On Expressibility of
Non-Monotone Operators
in SPARQL

Roman Konichakov

Department of Computer Science and Inf. Systems, Birkbeck College, London

http://www.dcs.bbk.ac.uk/~roman

joint work with  Egor V. Kostylev (University of Oxford)


http://www.dcs.bbk.ac.uk/~roman

Basic SPARQL

SPARQL query

SEi.ECT ':>d WHERE { Basic Graph Pattern (BGP)
2d a :Department e — (a set of triple patterns)

} a =rdf:type

IBM TJ Watson, New York, 08.07.16



Basic SPARQL

SPARQL query
SELECT ?d WHERE {

Basic Graph Pattern (BGP)
?d a :Department —

(a set of triple patterns)

a=rdf:type :CS a :Department
. :Math :D
data instance aths a epartment
:Adams a :Prof
(On RDF groph :Brown a :Prof
= a set of triples) :Clarke a :Prof
. . :Clarke :worksIn :Maths
T is the set of terms, i.e., v
IRls d literals dnt i te) :Brown :worksIn :CS
an infegers, strings. etc. :Davies :worksIn :CS

IBM TJ Watson, New York, 08.07.16



SPARQL query

Basic SPARQL

SELECT ?d WHERE ({ Basic Graph Pattern (BGP)

?d a :Department —

(a set of triple patterns)

a=rdf:type :CS a :Department
. :Math :D
data instance aths a epartment
:Adams a :Prof
(On RDF groph :Brown a :Prof
= a set of triples) :Clarke a :Prof
. . :Clarke :worksIn :Maths
T is the set of terms, i.e., v
IRls d literals dnt i te) :Brown :worksIn :CS
an infegers, strings. etc. :Davies :worksIn :CS

answer is a set of solution mappings

?2d
:CS
:Maths

set of variables
solution mapping w is a partial map from V  to T
dom(u) is the domain of u

[Ple = { p: var(P) — T | u(P) C G} foraBGP P

IBM TJ Watson, New York, 08.07.16



SPARQL query

SELECT ?d WHERE ({

?d a :Department —

Basic SPARQL

Basic Graph Pattern (BGP)

(a set of triple patterns)

a =rdf:type -Cs
. :Math
data instance aths
:Adams
(an RDF graph .Brown
= a set of triples) :Clarke
, . :Clark
T is the set of terms, i.e., arke
\ . . :Brown
IRIs and literals (integers, strings, etc.) .
:Davies

:Department
:Department
:Prof

:Prof

:Prof
:worksIn :Maths
:worksIn :CS
:worksIn :CS

Q00 0 o

answer is a set of solution mappings

?2d
:CS
:Maths

[Ple = {p: var(P) = T | u(P) C G}

set of variables

~NN
solution mapping w is a partial map from V  to T

dom(u) is the domain of u

for a BGP P

we consider set semantics (SPARQL uses bag semantics, but our negative results hold)

1




Monotone SPARQL: FILTER

SELECT ?pl ?p2 ?d WHERE ({ :CS a :Department
?pl :worksIn ?d :Maths a :Department
?p2 :worksIn 2d :Adams a :Prof
FILTER (?pl != ?p2) :Brown a -Prof

:Clarke a :Prof

} :Clarke :worksIn :Maths

:Brown :worksIn :CS
:Davies :worksIn :CS

IBM TJ Watson, New York, 08.07.16



Monotone SPARQL: FILTER

SELECT ?pl ?p2 ?d WHERE ({
?pl :worksIn ?2d
?p2 :worksIn ?d

FILTER (?pl != ?p2)
}
o ?pl ?p2 2d
% p1 | :Davies :Brown :CS
g H2 | :Brown :Davies :CS

3CS
:Maths
:Adams
:Brown
:Clarke
:Clarke
:Brown
:Davies

Q0 0 0 o

:worksIn
:worksIn
:worksIn

:Department
:Department
:Prof

:Prof

:Prof
:Maths

:CS

:CS

[FILTERF Pl = { p € [Pl | F* = true }

filters F' are Boolean combinations of

IBM TJ Watson, New York, 08.07.16

?'1)1 :?’02 5

v =d, etc.




Monotone SPARQL: FILTER

SELECT ?pl ?p2 ?d WHERE ({
?pl :worksIn ?2d
?p2 :worksIn ?d

FILTER (?pl != ?p2)
}
o ?pl ?p2 2d
% p1 | :Davies :Brown :CS
g H2 | :Brown :Davies :CS

3CS
:Maths
:Adams
:Brown
:Clarke
:Clarke
:Brown
:Davies

Q0 0 0 o

:worksIn
:worksIn
:worksIn

:Department
:Department
:Prof

:Prof

:Prof
:Maths

:CS

:CS

[FILTERF Pl = { p € [Pl | F* = true }

filters F' are Boolean combinations of

?'Ul :?’02 5

v =d, etc.

slight simpilification, see Effective Boolean Value in SPARQL Specification




Monotone SPARQL: FILTER

SELECT ?pl ?p2 ?d WHERE { :CS a :Department
?pl :worksIn 2d :Maths a :Department
?p2 :worksIn ?2d rAdams a :Prof
FILTER (2pl != ?p2) :Brown a :Prof

:Clarke a :Prof

J :Clarke :worksIn :Maths

:Brown :worksIn :CS

5 2p1 7p2 7d :Davies :worksIn :CS

% p1 | :Davies :Brown :CS

g H2 | :Brown :Davies :CS

[FILTERF Pl = { p € [Pl | F* = true }

filters F' are Boolean combinations of v, =7vy, Tv =d, etc.

slight simpilification, see Effective Boolean Value in SPARQL Specification

SPARQIL uses 3-valued logic (ke SQL)




Monotone SPARQL: UNION

SELECT ?p ?d WHERE { :CS
{ ?p a :Prof :Maths
?p :worksIn ?d } :Adams
UNION :Brown
:Clarke
{ ?p a :Prof } .Clarke
} :Brown
:Davies

Q00 0 o

:worksIn
:worksIn
:worksIn

:Department
:Department
:Prof

:Prof

:Prof
:Maths

:CS

:CS

IBM TJ Watson, New York, 08.07.16




SELECT ?p ?d WHERE ({

Monotone SPARQL: UNION

{ ?p a :Prof
:worksIn ?d }
UNION
{ ?p a :Prof }
}
o ?p ?d
g p1 | :Clarke :Maths
2 M2 | :Brown :CS
O| pus | :Davies :CS
M4 | :Adams
M5 | :Brown
Me | :Clarke

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS

:Davies :worksIn :CS

[P1 UNION Py]¢ = [Pi]c U [P:]e



SELECT ?p ?d WHERE ({

answer -—

Monotone SPARQL: UNION

{ ?p a :Prof
:worksIn ?d }

UNION

{ ?p a :Prof }

?p ?d
p1 | :Clarke :Maths
M2 | :Brown :CS
p3 | :Davies :CS
M4 | :Adams
M5 | :Brown
Me | :Clarke

:CS a :Department
:Maths a :Department
:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Clarke :worksIn :Maths
:Brown :worksIn :CS

:Davies :worksIn :CS

[P1 UNION Py]¢ = [Pi]c U [P:]e

unlike in SQL, the two arguments do not have to have the same ‘schema’



Monotone SPARQL: UNION

SELECT ?p ?d WHERE ({ :CS a :Department
{ ?p a :Prof :Maths a :Department
?p :WorkSIn ?d } :Adams a :Prof
UNION :Brown a :Prof
:Clarke a :Prof
? :Prof
t?p a J :Clarke :worksIn :Maths
} :Brown :worksIn :CS
o ?p ?d ,
o :Davies :worksIn :CS
P M1 | :Clarke :Maths
2 M2 | :Brown :CS
O| pus | :Davies :CS
pa | :Adams [P1 UNION P]g = [Pi]e U [P:]e
M5 | :Brown
Me | :Clarke

unlike in SQL, the two arguments do not have to have the same ‘schema’

e the 'missing’ values are like NULL in SQL with the 3-valued logic
(?2d = :CS)**  is e — false and (?d != :CS)*+ s e — false




Monotone SPARQL: UNION

SELECT ?p ?d WHERE ({ :CS a :Department
{ ?p a :Prof :Maths a :Department
?p :WorkSIn ?d } :Adams a :Prof
UNION :Brown a :Prof
:Clarke a :Prof
?p a :Prof
tep J :Clarke :worksIn :Maths
} :Brown :worksIn :CS
o ?p ?d ,
o :Davies :worksIn :CS
P M1 | :Clarke :Maths
2 M2 | :Brown :CS
O| pus | :Davies :CS
pa | :Adams [P1 UNION P]g = [Pi]e U [P:]e
M5 | :Brown
Me | :Clarke

unlike in SQL, the two arguments do not have to have the same ‘schema’

e the 'missing’ values are like NULL in SQL with the 3-valued logic
(?2d = :CS)**  is e — false and (?d != :CS)*+ s e — false

(bound(?v))*isfrue < ?v € dom(pu) (similar to Is NOT NULL in SQL)



Monotone SPARQL: UNION

SELECT ?p ?d WHERE ({ :CS a :Department
{ ?p a :Prof :Maths a :Department
?p :WorkSIn ?d } :Adams a :Prof
UNION :Brown a :Prof
:Clarke a :Prof
?p a :Prof
tep J :Clarke :worksIn :Maths
} :Brown :worksIn :CS
o ?p ?d ,
o :Davies :worksIn :CS
P M1 | :Clarke :Maths
2 M2 | :Brown :CS
O| pus | :Davies :CS
pa | :Adams [P1 UNION P]g = [Pi]e U [P:]e
M5 | :Brown
Me | :Clarke

unlike in SQL, the two arguments do not have to have the same ‘schema’

e the 'missing’ values are like NULL in SQL with the 3-valued logic
(?2d = :CS)**  is e — false and (?d != :CS)*+ s e — false

(bound(?v))*isfrue < ?v € dom(pu) (similar to Is NOT NULL in SQL)

the 3-valued logic it is not essential — see Zhang & Van den Bussche (2014)



Monotone SPARQL: JOIN

p1 and pg are compatible by ~ 2 if

p1(?v) = po(?v), forall v € dom(py) N dom(us)

IBM TJ Watson, New York, 08.07.16 4



Monotone SPARQL: JOIN
p1 and pg are compatible by ~ 2 if

p1(?v) = po(?v), forall v € dom(py) N dom(us)

[Py JOIN P, = {Ml B p2 | 1 € [Pi]e and pg € [Pr]e with py ~ ,U»2}

?p ?d
e ?d ?t :Adams
:Adams :Maths JOIN :Clarke :Maths |=
:Clarke 8506 :Clarke :CsS
:Davies :CS




Monotone SPARQL: JOIN

p1 and p, are compatible

1 ~ [2

p1(Tv) = p2(?v),

if

forall ?7v € dom(uy) N dom(pz)

[Py JOIN P, = {Ml B p2 | 1 € [Pi]e and pg € [Pr]e with py ~ Mz}

7P 2d ?t
:Adams :Maths
:Clarke 8506

JOIN

?p ?d
:Adams
:Clarke :Maths
:Clarke :CsS
:Davies :CS

P 2d 2t
:Adams :Maths
:Clarke :Maths 8506
:Clarke :CS 8506




p1 and p, are compatible

Monotone SPARQL: JOIN

1 ~ [2

p1(Tv) = p2(?v),

if

forall ?7v € dom(uy) N dom(pz)

[[Pl JOIN Pg]]g = {/1,1 D o | M1 € [[Pl]]g and ps € [[Pz]]c with  pq ~ p,z}

JOIN

?p ?d
:Adams
:Clarke :Maths
:Clarke :CsS
:Davies :CS

P 2d 2t
:Adams :Maths
:Clarke :Maths 8506
:Clarke :CS 8506

compadtibility in SQL is quite different!

7P 2d 2t
:Adams :Maths
:Clarke 8506

?p 2d 7t
:Adams :Maths NULL
:Clarke NULL 8506

JoINPE

?p ?d
:Adams NULL
:Clarke :Maths
:Clarke :CS
:Davies :CS




p1 and p, are compatible

Monotone SPARQL: JOIN

1 ~ [2

p1(Tv) = p2(?v),

if

forall ?7v € dom(uy) N dom(pz)

[Py JOIN P, = {Ml B p2 | 1 € [Pi]e and pg € [Pr]e with py ~ ,U»2}

’p d 7 2d 2t
’p 2d ’t :Adams :Adams :Maths
:Adams :Maths JOIN :Clarke :Maths .Clarke :Maths 8506
:Clarke 8506 :Clarke :CS .Clarke :CS 8506
:Davies :CS
compadtibility in SQL is quite different!
?p ?d
?p ?d ?t :Adams NULL
:Adams  :Maths NULL |JOIN®®| :Clarke :Maths ?2p 2d 2t
:Clarke NULL 8506 :Clarke :CS
:Davies :CS

careful use of COALESCE (or IF) is required, see Prud’hommeaux & Bertails (2008)




Monotone SPARQL: Algebraic View

unique [y with dom(ug) = 0 is compatible with any solution mapping
empty BGP {}  [{}e = {po}. forany G

IBM TJ Watson, New York, 08.07.16



Monotone SPARQL: Algebraic View

unique [y with dom(ug) = 0 is compatible with any solution mapping
empty BGP {}  [{}e = {po}. forany G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a commutative semiring with operations
UNION and JOIN (@ is the identity for UNION and {u¢} is the identity for JOIN)

IBM TJ Watson, New York, 08.07.16 5



Monotone SPARQL: Algebraic View

unique [y with dom(ug) = 0 is compatible with any solution mapping
empty BGP {}  [{}e = {po}. forany G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a commutative semiring with operations
UNION and JOIN (@ is the identity for UNION and {u¢} is the identity for JOIN)

S1 UNION S5 = S5 UNION Sy S1 UNION (52 JOIN 53) = (Sl UNION Sz) JOIN S3
S UNIONOD = S
S1 JOIN S = S5 JOIN S, S1 JOIN (S2 JOIN S3) = (51 JOIN S2) JOIN S3

S JOIN {ug} =S
SJOIND =0 S1 JOIN (S2 UNION S3) = (S1 JOIN S3) JOIN (S1 JOIN S3)

IBM TJ Watson, New York, 08.07.16 5



Monotone SPARQL: Algebraic View

unique [y with dom(ug) = 0 is compatible with any solution mapping
empty BGP {}  [{}e = {po}. forany G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a commutative semiring with operations
UNION and JOIN (@ is the identity for UNION and {u¢} is the identity for JOIN)

S1 UNION S5 = S5 UNION Sy S1 UNION (52 JOIN 53) = (Sl UNION Sz) JOIN S3
S UNIONOD = S
S1 JOIN S = S5 JOIN S, S1 JOIN (S2 JOIN S3) = (51 JOIN S2) JOIN S3

S JOIN {ug} =S
SJOIND =0 S1 JOIN (S2 UNION S3) = (S1 JOIN S3) JOIN (S1 JOIN S3)

under the set semantics: S UNION S = S

IBM TJ Watson, New York, 08.07.16 5



Monotone SPARQL: Algebraic View

unique [y with dom(ug) = 0 is compatible with any solution mapping
empty BGP {}  [{}e = {po}. forany G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a commutative semiring with operations
UNION and JOIN (@ is the identity for UNION and {u¢} is the identity for JOIN)

S1 UNION S5 = S5 UNION Sy S1 UNION (52 JOIN 53) = (Sl UNION Sz) JOIN S3
S UNIONOD = S
S1 JOIN S = S5 JOIN S, S1 JOIN (S2 JOIN S3) = (51 JOIN S2) JOIN S3

S JOIN {ug} =S
SJOIND =0 S1 JOIN (S2 UNION S3) = (S1 JOIN S3) JOIN (S1 JOIN S3)

under the set semantics: S UNION S = S SJOINS =S

IBM TJ Watson, New York, 08.07.16 5



Monotone SPARQL: Algebraic View

unique [y with dom(ug) = 0 is compatible with any solution mapping
empty BGP {}  [{}e = {po}. forany G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a commutative semiring with operations
UNION and JOIN (@ is the identity for UNION and {u¢} is the identity for JOIN)

S1 UNION S5 = S5 UNION Sy S1 UNION (52 JOIN 53) = (Sl UNION Sz) JOIN S3
SUNIOND = S
S1 JOIN S = S5 JOIN S, S1 JOIN (S2 JOIN S3) = (51 JOIN S2) JOIN S3
S JOIN{up} =S
SJOIND =0 S1 JOIN (S2 UNION S3) = (S1 JOIN S3) JOIN (S1 JOIN S3)
under the sef semantics: S UNION S = S SJOINS =S only O

IBM TJ Watson, New York, 08.07.16 5



Monotone SPARQL: Algebraic View

unique [y with dom(ug) = 0 is compatible with any solution mapping
empty BGP {}  [{}e = {po}. forany G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a commutative semiring with operations
UNION and JOIN (@ is the identity for UNION and {u¢} is the identity for JOIN)

S1 UNION S5 = S5 UNION Sy S1 UNION (52 JOIN 53) = (Sl UNION Sz) JOIN S3
SUNIOND = S
S1 JOIN S = S5 JOIN S, S1 JOIN (S2 JOIN S3) = (51 JOIN S2) JOIN S3
S JOIN{up} =S
SJOIND =0 S1 JOIN (S2 UNION S3) = (S1 JOIN S3) JOIN (S1 JOIN S3)
under the sef semantics: S UNION S = S SJOINS =S only O

2. FILTER distributes over UNION
FILTERF(S1 UNION S2) = FILTERF S1 UNION FILTERE S»
FILTERF(S7 JOIN S3) = FILTERF S1 JOIN FILTERE S2

IBM TJ Watson, New York, 08.07.16 5



Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE ({
?p a :Prof
OPTIONAL { 7?p :worksIn 2d
FILTER (?d != :CS)

IBM TJ Watson, New York, 08.07.16

}

:Adams
:Brown
:Clarke
:Brown
:Clarke

a
a
a
:worksIn
:worksIn

:Prof
:Prof
:Prof
:CS
:Maths




Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE { :Adams  a :Prof
?p a :Prof :Brown a :Prof
P . :Clarke a :Prof
OPTIONAL { ?p :worksIn 7d :Brown :worksIn :CS

FILTER (2d := :CS) } :Clarke :worksIn :Maths

}

P, OPTp Py, = FILTERF(P; JOIN P,) UNION P, DIffp P,

‘' Py that have a compatible P, with F

' P; that have no compatible Ps with F*



Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE { :Adams - a HBTOf
?p a :Prof :Brown a :Prof
) ) :Clarke a :Prof
OPTIONAL { 7?p :wor]'<sIn ?d  Brown .worksIn :CS
) FILTER (?d 1= :CS) } :Clarke :worksIn :Maths
pi~ py and Fr®e —trye }
Py OPTF P, = FlLTERF(Pl JOIN Pz) UNION P, DIFFg P,

‘' Py that have a compatible P, with F

' P; that have no compatible Ps with F*



Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE { BEeEmS & 125508
?p a :Prof :Brown a :Prof
i ’ :Clarke a :Prof
2 . ?
OPTIONAL { ?p .:orfsln °d :Brown :worksIn :CS
FILTER (2d != :C8) } :Clarke :worksIn :Maths
}
pi~ py and Fr®e —trye }
P, OPTp P, = FILTERR(P; JOIN P,) UNION P, DiFfp P,
?p 2d ‘' Py that have a compatible P, with F
:Adams ' P; that have no compatible P with F

answer
=
=

M3 | :Brown

M2 | :Clarke :Maths




Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE { BHCEmS &) BIoeEess
%0 a :Prof :Brown a :Prof
(')I;TIOI:IAL 5 ksIn 2d :Clarke a :Prof

{ 7p .w;vor's no: :Brown :worksIn :CS
FILTER (?d != :C8) } :Clarke :worksIn :Maths
}
pi~ py and Fr®e —trye }
P, OPTp P, = FILTERp(P; JOIN P,) UNION P; Diffp P,
= ?p 2d ‘P, that have a compatible Py with F*
g 753 :Adams ' P; that have no compatible P with F
2| p2 | :Clarke :Maths
O| pus | :Brown

: SPARQL 1.1 specification incorrectly says ‘Written in full that is:
[[Pl OPTF Pg]]G = {}1,1 D M2 | n1 € [[Pl]]c,uz € [[Pz]]G and Fri®pz — True}

U {p1 € [Pile | p1 # p2, forall py € [P]g, orf [Pa]le =0}
U {1 € [Pi]c | thereis pz € [P2]e with p1 ~ pp and FH1®k2 = false }

6



Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE { BHCEmS &) BIoeEess
%0 a :Prof :Brown a :Prof
6§TIOI:IAL 5 ksIn 2d :Clarke a :Prof

{ 7p .‘;\ror's no: :Brown :worksIn :CS
FILTER (?d != :C8) } :Clarke :worksIn :Maths
}
pi~ py and Fr®e —trye }
P, OPTp P, = FILTERp(P; JOIN P,) UNION P; Diffp P,
= ?p 2d ‘' Py that have a compatible P, with F
g 753 :Adams ' P; that have no compatible P with F
2| p2 | :Clarke :Maths
O| pus | :Brown

: SPARQL 1.1 specification incorrectly says "Written in full that is:
[P OPTF Pole¢ = {p1® p2 | p1 € [Pi]a, n2 € [P2]g and FH1®k2 = trye }

U {p1 € [Pila | p1 % pa2, forall ps € [P]a, or [P2le =0}
U {1 € [Pi]c | thereis pz € [P2]e with p1 ~ pp and FH1®k2 = false }

6



Non-monotone SPARQL: OPTIONAL

SELECT ?p ?d WHERE { BHCEmS &) :Prof
2 a :Prof :Brown a :Prof
P ! :Clarke a :Prof
OPTIONAL { ?p :worksIn 2d :Brown :worksIn :CS
FILTER (?d 1= :CS) } :Clarke :worksIn :Maths
}
pi~ py and Fr®e —trye }
P, OPTp P, = FILTERF(P; JOIN P;) UNION P, DiFFp P
o ?p 2d ‘P, that have a compatible Py with F*
g 753 :Adams ' P; that have no compatible P with F
2| p2 | :Clarke :Maths
O| p3 | :Brown

: SPARQL 1.1 specification incorrectly says "Written in full that is:
[PLOPTr P2le = {p1 @ pz|p1 € [Pila, p2 € [P2]e and FH1®k2 = true }

U [ea € TPl Tra # pa, for all pz € [Pala,

IBM TJ Watson, New York, 08.07.16

2le with py ~ pp and FH1®k2 — false }

6



On DIFF and OPT (1)

equivalent patterns P, = P, <= [Pi]g = [P2]c. forall G

IBM TJ Watson, New York, 08.07.16



On DiFF and OPT (1)
equivalent patterns P, = P, <= [Pi]g = [P2]c. forall G

Angles & Gutierrez (2008)

P, DIFF+ P, = FILTER—pound(zw) (P1 OPTT (P2 JOIN {?u 7v 7w}))

IBM TJ Watson, New York, 08.07.16



On DiFF and OPT (1)
equivalent patterns P, = P, <= [Pi]g = [P2]c. forall G

Angles & Gutierrez (2008)
P, DIFF+ P, = FILTER—pound(zw) (P1 OPTT (P2 JOIN {?u 7v 7w}))

‘universal’ triple pattern
‘always’ gives a binding for ?u

IBM TJ Watson, New York, 08.07.16 7



On DiFF and OPT (1)
equivalent patterns P, = P, <= [Pi]g = [P2]c. forall G

Angles & Gutierrez (2008)
P, DIFF+ P, = FILTER—pound(zw) (P1 OPTT (P2 JOIN {?u 7v 7w}))

‘universal’ triple pattern
‘always’ gives a binding for ?u

is not quite correct: if P, =P, ={} and G =0, then [P]e = {mo}

IBM TJ Watson, New York, 08.07.16 7



On DiFF and OPT (1)
equivalent patterns P, = P, <= [Pi]g = [P2]c. forall G

Angles & Gutierrez (2008)
P, DIFF+ P, = FILTER—pound(zw) (P1 OPTT (P2 JOIN {?u 7v 7w}))

‘universal’ triple pattern
‘always’ gives a binding for ?u

is not quite correct: if P, =P, ={} and G =0, then [P = {po}

SO, [Py DIFFt Pslg =0 (as pg is compatible with pg)
but [{?u?v?w}]c=0 andso, [P, OPTp...Jc = {me}

IBM TJ Watson, New York, 08.07.16 7



On DiFF and OPT (1)
equivalent patterns P, = P, <= [Pi]g = [P2]c. forall G

Angles & Gutierrez (2008)
P; DIFF = v fw |

tuniversol’ friple pattern
‘always’ gives a binding for ?u

is not quite correct: if P, =P, ={} and G =0, then [P]e = {mo}

sO, [P DiIFFt Py]g =0 (as pg is compatible with g)
but [{?u?v?w}]c=0 andso, [P, OPTp...Jc = {me}

Polleres (2009): a fix that avoids the problem
by effectively making the dataset non-empty (GRAPH operation)

IBM TJ Watson, New York, 08.07.16 7



On DIFF and OPT (2)

S is a set of SPARQL operators e.g. 8 = { FILTER, UNION, JOIN }

operator O is S-expressible if,
for any pattern over S U {O}, there is an equivalent pattern over S



On DIFF and OPT (2)

S is a set of SPARQL operators e.g. 8 = { FILTER, UNION, JOIN }

operator O is S-expressible if,
for any pattern over S U {O}, there is an equivalent pattern over S

Zhang & Van den Bussche (2014) JOIN is {FILTER, OPT+}-expressible;
all other operators in the set { JOIN, UNION, OPTt, FILTER, PROJ }
are not expressible via the rest.
proof idea: P, JOIN P, = (P, OPT+ P,) DIFFt (P DIFFT Ps)
and then DIFF+ carefully via FILTER and OPT+



On DIFF and OPT (2)

S is a set of SPARQL operators e.g. 8 = { FILTER, UNION, JOIN }

operator O is S-expressible if,
for any pattern over S U {O}, there is an equivalent pattern over S

Zhang & Van den Bussche (2014) JOIN is {FILTER, OPT+}-expressible;
all other operators in the set { JOIN, UNION, OPTt, FILTER, PROJ }
are not expressible via the rest.

proof idea: P, JOIN P, = (P, OPT+ P,) DIFFt (P DIFFT Ps)
and then DIFF+ carefully via FILTER and OPT+

Theorem DIFFt is not S U {OPTg }-expressible

proofidea: PoverSU {OpPTp} = if g € [P]lec then puy € [Plp



On DIFF and OPT (2)

S is a set of SPARQL operators e.g. 8 = { FILTER, UNION, JOIN }

operator O is S-expressible if,
for any pattern over S U {O}, there is an equivalent pattern over S

Zhang & Van den Bussche (2014) JOIN is {FILTER, OPT+}-expressible;
all other operators in the set { JOIN, UNION, OPTt, FILTER, PROJ }
are not expressible via the rest.

proof idea: P, JOIN P, = (P, OPT+ P,) DIFFt (P DIFFT Ps)
and then DIFF+ carefully via FILTER and OPT+

Theorem DIFFt is not S U {OPTg }-expressible

proofidea: PoverSU {OpPTp} = if g € [P]lec then puy € [Plp

P = {} DIFFt FILTER—pound(7w) ({} OPTT {?u v Tw})
[Plo =0 but [P]g = {pe}. forany G # 0



Projection in SPARQL. On DIFF and OPT (3)

SELECT ?p WHERE {
?p :worksIn ?d < >dis projected away

IBM TJ Watson, New York, 08.07.16

:Adams
:Brown
:Clarke
:Brown
:Clarke
:Davies

a
a
a

:worksIn
:worksIn
:worksIn

:Prof
:Prof
:Prof
:CS
:Maths
:CS




Projection in SPARQL. On DiFF and OPT (3)

SELECT ?p WHERE ({

?p :worksIn ?d < >dis projected away

— ?p

g :Brown
2 :Clarke
0| :Davies

IBM TJ Watson, New York, 08.07.16

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS

:Clarke :worksIn :Maths
:Davies :worksIn :CS

[PROJv Ple = { plv | 1 € [Ple }
where p|y is the restriction of p to V



Projection in SPARQL. On DiFF and OPT (3)

:Ad :Prof
SELECT ?p WHERE ({ -Brzrv:z Z -PiZf
PR ) 2d is projected awa ) )
°p :worksln ?d Pro) Y :Clarke a :Prof
} :Brown :worksIn :CS
:Clarke :worksIn :Maths
5 ’p :Davies :worksIn :CS
:Brown
z
2| :Clarke [PROJy Pl = {H|V | € [[P]]G}
0| :pDavies where |y is the restriction of p to vV

. projection in SPARQL is only at the top level
however, PROJ can always be pushed up (by careful variable renaming)




Projection in SPARQL. On DiFF and OPT (3)

SELECT ?p WHERE ({

?p :worksIn ?d < >dis projected away

— ?p

g :Brown
2 :Clarke
0| :Davies

:Adams a :Prof
:Brown a :Prof
:Clarke a :Prof
:Brown :worksIn :CS

:Clarke :worksIn :Maths
:Davies :worksIn :CS

[PROJv Ple = { plv | 1 € [Ple }
where p|y is the restriction of p to V

. projection in SPARQL is only at the top level
however, PROJ can always be pushed up (by careful variable renaming)

Theorem DIFFg is {FILTER, UNION, PROJ, OPTg}-expressible




Projection in SPARQL. On DiFF and OPT (3)

:Ad :Prof
SELECT ?p WHERE ({ -Brzrv:z Z -PiZf
PR ) 2d is projected awa ) )
°p :worksln ?d Pro) Y :Clarke a :Prof
} :Brown :worksIn :CS
:Clarke :worksIn :Maths
5 ’p :Davies :worksIn :CS
:Brown
Z
2| :Clarke [PROJy Pl = {u|v | pn € [[P]]G}
0| :pDavies where |y is the restriction of p to vV

. projection in SPARQL is only at the top level
however, PROJ can always be pushed up (by careful variable renaming)

Theorem DIFFg is {FILTER, UNION, PROJ, OPTg}-expressible

P, DIFfFp P, = ON_EMPTYp,ppp, UNION
PROJvar(py) FILTER—pound(zuz) ((P1 JOIN {?u; vy ?w;}) OPTp
(P2 JOIN {?Uz ?’02 ?’U)z}))




Projection in SPARQL. On DiFF and OPT (3)

:Ad :Prof
SELECT ?p WHERE ({ ams @ o
2 . rksIn od<— ?d is projected away *Brown a :Prof
‘p wo : i :Clarke a :Prof
} :Brown :worksIn :CS
:Clarke :worksIn :Maths
5 ’p :Davies :worksIn :CS
:Brown
>
2| :Clarke [PROJy Pl = {H|V | € [[P]]G}
0| :pDavies where |y is the restriction of p to vV

. projection in SPARQL is only at the top level
however, PROJ can always be pushed up (by careful variable renaming)

Theorem DIFFg is {FILTER, UNION, PROJ, OPTg}-expressible

P; DIFFg P> on the empty graph

P, DiIFfFp P, = |[ON_EMPTY p,pikepp,|] UNION
PROJvar(py) FILTER—pound(zuz) ((P1 JOIN {?u; vy ?w;}) OPTp
(P2 JOIN {?'LLz ?’02 ?wz}))

IBM TJ Watson, New York, 08.07.16 %




Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . ..
P, OPTp P, = P; OPTt FILTERF(P; JOIN P)

IBM TJ Watson, New York, 08.07.16

10



Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . ..

ta

Pic P)c
P, OPTp P, = P; OPTt FILTERF(P; JOIN P) ?[[u lﬂ?v ?[[u 2H?w
ta b ra @

F = bound(?v)

IBM TJ Watson, New York, 08.07.16

10



Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . ..
P, OPTp P, = P; OPTt FILTERF(P; JOIN P)

[[Pl OPTF P2]]G

u ?v '
ta b 3@
ra

IBM TJ Watson, New York, 08.07.16

[Pi]c [P:]c

u ?v 2u ?w
ta b ta  :cC
ra

F = bound(?v)

10




Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . ..

[Pi]c [P:]c
P, OPTp P, = P, OPTy FILTERE (P JOIN Pz) 20 ?v 20 7w
ta b a c
ra
[[Pl OPTg PZ]]G [[Pl JOIN Pz]]g
u ?v Fa'y 2u ?v W
— ?
:ta b o) ta :b :c F = bound(?v)
ra ra 3@

IBM TJ Watson, New York, 08.07.16 10



Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . ..

[Pi]c [P:]c
P, Op = 1 2 2u ?v 2u  ?w
ta b ta  :cC
:a
IIPI OPTF PZ]]G IIP1 OPTT .. -]]G [[Pl JOIN P2]]G
u ?v ' u ?v ?wW u ?v W
= ?
:ta b e # ta b :c ta :b :c F_bound(.v)
:a :a 2@

IBM TJ Watson, New York, 08.07.16 10



Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . ..

[Pi]c [P:]c
P, Op = 1 2 2u ?v 2u  ?w
ta b a c
:a
[[Pl OPTF PZ]]G IIP1 OPTT .. -]]G [[Pl JOIN P2]]G
u ?v ' u ?v ?wW u ?v W
= ?
:ta b e # ta b :c ta :b :c F_bound(.v)
:a :a o]

Theorem OPTg is {FILTER, UNION, OPTt }-expressible

IBM TJ Watson, New York, 08.07.16 10



Angles and Gutierrez (2008), (Pérez et al., 2009), . ..

[[Pl OPTF P2]]G

|IP1 OPTT .. -]]G

[[Pl JOIN P2]]G

Ternary OPTIONAL of SPARQL

[Pi]c [P:]c

P, OP = 2 2u ?v 2u ?w
ta b a c
ra

u ?v 2w # u ?v 2w 2u ?v ?w

= ?
ta  :b 2@ 38 g8lo 3@ ta b :c F bound( 'v)
:a :a 0@

Theorem OPTg is {FILTER, UNION, OPTt }-expressible

UNION

V Cvar(P1)nvar(Pz)

P, OPIp P, = [(FILTERg, P;) OPTT FILTERp ((FILTERE, Py) JOIN Py)]

Fy selectsthe V -uniform slice of P;:  Fy = /\ bound(?v) A
TvEV

/\ —bound(?v)

?ve(var(Pr)nvar(P2))\V

horizontal decomposition in DBs

IBM TJ Watson, New York, 08.07.16 10



Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . ..

[Pi]c [P:]c
P, Op = 1 2 2u ?v 2u  ?w
ta b a c
:a
[[Pl OPTg P2]]G IIP1 OPTT .. -]]G [[Pl JOIN P2]]G
u ?v ' u ?v ?wW 2u ?v W
— ?
:ta b e # ta b :c ta :b :c F_bound(.v)
:a :a 2@

Theorem OPTg is {FILTER, UNION, OPTt }-expressible

P, OPTz P, = UNION [(FILTERg, P;) OPTT FILTERp ((FILTERE, Py) JOIN Py)]

V Cvar(P1)nvar(Pz)

Fy selectsthe V-uniformslice of P;: Fy = A bound(?v) A /\ —bound(?v)
vev ?ve(var(Pr)nvar(P2))\V

horizontal decomposition in DBs

the UNION is exponential... is it unavoidable?
IBM TJ Watson, New York, 08.07.16 10




Polynomial Expressibility
operator O is polynomially S-expressible if there is a polynomial f such that,

forany P = O(P,,..., P,) with the P; over S,
there is an equivalent pattern P’ over S with |P’| = f(|P|)

IBM TJ Watson, New York, 08.07.16 11



Polynomial Expressibility

operator O is polynomially S-expressible if there is a polynomial f such that,
forany P = O(P,,..., P,) with the P; over S,
there is an equivalent patftern P’ over S with |P’| = f(|P|)

So far:

e DifFFrisnot S U {OPTg}-expressible

e DIFFg is polynomially {FILTER, UNION, PROJ, OPTr}-expressible
e OPTp is {FILTER, UNION, OPT }-expressible

IBM TJ Watson, New York, 08.07.16 11



Polynomial Expressibility

operator O is polynomially S-expressible if there is a polynomial f such that,
forany P = O(P,,..., P,) with the P; over S,
there is an equivalent patftern P’ over S with |P’| = f(|P|)

So far:

e DifFFrisnot S U {OPTg}-expressible

e DIFFg is polynomially {FILTER, UNION, PROJ, OPTr}-expressible
e OPTp is {FILTER, UNION, OPT }-expressible

ut not polynomially (under the standard complexity-theoretic assumptions)

IBM TJ Watson, New York, 08.07.16 11



Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph G, = {(:a :a :a)}

m '[Ple, # 0 for patterns P over SU{OPTr} of o-rank < n s ZZ+1-hCII'd
nesting depth of OPTE

IBM TJ Watson, New York, 08.07.16 12



Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph G, = {(:a :a :a)}

'[Ple, # 0 for patterns P over SU{OPTr} of o-rank < n s EZH-hqrd
nesting depth of OPTE

Proof by encoding QBF 3ZVZs ... Q%1 ¢

if n is odd and Q =V, then ¢n+1 = —l’l,b and ¢k = ‘v’;i’k_,_l _'Qbk-i-l: fork <n

IBM TJ Watson, New York, 08.07.16 12



Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph G, = {(:a :a :a)}

'[Ple, # 0 for patterns P over SU{OPTr} of o-rank < n s EZH-hqrd
nesting depth of OPTE

Proof by encoding QBF 3ZVZs ... Q%1 ¢
if n is odd and Q =V, then ¢n+1 = —l’l,b and ¢k = ‘v’;i’k_,_l _'Qbk-i-l: fork <n

O < |P, = FILTER-pound(2uorss) (Bk OPTE, Pt

IBM TJ Watson, New York, 08.07.16 12



Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph G, = {(:a :a :a)}

'[Ple, # 0 for patterns P over SU{OPTr} of o-rank < n s EZH-hqrd

nesting depth of OPTE
Proof by encoding QBF 3&,VZ, ... Q%11 ¢
if n is odd and Q =V, then ¢’n+1 = —l’l,b and qbk = V£k+1 _'Qbk-i-l: fork <n

O < |P, = FILTER-pound(2uorss) (Bk OPTE, Pt

‘[P]e, # @' for patterns P over S U { PRoJ, OPTT }is 1N Ag

polynomial deterministic algorithm with | P| + 1 calls to an NP-oracle (PNPy

IBM TJ Watson, New York, 08.07.16 12



Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph G, = {(:a :a :a)}

'[Ple, # 0 for patterns P over SU{OPTr} of o-rank < n s ZZH-hqrd

nesting depth of OPTE
Proof by encoding QBF 3&,VZ, ... Q%11 ¢
if n is odd and Q =V, then ¢’n+1 = —l’l,b and qbk = V£k+1 _'Qbk-i-l: fork <n

O < |P, = FILTER-pound(2uorss) (Bk OPTE, Pt

‘[P]e, # @' for patterns P over S U { PRoJ, OPTT }is 1N Ag
polynomial deterministic algorithm with | P| + 1 calls to an NP-oracle (PNPy

[Py JOIN Py]g,, if[P:]c, # 0
[[P]-]]Ga,’ if [[P2]]Ga =0

Proof
[[Pl OPTT PZ]]Ga = {

IBM TJ Watson, New York, 08.07.16 12



Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph G, = {(:a :a :a)}

'[Ple, # 0 for patterns P over SU{OPTr} of o-rank < n s ZZH-hard

nesting depth of OPTE
Proof by encoding QBF 3&,VZ, ... Q%11 ¢
if n is odd and Q =V, then ¢’n+1 = —l’l,b and qbk = V£k+1 —|¢k+1, fork <n

O < |P, = FILTER-pound(2uorss) (Bk OPTE, Pt

‘[P]e, # @' for patterns P over S U { PRoJ, OPTT }is 1N Ag
polynomial deterministic algorithm with | P| + 1 calls to an NP-oracle (PNPy

[P, JON P)g,, if[P:]q, # 0
[Pi]c., if [Pe]c, =0
checking "[P:] g, = 0’ for a pattern P, over S U {PrROJ} is NP-complete

Proof
[[Pl OPTT PZ]]Ga = {

IBM TJ Watson, New York, 08.07.16 12



Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph G, = {(:a :a :a)}

'[Ple, # 0 for patterns P over SU{OPTr} of o-rank < n s ZZH-hqrd

nesting depth of OPTE
Proof by encoding QBF 3&,VZ, ... Q%11 ¢
if n is odd and Q =V, then ¢’n+1 = —l’l,b and qbk = V£k+1 _'Qbk-i-l: fork <n

O < |P, = FILTER-pound(2uorss) (Bk OPTE, Pt

‘[P]e, # @' for patterns P over S U { PRoJ, OPTT }is 1N Ag
polynomial deterministic algorithm with | P| + 1 calls to an NP-oracle PV
[P, JON P)g,, if[P:]q, # 0
[Pi]e., if [Palg, =0
checking "[P:] g, = 0’ for a pattern P, over S U {PrROJ} is NP-complete

Proof
[[Pl OPTT PZ]]Ga = {

+ for P, OPTp P, === Not poly-expressible wnless AL = 57)

IBM TJ Watson, New York, 08.07.16 12



Expressing Ternary OPT via Binary OPT

m P1 D|FFF P2 =

P; SETMINUS

pattern that selects u; € [Pi]e
that have a compatible ps € [P:]a
with Fr1®#2 = frue

where [Py SETMINUS P2]g = [Pi]c \ [P2]a

IBM TJ Watson, New York, 08.07.16

13



Expressing Ternary OPT via Binary OPT

pattern that selects u; € [Pi]e
EI P, DIFFp P, = P, SETMINUS| that have a compatible ps € [P:]ca

with Fri®r2 — frye

where [Py SETMINUS P2]g = [Pi]c \ [P2]a

m P, SETMINUS P, =
ON_EMPTYPlsETM|Nusp2 UNlON

(P. MONOMINUS P;) JOIN ONE UNION

pattern that uses two distinct elements
as indicators for ‘not bound’

JOIN TWO

IBM TJ Watson, New York, 08.07.16 13



Expressing Ternary OPT via Binary OPT

pattern that selects u; € [Pi]e
EI P, DIFFp P, = P, SETMINUS| that have a compatible ps € [P:]ca

with Fri®r2 — frye

where [Py SETMINUS P2]g = [Pi]c \ [P2]a

m P, SETMINUS P, =
ON_EMPTY p,serminusp,  UNION ~¢= polynomial
(P. MONOMINUS P;) JOIN ONE UNION

pattern that uses two distinct elements
as indicators for ‘not bound’

JOIN TWO

IBM TJ Watson, New York, 08.07.16 13



Expressing Ternary OPT via Binary OPT

pattern that selects u; € [Pi]e
EI P, DIFFp P, = P, SETMINUS| that have a compatible ps € [P:]ca

with Fri®r2 — frye

where [Py SETMINUS P2]g = [Pi]c \ [P2]a

m P, SETMINUS P, =
ON_EMPTY p,serminusp,  UNION ~¢=== polynomial
(P. MONOMINUS P;) JOIN ONE UNION

pattern that uses two distinct elements
as indicators for ‘not bound’

JOIN TWO == polynomial

IBM TJ Watson, New York, 08.07.16 13



Expressing Ternary OPT via Binary OPT

pattern that selects u; € [Pi]e
EI P, DIFFp P, = P, SETMINUS| that have a compatible ps € [P:]ca

with Fri®r2 — frye

where [Py SETMINUS P2]g = [Pi]c \ [P2]a

m P, SETMINUS P, =
ON_EMPTY p,serminusp,  UNION ~¢= polynomial
(P. MONOMINUS P;) JOIN ONE UNION

pattern that uses two distinct elements
as indicators for ‘not bound’

JOIN TWO == polynomial

if NP = CONP then,

for every pattern P, MONOMINUS P, with the P; over S U {Pros}, There is

a polynomial pattern over § U {PROJ} that gives the same answers
on singular graphs

IBM TJ Watson, New York, 08.07.16 13



MINUS of SPARQL 1.1

not to be confused with
e MiNUs of (Angles & Gutierrez, 2008)
e set-theoretic complement SETMINUS, or \

p1~ p2 and dom(u;) Ndom(us) # 0}
[[Pl DIFFg Pg]]G = {Nl c [[PIHG | there is no M2 € [[Pz]](; with

u1 ~ pe and FriOnz :True}

14



MINUS of SPARQL 1.1

not to be confused with
e MiNUs of (Angles & Gutierrez, 2008)
e set-theoretic complement SETMINUS, or \

p1~ p2 and dom(u;) Ndom(us) # 0}
[[Pl DIFFg Pg]]G = {[,Ll c [[Pl]]G | there is no M2 € [[Pz]](; with

u1 ~ pe and FriOnz :True}

Theorem MINUS is polynomially {DIFFg}- and {OPTg, FILTER}-expressible
DiFF+ and OPT+ are not S U {PROJ, MINUS}-expressible

14



SuU{0O’'}- and S, U {O’}-expressibility of O

S = { FILTER, UNION, JOIN } S, =SU{PRrROJ}
O’\O |DiFFp OPTg DIFF OPT+ MINUS  O’\O |DIFFp OPTp DIFF+ OPT+ MINUS
DIFFg DIFFp
OPTr OPTr
DiIFF+ +7  DIFFr +-7
OPT+ +2 OPTT+ +-1
MINUS MINUS

not expressible

polynomially expressible

expressible, but not polynomially if AL # =5
++ expressible, but not known if polynomially

the results with T become [+ if NP = CONP

IBM TJ Watson, New York, 08.07.16 15



Summary and Open Problems
e the ternary OPTIONAL in SPARQL is more complex than commonly assumed

e some widely-known SPARQL equivalences are false

or use assumptions different fromn SPARQL specification

IBM TJ Watson, New York, 08.07.16 16



Summary and Open Problems
the ternary OPTIONAL in SPARQL is more complex than commonly assumed

some widely-known SPARQL equivalences are false

or use assumptions different fromn SPARQL specification

stronger notion of polynomial expressibility: every pattern over S U {O}
has an equivalent polynomially-sized pattern over S
P, OPTp P, = FILTERF (P JOIN Py) UNION (P, DIFFp Ps)

expressive power of NOT EXISTS

expressiveness over non-empty RDF graphs

16



Summary and Open Problems
the ternary OPTIONAL in SPARQL is more complex than commonly assumed

some widely-known SPARQL equivalences are false

or use assumptions different fromn SPARQL specification

stronger notion of polynomial expressibility: every pattern over S U {O}
has an equivalent polynomially-sized pattern over S

P, OPTp P, = FILTERF (P JOIN Py) UNION (P, DIFFp Ps)
expressive power of NOT EXISTS

expressiveness over non-empty RDF graphs

Is SPARQL intuitive?

or is it just confusing names, e.g., OPTIONAL v LEFTJOIN?
MINUS v \
16



