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Basic SPARQL

SPARQL query

SEi.ECT ':>d WHERE { Basic Graph Pattern (BGP)
2d a :Department e — (a set of triple patterns)

} a =rdf:type
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Basic SPARQL

SPARQL query
SELECT ?d WHERE {

Basic Graph Pattern (BGP)
?d a :Department —

(a set of triple patterns)

a=rdf:type :CS a :Department
. :Math :D
data instance aths a epartment
:Adams a :Prof
(On RDF groph :Brown a :Prof
= a set of triples) :Clarke a :Prof
. . :Clarke :worksIn :Maths
T is the set of terms, i.e., v
IRls d literals dnt i te) :Brown :worksIn :CS
an infegers, strings. etc. :Davies :worksIn :CS
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answer is a set of solution mappings

?2d
:CS
:Maths

set of variables
solution mapping w is a partial map from V  to T
dom(u) is the domain of u

[Ple = { p: var(P) — T | u(P) C G} foraBGP P
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SPARQL query

SELECT ?d WHERE ({

?d a :Department —

Basic SPARQL

Basic Graph Pattern (BGP)

(a set of triple patterns)

a =rdf:type -Cs
. :Math
data instance aths
:Adams
(an RDF graph .Brown
= a set of triples) :Clarke
, . :Clark
T is the set of terms, i.e., arke
\ . . :Brown
IRIs and literals (integers, strings, etc.) .
:Davies

:Department
:Department
:Prof

:Prof

:Prof
:worksIn :Maths
:worksIn :CS
:worksIn :CS

Q00 0 o

answer is a set of solution mappings

?2d
:CS
:Maths

[Ple = {p: var(P) = T | u(P) C G}

set of variables

~NN
solution mapping w is a partial map from V  to T

dom(u) is the domain of u

for a BGP P

we consider set semantics (SPARQL uses bag semantics, but our negative results hold)
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Monotone SPARQL: FILTER

SELECT ?pl ?p2 ?d WHERE ({ :CS a :Department
?pl :worksIn ?d :Maths a :Department
?p2 :worksIn 2d :Adams a :Prof
FILTER (?pl != ?p2) :Brown a -Prof

:Clarke a :Prof

} :Clarke :worksIn :Maths

:Brown :worksIn :CS
:Davies :worksIn :CS
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Monotone SPARQL: FILTER

SELECT ?pl ?p2 ?d WHERE ({
?pl :worksIn ?2d
?p2 :worksIn ?d

FILTER (?pl != ?p2)
}
o ?pl ?p2 2d
% p1 | :Davies :Brown :CS
g H2 | :Brown :Davies :CS

3CS
:Maths
:Adams
:Brown
:Clarke
:Clarke
:Brown
:Davies

Q0 0 0 o

:worksIn
:worksIn
:worksIn

:Department
:Department
:Prof

:Prof

:Prof
:Maths

:CS

:CS

[FILTERF Pl = { p € [Pl | F* = true }

filters F' are Boolean combinations of
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3CS
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:Brown
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:Clarke
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:worksIn
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:Department
:Department
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:Prof

:Prof
:Maths

:CS

:CS
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filters F' are Boolean combinations of

?'Ul :?’02 5

v =d, etc.

slight simpilification, see Effective Boolean Value in SPARQL Specification




Monotone SPARQL: FILTER

SELECT ?pl ?p2 ?d WHERE { :CS a :Department
?pl :worksIn 2d :Maths a :Department
?p2 :worksIn ?2d rAdams a :Prof
FILTER (2pl != ?p2) :Brown a :Prof

:Clarke a :Prof

J :Clarke :worksIn :Maths

:Brown :worksIn :CS

5 2p1 7p2 7d :Davies :worksIn :CS

% p1 | :Davies :Brown :CS

g H2 | :Brown :Davies :CS

[FILTERF Pl = { p € [Pl | F* = true }

filters F' are Boolean combinations of v, =7vy, Tv =d, etc.

slight simpilification, see Effective Boolean Value in SPARQL Specification

SPARQIL uses 3-valued logic (ke SQL)




Monotone SPARQL: UNION

SELECT ?p ?d WHERE { :CS
{ ?p a :Prof :Maths
?p :worksIn ?d } :Adams
UNION :Brown
:Clarke
{ ?p a :Prof } .Clarke
} :Brown
:Davies

Q00 0 o

:worksIn
:worksIn
:worksIn

:Department
:Department
:Prof

:Prof

:Prof
:Maths

:CS

:CS
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SELECT ?p ?d WHERE ({

Monotone SPARQL: UNION

{ ?p a :Prof
:worksIn ?d }
UNION
{ ?p a :Prof }
}
o ?p ?d
g p1 | :Clarke :Maths
2 M2 | :Brown :CS
O| pus | :Davies :CS
M4 | :Adams
M5 | :Brown
Me | :Clarke

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS

:Davies :worksIn :CS

[P1 UNION Py]¢ = [Pi]c U [P:]e



SELECT ?p ?d WHERE ({

answer -—

Monotone SPARQL: UNION

{ ?p a :Prof
:worksIn ?d }

UNION

{ ?p a :Prof }

?p ?d
p1 | :Clarke :Maths
M2 | :Brown :CS
p3 | :Davies :CS
M4 | :Adams
M5 | :Brown
Me | :Clarke

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS

:Davies :worksIn :CS

[P1 UNION Py]¢ = [Pi]c U [P:]e

unlike in SQL, the two arguments do not have to have the same ‘schema’



Monotone SPARQL: UNION

SELECT ?p ?d WHERE ({ :CS a :Department
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?p :WorkSIn ?d } :Adams a :Prof
UNION :Brown a :Prof
:Clarke a :Prof
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(?2d = :CS)**  is e — false and (?d != :CS)*+ s e — false
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Monotone SPARQL: UNION

SELECT ?p ?d WHERE ({ :CS a :Department
{ ?p a :Prof :Maths a :Department
?p :WorkSIn ?d } :Adams a :Prof
UNION :Brown a :Prof
:Clarke a :Prof
?p a :Prof
tep J :Clarke :worksIn :Maths
} :Brown :worksIn :CS
o ?p ?d ,
o :Davies :worksIn :CS
P M1 | :Clarke :Maths
2 M2 | :Brown :CS
O| pus | :Davies :CS
pa | :Adams [P1 UNION P]g = [Pi]e U [P:]e
M5 | :Brown
Me | :Clarke

unlike in SQL, the two arguments do not have to have the same ‘schema’

e the 'missing’ values are like NULL in SQL with the 3-valued logic
(?2d = :CS)**  is e — false and (?d != :CS)*+ s e — false

(bound(?v))*isfrue < ?v € dom(pu) (similar to Is NOT NULL in SQL)

the 3-valued logic it is not essential — see Zhang & Van den Bussche (2014)



Monotone SPARQL: JOIN

p1 and pg are compatible by ~ 2 if

p1(?v) = po(?v), forall v € dom(py) N dom(us)
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Monotone SPARQL: JOIN
p1 and pg are compatible by ~ 2 if

p1(?v) = po(?v), forall v € dom(py) N dom(us)

[Py JOIN P, = {Ml B p2 | 1 € [Pi]e and pg € [Pr]e with py ~ ,U»2}

?p ?d
e ?d ?t :Adams
:Adams :Maths JOIN :Clarke :Maths |=
:Clarke 8506 :Clarke :CsS
:Davies :CS




Monotone SPARQL: JOIN

p1 and p, are compatible

1 ~ [2

p1(Tv) = p2(?v),

if

forall ?7v € dom(uy) N dom(pz)

[Py JOIN P, = {Ml B p2 | 1 € [Pi]e and pg € [Pr]e with py ~ Mz}

7P 2d ?t
:Adams :Maths
:Clarke 8506

JOIN

?p ?d
:Adams
:Clarke :Maths
:Clarke :CsS
:Davies :CS

P 2d 2t
:Adams :Maths
:Clarke :Maths 8506
:Clarke :CS 8506




p1 and p, are compatible

Monotone SPARQL: JOIN

1 ~ [2

p1(Tv) = p2(?v),

if

forall ?7v € dom(uy) N dom(pz)

[[Pl JOIN Pg]]g = {/1,1 D o | M1 € [[Pl]]g and ps € [[Pz]]c with  pq ~ p,z}

JOIN

?p ?d
:Adams
:Clarke :Maths
:Clarke :CsS
:Davies :CS

P 2d 2t
:Adams :Maths
:Clarke :Maths 8506
:Clarke :CS 8506

compadtibility in SQL is quite different!

7P 2d 2t
:Adams :Maths
:Clarke 8506

?p 2d 7t
:Adams :Maths NULL
:Clarke NULL 8506

JoINPE

?p ?d
:Adams NULL
:Clarke :Maths
:Clarke :CS
:Davies :CS




p1 and p, are compatible

Monotone SPARQL: JOIN

1 ~ [2

p1(Tv) = p2(?v),

if

forall ?7v € dom(uy) N dom(pz)

[Py JOIN P, = {Ml B p2 | 1 € [Pi]e and pg € [Pr]e with py ~ ,U»2}

’p d 7 2d 2t
’p 2d ’t :Adams :Adams :Maths
:Adams :Maths JOIN :Clarke :Maths .Clarke :Maths 8506
:Clarke 8506 :Clarke :CS .Clarke :CS 8506
:Davies :CS
compadtibility in SQL is quite different!
?p ?d
?p ?d ?t :Adams NULL
:Adams  :Maths NULL |JOIN®®| :Clarke :Maths ?2p 2d 2t
:Clarke NULL 8506 :Clarke :CS
:Davies :CS

careful use of COALESCE (or IF) is required, see Prud’hommeaux & Bertails (2008)




Monotone SPARQL: Algebraic View

unique [y with dom(ug) = 0 is compatible with any solution mapping
empty BGP {}  [{}e = {po}. forany G
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1. Bags of solution mappings form a commutative semiring with operations
UNION and JOIN (@ is the identity for UNION and {u¢} is the identity for JOIN)
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Monotone SPARQL: Algebraic View

unique [y with dom(ug) = 0 is compatible with any solution mapping
empty BGP {}  [{}e = {po}. forany G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a commutative semiring with operations
UNION and JOIN (@ is the identity for UNION and {u¢} is the identity for JOIN)

S1 UNION S5 = S5 UNION Sy S1 UNION (52 JOIN 53) = (Sl UNION Sz) JOIN S3
SUNIOND = S
S1 JOIN S = S5 JOIN S, S1 JOIN (S2 JOIN S3) = (51 JOIN S2) JOIN S3
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Monotone SPARQL: Algebraic View

unique [y with dom(ug) = 0 is compatible with any solution mapping
empty BGP {}  [{}e = {po}. forany G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a commutative semiring with operations
UNION and JOIN (@ is the identity for UNION and {u¢} is the identity for JOIN)

S1 UNION S5 = S5 UNION Sy S1 UNION (52 JOIN 53) = (Sl UNION Sz) JOIN S3
SUNIOND = S
S1 JOIN S = S5 JOIN S, S1 JOIN (S2 JOIN S3) = (51 JOIN S2) JOIN S3
S JOIN{up} =S
SJOIND =0 S1 JOIN (S2 UNION S3) = (S1 JOIN S3) JOIN (S1 JOIN S3)
under the sef semantics: S UNION S = S SJOINS =S only O

2. FILTER distributes over UNION
FILTERF(S1 UNION S2) = FILTERF S1 UNION FILTERE S»
FILTERF(S7 JOIN S3) = FILTERF S1 JOIN FILTERE S2

IBM TJ Watson, New York, 08.07.16 5



Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE ({
?p a :Prof
OPTIONAL { 7?p :worksIn 2d
FILTER (?d != :CS)

IBM TJ Watson, New York, 08.07.16

}

:Adams
:Brown
:Clarke
:Brown
:Clarke

a
a
a
:worksIn
:worksIn

:Prof
:Prof
:Prof
:CS
:Maths




Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE { :Adams  a :Prof
?p a :Prof :Brown a :Prof
P . :Clarke a :Prof
OPTIONAL { ?p :worksIn 7d :Brown :worksIn :CS

FILTER (2d := :CS) } :Clarke :worksIn :Maths

}

P, OPTp Py, = FILTERF(P; JOIN P,) UNION P, DIffp P,

‘' Py that have a compatible P, with F

' P; that have no compatible Ps with F*



Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE { :Adams - a HBTOf
?p a :Prof :Brown a :Prof
) ) :Clarke a :Prof
OPTIONAL { 7?p :wor]'<sIn ?d  Brown .worksIn :CS
) FILTER (?d 1= :CS) } :Clarke :worksIn :Maths
pi~ py and Fr®e —trye }
Py OPTF P, = FlLTERF(Pl JOIN Pz) UNION P, DIFFg P,

‘' Py that have a compatible P, with F

' P; that have no compatible Ps with F*



Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE { BEeEmS & 125508
?p a :Prof :Brown a :Prof
i ’ :Clarke a :Prof
2 . ?
OPTIONAL { ?p .:orfsln °d :Brown :worksIn :CS
FILTER (2d != :C8) } :Clarke :worksIn :Maths
}
pi~ py and Fr®e —trye }
P, OPTp P, = FILTERR(P; JOIN P,) UNION P, DiFfp P,
?p 2d ‘' Py that have a compatible P, with F
:Adams ' P; that have no compatible P with F

answer
=
=

M3 | :Brown

M2 | :Clarke :Maths




Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE { BHCEmS &) BIoeEess
%0 a :Prof :Brown a :Prof
(')I;TIOI:IAL 5 ksIn 2d :Clarke a :Prof

{ 7p .w;vor's no: :Brown :worksIn :CS
FILTER (?d != :C8) } :Clarke :worksIn :Maths
}
pi~ py and Fr®e —trye }
P, OPTp P, = FILTERp(P; JOIN P,) UNION P; Diffp P,
= ?p 2d ‘P, that have a compatible Py with F*
g 753 :Adams ' P; that have no compatible P with F
2| p2 | :Clarke :Maths
O| pus | :Brown

: SPARQL 1.1 specification incorrectly says ‘Written in full that is:
[[Pl OPTF Pg]]G = {}1,1 D M2 | n1 € [[Pl]]c,uz € [[Pz]]G and Fri®pz — True}

U {p1 € [Pile | p1 # p2, forall py € [P]g, orf [Pa]le =0}
U {1 € [Pi]c | thereis pz € [P2]e with p1 ~ pp and FH1®k2 = false }
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Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE { BHCEmS &) :Prof
2 a :Prof :Brown a :Prof
P ! :Clarke a :Prof
OPTIONAL { ?p :worksIn 2d :Brown :worksIn :CS
FILTER (?d 1= :CS) } :Clarke :worksIn :Maths
}
pi~ py and Fr®e —trye }
P, OPTp P, = FILTERF(P; JOIN P;) UNION P, DiFFp P
o ?p 2d ‘P, that have a compatible Py with F*
g 753 :Adams ' P; that have no compatible P with F
2| p2 | :Clarke :Maths
O| p3 | :Brown

: SPARQL 1.1 specification incorrectly says "Written in full that is:
[PLOPTr P2le = {p1 @ pz|p1 € [Pila, p2 € [P2]e and FH1®k2 = true }

U [ea € TPl Tra # pa, for all pz € [Pala,

IBM TJ Watson, New York, 08.07.16

2le with py ~ pp and FH1®k2 — false }
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On DIFF and OPT (1)

equivalent patterns P, = P, <= [Pi]g = [P2]c. forall G
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P, DIFF+ P, = FILTER—pound(zw) (P1 OPTT (P2 JOIN {?u 7v 7w}))
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On DiFF and OPT (1)
equivalent patterns P, = P, <= [Pi]g = [P2]c. forall G

Angles & Gutierrez (2008)
P; DIFF = v fw |

tuniversol’ friple pattern
‘always’ gives a binding for ?u

is not quite correct: if P, =P, ={} and G =0, then [P]e = {mo}

sO, [P DiIFFt Py]g =0 (as pg is compatible with g)
but [{?u?v?w}]c=0 andso, [P, OPTp...Jc = {me}

Polleres (2009): a fix that avoids the problem
by effectively making the dataset non-empty (GRAPH operation)

IBM TJ Watson, New York, 08.07.16 7



On DIFF and OPT (2)

S is a set of SPARQL operators e.g. 8 = { FILTER, UNION, JOIN }

operator O is S-expressible if,
for any pattern over S U {O}, there is an equivalent pattern over S



On DIFF and OPT (2)

S is a set of SPARQL operators e.g. 8 = { FILTER, UNION, JOIN }

operator O is S-expressible if,
for any pattern over S U {O}, there is an equivalent pattern over S

Zhang & Van den Bussche (2014) JOIN is {FILTER, OPT+}-expressible;
all other operators in the set { JOIN, UNION, OPTt, FILTER, PROJ }
are not expressible via the rest.
proof idea: P, JOIN P, = (P, OPT+ P,) DIFFt (P DIFFT Ps)
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Zhang & Van den Bussche (2014) JOIN is {FILTER, OPT+}-expressible;
all other operators in the set { JOIN, UNION, OPTt, FILTER, PROJ }
are not expressible via the rest.
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and then DIFF+ carefully via FILTER and OPT+

Theorem DIFFt is not S U {OPTg }-expressible

proofidea: PoverSU {OpPTp} = if g € [P]lec then puy € [Plp

P = {} DIFFt FILTER—pound(7w) ({} OPTT {?u v Tw})
[Plo =0 but [P]g = {pe}. forany G # 0
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Projection in SPARQL. On DiFF and OPT (3)

:Ad :Prof
SELECT ?p WHERE ({ ams @ o
2 . rksIn od<— ?d is projected away *Brown a :Prof
‘p wo : i :Clarke a :Prof
} :Brown :worksIn :CS
:Clarke :worksIn :Maths
5 ’p :Davies :worksIn :CS
:Brown
>
2| :Clarke [PROJy Pl = {H|V | € [[P]]G}
0| :pDavies where |y is the restriction of p to vV

. projection in SPARQL is only at the top level
however, PROJ can always be pushed up (by careful variable renaming)

Theorem DIFFg is {FILTER, UNION, PROJ, OPTg}-expressible

P; DIFFg P> on the empty graph

P, DiIFfFp P, = |[ON_EMPTY p,pikepp,|] UNION
PROJvar(py) FILTER—pound(zuz) ((P1 JOIN {?u; vy ?w;}) OPTp
(P2 JOIN {?'LLz ?’02 ?wz}))
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Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . ..
P, OPTp P, = P; OPTt FILTERF(P; JOIN P)
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P, OPTp P, = P; OPTt FILTERF(P; JOIN P)

[[Pl OPTF P2]]G

u ?v '
ta b 3@
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Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . ..

[Pi]c [P:]c
P, OPTp P, = P, OPTy FILTERE (P JOIN Pz) 20 ?v 20 7w
ta b a c
ra
[[Pl OPTg PZ]]G [[Pl JOIN Pz]]g
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IBM TJ Watson, New York, 08.07.16 10



Ternary OPTIONAL of SPARQL
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Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . ..

[Pi]c [P:]c
P, Op = 1 2 2u ?v 2u  ?w
ta b a c
:a
[[Pl OPTF PZ]]G IIP1 OPTT .. -]]G [[Pl JOIN P2]]G
u ?v ' u ?v ?wW u ?v W
= ?
:ta b e # ta b :c ta :b :c F_bound(.v)
:a :a o]

Theorem OPTg is {FILTER, UNION, OPTt }-expressible
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Angles and Gutierrez (2008), (Pérez et al., 2009), . ..

[[Pl OPTF P2]]G

|IP1 OPTT .. -]]G

[[Pl JOIN P2]]G

Ternary OPTIONAL of SPARQL

[Pi]c [P:]c

P, OP = 2 2u ?v 2u ?w
ta b a c
ra

u ?v 2w # u ?v 2w 2u ?v ?w

= ?
ta  :b 2@ 38 g8lo 3@ ta b :c F bound( 'v)
:a :a 0@

Theorem OPTg is {FILTER, UNION, OPTt }-expressible

UNION

V Cvar(P1)nvar(Pz)

P, OPIp P, = [(FILTERg, P;) OPTT FILTERp ((FILTERE, Py) JOIN Py)]

Fy selectsthe V -uniform slice of P;:  Fy = /\ bound(?v) A
TvEV

/\ —bound(?v)

?ve(var(Pr)nvar(P2))\V

horizontal decomposition in DBs
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Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . ..

[Pi]c [P:]c
P, Op = 1 2 2u ?v 2u  ?w
ta b a c
:a
[[Pl OPTg P2]]G IIP1 OPTT .. -]]G [[Pl JOIN P2]]G
u ?v ' u ?v ?wW 2u ?v W
— ?
:ta b e # ta b :c ta :b :c F_bound(.v)
:a :a 2@

Theorem OPTg is {FILTER, UNION, OPTt }-expressible

P, OPTz P, = UNION [(FILTERg, P;) OPTT FILTERp ((FILTERE, Py) JOIN Py)]

V Cvar(P1)nvar(Pz)

Fy selectsthe V-uniformslice of P;: Fy = A bound(?v) A /\ —bound(?v)
vev ?ve(var(Pr)nvar(P2))\V

horizontal decomposition in DBs

the UNION is exponential... is it unavoidable?
IBM TJ Watson, New York, 08.07.16 10




Polynomial Expressibility
operator O is polynomially S-expressible if there is a polynomial f such that,

forany P = O(P,,..., P,) with the P; over S,
there is an equivalent pattern P’ over S with |P’| = f(|P|)

IBM TJ Watson, New York, 08.07.16 11



Polynomial Expressibility

operator O is polynomially S-expressible if there is a polynomial f such that,
forany P = O(P,,..., P,) with the P; over S,
there is an equivalent patftern P’ over S with |P’| = f(|P|)

So far:

e DifFFrisnot S U {OPTg}-expressible

e DIFFg is polynomially {FILTER, UNION, PROJ, OPTr}-expressible
e OPTp is {FILTER, UNION, OPT }-expressible

IBM TJ Watson, New York, 08.07.16 11



Polynomial Expressibility

operator O is polynomially S-expressible if there is a polynomial f such that,
forany P = O(P,,..., P,) with the P; over S,
there is an equivalent patftern P’ over S with |P’| = f(|P|)

So far:

e DifFFrisnot S U {OPTg}-expressible

e DIFFg is polynomially {FILTER, UNION, PROJ, OPTr}-expressible
e OPTp is {FILTER, UNION, OPT }-expressible

ut not polynomially (under the standard complexity-theoretic assumptions)
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Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph G, = {(:a :a :a)}

m '[Ple, # 0 for patterns P over SU{OPTr} of o-rank < n s ZZ+1-hCII'd
nesting depth of OPTE
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nesting depth of OPTE
Proof by encoding QBF 3&,VZ, ... Q%11 ¢
if n is odd and Q =V, then ¢’n+1 = —l’l,b and qbk = V£k+1 —|¢k+1, fork <n

O < |P, = FILTER-pound(2uorss) (Bk OPTE, Pt

‘[P]e, # @' for patterns P over S U { PRoJ, OPTT }is 1N Ag
polynomial deterministic algorithm with | P| + 1 calls to an NP-oracle (PNPy

[P, JON P)g,, if[P:]q, # 0
[Pi]c., if [Pe]c, =0
checking "[P:] g, = 0’ for a pattern P, over S U {PrROJ} is NP-complete

Proof
[[Pl OPTT PZ]]Ga = {

IBM TJ Watson, New York, 08.07.16 12
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singular graph G, = {(:a :a :a)}

'[Ple, # 0 for patterns P over SU{OPTr} of o-rank < n s ZZH-hqrd

nesting depth of OPTE
Proof by encoding QBF 3&,VZ, ... Q%11 ¢
if n is odd and Q =V, then ¢’n+1 = —l’l,b and qbk = V£k+1 _'Qbk-i-l: fork <n

O < |P, = FILTER-pound(2uorss) (Bk OPTE, Pt

‘[P]e, # @' for patterns P over S U { PRoJ, OPTT }is 1N Ag
polynomial deterministic algorithm with | P| + 1 calls to an NP-oracle PV
[P, JON P)g,, if[P:]q, # 0
[Pi]e., if [Palg, =0
checking "[P:] g, = 0’ for a pattern P, over S U {PrROJ} is NP-complete

Proof
[[Pl OPTT PZ]]Ga = {

+ for P, OPTp P, === Not poly-expressible wnless AL = 57)
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Expressing Ternary OPT via Binary OPT

m P1 D|FFF P2 =

P; SETMINUS

pattern that selects u; € [Pi]e
that have a compatible ps € [P:]a
with Fr1®#2 = frue

where [Py SETMINUS P2]g = [Pi]c \ [P2]a

IBM TJ Watson, New York, 08.07.16
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Expressing Ternary OPT via Binary OPT

pattern that selects u; € [Pi]e
EI P, DIFFp P, = P, SETMINUS| that have a compatible ps € [P:]ca

with Fri®r2 — frye

where [Py SETMINUS P2]g = [Pi]c \ [P2]a

m P, SETMINUS P, =
ON_EMPTY p,serminusp,  UNION ~¢= polynomial
(P. MONOMINUS P;) JOIN ONE UNION

pattern that uses two distinct elements
as indicators for ‘not bound’

JOIN TWO == polynomial

if NP = CONP then,

for every pattern P, MONOMINUS P, with the P; over S U {Pros}, There is

a polynomial pattern over § U {PROJ} that gives the same answers
on singular graphs
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MINUS of SPARQL 1.1

not to be confused with
e MiNUs of (Angles & Gutierrez, 2008)
e set-theoretic complement SETMINUS, or \

p1~ p2 and dom(u;) Ndom(us) # 0}
[[Pl DIFFg Pg]]G = {Nl c [[PIHG | there is no M2 € [[Pz]](; with

u1 ~ pe and FriOnz :True}
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MINUS of SPARQL 1.1

not to be confused with
e MiNUs of (Angles & Gutierrez, 2008)
e set-theoretic complement SETMINUS, or \

p1~ p2 and dom(u;) Ndom(us) # 0}
[[Pl DIFFg Pg]]G = {[,Ll c [[Pl]]G | there is no M2 € [[Pz]](; with

u1 ~ pe and FriOnz :True}

Theorem MINUS is polynomially {DIFFg}- and {OPTg, FILTER}-expressible
DiFF+ and OPT+ are not S U {PROJ, MINUS}-expressible

14



SuU{0O’'}- and S, U {O’}-expressibility of O

S = { FILTER, UNION, JOIN } S, =SU{PRrROJ}
O’\O |DiFFp OPTg DIFF OPT+ MINUS  O’\O |DIFFp OPTp DIFF+ OPT+ MINUS
DIFFg DIFFp
OPTr OPTr
DiIFF+ +7  DIFFr +-7
OPT+ +2 OPTT+ +-1
MINUS MINUS

not expressible

polynomially expressible

expressible, but not polynomially if AL # =5
++ expressible, but not known if polynomially

the results with T become [+ if NP = CONP
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Summary and Open Problems
e the ternary OPTIONAL in SPARQL is more complex than commonly assumed

e some widely-known SPARQL equivalences are false

or use assumptions different fromn SPARQL specification
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expressiveness over non-empty RDF graphs
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Summary and Open Problems
the ternary OPTIONAL in SPARQL is more complex than commonly assumed

some widely-known SPARQL equivalences are false

or use assumptions different fromn SPARQL specification

stronger notion of polynomial expressibility: every pattern over S U {O}
has an equivalent polynomially-sized pattern over S

P, OPTp P, = FILTERF (P JOIN Py) UNION (P, DIFFp Ps)
expressive power of NOT EXISTS

expressiveness over non-empty RDF graphs

Is SPARQL intuitive?

or is it just confusing names, e.g., OPTIONAL v LEFTJOIN?
MINUS v \
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