On Expressibility of Non-Monotone Operators in SPARQL

Roman Kontchakov

Department of Computer Science and Inf. Systems, Birkbeck College, London

```
http://www.dcs.bbk.ac.uk/~roman
```

joint work with Egor V. Kostylev (University of Oxford)

Basic SPARQL

SPARQL query

```
SELECT ?d WHERE {
    ?d a :Department
}
    a=rdf:type
```


Basic SPARQL

SPARQL query

?d a :Department
\}

$$
a=r d f: t y p e
$$

data instance

(an RDF graph
= a set of triples)
\mathbf{T} is the set of terms, i.e.,
IRls and literals (integers, strings, etc.)

Basic Graph Pattern (BGP)
(a set of triple patterns)

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

Basic SPARQL

SPARQL query

```
SELECT ?d WHERE {
    ?d a :Department
}
a = rdf:type
```

data instance
(an RDF graph
= a set of triples)
T is the set of terms, i.e.,
IRIs and literals (integers, strings, etc.)

Basic Graph Pattern (BGP)
(a set of triple patterns)

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

set of variables
answer is a set of solution mappings
solution mapping $\boldsymbol{\mu}$ is a partial map from $\overbrace{\mathbf{V}}$ to \mathbf{T} dom $(\boldsymbol{\mu})$ is the domain of $\boldsymbol{\mu}$

$$
\llbracket P \rrbracket_{G}=\{\mu: \operatorname{var}(\boldsymbol{P}) \rightarrow \mathbf{T} \mid \mu(P) \subseteq G\} \text { for a BGP } P
$$

Basic SPARQL

SPARQL query

```
SELECT ?d WHERE {
    ?d a :Department
}
\[
a=r d f: t y p e
\]
```

data instance
(an RDF graph
= a set of triples)
T is the set of terms, i.e.,
IRIs and literals (integers, strings, etc.)

Basic Graph Pattern (BGP)
(a set of triple patterns)

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

set of variables
solution mapping $\boldsymbol{\mu}$ is a partial map from $\overbrace{\mathbf{V}}$ to \mathbf{T} $\operatorname{dom}(\boldsymbol{\mu})$ is the domain of $\boldsymbol{\mu}$

$$
\llbracket P \rrbracket_{G}=\{\mu: \operatorname{var}(\boldsymbol{P}) \rightarrow \mathbf{T} \mid \mu(P) \subseteq G\} \text { for a BGP } P
$$

NB: we consider set semantics (SPARQL uses bag semantics, but our negative results hold)

Monotone SPARQL: FILTER

```
SELECT ?p1 ?p2 ?d WHERE {
    ?p1 :worksIn ?d .
    ?p2 :worksIn ?d
    FILTER (?p1 != ?p2)
}
```

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

Monotone SPARQL: FILTER

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$$
\llbracket \operatorname{FILTER}_{\boldsymbol{F}} \boldsymbol{P} \rrbracket_{G}=\left\{\boldsymbol{\mu} \in \llbracket \boldsymbol{P} \rrbracket_{G} \mid \boldsymbol{F}^{\mu}=\text { true }\right\}
$$

filters \boldsymbol{F} are Boolean combinations of $\quad ? v_{1}=? v_{2}, \quad ? v=d$, etc.

Monotone SPARQL: FILTER

```
SELECT ?p1 ?p2 ?d WHERE {
    ?p1 :worksIn ?d .
    ?p2 :worksIn ?d
    FILTER (?p1 != ?p2)
}
\begin{tabular}{|c|c|c|c|c|}
\hline (1) & & ?p1 & ?p2 & ?d \\
\hline 3 & \(\mu_{1}\) & : Davies & : Brown & : CS \\
\hline C & \(\mu_{2}\) & : Brown & :Davies & : CS \\
\hline
\end{tabular}
```

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$$
\llbracket \operatorname{FILTER}_{\boldsymbol{F}} P \rrbracket_{G}=\left\{\mu \in \llbracket \boldsymbol{P} \rrbracket_{G} \mid \boldsymbol{F}^{\mu}=\text { true }\right\}
$$

filters \boldsymbol{F} are Boolean combinations of $\quad ? \boldsymbol{v}_{1}=? \boldsymbol{v}_{2}, \quad ? \boldsymbol{v}=\boldsymbol{d}$, etc.

NB: slight simplification, see Effective Boolean Value in SPARQL Specification

Monotone SPARQL: FILTER

```
SELECT ?p1 ?p2 ?d WHERE {
    ?p1 :worksIn ?d .
    ?p2 :worksIn ?d
    FILTER (?p1 != ?p2)
}
```


:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$$
\llbracket \operatorname{FILTER}_{\boldsymbol{F}} \boldsymbol{P} \rrbracket_{G}=\left\{\boldsymbol{\mu} \in \llbracket \boldsymbol{P} \rrbracket_{G} \mid \boldsymbol{F}^{\mu}=\text { true }\right\}
$$

filters \boldsymbol{F} are Boolean combinations of $\quad ? \boldsymbol{v}_{1}=? \boldsymbol{v}_{2}, \quad ? \boldsymbol{v}=\boldsymbol{d}$, etc.

NB: slight simplification, see Effective Boolean Value in SPARQL Specification
$N B$: SPARQL uses 3-valued logic (like SQL)

Monotone SPARQL: UNION

```
SELECT ?p ?d WHERE {
    { ?p a :Prof.
        ?p :worksIn ?d }
    UNION
    { ?p a :Prof }
}
```

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

Monotone SPARQL: UNION

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$\llbracket P_{1}$ UNION $P_{2} \rrbracket_{G}=\llbracket P_{1} \rrbracket_{G} \cup\left[P_{2} \rrbracket_{G}\right.$

Monotone SPARQL: UNION

```
SELECT ?p ?d WHERE {
    { ?p a :Prof.
        ?p :worksIn ?d }
    UNION
    { ?p a :Prof }
}
\begin{tabular}{|c|c|c|}
\hline & ?p & ?d \\
\hline \(\mu_{1}\) & : Clarke & : Maths \\
\hline \(\mu_{2}\) & : Brown & : CS \\
\hline \(\mu_{3}\) & : Davies & : CS \\
\hline \(\mu_{4}\) & : Adams & \\
\hline \(\mu_{5}\) & : Brown & \\
\hline \(\mu_{6}\) & : Clarke & \\
\hline
\end{tabular}
```

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$\llbracket P_{1}$ UNION $\left.P_{2}\right]_{G}=\llbracket P_{1} \rrbracket_{G} \cup\left[P_{2} \rrbracket_{G}\right.$

NB: unlike in SQL, the two arguments do not have to have the same 'schema'

Monotone SPARQL: UNION

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$\llbracket P_{1}$ UNION $P_{2} \rrbracket_{G}=\llbracket P_{1} \rrbracket_{G} \cup \llbracket P_{2} \rrbracket_{G}$

NB: unlike in SQL, the two arguments do not have to have the same 'schema'

- the 'missing' values are like NULL in $S Q L$ with the 3 -valued logic

$$
(? \mathrm{~d}=: \mathrm{CS})^{\mu_{4}} \quad \text { is } \varepsilon \rightarrow \text { false } \quad \text { and } \quad(? \mathrm{~d}!=: \mathrm{CS})^{\mu_{4}} \quad \text { is } \varepsilon \rightarrow \text { false }
$$

Monotone SPARQL: UNION

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$\llbracket P_{1}$ UNION $P_{2} \rrbracket_{G}=\llbracket P_{1} \rrbracket_{G} \cup \llbracket P_{2} \rrbracket_{G}$

NB: unlike in SQL, the two arguments do not have to have the same 'schema'

- the 'missing' values are like NULL in SQL with the 3-valued logic

$$
(? \mathrm{~d}=: \mathrm{CS})^{\mu_{4}} \quad \text { is } \varepsilon \rightarrow \text { false } \quad \text { and } \quad(? \mathrm{~d}!=: \mathrm{CS})^{\mu_{4}} \quad \text { is } \varepsilon \rightarrow \text { false }
$$

(bound $(? \boldsymbol{v}))^{\mu}$ is true $\Leftrightarrow ? \boldsymbol{v} \in \operatorname{dom}(\boldsymbol{\mu})$
(similar to IS NOT NULL in SQL)

Monotone SPARQL: UNION

```
SELECT ?p ?d WHERE {
    { ?p a :Prof.
        ?p :worksIn ?d }
    UNION
    { ?p a :Prof }
}
\begin{tabular}{|c|c|c|}
\hline & ?p & ?d \\
\hline \(\mu_{1}\) & : Clarke & :Maths \\
\hline \(\mu_{2}\) & : Brown & : CS \\
\hline \(\mu_{3}\) & : Davies & : CS \\
\hline \(\mu_{4}\) & : Adams & \\
\hline \(\mu_{5}\) & : Brown & \\
\hline \(\mu_{6}\) & : Clarke & \\
\hline
\end{tabular}
```

:CS	a	:Department
:Maths	a	:Department
:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Clarke	:worksIn	:Maths
:Brown	:worksIn	:CS
:Davies	:worksIn	:CS

$\llbracket P_{1}$ UNION $P_{2} \rrbracket_{G}=\llbracket P_{1} \rrbracket_{G} \cup \llbracket P_{2} \rrbracket_{G}$

NB: unlike in SQL, the two arguments do not have to have the same 'schema'

- the 'missing' values are like NULL in SQL with the 3-valued logic

$$
(? \mathrm{~d}=: \mathrm{CS})^{\mu_{4}} \quad \text { is } \varepsilon \rightarrow \text { false } \quad \text { and } \quad(? \mathrm{~d}!=: \mathrm{CS})^{\mu_{4}} \quad \text { is } \varepsilon \rightarrow \text { false }
$$

(bound $(? \boldsymbol{v}))^{\mu}$ is true $\Leftrightarrow \quad ? \boldsymbol{v} \in \operatorname{dom}(\boldsymbol{\mu})$
NB: the 3-valued logic it is not essential — see Zhang \& Van den Bussche (2014)

Monotone SPARQL: JOIN

μ_{1} and μ_{2} are compatible $\mu_{1} \sim \boldsymbol{\mu}_{2}$ if

$$
\mu_{1}(? v)=\mu_{2}(? v), \quad \text { for all } ? v \in \operatorname{dom}\left(\mu_{1}\right) \cap \operatorname{dom}\left(\mu_{2}\right)
$$

Monotone SPARQL: JOIN

μ_{1} and μ_{2} are compatible

$$
\begin{gathered}
\mu_{1} \sim \mu_{2} \quad \text { if } \\
\mu_{1}(? v)=\mu_{2}(? v), \quad \text { for all } ? v \in \operatorname{dom}\left(\mu_{1}\right) \cap \operatorname{dom}\left(\mu_{2}\right)
\end{gathered}
$$

$$
\llbracket P_{1} \operatorname{JOIN} P_{2} \rrbracket_{G}=\left\{\mu_{1} \oplus \mu_{2} \mid \mu_{1} \in \llbracket P_{1} \rrbracket_{G} \quad \text { and } \quad \mu_{2} \in \llbracket P_{2} \rrbracket_{G} \quad \text { with } \quad \mu_{1} \sim \mu_{2}\right\}
$$

?p	?d	?t
: Adams :Clarke	:Maths	
JOIN		

?p	?d
:Adams	
: Clarke	: Maths
:Clarke	: CS
:Davies	:CS

Monotone SPARQL: JOIN

μ_{1} and μ_{2} are compatible

$$
\mu_{1} \sim \mu_{2} \text { if }
$$

$$
\mu_{1}(? v)=\mu_{2}(? v), \quad \text { for all } ? v \in \operatorname{dom}\left(\mu_{1}\right) \cap \operatorname{dom}\left(\mu_{2}\right)
$$

$$
\llbracket P_{1} \operatorname{JOIN} P_{2} \rrbracket_{G}=\left\{\mu_{1} \oplus \mu_{2} \mid \mu_{1} \in \llbracket P_{1} \rrbracket_{G} \text { and } \mu_{2} \in \llbracket P_{2} \rrbracket_{G} \text { with } \mu_{1} \sim \mu_{2}\right\}
$$

?p	?d	?t
: Adams	:Maths	
: Clarke		8506

?p	?d				
:Adams					
:Clarke	:Maths				
:Clarke	:CS				
:Davies	:CS	$=$?p	?d	?t
:---	:---	:---			
:Adams	:Maths				
:Clarke	:Maths	8506			
:Clarke	:CS	8506			

Monotone SPARQL: JOIN

μ_{1} and μ_{2} are compatible

$$
\begin{gathered}
\mu_{1} \sim \mu_{2} \quad \text { if } \\
\mu_{1}(? v)=\mu_{2}(? v), \quad \text { for all } ? v \in \operatorname{dom}\left(\mu_{1}\right) \cap \operatorname{dom}\left(\mu_{2}\right)
\end{gathered}
$$

$$
\llbracket P_{1} \operatorname{JOIN} P_{2} \rrbracket_{G}=\left\{\mu_{1} \oplus \mu_{2} \mid \mu_{1} \in \llbracket P_{1} \rrbracket_{G} \quad \text { and } \quad \mu_{2} \in \llbracket P_{2} \rrbracket_{G} \quad \text { with } \quad \mu_{1} \sim \mu_{2}\right\}
$$

?p	?d	?t
:Adams	:Maths	
: Clarke		8506

compatibility in SQL is quite different!

			JOIN ${ }^{\text {DB }}$?p	?d
?p	?d	?t		$\begin{array}{ll}\text { : Adams } & \text { NULL } \\ \text { : Clarke } & \text { : Maths }\end{array}$	
: Adams	: Maths	NULL			
: Clarke	NULL	8506		: Clarke	: CS
				: Davies	: CS

Monotone SPARQL: JOIN

$\boldsymbol{\mu}_{1}$ and $\boldsymbol{\mu}_{2}$ are compatible

$$
\mu_{1} \sim \mu_{2} \text { if }
$$

$$
\mu_{1}(? v)=\mu_{2}(? v), \quad \text { for all } ? v \in \operatorname{dom}\left(\mu_{1}\right) \cap \operatorname{dom}\left(\mu_{2}\right)
$$

$$
\llbracket P_{1} \text { JOIN } P_{2} \rrbracket_{G}=\left\{\mu_{1} \oplus \mu_{2} \mid \mu_{1} \in \llbracket P_{1} \rrbracket_{G} \quad \text { and } \quad \mu_{2} \in \llbracket P_{2} \rrbracket_{G} \text { with } \mu_{1} \sim \mu_{2}\right\}
$$

?p	?d	?t
:Adams	:Maths	
:Clarke		8506

compatibility in SQL is quite different!

NB: careful use of COALESCE (or IF) is required, see Prud'hommeaux \& Bertails (2008)

Monotone SPARQL: Algebraic View

unique μ_{\emptyset} with $\operatorname{dom}\left(\mu_{\emptyset}\right)=\emptyset$ is compatible with any solution mapping

$$
\text { empty BGP }\left\} \quad \llbracket \left\} \rrbracket_{G}=\left\{\mu_{\emptyset}\right\}, \text { for any } G\right.\right.
$$

Monotone SPARQL: Algebraic View

unique μ_{\emptyset} with $\operatorname{dom}\left(\mu_{\emptyset}\right)=\emptyset$ is compatible with any solution mapping empty BGP $\left\} \quad \llbracket\left\} \rrbracket_{G}=\left\{\mu_{\emptyset}\right\}\right.\right.$, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a commutative semiring with operations

UNION and JOIN (\emptyset is the identity for UNION and $\left\{\mu_{\emptyset}\right\}$ is the identity for JOIN)

Monotone SPARQL: Algebraic View

unique μ_{\emptyset} with $\operatorname{dom}\left(\mu_{\emptyset}\right)=\emptyset$ is compatible with any solution mapping empty BGP $\left\} \quad \llbracket\left\} \rrbracket_{G}=\left\{\mu_{\emptyset}\right\}\right.\right.$, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a commutative semiring with operations

UNION and JOIN (\emptyset is the identity for UNION and $\left\{\mu_{\emptyset}\right\}$ is the identity for JOIN)
\boldsymbol{S}_{1} UNION $\boldsymbol{S}_{2}=\boldsymbol{S}_{2}$ UNION \boldsymbol{S}_{1} S UNION $\emptyset=S$
S_{1} JOIN $S_{2}=S_{2}$ JOIN \boldsymbol{S}_{1} S Join $\left\{\mu_{\emptyset}\right\}=S$
S JOIN $\emptyset=\emptyset$
\boldsymbol{S}_{1} UNION $\left(\boldsymbol{S}_{2}\right.$ JOIN $\left.\boldsymbol{S}_{\mathbf{3}}\right)=\left(\boldsymbol{S}_{\mathbf{1}}\right.$ UNION $\left.\boldsymbol{S}_{2}\right)$ JOIN $\boldsymbol{S}_{\mathbf{3}}$
\boldsymbol{S}_{1} JOIN $\left(\boldsymbol{S}_{2}\right.$ JOIN $\left.\boldsymbol{S}_{3}\right)=\left(\boldsymbol{S}_{1}\right.$ JOIN $\left.\boldsymbol{S}_{2}\right)$ JOIN $\boldsymbol{S}_{\mathbf{3}}$

$$
\boldsymbol{S}_{1} \text { JOIN }\left(\boldsymbol{S}_{2} \text { UNION } \boldsymbol{S}_{3}\right)=\left(\boldsymbol{S}_{1} \text { JOIN } \boldsymbol{S}_{2}\right) \text { JOIN }\left(\boldsymbol{S}_{1} \text { JOIN } \boldsymbol{S}_{3}\right)
$$

Monotone SPARQL: Algebraic View

unique μ_{\emptyset} with $\operatorname{dom}\left(\mu_{\emptyset}\right)=\emptyset$ is compatible with any solution mapping empty BGP $\left\} \quad \llbracket\left\} \rrbracket_{G}=\left\{\mu_{\emptyset}\right\}\right.\right.$, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a commutative semiring with operations

UNION and JOIN (\emptyset is the identity for UNION and $\left\{\mu_{\emptyset}\right\}$ is the identity for JOIN)
\boldsymbol{S}_{1} UNION $\boldsymbol{S}_{2}=\boldsymbol{S}_{2}$ UNION $\boldsymbol{S}_{1} \quad \boldsymbol{S}_{1}$ UNION $\left(\boldsymbol{S}_{2}\right.$ JOIN $\left.\boldsymbol{S}_{3}\right)=\left(\boldsymbol{S}_{1}\right.$ UNION $\left.\boldsymbol{S}_{2}\right)$ JOIN \boldsymbol{S}_{3} S UNION $\emptyset=S$
\boldsymbol{S}_{1} JOIN $\boldsymbol{S}_{2}=\boldsymbol{S}_{2}$ JOIN \boldsymbol{S}_{1}
\boldsymbol{S}_{1} JOIN $\left(\boldsymbol{S}_{2}\right.$ JOIN $\left.\boldsymbol{S}_{3}\right)=\left(\boldsymbol{S}_{1}\right.$ JOIN $\left.\boldsymbol{S}_{2}\right)$ JOIN $\boldsymbol{S}_{\mathbf{3}}$ S Join $\left\{\mu_{\emptyset}\right\}=S$

$$
\boldsymbol{S} \text { JOIN } \emptyset=\emptyset \quad S_{1} \text { JOIN }\left(S_{2} \text { UNION } S_{3}\right)=\left(S_{1} \text { JOIN } S_{2}\right) \text { JOIN }\left(S_{1} \text { JOIN } S_{3}\right)
$$

under the set semantics: \boldsymbol{S} UNION $\boldsymbol{S}=\boldsymbol{S}$

Monotone SPARQL: Algebraic View

unique μ_{\emptyset} with $\operatorname{dom}\left(\mu_{\emptyset}\right)=\emptyset$ is compatible with any solution mapping empty BGP $\left\} \quad \llbracket\left\} \rrbracket_{G}=\left\{\mu_{\emptyset}\right\}\right.\right.$, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a commutative semiring with operations

UNION and JOIN (\emptyset is the identity for UNION and $\left\{\mu_{\emptyset}\right\}$ is the identity for JOIN)
\boldsymbol{S}_{1} UNION $\boldsymbol{S}_{2}=\boldsymbol{S}_{\mathbf{2}}$ UNION $\boldsymbol{S}_{1} \quad \boldsymbol{S}_{1}$ UNION $\left(\boldsymbol{S}_{\mathbf{2}}\right.$ JOIN $\left.\boldsymbol{S}_{\mathbf{3}}\right)=\left(\boldsymbol{S}_{\mathbf{1}}\right.$ UNION $\left.\boldsymbol{S}_{\mathbf{2}}\right)$ JOIN $\boldsymbol{S}_{\mathbf{3}}$ S UNION $\emptyset=S$
S_{1} JOIN $S_{2}=S_{2}$ JOIN S_{1}
\boldsymbol{S}_{1} JOIN $\left(\boldsymbol{S}_{2}\right.$ JOIN $\left.\boldsymbol{S}_{3}\right)=\left(\boldsymbol{S}_{1}\right.$ JOIN $\left.\boldsymbol{S}_{2}\right)$ JOIN $\boldsymbol{S}_{\mathbf{3}}$ S Join $\left\{\mu_{\emptyset}\right\}=S$

$$
\boldsymbol{S} \text { JOIN } \emptyset=\emptyset \quad S_{1} \text { JOIN }\left(S_{2} \text { UNION } S_{3}\right)=\left(S_{1} \text { JOIN } S_{2}\right) \text { JOIN }\left(S_{1} \text { JOIN } S_{3}\right)
$$

under the set semantics: \boldsymbol{S} UNION $\boldsymbol{S}=\boldsymbol{S} \quad \boldsymbol{S}$ JOIN $\boldsymbol{S}=\boldsymbol{S}$

Monotone SPARQL: Algebraic View

unique μ_{\emptyset} with $\operatorname{dom}\left(\mu_{\emptyset}\right)=\emptyset$ is compatible with any solution mapping empty BGP $\left\} \quad \llbracket\left\} \rrbracket_{G}=\left\{\mu_{\emptyset}\right\}\right.\right.$, for any G

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a commutative semiring with operations

UNION and JOIN (\emptyset is the identity for UNION and $\left\{\mu_{\emptyset}\right\}$ is the identity for JOIN)
\boldsymbol{S}_{1} UNION $\boldsymbol{S}_{2}=\boldsymbol{S}_{2}$ UNION $\boldsymbol{S}_{1} \quad \boldsymbol{S}_{1}$ UNION $\left(\boldsymbol{S}_{2}\right.$ JOIN $\left.\boldsymbol{S}_{3}\right)=\left(\boldsymbol{S}_{\mathbf{1}}\right.$ UNION $\left.\boldsymbol{S}_{2}\right)$ JOIN $\boldsymbol{S}_{\mathbf{3}}$ S UNION $\emptyset=S$
\boldsymbol{S}_{1} JOIN $\boldsymbol{S}_{2}=\boldsymbol{S}_{2}$ JOIN \boldsymbol{S}_{1}
S_{1} JOIN $\left(S_{2}\right.$ JOIN $\left.S_{3}\right)=\left(S_{1}\right.$ JOIN $\left.S_{2}\right)$ JOIN \boldsymbol{S}_{3}

$$
S \text { JOIN }\left\{\mu_{\emptyset}\right\}=S
$$

$$
\boldsymbol{S} \text { JOIN } \emptyset=\emptyset \quad S_{1} \text { JOIN }\left(S_{2} \text { UNION } S_{3}\right)=\left(S_{1} \text { JOIN } S_{2}\right) \text { JOIN }\left(S_{1} \text { JOIN } S_{3}\right)
$$

under the set semantics: \boldsymbol{S} UNION $\boldsymbol{S}=\boldsymbol{S}$
S JOIN $S=S \quad$ only \supseteq

Monotone SPARQL: Algebraic View

unique μ_{\emptyset} with $\operatorname{dom}\left(\mu_{\emptyset}\right)=\emptyset$ is compatible with any solution mapping

$$
\text { empty BGP }\left\} \quad \llbracket \left\} \rrbracket_{G}=\left\{\mu_{\emptyset}\right\}, \text { for any } G\right.\right.
$$

Pérez et al. (2006), Schmidt et al. (2010), Geerts et al. (2013)

1. Bags of solution mappings form a commutative semiring with operations UNION and JOIN (\emptyset is the identity for UNION and $\left\{\mu_{\emptyset}\right\}$ is the identity for JOIN)

$$
S_{1} \text { UNION } S_{2}=S_{2} \text { UNION } S_{1} \quad S_{1} \text { UNION }\left(S_{2} \text { JOIN } S_{3}\right)=\left(S_{1} \text { UNION } S_{2}\right) \text { JOIN } S_{3}
$$

$$
S \text { UNION } \emptyset=S
$$

S_{1} JOIN $S_{2}=S_{2}$ JOIN \boldsymbol{S}_{1}
\boldsymbol{S}_{1} JOIN $\left(\boldsymbol{S}_{2}\right.$ JOIN $\left.\boldsymbol{S}_{3}\right)=\left(\boldsymbol{S}_{1}\right.$ JOIN $\left.\boldsymbol{S}_{2}\right)$ JOIN $\boldsymbol{S}_{\mathbf{3}}$

$$
S \operatorname{JOIN}\left\{\mu_{\emptyset}\right\}=S
$$

$$
\boldsymbol{S} \text { JOIN } \emptyset=\emptyset \quad S_{1} \text { JOIN }\left(S_{2} \text { UNION } S_{3}\right)=\left(S_{1} \text { JOIN } S_{2}\right) \text { JOIN }\left(S_{1} \text { JOIN } S_{3}\right)
$$

under the set semantics: \boldsymbol{S} UNION $\boldsymbol{S}=\boldsymbol{S} \quad$ S JOIN $S=S \quad$ only \supseteq
2. Filter distributes over Union

$$
\begin{aligned}
& \operatorname{Filter}_{F}\left(\boldsymbol{S}_{1} \text { Union } \boldsymbol{S}_{2}\right)=\operatorname{FiLTER}_{F} \boldsymbol{S}_{1} \text { UNION FILTER }{ }_{F} \boldsymbol{S}_{2} \\
& \operatorname{FiLTER}_{F}\left(\boldsymbol{S}_{1} \text { JOIN }_{2}\right)=\text { FILTER }_{F} \boldsymbol{S}_{1} \text { JOIN FILTER }
\end{aligned}
$$

Non-monotone SPARQL: OPTIONAL

```
SELECT ?p ?d WHERE {
    ?p a :Prof
    OPTIONAL { ?p :worksIn ?d
    FILTER (?d != :CS) }
}
```

:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Brown	:worksIn	:CS
:Clarke	:worksIn	:Maths

Non-monotone SPARQL: OPTIONAL

```
SELECT ?p ?d WHERE {
    ?p a :Prof
    OPTIONAL { ?p :worksIn ?d
        FILTER (?d != :CS) }
}
```

:Adams	a	:Prof
: Brown	a	:Prof
:Clarke	a	:Prof
:Brown	:worksIn	:CS
:Clarke	:worksIn	:Maths

$\boldsymbol{P}_{1} \mathrm{OPT}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}}=\operatorname{FILTER}_{\boldsymbol{F}}\left(\boldsymbol{P}_{\mathbf{1}} \mathrm{JOIN} \boldsymbol{P}_{\mathbf{2}}\right)$ UNION $\boldsymbol{P}_{\mathbf{1}} \mathrm{DIFF}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}}$

$\overbrace{\boldsymbol{P}_{\mathbf{1}} \text { that have no compatible } \boldsymbol{P}_{\mathbf{2}} \text { with } \boldsymbol{F}^{\prime}}$

Non-monotone SPARQL: OPTIONAL

```
SELECT ?p ?d WHERE {
    ?p a :Prof
    OPTIONAL { ?p :worksIn ?d
        FILTER (?d != :CS) }
}
```

:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Brown	:worksIn	:CS
:Clarke	:worksIn	:Maths

$$
\begin{aligned}
& \llbracket P_{1} \mathrm{DIFF}_{F} P_{2} \rrbracket_{G}=\left\{\mu _ { 1 } \in \left[P_{1} \rrbracket_{G} \mid \text { there is no } \mu_{2} \in \llbracket P_{2} \rrbracket_{G}\right.\right. \text { with } \\
& \left.\mu_{1} \sim \mu_{2} \quad \text { and } \quad F^{\mu_{1} \oplus \mu_{2}}=\text { true }\right\} \\
& \boldsymbol{P}_{\mathbf{1}} \mathrm{OPT}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}}=\operatorname{FILTER}_{\boldsymbol{F}}\left(\boldsymbol{P}_{\mathbf{1}} \mathrm{JOIN} \boldsymbol{P}_{\mathbf{2}}\right) \text { UNION } \boldsymbol{P}_{\mathbf{1}} \mathrm{DIFF}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}} \\
& \overbrace{\boldsymbol{P}_{\mathbf{1}} \text { that have a compatible } \boldsymbol{P}_{\mathbf{2}} \text { with } \boldsymbol{F}^{\prime}} \\
& \overbrace{\boldsymbol{P}_{\mathbf{1}} \text { that have no compatible } \boldsymbol{P}_{\mathbf{2}} \text { with } \boldsymbol{F}^{\prime}}
\end{aligned}
$$

Non-monotone SPARQL: OPTIONAL

```
SELECT ?p ?d WHERE {
    ?p a :Prof
    OPTIONAL { ?p :worksIn ?d
        FILTER (?d != :CS) }
}
```

:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Brown	:worksIn	:CS
:Clarke	:worksIn	:Maths

$$
\begin{aligned}
\llbracket P_{1} \mathrm{DIFF}_{F} P_{2} \rrbracket_{G}=\left\{\mu_{1} \in \llbracket P_{1} \rrbracket_{G} \mid\right. & \text { there is no } \mu_{2} \in \llbracket P_{2} \rrbracket_{G} \text { with } \\
& \left.\mu_{1} \sim \mu_{2} \text { and } F^{\mu_{1} \oplus \mu_{2}}=\text { true }\right\}
\end{aligned}
$$

$\boldsymbol{P}_{1} \mathrm{OPT}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}}=\operatorname{FILTER}_{\boldsymbol{F}}\left(\boldsymbol{P}_{\mathbf{1}} \mathrm{JOIN} \boldsymbol{P}_{\mathbf{2}}\right)$ UNION $\boldsymbol{P}_{\mathbf{1}} \mathrm{DIFF}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}}$

	?p	?d	
	μ_{1}	: Adams	
	μ_{2}	: Clarke	: Maths
	μ_{3}	: Brown	

$\overbrace{\boldsymbol{P}_{\mathbf{1}} \text { that have a compatible } \boldsymbol{P}_{\mathbf{2}} \text { with } \boldsymbol{F}^{\prime}}$
$\overbrace{\boldsymbol{P}_{\mathbf{1}} \text { that have no compatible } \boldsymbol{P}_{\mathbf{2}} \text { with } \boldsymbol{F}^{\prime}}$

Non-monotone SPARQL: OPTIONAL

```
SELECT ?p ?d WHERE {
        ?p a :Prof
        OPTIONAL { ?p :worksIn ?d
            FILTER (?d != :CS) }
}
```

:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Brown	:worksIn	:CS
:Clarke	:worksIn	:Maths

$$
\begin{aligned}
\llbracket P_{1} \text { Diff }_{F} P_{2} \rrbracket_{G}=\left\{\mu_{1} \in \llbracket P_{1} \rrbracket_{G} \mid\right. & \text { there is no } \mu_{2} \in \llbracket P_{2} \rrbracket_{G} \text { with } \\
& \left.\mu_{1} \sim \mu_{2} \text { and } F^{\mu_{1} \oplus \mu_{2}}=\text { true }\right\}
\end{aligned}
$$

$\boldsymbol{P}_{1} \mathrm{OPT}_{\boldsymbol{F}} \boldsymbol{P}_{2}=\operatorname{FILTER}_{\boldsymbol{F}}\left(\boldsymbol{P}_{1} \mathrm{JOIN} \boldsymbol{P}_{2}\right)$ UNION $\boldsymbol{P}_{\mathbf{1}} \mathrm{DIFF}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}}$

$\begin{aligned} & \frac{4}{0} \\ & \sum_{3}^{6} \\ & \frac{c}{0} \end{aligned}$?p	?d
	μ_{1}	: Adams	
	μ_{2}	: Clarke	: Maths
	μ_{3}	: Brown	

$\overbrace{\boldsymbol{P}_{\mathbf{1}} \text { that have a compatible } \boldsymbol{P}_{\mathbf{2}} \text { with } \boldsymbol{F}}$
$\overbrace{\boldsymbol{P}_{\mathbf{1}} \text { that have no compatible } \boldsymbol{P}_{\mathbf{2}} \text { with } \boldsymbol{F}^{\prime}}$

NB: SPARQL 1.1 specification incorrectly says 'Written in full that is:

$$
\begin{aligned}
\llbracket P_{1} \bigcirc P T_{F} P_{2} \rrbracket_{G} & =\left\{\mu_{1} \oplus \mu_{2} \mid \mu_{1} \in \llbracket \boldsymbol{P}_{1} \rrbracket_{G}, \mu_{2} \in \llbracket \boldsymbol{P}_{2} \rrbracket_{G} \text { and } \boldsymbol{F}^{\mu_{1} \oplus \mu_{2}}=\text { true }\right\} \\
& \cup\left\{\boldsymbol{\mu}_{1} \in \llbracket \boldsymbol{P}_{1} \rrbracket_{G} \mid \boldsymbol{\mu}_{1} \nsim \boldsymbol{\mu}_{2}, \text { for all } \boldsymbol{\mu}_{2} \in \llbracket \boldsymbol{P}_{2} \rrbracket_{G}, \text { or } \llbracket \boldsymbol{P}_{2} \rrbracket_{G}=\emptyset\right\} \\
& \cup\left\{\boldsymbol{\mu}_{1} \in \llbracket \boldsymbol{P}_{1} \rrbracket_{G} \mid \text { there is } \boldsymbol{\mu}_{2} \in \llbracket \boldsymbol{P}_{2} \rrbracket_{G} \text { with } \boldsymbol{\mu}_{1} \sim \boldsymbol{\mu}_{2} \text { and } \boldsymbol{F}^{\mu_{1} \oplus \mu_{2}}=\text { false }\right\}
\end{aligned}
$$

Non-monotone SPARQL: OPTIONAL

```
SELECT ?p ?d WHERE {
        ?p a :Prof
        OPTIONAL { ?p :worksIn ?d
            FILTER (?d != :CS) }
}
```

:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Brown	:worksIn	:CS
:Clarke	:worksIn	:Maths

$$
\begin{array}{r}
\llbracket P_{1} \mathrm{DIFF}_{F} P_{2} \rrbracket_{G}=\left\{\mu_{1} \in \llbracket P_{1} \rrbracket_{G} \mid \text { there is no } \mu_{2} \in \llbracket P_{2} \rrbracket_{G}\right. \text { with } \\
\\
\left.\mu_{1} \sim \mu_{2} \text { and } F^{\mu_{1} \oplus \mu_{2}}=\text { true }\right\}
\end{array}
$$

$\boldsymbol{P}_{1} \mathrm{OPT}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}}=\mathrm{FILTER}_{\boldsymbol{F}}\left(\boldsymbol{P}_{\mathbf{1}} \mathrm{JOIN} \boldsymbol{P}_{\mathbf{2}}\right)$ UNION $\boldsymbol{P}_{\mathbf{1}} \mathrm{DIFF}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}}$

		?p	?d
3	μ_{1}	: Adams	
c	μ_{2}	: Clarke	: Maths
ס	μ_{3}	: Brown	

$\overbrace{\boldsymbol{P}_{\mathbf{1}} \text { that have a compatible } \boldsymbol{P}_{\mathbf{2}} \text { with } \boldsymbol{F}}$
$\overbrace{\boldsymbol{P}_{\mathbf{1}} \text { that have no compatible } \boldsymbol{P}_{\mathbf{2}} \text { with } \boldsymbol{F}^{\prime}}$

NB: SPARQL 1.1 specification incorrectly says 'Written in full that is:

$$
\begin{aligned}
\llbracket \boldsymbol{P}_{1} \text { OPT }_{\boldsymbol{F}} \boldsymbol{P}_{2} \rrbracket_{\boldsymbol{G}} & =\left\{\boldsymbol{\mu}_{1} \oplus \mu_{2} \mid \mu_{1} \in \llbracket \boldsymbol{P}_{1} \rrbracket_{G}, \mu_{2} \in \llbracket \boldsymbol{P}_{2} \rrbracket_{G} \text { and } \boldsymbol{F}^{\mu_{1} \oplus \mu_{2}}=\text { true }\right\} \\
& \cup\left\{\boldsymbol{\mu}_{1} \in \llbracket \boldsymbol{P}_{1} \rrbracket_{\boldsymbol{G}} \mid \boldsymbol{\mu}_{\mathbf{1}} \nsim \boldsymbol{\mu}_{2}, \text { for all } \boldsymbol{\mu}_{\mathbf{2}} \in \llbracket \boldsymbol{P}_{2} \rrbracket_{\boldsymbol{G}}, \text { or } \llbracket \boldsymbol{P}_{2} \rrbracket_{\boldsymbol{G}}=\emptyset\right\} \\
& \cup\left\{\boldsymbol{\mu}_{\mathbf{1}} \in \llbracket \boldsymbol{P}_{\mathbf{1}} \rrbracket_{\boldsymbol{G}} \mid \text { there is } \boldsymbol{\mu}_{\mathbf{2}} \in \llbracket \boldsymbol{P}_{\mathbf{2}} \rrbracket_{\boldsymbol{G}} \text { with } \boldsymbol{\mu}_{\mathbf{1}} \sim \boldsymbol{\mu}_{\mathbf{2}} \text { and } \boldsymbol{F}^{\boldsymbol{\mu}_{1} \oplus \boldsymbol{\mu}_{2}}=\text { false }\right\}
\end{aligned}
$$

Non-monotone SPARQL: OPTIONAL

```
SELECT ?p ?d WHERE {
        ?p a :Prof
        OPTIONAL { ?p :worksIn ?d
            FILTER (?d != :CS) }
}
```

:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
:Brown	:worksIn	:CS
:Clarke	:worksIn	:Maths

On Diff and Opt (1)

equivalent patterns $P_{1} \equiv P_{2} \Longleftrightarrow \llbracket P_{1} \rrbracket_{G}=\llbracket P_{2} \rrbracket_{G}$, for all G

On Diff and Opt (1)

equivalent patterns $P_{1} \equiv P_{2} \Longleftrightarrow \llbracket P_{1} \rrbracket_{G}=\llbracket P_{2} \rrbracket_{G}$, for all G

Angles \& Gutierrez (2008)

$$
P_{1} \text { DIFF }_{T} P_{2} \equiv \operatorname{FILTER}_{\neg \text { bound }(? u)}\left(P_{1} \text { OPT }_{T}\left(P_{2} \operatorname{JOIN}\{? u ? v ? w\}\right)\right)
$$

On Diff and Opt (1)

equivalent patterns $P_{1} \equiv P_{2} \Longleftrightarrow \llbracket P_{1} \rrbracket_{G}=\llbracket P_{2} \rrbracket_{G}$, for all G
Angles \& Gutierrez (2008)

On Diff and Opt (1)

equivalent patterns $\quad P_{1} \equiv P_{2} \Longleftrightarrow \llbracket P_{1} \rrbracket_{G}=\llbracket P_{2} \rrbracket_{G}$, for all G

Angles \& Gutierrez (2008)

$$
\boldsymbol{P}_{1} \text { DIFF }_{\mathrm{T}} \boldsymbol{P}_{2} \equiv \text { FILTER }_{\neg \text { bound }(? u)}\left(\boldsymbol{P}_{1} \text { OPT }_{\mathrm{T}}\left(\boldsymbol{P}_{2} \text { JOIN }\{? \boldsymbol{u} ? \boldsymbol{v} \boldsymbol{v} \boldsymbol{w}\}\right)\right)
$$

-universal' triple pattern ‘always' gives a binding for ?u
is not quite correct: if $P_{1}=P_{2}=\{ \}$ and $G=\emptyset$, then $\llbracket P_{i} \rrbracket_{G}=\left\{\mu_{\emptyset}\right\}$

On Diff and Opt (1)

equivalent patterns $\quad P_{1} \equiv P_{2} \Longleftrightarrow \llbracket P_{1} \rrbracket_{G}=\llbracket P_{2} \rrbracket_{G}$, for all G

Angles \& Gutierrez (2008)

is not quite correct: if $P_{1}=P_{2}=\{ \}$ and $G=\emptyset$, then $\llbracket P_{i} \rrbracket_{G}=\left\{\mu_{\emptyset}\right\}$
so, $\left[P_{1} \text { DIFFT }_{T} P_{2}\right]_{G}=\emptyset \quad$ (as μ_{\emptyset} is compatible with μ_{\emptyset}) but $\llbracket\{? u ? v ? w\} \rrbracket_{G}=\emptyset \quad$ and so, $\quad \llbracket P_{1}$ OPt $_{F} \cdots \rrbracket_{G}=\left\{\mu_{\emptyset}\right\}$

On Diff and Opt (1)

equivalent patterns $\quad P_{1} \equiv P_{2} \Longleftrightarrow \llbracket P_{1} \rrbracket_{G}=\llbracket P_{2} \rrbracket_{G}$, for all G

Angles \& Gutierrez (2008)

is not quite correct: if $P_{1}=P_{2}=\{ \}$ and $G=\emptyset$, then $\llbracket P_{i} \rrbracket_{G}=\left\{\mu_{\emptyset}\right\}$
so, $\left[P_{1} \text { DIFFT }_{T} P_{2}\right]_{G}=\emptyset \quad$ (as μ_{\emptyset} is compatible with μ_{\emptyset}) but $\llbracket\left\{? u ? v ? w w \rrbracket_{G}=\emptyset \quad\right.$ and so, $\quad \llbracket P_{1}$ OPt $_{F} \ldots \rrbracket_{G}=\left\{\mu_{\emptyset}\right\}$

Polleres (2009): a fix that avoids the problem
by effectively making the dataset non-empty (GRAPH operation)

On Diff and Opt (2)

\mathcal{S} is a set of SPARQL operators e.g. $\mathcal{S}=\{$ FILTER, UNION, JOIN $\}$
operator \boldsymbol{O} is \mathcal{S}-expressible if, for any pattern over $\mathcal{S} \cup\{O\}$, there is an equivalent pattern over \mathcal{S}

On Diff and Opt (2)

\mathcal{S} is a set of SPARQL operators

e.g. $\mathcal{S}=\{$ FILTER, UNION, JOIN $\}$

operator \boldsymbol{O} is \mathcal{S}-expressible if, for any pattern over $\mathcal{S} \cup\{O\}$, there is an equivalent pattern over \mathcal{S}

Zhang \& Van den Bussche (2014) JOin is \{Filter, OPT ${ }_{\top}$ \}-expressible; all other operators in the set $\left\{\mathrm{Join}, \mathrm{Union}^{2} \mathrm{Opt}_{\mathrm{T}}\right.$, Filter, Proj $\}$ are not expressible via the rest.
proof idea:

$$
\begin{aligned}
\boldsymbol{P}_{1} \mathrm{JOIN} \boldsymbol{P}_{2} \equiv\left(\boldsymbol{P}_{1} \text { OPT }_{\mathrm{T}}\right. & \left.\boldsymbol{P}_{2}\right) \text { DIFFF }_{\mathrm{T}}\left(\boldsymbol{P}_{1} \text { DIFF }_{\mathrm{T}} \boldsymbol{P}_{\mathbf{2}}\right) \\
& \text { and then DIFF } \mathrm{T}_{\mathrm{T}} \text { carefully via FILTER and OPT }
\end{aligned}
$$

On Diff and Opt (2)

\mathcal{S} is a set of SPARQL operators

e.g. $\mathcal{S}=\{$ FILTER, UNION, JOIN $\}$

operator \boldsymbol{O} is \mathcal{S}-expressible if, for any pattern over $\mathcal{S} \cup\{O\}$, there is an equivalent pattern over \mathcal{S}

Zhang \& Van den Bussche (2014) JOin is \{Filter, OPT ${ }_{\top}$ \}-expressible; all other operators in the set $\left\{\mathrm{Join}, \mathrm{Union}^{2} \mathrm{Opt}_{\mathrm{T}}\right.$, Filter, Proj $\}$ are not expressible via the rest.
proof idea:

$$
\begin{aligned}
\boldsymbol{P}_{1} \mathrm{JOIN} \boldsymbol{P}_{2} \equiv\left(\boldsymbol{P}_{1} \text { OPT }_{\mathrm{T}}\right. & \left.\boldsymbol{P}_{2}\right) \text { DIFF }_{\mathrm{T}}\left(\boldsymbol{P}_{1} \text { DIFF }_{\mathrm{T}} \boldsymbol{P}_{\mathbf{2}}\right) \\
& \text { and then DIFF }{ }_{\mathrm{T}} \text { carefully via FILTER and OPT }
\end{aligned}
$$

Theorem DIFF $_{\mathrm{T}}$ is not $\mathcal{S} \cup\left\{\mathrm{OPT}_{F}\right\}$-expressible proof idea: \boldsymbol{P} over $\mathcal{S} \cup\left\{\mathrm{OPt}_{\boldsymbol{F}}\right\} \quad \Longrightarrow \quad$ if $\boldsymbol{\mu}_{\emptyset} \in \llbracket \boldsymbol{P} \rrbracket_{G}$ then $\boldsymbol{\mu}_{\emptyset} \in \llbracket \boldsymbol{P} \rrbracket_{\emptyset}$

On Diff and Opt (2)

\mathcal{S} is a set of SPARQL operators

e.g., $\mathcal{S}=\{$ FILTER, UNION, JOIN $\}$

operator O is \mathcal{S}-expressible if, for any pattern over $\mathcal{S} \cup\{O\}$, there is an equivalent pattern over \mathcal{S}

Zhang \& Van den Bussche (2014) Join is \{Filter, OPT T \}-expressible; all other operators in the set $\left\{\mathrm{Join}\right.$, Union, Opt ${ }_{\mathrm{T}}$, Filter, Proj $\}$ are not expressible via the rest.
proof idea:

$$
\begin{aligned}
& \boldsymbol{P}_{1} \mathrm{JOIN} \boldsymbol{P}_{2} \equiv\left(\boldsymbol{P}_{1} \text { OPT }_{\mathrm{T}}\right.\left.\boldsymbol{P}_{2}\right) \text { DIFF }_{\mathrm{T}}\left(\boldsymbol{P}_{1} \text { DIFF }_{\mathrm{T}} \boldsymbol{P}_{2}\right) \\
& \text { and then DIFF } \\
& \mathrm{T} \text { carefully via FILTER and OPT }{ }_{T}
\end{aligned}
$$

Theorem DIff is not $\mathcal{S} \cup\left\{\right.$ OPT $\left._{F}\right\}$-expressible proof idea: P over $\mathcal{S} \cup\left\{\right.$ OPt $\left._{F}\right\} \Longrightarrow$ if $\mu_{\emptyset} \in \llbracket P \rrbracket_{G}$ then $\mu_{\emptyset} \in \llbracket P \rrbracket_{\emptyset}$
$\llbracket P \rrbracket_{\emptyset}=\emptyset \quad$ but $\quad \llbracket P \rrbracket_{G}=\left\{\mu_{\emptyset}\right\}$, for any $G \neq \emptyset$

Projection in SPARQL. On DIff and Opt (3)

```
SELECT ?p WHERE {
    ?p :worksIn ?d ?d is projected away
}
```

:Adams	a	:Prof
:Brown	a	:Prof
:Clarke	a	:Prof
: Brown	:worksIn	:CS
:Clarke	:worksIn	:Maths
:Davies	:worksIn	:CS

Projection in SPARQL. On DIfF and Opt (3)

SELECT ?p WHERE \{

?p :worksIn ?d ?d is projected away \}

:Adams	a	:Prof
: Brown	a	:Prof
:Clarke	a	:Prof
: Brown	:worksIn	:CS
:Clarke	: worksIn	:Maths
:Davies	:worksIn	:CS

$\llbracket \mathrm{PRO}_{\boldsymbol{V}} \boldsymbol{P} \rrbracket_{G}=\left\{\left.\boldsymbol{\mu}\right|_{V} \mid \boldsymbol{\mu} \in \llbracket \boldsymbol{P} \rrbracket_{G}\right\}$ where $\left.\boldsymbol{\mu}\right|_{\boldsymbol{V}}$ is the restriction of $\boldsymbol{\mu}$ to \boldsymbol{V}

Projection in SPARQL. On DIFF and Opt (3)

SELECT ?p WHERE \{
?p :worksIn ?d ?d is projected away
\}

: Adams	a	:Prof
: Brown	a	$:$ Prof
:Clarke	a	:Prof
: Brown	:worksIn	:CS
:Clarke	:worksIn	:Maths
: Davies	:worksIn	:CS

$$
\begin{aligned}
& \llbracket \mathrm{PRO}_{\boldsymbol{V}} \boldsymbol{P} \rrbracket_{\boldsymbol{G}}=\left\{\left.\boldsymbol{\mu}\right|_{\boldsymbol{V}} \mid \boldsymbol{\mu} \in \llbracket \boldsymbol{P} \rrbracket_{\boldsymbol{G}}\right\} \\
& \text { where }\left.\boldsymbol{\mu}\right|_{\boldsymbol{V}} \text { is the restriction of } \boldsymbol{\mu} \text { to } \boldsymbol{V}
\end{aligned}
$$

NB: projection in SPARQL is only at the top level
however, ProJ can always be pushed up (by careful variable renaming)

Projection in SPARQL. On DIFF and Opt (3)

NB: projection in SPARQL is only at the top level however, ProJ can always be pushed up (by careful variable renaming)

Theorem Diff_{F} is $\left\{\right.$ Filter, 2 UNION, ProJ, $\left.\mathrm{OPT}_{\boldsymbol{F}}\right\}$-expressible

Projection in SPARQL. On DIfF and Opt (3)

SELECT ?p WHERE \{ ?p :worksIn ?d		?d is projected away	: Adams	a	: Prof		
		: Brown	a	: Prof			
		: Clarke	a	: Prof			
\}			: Brown	:worksIn	: CS		
$\begin{aligned} & \overline{0} \\ & \sum_{0}^{0} \\ & \frac{C}{0} \end{aligned}$: Clarke	:worksIn	: Maths		
	?p		: Davies	:worksIn	: CS		
	: Brown		$\llbracket \operatorname{PRO}_{\boldsymbol{V}} \boldsymbol{P} \rrbracket_{\boldsymbol{G}}=\left\{\left.\boldsymbol{\mu}\right\|_{\boldsymbol{V}} \mid \boldsymbol{\mu} \in \llbracket \boldsymbol{P} \rrbracket_{\boldsymbol{G}}\right\}$ where $\left.\boldsymbol{\mu}\right\|_{\boldsymbol{V}}$ is the restriction of $\boldsymbol{\mu}$ to \boldsymbol{V}				
	: Clarke						
	: Davies						

NB: projection in SPARQL is only at the top level however, ProJ can always be pushed up (by careful variable renaming)

Theorem Diff $_{F}$ is $\left\{\right.$ Fllter, $U_{\text {NION }}$, Proj $\left.^{2}, \mathrm{OPt}_{F}\right\}$-expressible

$$
\begin{aligned}
& \boldsymbol{P}_{1} \text { DIFF }_{F} \boldsymbol{P}_{\mathbf{2}} \equiv \mathrm{ON}_{-} \mathrm{EMPTY}_{P_{1} \mathrm{DIFF}_{F} \boldsymbol{P}_{2}} \text { UNION } \\
& \text { PROJ }_{\text {var }\left(P_{1}\right)} \text { FILTER }_{\neg \text { bound }\left(? u_{2}\right)}\left(\left(P_{1} \operatorname{JOIN}\left\{? u_{1} ? v_{1} ? w_{1}\right\}\right) \text { OPT }_{\boldsymbol{F}}\right. \\
& \left.\left(P_{2} \text { JOIN }\left\{? u_{2} ? v_{2} ? w_{2}\right\}\right)\right)
\end{aligned}
$$

Projection in SPARQL. On DIFF and Opt (3)

SELECT ?p WHERE \{?p : worksIn ?d		?d is projected away	: Adams	a	: Prof	
		: Brown	a	: Prof		
		: Clarke	a	:Prof		
\}			: Brown	: worksIn	: CS	
		: Clarke	: worksIn	: Maths		
$\begin{aligned} & \frac{1}{0} \\ & \sum_{0}^{3} \\ & \frac{5}{0} \end{aligned}$?p		: Davies	: worksIn	: CS	
	: Brown					
	: Clarke		$\llbracket \operatorname{PRO}_{\boldsymbol{V}} \boldsymbol{P} \rrbracket_{\boldsymbol{G}}=\left\{\left.\boldsymbol{\mu}\right\|_{\boldsymbol{V}} \mid \boldsymbol{\mu} \in \llbracket \boldsymbol{P} \rrbracket_{\boldsymbol{G}}\right\}$ where $\left.\boldsymbol{\mu}\right\|_{V}$ is the restriction of $\boldsymbol{\mu}$ to \boldsymbol{V}			
	: Davies					

NB: projection in SPARQL is only at the top level however, ProJ can always be pushed up (by careful variable renaming)

Theorem Diff $_{F}$ is $\left\{\right.$ Fllter, $U_{\text {NION }}$, Proj $\left.^{2}, \mathrm{OPt}_{F}\right\}$-expressible

$$
\begin{aligned}
& P_{1} \text { DIFF }_{F} \boldsymbol{P}_{2} \text { on the empty graph } \\
& \boldsymbol{P}_{1} \text { DIFF }_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}} \equiv \mathrm{ON}_{-} \mathrm{EMPTY} \mathrm{P}_{\boldsymbol{P}_{1} \mathrm{DIFF}_{\boldsymbol{F}} \boldsymbol{P}_{2}} \text { UNION } \\
& \text { PROJ }_{\text {var }\left(P_{1}\right)} \text { FILTER }_{\neg \text { bound }\left(? u_{2}\right)}\left(\left(P_{1} \text { JOIN }\left\{? u_{1} ? v_{1} ? w_{1}\right\}\right) \operatorname{OPT}_{F}\right. \\
& \left.\left(P_{2} \text { JOIN }\left\{? u_{2} ? v_{2} ? w_{2}\right\}\right)\right)
\end{aligned}
$$

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

$$
\boldsymbol{P}_{1} \text { OPT }_{F} \boldsymbol{P}_{2} \equiv \boldsymbol{P}_{\mathbf{1}} \text { OPT }_{\mathrm{T}} \operatorname{FILTER}_{\boldsymbol{F}}\left(\boldsymbol{P}_{\mathbf{1}} \mathrm{JOIN} \boldsymbol{P}_{2}\right)
$$

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

$$
\boldsymbol{P}_{1} \text { OPT }_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}} \equiv \boldsymbol{P}_{\mathbf{1}} \text { OPT }_{\top} \operatorname{FILTER}_{\boldsymbol{F}}\left(\boldsymbol{P}_{\mathbf{1}} \mathrm{JOIN} \boldsymbol{P}_{\mathbf{2}}\right)
$$

$\boldsymbol{F}=\operatorname{bound}(? \boldsymbol{v})$

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

$$
\boldsymbol{P}_{1} \mathrm{OPT}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}} \equiv \boldsymbol{P}_{\mathbf{1}} \mathrm{OPT}_{\top} \operatorname{FILTER}_{\boldsymbol{F}}\left(\boldsymbol{P}_{\mathbf{1}} \mathrm{JOIN} \boldsymbol{P}_{\mathbf{2}}\right)
$$

$\boldsymbol{P}_{\mathbf{1}}$	OPT $_{\boldsymbol{F}}$	$\boldsymbol{P}_{\mathbf{2}} \rrbracket_{\boldsymbol{G}}$
?u	?v	?w
: a	:b	:c
: a		

$\boldsymbol{F}=\operatorname{bound}(? \boldsymbol{v})$

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

$\boldsymbol{F}=\operatorname{bound}(? \boldsymbol{v})$

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

$\boldsymbol{F}=\operatorname{bound}(? \boldsymbol{v})$

Theorem OPT $_{F}$ is $\{$ FILTER, UNION, OPT $T\}$-expressible

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .

Theorem OPT $_{F}$ is $\{$ FILTER, UNION, OPT $T\}$-expressible

\boldsymbol{F}_{V} selects the V-uniform slice of $\boldsymbol{P}_{\mathbf{1}}: \quad \boldsymbol{F}_{V}=\bigwedge_{? v \in V} \operatorname{bound}(? \boldsymbol{v}) \underset{? v \in\left(\operatorname{var}\left(P_{1}\right) \cap \operatorname{var}\left(\boldsymbol{P}_{2}\right)\right) \backslash V}{\wedge} \bigwedge_{\boldsymbol{V}} \wedge_{\mathrm{bound}}(? \boldsymbol{v})$

Ternary OPTIONAL of SPARQL

Angles and Gutierrez (2008), (Pérez et al., 2009), . . .
P
P

$\llbracket P_{1} \rrbracket_{G}$	
?u	?v
:a	:b
: a	

$\boldsymbol{F}=\operatorname{bound}(? \boldsymbol{v})$

Theorem OPT $_{\boldsymbol{F}}$ is $\left\{\right.$ FILter, UNION, $\left.\mathrm{OPT}_{\mathrm{T}}\right\}$-expressible

\boldsymbol{F}_{V} selects the V-uniform slice of $\boldsymbol{P}_{\mathbf{1}}: \quad \boldsymbol{F}_{V}=\bigwedge_{? v \in V} \operatorname{bound}(? \boldsymbol{v}) \underset{? v \in\left(\operatorname{var}\left(P_{1}\right) \cap \operatorname{var}\left(P_{2}\right)\right) \backslash V}{\wedge} \neg \operatorname{bound}(? \boldsymbol{v})$

Polynomial Expressibility

operator \boldsymbol{O} is polynomially \mathcal{S}-expressible if there is a polynomial f such that, for any $\boldsymbol{P}=\boldsymbol{O}\left(\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{n}\right)$ with the \boldsymbol{P}_{i} over \mathcal{S},
there is an equivalent pattern P^{\prime} over \mathcal{S} with $\left|P^{\prime}\right|=f(|P|)$

Polynomial Expressibility

operator \boldsymbol{O} is polynomially \mathcal{S}-expressible if there is a polynomial f such that, for any $\boldsymbol{P}=\boldsymbol{O}\left(\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{n}\right)$ with the \boldsymbol{P}_{i} over \mathcal{S},
there is an equivalent pattern P^{\prime} over \mathcal{S} with $\left|P^{\prime}\right|=f(|P|)$

So far:

- DIFF $_{\mathrm{T}}$ is not $\mathcal{S} \cup\left\{\mathrm{OPT}_{F}\right\}$-expressible
- Diff $_{F}$ is polynomially $\left\{\right.$ Filter, Union, Proj, Opt $\left._{F}\right\}$-expressible
- OPT $_{\boldsymbol{F}}$ is $\left\{\right.$ FILTER, UNION, OPT $\left.\mathrm{T}_{\mathrm{T}}\right\}$-expressible

Polynomial Expressibility

operator \boldsymbol{O} is polynomially \mathcal{S}-expressible if there is a polynomial f such that, for any $\boldsymbol{P}=\boldsymbol{O}\left(\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{n}\right)$ with the \boldsymbol{P}_{i} over \mathcal{S},
there is an equivalent pattern P^{\prime} over \mathcal{S} with $\left|P^{\prime}\right|=f(|P|)$

So far:

- DIFF $_{\mathrm{T}}$ is not $\mathcal{S} \cup\left\{\mathrm{OPT}_{F}\right\}$-expressible
- Diff_{F} is polynomially $\left\{\right.$ Filter, Union, Proj, Opt $\left._{F}\right\}$-expressible
- OPT $_{F}$ is $\left\{\right.$ FILTER, UNION, OPT $\left.T_{T}\right\}$-expressible
but not polynomially (under the standard complexity-theoretic assumptions)

Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph $\boldsymbol{G}_{a}=\{(: \mathrm{a}: \mathrm{a}: \mathrm{a})\}$
L1 $\llbracket \boldsymbol{P} \rrbracket_{G_{a}} \neq \emptyset$ Øor patterns P over $\mathcal{S} \cup\left\{\right.$ OPT $\left._{F}\right\}$ of $\underbrace{\text { o-rank }} \leq n$ is Σ_{n+1}^{p}-hard nesting depth of OPT $\boldsymbol{F}_{\boldsymbol{F}}$

Ternary OPT is NOT Polynomially Expressible via Binary Opt

singular graph $G_{a}=\{(: \mathrm{a}: \mathrm{a}: \mathrm{a})\}$
L】 $\llbracket \boldsymbol{P} \rrbracket_{G_{a}} \neq \emptyset \backslash$ for patterns P over $\mathcal{S} \cup\left\{\right.$ OPT $\left._{F}\right\}$ of $\underbrace{\text { o-rank }} \leq n$ is Σ_{n+1}^{p}-hard nesting depth of $\mathrm{OPt}_{\boldsymbol{F}}$

Proof by encoding QBF $\exists \vec{x}_{1} \forall \vec{x}_{2} \ldots Q \vec{x}_{n+1} \psi$
if n is odd and $Q=\forall$, then $\phi_{n+1}=\neg \psi$ and $\phi_{k}=\forall \vec{x}_{k+1} \neg \phi_{k+1}$, for $k \leq n$

Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph $G_{a}=\{(: \mathrm{a}: \mathrm{a}: \mathrm{a})\}$
L1 $\llbracket \boldsymbol{P} \rrbracket_{G_{a}} \neq \emptyset \emptyset^{\prime}$ for patterns P over $\mathcal{S} \cup\left\{\right.$ OPT $\left._{F}\right\}$ of $\underbrace{\text { o-rank }} \leq n$ is Σ_{n+1}^{p}-hard nesting depth of OPt_{F}

Proof by encoding QBF $\exists \vec{x}_{1} \forall \vec{x}_{2} \ldots Q \vec{x}_{n+1} \psi$
if n is odd and $Q=\forall$, then $\phi_{n+1}=\neg \psi$ and $\phi_{k}=\forall \vec{x}_{k+1} \neg \phi_{k+1}$, for $k \leq n$

$$
\phi_{k} \approx \boldsymbol{P}_{k}=\text { FILTER }_{\neg \text { bound }\left(? v_{k+1}\right)}\left(\boldsymbol{B}_{k} \operatorname{OPT}_{\boldsymbol{F}_{k}} \boldsymbol{P}_{k+1}\right)
$$

Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph $G_{a}=\{(:$ a : a : a $)\}$
L1 $\llbracket \boldsymbol{P} \rrbracket_{G_{a}} \neq \emptyset \emptyset^{\prime}$ for patterns P over $\mathcal{S} \cup\left\{\right.$ OPT $\left._{F}\right\}$ of $\underbrace{\text { o-rank }} \leq n$ is Σ_{n+1}^{p}-hard nesting depth of $\mathrm{Opt}_{\boldsymbol{F}}$

Proof by encoding QBF $\exists \vec{x}_{1} \forall \vec{x}_{2} \ldots Q \vec{x}_{n+1} \psi$
if n is odd and $Q=\forall$, then $\phi_{n+1}=\neg \psi$ and $\phi_{k}=\forall \vec{x}_{k+1} \neg \phi_{k+1}$, for $k \leq n$

$$
\phi_{k} \approx \boldsymbol{P}_{k}=\operatorname{FILTER}_{\neg \text { bound }\left(? v_{k+1}\right)}\left(\boldsymbol{B}_{k} \operatorname{OPT}_{\boldsymbol{F}_{k}} \boldsymbol{P}_{k+1}\right)
$$

L2 ${ } \llbracket P \rrbracket_{G_{a}} \neq \emptyset$ ' for patterns \boldsymbol{P} over $\mathcal{S} \cup\{$ PROJ, OPTT $\}$ is in Δ_{2}^{p} polynomial deterministic algorithm with $|P|+1$ calls to an NP-oracle ($P^{N P}$)

Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph $G_{a}=\{(: \mathrm{a}: \mathrm{a}: \mathrm{a})\}$
L1 $\llbracket P \rrbracket_{G_{a}} \neq \emptyset$ ' for patterns P over $\mathcal{S} \cup\left\{\right.$ OPT $\left._{F}\right\}$ of $\underbrace{\text { o-rank }} \leq n$ is Σ_{n+1}^{p}-hard nesting depth of $\mathrm{OPT}_{\boldsymbol{F}}$

Proof by encoding QBF $\exists \vec{x}_{1} \forall \vec{x}_{2} \ldots Q \vec{x}_{n+1} \psi$
if n is odd and $Q=\forall$, then $\phi_{n+1}=\neg \psi$ and $\phi_{k}=\forall \vec{x}_{k+1} \neg \phi_{k+1}$, for $k \leq n$

$$
\phi_{k} \approx \boldsymbol{P}_{k}=\operatorname{FILTER}_{\neg \text { bound }\left(? v_{k+1}\right)}\left(\boldsymbol{B}_{k} \operatorname{OPT}_{\boldsymbol{F}_{k}} \boldsymbol{P}_{k+1}\right)
$$

L2 $\llbracket \mathbb{P} \rrbracket_{G_{a}} \neq \emptyset$ for patterns \boldsymbol{P} over $\mathcal{S} \cup\{$ PROJ, OPT $\}$ is in Δ_{2}^{p} polynomial deterministic algorithm with $|P|+1$ calls to an NP-oracle (P^{NP})
Proof

$$
\llbracket P_{1} \text { OPT }_{T} P_{2} \rrbracket_{G_{a}}= \begin{cases}\llbracket P_{1} \mathrm{JOIN} P_{2} \rrbracket_{G_{a}}, & \text { if } \llbracket P_{2} \rrbracket_{G_{a}} \neq \emptyset \\ \llbracket P_{1} \rrbracket_{G_{a}}, & \text { if } \llbracket P_{2} \rrbracket_{G_{a}}=\emptyset\end{cases}
$$

Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph $G_{a}=\{(:$ a: a :a $)\}$
L1 $\llbracket P \rrbracket_{G_{a}} \neq \emptyset$ ' for patterns P over $\mathcal{S} \cup\left\{\right.$ OPT $\left._{F}\right\}$ of $\underbrace{\text { o-rank }} \leq n$ is Σ_{n+1}^{p}-hard nesting depth of OPT F_{F}

Proof by encoding QBF $\exists \vec{x}_{1} \forall \vec{x}_{2} \ldots Q \vec{x}_{n+1} \psi$
if n is odd and $Q=\forall$, then $\phi_{n+1}=\neg \psi$ and $\phi_{k}=\forall \vec{x}_{k+1} \neg \phi_{k+1}$, for $k \leq n$

$$
\phi_{k} \approx \boldsymbol{P}_{k}=\text { FILTER }_{\neg \text { bound }\left(? v_{k+1}\right)}\left(\boldsymbol{B}_{k} \operatorname{OPT}_{\boldsymbol{F}_{k}} \boldsymbol{P}_{k+1}\right)
$$

L2 $\llbracket P \rrbracket_{G_{a}} \neq \emptyset$ ' for patterns P over $\mathcal{S} \cup\{$ PROJ, OPTT $\}$ is in Δ_{2}^{p} polynomial deterministic algorithm with $|P|+1$ calls to an NP-oracle (P^{NP})
Proof

$$
\llbracket P_{1} \text { OPT }_{T} P_{2} \rrbracket_{G_{a}}= \begin{cases}\llbracket P_{1} \mathrm{JoIN} P_{2} \rrbracket_{G_{a}}, & \text { if } \llbracket P_{2} \rrbracket_{G_{a}} \neq \emptyset \\ \llbracket P_{1} \rrbracket_{G_{a}}, & \text { if } \llbracket P_{2} \rrbracket_{G_{a}}=\emptyset\end{cases}
$$

checking ${ }^{`} \llbracket P_{2} \rrbracket_{G_{a}}=\emptyset$ ' for a pattern P_{2} over $\mathcal{S} \cup\{$ PROJ $\}$ is NP-complete

Ternary OPT is NOT Polynomially Expressible via Binary OPT

singular graph $\boldsymbol{G}_{a}=\{(:$ a : a : a $)\}$
L1 $\llbracket[P \rrbracket_{G_{a}} \neq \emptyset '$ for patterns P over $\mathcal{S} \cup\left\{\right.$ OPT $\left._{F}\right\}$ of $\underbrace{\text { o-rank }} \leq n$ is Σ_{n+1}^{p}-hard nesting depth of OPT ${ }_{F}$

Proof by encoding QBF $\exists \vec{x}_{1} \forall \vec{x}_{2} \ldots Q \vec{x}_{n+1} \psi$
if n is odd and $Q=\forall$, then $\phi_{n+1}=\neg \psi$ and $\phi_{k}=\forall \vec{x}_{k+1} \neg \phi_{k+1}$, for $k \leq n$

$$
\phi_{k} \approx \boldsymbol{P}_{k}=\operatorname{FILTER}_{\neg \text { bound }\left(? v_{k+1}\right)}\left(\boldsymbol{B}_{k} \operatorname{OPT}_{\boldsymbol{F}_{k}} \boldsymbol{P}_{k+1}\right)
$$

L2 $\llbracket P \rrbracket_{G_{a}} \neq \emptyset$ ' for patterns P over $\mathcal{S} \cup\{$ PROJ, OPTT $\}$ is in Δ_{2}^{p} polynomial deterministic algorithm with $|P|+1$ calls to an NP-oracle (P^{NP})
Proof

$$
\llbracket P_{1} \text { OPT }_{T} P_{2} \rrbracket_{G_{a}}= \begin{cases}\llbracket P_{1} \mathrm{JoIN} P_{2} \rrbracket_{G_{a}}, & \text { if } \llbracket P_{2} \rrbracket_{G_{a}} \neq \emptyset \\ \llbracket P_{1} \rrbracket_{G_{a}}, & \text { if } \llbracket P_{2} \rrbracket_{G_{a}}=\emptyset\end{cases}
$$

checking ${ }^{`} \llbracket P_{2} \rrbracket_{G_{a}}=\emptyset '$ for a pattern P_{2} over $\mathcal{S} \cup\{$ PROJ $\}$ is NP-complete
$\mathrm{L} 1+\mathrm{L} 2$ for $P_{1} \mathrm{OPT}_{F} P_{2} \longrightarrow$ not poly-expressible (unless $\Delta_{2}^{p}=\Sigma_{2}^{p}$)

Expressing Ternary Opt via Binary OPT

E1	$\boldsymbol{P}_{1} \mathrm{DIFF}_{F} \boldsymbol{P}_{2} \equiv$	\boldsymbol{P}_{1} SetMinus	patte that ha
where	$\llbracket \boldsymbol{P}_{1}$ SETMIN	$\boldsymbol{P}_{2} \rrbracket_{G}=\llbracket \boldsymbol{P}_{1} \rrbracket$	$\backslash \llbracket P_{2} \rrbracket_{G}$

Expressing Ternary Opt via Binary Opt

E1 $\boldsymbol{P}_{1} \operatorname{Diff}_{F} \boldsymbol{P}_{\mathbf{2}} \equiv \boldsymbol{P}_{\mathbf{1}}$ SETMINUS
pattern that selects $\mu_{1} \in \llbracket P_{1} \rrbracket_{G}$ that have a compatible $\mu_{2} \in \llbracket P_{2} \rrbracket_{G}$ with $F^{\mu_{1} \oplus \mu_{2}}=$ true

where
$\llbracket P_{1}$ SETMINUS $P_{2} \rrbracket_{G}=\llbracket P_{1} \rrbracket_{G} \backslash \llbracket P_{2} \rrbracket_{G}$
not the Minus of SPARQL

E2 $\boldsymbol{P}_{\mathbf{1}}$ SETMINUS $\boldsymbol{P}_{\mathbf{2}} \equiv$
ON_EMPTY ${ }_{P_{1} \text { SETMINus } P_{2}}$ UNION
$\left(\boldsymbol{P}_{1}\right.$ MonoMinus \boldsymbol{P}_{2}) JOIN ONE UNION
pattern that uses two distinct elements
as indicators for 'not bound'

Expressing Ternary Opt via Binary OPT

E1 $\quad \boldsymbol{P}_{1} \operatorname{DIFF}_{F} \boldsymbol{P}_{\mathbf{2}} \equiv \boldsymbol{P}_{\mathbf{1}}$ SETMINUS
pattern that selects $\mu_{1} \in \llbracket P_{1} \rrbracket_{G}$ that have a compatible $\mu_{2} \in \llbracket P_{2} \rrbracket_{G}$ with $F^{\mu_{1} \oplus \mu_{2}}=$ true

where
$\llbracket P_{1}$ SETMINUS $P_{2} \rrbracket_{G}=\llbracket P_{1} \rrbracket_{G} \backslash \llbracket P_{2} \rrbracket_{G}$
not the MInUs of SPARQL

E2 $\boldsymbol{P}_{\mathbf{1}}$ SETMINUS $\boldsymbol{P}_{\mathbf{2}} \equiv$
ON_EMPTY ${ }_{P_{1} \text { SETMINus } P_{2}}$ UNION
polynomial
($\boldsymbol{P}_{\mathbf{1}}$ MONOMINUS \boldsymbol{P}_{2}) JOIN ONE UNION
pattern that uses two distinct elements
as indicators for 'not bound'

Expressing Ternary Opt via Binary Opt

E1 $\boldsymbol{P}_{1} \operatorname{Diff}_{F} \boldsymbol{P}_{\mathbf{2}} \equiv \boldsymbol{P}_{\mathbf{1}}$ SETMINUS
pattern that selects $\mu_{1} \in \llbracket P_{1} \rrbracket_{G}$ that have a compatible $\mu_{2} \in \llbracket P_{2} \rrbracket_{G}$ with $F^{\mu_{1} \oplus \mu_{2}}=$ true

where
$\llbracket P_{1}$ SETMINUS $P_{2} \rrbracket_{G}=\llbracket P_{1} \rrbracket_{G} \backslash \llbracket P_{2} \rrbracket_{G}$
not the MInUs of SPARQL

E2 $\boldsymbol{P}_{\mathbf{1}}$ SETMINUS $\boldsymbol{P}_{\mathbf{2}} \equiv$
ON_EMPTY ${ }_{P_{1} \text { SETMINus } P_{2}}$ UNION
($\boldsymbol{P}_{\mathbf{1}}$ MonoMinus \boldsymbol{P}_{2}) JOIN ONE UNION
pattern that uses two distinct elements
as indicators for 'not bound'
polynomial JOIN TWO $<$ polynomial

Expressing Ternary Opt via Binary Opt

E1 $\boldsymbol{P}_{\mathbf{1}} \operatorname{DIFF}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}} \equiv \boldsymbol{P}_{\mathbf{1}}$ SETMINUS | pattern that selects $\boldsymbol{\mu}_{1} \in \llbracket \boldsymbol{P}_{\mathbf{1}} \rrbracket_{G}$ |
| :---: |
| that have a compatible $\boldsymbol{\mu}_{2} \in \llbracket \boldsymbol{P}_{\mathbf{2}} \rrbracket_{\boldsymbol{G}}$ |
| with $\boldsymbol{F}^{\boldsymbol{\mu}_{1} \oplus \boldsymbol{\mu}_{\mathbf{2}}}=$ true |

where
$\llbracket P_{1}$ SETMINUS $P_{2} \rrbracket_{G}=\llbracket P_{1} \rrbracket_{G} \backslash \llbracket P_{2} \rrbracket_{G}$
not the MInus of SPARQL

E2 P_{1} SetMinus $P_{2} \equiv$ ON_EMPTY ${ }_{P_{1} \text { SetMinus } P_{2}}$ UNION
polynomial (\boldsymbol{P}_{1} MonoMinus \boldsymbol{P}_{2}) JOIN ONE UNION
pattern that uses two distinct elements
as indicators for 'not bound'
$E 3$ if NP = coNP then,
for every pattern $\boldsymbol{P}_{\mathbf{1}}$ MONOMINUS $\boldsymbol{P}_{\mathbf{2}}$, with the $\boldsymbol{P}_{\boldsymbol{i}}$ over $\mathcal{\mathcal { S }} \cup\{$ PROJ $\}$, there is a polynomial pattern over $\mathcal{S} \cup\{\operatorname{PROJ}\}$ that gives the same answers on singular graphs

MINUS of SPARQL 1.1

not to be confused with

- Minus of (Angles \& Gutierrez, 2008)
- set-theoretic complement SetMinus, or \}

$$
\begin{array}{r}
\llbracket \boldsymbol{P}_{1} \text { MINUS } \boldsymbol{P}_{2} \rrbracket_{G}=\left\{\boldsymbol{\mu}_{1} \in \llbracket \boldsymbol{P}_{1} \rrbracket_{G} \mid \text { there is no } \boldsymbol{\mu}_{2} \in \llbracket \boldsymbol{P}_{2} \rrbracket_{G}\right. \text { with } \\
\\
\left.\boldsymbol{\mu}_{1} \sim \boldsymbol{\mu}_{2} \text { and dom }\left(\mu_{1}\right) \cap \operatorname{dom}\left(\mu_{2}\right) \neq \emptyset\right\} \\
\llbracket \boldsymbol{P}_{1} \text { DIFF }_{F} \boldsymbol{P}_{2} \rrbracket_{G}=\left\{\boldsymbol{\mu}_{1} \in \llbracket \boldsymbol{P}_{1} \rrbracket_{G} \mid\right. \\
\text { there is no } \boldsymbol{\mu}_{2} \in \llbracket \boldsymbol{P}_{2} \rrbracket_{G} \text { with } \\
\left.\boldsymbol{\mu}_{1} \sim \boldsymbol{\mu}_{2} \text { and } \boldsymbol{F}^{\boldsymbol{\mu}_{1} \oplus \boldsymbol{\mu}_{2}}=\text { true }\right\}
\end{array}
$$

MINUS of SPARQL 1.1

not to be confused with

- Minus of (Angles \& Gutierrez, 2008)
- set-theoretic complement SetMinus, or \}

$$
\begin{aligned}
& \llbracket P_{1} \text { MINUS } \boldsymbol{P}_{2} \rrbracket_{G}=\left\{\mu_{1} \in \llbracket P_{1} \rrbracket_{G} \mid\right. \text { there is no } \mu_{2} \in \llbracket \boldsymbol{P}_{2} \rrbracket_{G} \text { with } \\
&\left.\mu_{1} \sim \mu_{2} \text { and dom } \operatorname{dom}\left(\mu_{1}\right) \cap \operatorname{dom}\left(\mu_{2}\right) \neq \emptyset\right\} \\
& {\left[P_{1} \text { Diff }_{F} P_{2} \rrbracket_{G}=\left\{\mu_{1} \in \llbracket P_{1} \rrbracket_{G} \mid \text { there is no } \mu_{2} \in \llbracket P_{2} \rrbracket_{G}\right. \text { with }\right.} \\
&\left.\mu_{1} \sim \mu_{2} \text { and } \boldsymbol{F}^{\mu_{1} \oplus \mu_{2}}=\text { true }\right\}
\end{aligned}
$$

Theorem MINUS is polynomially $\left\{\right.$ DIFF $\left._{F}\right\}$ - and $\left\{\right.$ OPT $_{F}$, FILTER $\}$-expressible DIFFT $_{T}$ and Opt $_{T}$ are not $\mathcal{S} \cup\{$ Proj, Minus $\}$-expressible

$\mathcal{S} \cup\left\{O^{\prime}\right\}$ - and $\mathcal{S}_{\pi} \cup\left\{O^{\prime}\right\}$-expressibility of O

$\boldsymbol{\mathcal { S }}=\{$ FILTER, UNION, JOIN $\}$					
$\boldsymbol{O}^{\prime} \backslash \boldsymbol{O}$	DIFF $_{\boldsymbol{F}}$	OPT $_{\boldsymbol{F}}$	DIFF $_{T}$	OPT $_{T}$	MINUS
$\mathrm{DIFF}_{\boldsymbol{F}}$		+	+	+	+
OPT $_{\boldsymbol{F}}$	-		-	+	+
DIFF $_{T}$	\pm	\pm		+	$+?$
OPT $_{T}$	-	\pm	-		$+?$
MINUS	-	-	-	-	

$\mathcal{S}_{\pi}=\boldsymbol{\mathcal { S }} \cup\{$ PROJ $\}$					
$\boldsymbol{O}^{\prime} \backslash \boldsymbol{O}$	$\operatorname{DIFF}_{\boldsymbol{F}}$	OPT $_{\boldsymbol{F}}$	DIFF $_{\mathrm{T}}$	OPT $_{T}$	MINUS
$\mathrm{DIFF}_{\boldsymbol{F}}$		+	+	+	+
$\mathrm{OPT}_{\boldsymbol{F}}$	+		+	+	+
DIFF $_{T}$	\pm^{\dagger}	\pm^{\dagger}		+	$+?^{\dagger}$
OPT $_{T}$	\pm^{\dagger}	\pm^{\dagger}	+		$+?^{\dagger}$
MINUS	-	-	-	-	

[^0]the results with \dagger become + if NP $=$ coNP

Summary and Open Problems

- the ternary OPTIONAL in SPARQL is more complex than commonly assumed
- some widely-known SPARQL equivalences are false
or use assumptions different from SPARQL specification

Summary and Open Problems

- the ternary OPTIONAL in SPARQL is more complex than commonly assumed
- some widely-known SPARQL equivalences are false
or use assumptions different from SPARQL specification
- stronger notion of polynomial expressibility: every pattern over $\mathcal{S} \cup\{O\}$ has an equivalent polynomially-sized pattern over \mathcal{S}

$$
\boldsymbol{P}_{\mathbf{1}} \mathrm{OPT}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}} \equiv \operatorname{FILTER}_{\boldsymbol{F}}\left(\boldsymbol{P}_{\mathbf{1}} \mathrm{JOIN} \boldsymbol{P}_{\mathbf{2}}\right) \text { UNION }\left(\boldsymbol{P}_{\mathbf{1}} \mathrm{DIFF}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}}\right)
$$

- expressive power of NOT EXISTS
- expressiveness over non-empty RDF graphs

Summary and Open Problems

- the ternary OPTIONAL in SPARQL is more complex than commonly assumed
- some widely-known SPARQL equivalences are false
or use assumptions different from SPARQL specification
- stronger notion of polynomial expressibility: every pattern over $\mathcal{S} \cup\{O\}$ has an equivalent polynomially-sized pattern over \mathcal{S}

$$
\boldsymbol{P}_{\mathbf{1}} \mathrm{OPT}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}} \equiv \operatorname{FILTER}_{\boldsymbol{F}}\left(\boldsymbol{P}_{\mathbf{1}} \mathrm{JOIN} \boldsymbol{P}_{\mathbf{2}}\right) \text { UNION }\left(\boldsymbol{P}_{\mathbf{1}} \mathrm{DIFF}_{\boldsymbol{F}} \boldsymbol{P}_{\mathbf{2}}\right)
$$

- expressive power of NOT EXISTS
- expressiveness over non-empty RDF graphs

Is SPARQL intuitive?

or is it just confusing names, e.g., Optional v LeftJoin?
Minus v \backslash

[^0]: - not expressible
 + polynomially expressible
 \pm expressible, but not polynomially if $\Delta_{2}^{p} \neq \boldsymbol{\Sigma}_{2}^{p}$
 + ? expressible, but not known if polynomially

