T} }-expressible

 $P_1 \operatorname{OPT}_F P_2 \equiv \bigcup_{V \subseteq \operatorname{Var}(P_1) \cap \operatorname{Var}(P_2)} \left[(\operatorname{FILTER}_{F_V} P_1) \operatorname{OPT}_{\mathsf{T}} \operatorname{FILTER}_F ((\operatorname{FILTER}_{F_V} P_1) \operatorname{JOIN} P_2) \right]$

 $F_V \text{ selects the } V \text{-uniform slice of } P_1: \quad F_V = \bigwedge_{?v \in V} \text{bound}(?v) \land \bigwedge_{?v \in (\text{Var}(P_1) \cap \text{Var}(P_2)) \setminus V} \text{-bound}(?v)$

horizontal decomposition in DBs

the UNION is exponential... is it unavoidable?

IBM TJ Watson, New York, 08.07.16

Polynomial Expressibility

operator O is **polynomially** S-expressible if there is a polynomial f such that, for any $P = O(P_1, \dots, P_n)$ with the P_i over S, there is an equivalent pattern P' over S with |P'| = f(|P|)

Polynomial Expressibility

operator O is polynomially S-expressible if there is a polynomial f such that, for any $P = O(P_1, \dots, P_n)$ with the P_i over S, there is an equivalent pattern P' over S with |P'| = f(|P|)

So far:

- DIFF_T is not $\mathcal{S} \cup \{\mathsf{OPT}_F\}$ -expressible
- DIFF_F is polynomially {FILTER, UNION, PROJ, OPT_F }-expressible
- Opt_F is {FILTER, UNION, Opt_T}-expressible

Polynomial Expressibility

operator O is **polynomially** *S*-expressible if there is a polynomial f such that, for any $P = O(P_1, \ldots, P_n)$ with the P_i over *S*, there is an equivalent pattern P' over *S* with |P'| = f(|P|)

So far:

- DIFF_T is not $S \cup \{ OPT_F \}$ -expressible
- DIFF_F is polynomially {FILTER, UNION, PROJ, OPT_F }-expressible
- Opt_F is {FILTER, UNION, Opt_T}-expressible

but not polynomially (under the standard complexity-theoretic assumptions)

singular graph $G_a = \{(:a:a:a)\}$

 $[P]_{G_a} \neq \emptyset' \text{ for patterns } P \text{ over } S \cup \{ \mathsf{OPT}_F \} \text{ of } \underbrace{\mathsf{O-rank}}_{\mathsf{nesting depth of OPT}_F} \leq n \text{ is } \sum_{n+1}^p \mathsf{-hard}_{\mathsf{nesting depth of OPT}_F}$

singular graph $G_a = \{(:a:a:a)\}$

<u>Proof</u> by encoding QBF $\exists \vec{x}_1 \forall \vec{x}_2 \dots Q \vec{x}_{n+1} \psi$ if *n* is odd and $Q = \forall$, then $\phi_{n+1} = \neg \psi$ and $\phi_k = \forall \vec{x}_{k+1} \neg \phi_{k+1}$, for $k \leq n$

singular graph $G_a = \{(:a:a:a)\}$

<u>Proof</u> by encoding QBF $\exists \vec{x_1} \forall \vec{x_2} \dots Q \vec{x_{n+1}} \psi$ if *n* is odd and $Q = \forall$, then $\phi_{n+1} = \neg \psi$ and $\phi_k = \forall \vec{x_{k+1}} \neg \phi_{k+1}$, for $k \leq n$

$$\phi_k ~pprox P_k = \operatorname{Filter_{\neg \operatorname{bound}(?v_{k+1})}}(B_k \operatorname{Opt}_{F_k} P_{k+1})$$

singular graph $G_a = \{(:a:a:a)\}$

 $\label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \end{tabular} \end{t$

<u>Proof</u> by encoding QBF $\exists \vec{x}_1 \forall \vec{x}_2 \dots Q \vec{x}_{n+1} \psi$ if *n* is odd and $Q = \forall$, then $\phi_{n+1} = \neg \psi$ and $\phi_k = \forall \vec{x}_{k+1} \neg \phi_{k+1}$, for $k \leq n$

$$\phi_k \approx P_k = \operatorname{FILTER}_{\neg \operatorname{bound}(?v_{k+1})}(B_k \operatorname{OPT}_{F_k} P_{k+1})$$

L2 ` $[\![P]\!]_{G_a}
eq \emptyset'$ for patterns P over $\mathcal{S} \cup$ { Proj, Opt_T } is $\mbox{ in } \Delta_2^p$

polynomial deterministic algorithm with |P| + 1 calls to an NP-oracle (P^{NP})

singular graph $G_a = \{(:a:a:a)\}$

 $\label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \end{tabular} \end{ta$

<u>Proof</u> by encoding QBF $\exists \vec{x}_1 \forall \vec{x}_2 \dots Q \vec{x}_{n+1} \psi$ if *n* is odd and $Q = \forall$, then $\phi_{n+1} = \neg \psi$ and $\phi_k = \forall \vec{x}_{k+1} \neg \phi_{k+1}$, for $k \leq n$

$$\phi_k \approx P_k = \operatorname{FILTER}_{\neg \operatorname{bound}(?v_{k+1})}(B_k \operatorname{OPT}_{F_k} P_{k+1})$$

 $\begin{array}{l} \label{eq:constraint} \end{tabular} \end{tabular}$

singular graph $G_a = \{(:a:a:a)\}$

 $\label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \end{tabular} \end{ta$

<u>Proof</u> by encoding QBF $\exists \vec{x}_1 \forall \vec{x}_2 \dots Q \vec{x}_{n+1} \psi$ if *n* is odd and $Q = \forall$, then $\phi_{n+1} = \neg \psi$ and $\phi_k = \forall \vec{x}_{k+1} \neg \phi_{k+1}$, for $k \leq n$

$$\phi_k \approx P_k = \operatorname{Filter}_{\neg \operatorname{bound}(?v_{k+1})}(B_k \operatorname{Opt}_{F_k} P_{k+1})$$

singular graph $G_a = \{(:a:a:a)\}$

 $\label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \begin{tabular}{l} \label{eq:constraint} \end{tabular} \end{ta$

<u>Proof</u> by encoding QBF $\exists \vec{x_1} \forall \vec{x_2} \dots Q \vec{x_{n+1}} \psi$ if *n* is odd and $Q = \forall$, then $\phi_{n+1} = \neg \psi$ and $\phi_k = \forall \vec{x_{k+1}} \neg \phi_{k+1}$, for $k \leq n$

$$\phi_k \approx P_k = \operatorname{FILTER}_{\neg \operatorname{bound}(?v_{k+1})}(B_k \operatorname{OPT}_{F_k} P_{k+1})$$

IBM TJ Watson, New York, 08.07.16

E1
$$P_1 \text{ DIFF}_F P_2 \equiv P_1 \text{ SETMINUS}$$
 pattern that selects $\mu_1 \in \llbracket P_1 \rrbracket_G$
that have a compatible $\mu_2 \in \llbracket P_2 \rrbracket_G$
with $F^{\mu_1 \oplus \mu_2} = \text{true}$
where $\llbracket P_1 \text{ SETMINUS } P_2 \rrbracket_G = \llbracket P_1 \rrbracket_G \setminus \llbracket P_2 \rrbracket_G$ not the MINUS of SPARQL

E1
$$P_1 \text{ DIFF}_F P_2 \equiv P_1 \text{ SETMINUS}$$

pattern that selects $\mu_1 \in [P_1]_G$
that have a compatible $\mu_2 \in [P_2]_G$
with $F^{\mu_1 \oplus \mu_2} = \text{true}$
where $[P_1 \text{ SETMINUS } P_2]_G = [P_1]_G \setminus [P_2]_G$ not the MINUS of SPARQL
E2 $P_1 \text{ SETMINUS } P_2 \equiv$
 $ON_EMPTY_{P_1 \text{SETMINUS} P_2}$ UNION
 $(P_1 \text{ MONOMINUS } P_2) \text{ JOIN ONE UNION}$
pattern that uses two distinct elements
as indicators for `not bound' JOIN TWO

if NP = CONP then,

for every pattern P_1 MONOMINUS P_2 , with the P_i over $S \cup \{PROJ\}$, there is a **polynomial** pattern over $S \cup \{PROJ\}$ that gives the same answers on singular graphs

MINUS of SPARQL 1.1

not to be confused with

- MINUS of (Angles & Gutierrez, 2008)
- set-theoretic complement SETMINUS, or \

$$\begin{split} \llbracket P_1 \text{ MINUS } P_2 \rrbracket_G &= \left\{ \begin{array}{l} \mu_1 \in \llbracket P_1 \rrbracket_G \mid \text{ there is no } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with} \\ \mu_1 \sim \mu_2 \quad \text{and} \quad \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2) \neq \emptyset \right\} \\ \\ \llbracket P_1 \text{ DIFF}_F P_2 \rrbracket_G &= \left\{ \begin{array}{l} \mu_1 \in \llbracket P_1 \rrbracket_G \mid \text{ there is no } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with} \\ \mu_1 \sim \mu_2 \quad \text{and} \quad F^{\mu_1 \oplus \mu_2} = \text{true} \right\} \end{split}$$

MINUS of SPARQL 1.1

not to be confused with

- MINUS of (Angles & Gutierrez, 2008)
- set-theoretic complement SETMINUS, or \

$$\begin{split} \llbracket P_1 \text{ MINUS } P_2 \rrbracket_G &= \left\{ \begin{array}{l} \mu_1 \in \llbracket P_1 \rrbracket_G \mid \text{ there is no } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with} \\ \mu_1 \sim \mu_2 \text{ and } \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2) \neq \emptyset \right\} \\ \\ \llbracket P_1 \text{ DIFF}_F P_2 \rrbracket_G &= \left\{ \begin{array}{l} \mu_1 \in \llbracket P_1 \rrbracket_G \mid \text{ there is no } \mu_2 \in \llbracket P_2 \rrbracket_G \text{ with} \\ \mu_1 \sim \mu_2 \text{ and } F^{\mu_1 \oplus \mu_2} = \text{ true } \right\} \end{split}$$

Theorem MINUS is polynomially {DIFF_F}- and {OPT_F, FILTER}-expressible DIFF_T and OPT_T are not $S \cup$ {PROJ, MINUS}-expressible

$\mathcal{S} \cup \{O'\}$ - and $\mathcal{S}_{\pi} \cup \{O'\}$ -expressibility of O

- not expressible
- + polynomially expressible
- \pm expressible, but not polynomially if $\Delta_2^p
 eq \Sigma_2^p$
- +? expressible, but not known if polynomially

the results with \dagger become + if NP = CONP

Summary and Open Problems

- the ternary OPTIONAL in SPARQL is more complex than commonly assumed
- some widely-known SPARQL equivalences are false

or use assumptions different from SPARQL specification

Summary and Open Problems

- the ternary OPTIONAL in SPARQL is more complex than commonly assumed
- some widely-known SPARQL equivalences are false

or use assumptions different from SPARQL specification

• stronger notion of polynomial expressibility: every pattern over $\mathcal{S} \cup \{O\}$ has an equivalent polynomially-sized pattern over \mathcal{S}

 $P_1 \operatorname{Opt}_F P_2 \equiv \operatorname{Filter}_F(P_1 \operatorname{JOIN} P_2) \operatorname{Union} (P_1 \operatorname{Diff}_F P_2)$

- expressive power of **NOT EXISTS**
- expressiveness over non-empty RDF graphs

Summary and Open Problems

- the ternary OPTIONAL in SPARQL is more complex than commonly assumed
- some widely-known SPARQL equivalences are false

or use assumptions different from SPARQL specification

• stronger notion of polynomial expressibility: every pattern over $\mathcal{S} \cup \{O\}$ has an equivalent polynomially-sized pattern over \mathcal{S}

 $P_1 \operatorname{OPT}_F P_2 \equiv \operatorname{Filter}_F(P_1 \operatorname{JOIN} P_2) \operatorname{Union} (P_1 \operatorname{Diff}_F P_2)$

- expressive power of **NOT EXISTS**
- expressiveness over non-empty RDF graphs

Is SPARQL intuitive?

or is it just confusing names, e.g., OPTIONAL v LEFTJOIN? MINUS v \backslash