Undecidability of first-order intuitionistic (and modal) logic with two variables

Roman Kontchakov, Agi Kurucz and Michael Zakharyaschev

Department of Computer Science, King's College London

http://www.dcs.kcl.ac.uk/staff/romanvk

Classical vs. Intuitionistic logic

Classical (Frege, Hilbert, ...)

all 'convincing' proofs are permitted

• tertium non datur:

 $\vdash \varphi \vee \neg \varphi$

• reducto ad absurdum: if $\Gamma \cup \{ \neg \varphi \} \vdash \bot$ then $\Gamma \vdash \varphi$ Intuitionistic (Brouwer, Heyting, ...) allows only `constructive' proofs

• disjunction property: $\vdash \varphi \lor \psi$ iff $\vdash \varphi$ or $\vdash \psi$

existence property: $ext{if} \ dash \exists x arphi(x) \ dash ext{then} \ dash arphi(t) \ ext{for some term } t$

Intuitionism: "A statement is <u>true</u> if we have a <u>constructive proof</u> of it, and <u>false</u> if we can show that the assumption that there is a proof leads to a <u>contradiction</u>"

$$\mathsf{Int} \ = \ \mathsf{CI} - \{ \neg \neg \varphi \to \varphi, \quad \varphi \lor \neg \varphi, \quad \neg \forall x \, \neg \varphi(x) \to \exists x \, \varphi(x), \quad \dots \}$$

Intuitionistic logic: Kripke semantics

Intuitionistic Kripke model $\mathfrak{M} = (\mathfrak{F}, \Delta, \delta, I)$: $-\tilde{s} = (W, <)$ $-\delta(w) \subset \Delta$ (the domain at w) $- I(w) = (\Delta, P^w, Q^w, \dots)$ if u < v then $\delta(u) \subset \delta(v)$ and $P^u \subset P^v$ • $w \models^{\mathfrak{a}} P(x_1, \ldots, x_n)$ iff $P^w(\mathfrak{a}(x_1), \ldots, \mathfrak{a}(x_n))$ • $w \not\models^{\mathfrak{a}} \bot$ • $w \models^{\mathfrak{a}} \varphi \lor \psi$ iff $w \models^{\mathfrak{a}} \varphi$ or $w \models^{\mathfrak{a}} \psi$ • $w \models^{\mathfrak{a}} \varphi \land \psi$ iff $w \models^{\mathfrak{a}} \varphi$ and $w \models^{\mathfrak{a}} \psi$ • $w \models^{\mathfrak{a}} \exists x \varphi$ iff $w \models^{\mathfrak{b}} \varphi$ for some \mathfrak{b} such that $\mathfrak{b} \sim_x \mathfrak{a}$ and $\mathfrak{b}(x) \in \delta(w)$ • $w \models^{\mathfrak{a}} \varphi \to \psi$ iff $v \models^{\mathfrak{a}} \varphi$ implies $v \models^{\mathfrak{a}} \psi$ for all v > w• $w \models^{\mathfrak{a}} \forall x \varphi$ iff $v \models^{\mathfrak{b}} \varphi$ for all v > wand all \mathfrak{b} such that $\mathfrak{b} \sim_x \mathfrak{a}$ and $\mathfrak{b}(x) \in \delta(v)$ NB. All connectives and quantifiers are **independent** (note that $\neg \varphi = \varphi \rightarrow \bot$)

LC 2005, 1.08.05

Das Entscheidungsproblem

Classical

lnt(n) — logic with n variables CI(n) — logic with n variables lnt(1) is decidable Cl(1) is decidable (Wajsberg 1933) (Bull 1966, Mints 1968, Ono 1977) CI(1) = S5CI(2) is decidable $\operatorname{Int}(2) + \forall x (P(x) \lor q) \rightarrow \forall x P(x) \lor q$ (Scott 1962, Mortimer 1975) (constant domains) is undecidable Cl(3) is undecidable (Syrány 1943) (Gabbay & Shehtman 1993)

Int(3) is undecidable

Intuitionistic

CI is reducible to **Int** 'by prefixing $\neg \neg'$ (*Gödel 1933, etc.*)

Open problem: Is Int(2) decidable?

Int(1) = MIPC

$\mathbb{N}\times\mathbb{N}$ tiling problem

Given a finite set T of tile types t = (left(t), right(t), up(t), down(t))

decide whether there exists $\tau \colon \mathbb{N} \times \mathbb{N} \to T$ such that, for all $i, j \in \mathbb{N}$,

$$up(\tau(i,j)) = down(\tau(i,j+1))$$

and left(au(i,j)) = right(au(i+1,j)).

(Berger 1966): The $\mathbb{N} \times \mathbb{N}$ tiling problem is undecidable.

Theorem. $(\vartheta \land \gamma)$ is classically satisfiable iff T tiles $\mathbb{N} \times \mathbb{N}$

Generating an $\mathbb{N}\times\mathbb{N}\text{-like}$ grid: revised

 $orall x \exists y \ { extsf{succ}}_H(x,y) \quad \wedge \quad orall x \exists y \ { extsf{succ}}_V(x,y)$

$$orall x orall y orall z \left(\left({\it SUCC}_H(x,y) \land {\it SUCC}_V(x,z)
ight)
ight.
ightarrow \ \exists x \left({\it SUCC}_V(y,x) \land {\it SUCC}_H(z,x)
ight)
ight)$$

Let a unary predicate D be true at point z:

$$egin{pmatrix} ig(extsf{succ}_H(x,y) \ \land \ \exists z ig(D(z) \ \land \ extsf{succ}_V(y,z) ig) \
ightarrow \ \forall y ig(extsf{succ}_V(x,y) \
ightarrow \ \forall z ig(D(z) \
ightarrow \ extsf{succ}_H(y,z) ig) ig) \end{pmatrix}$$

Encoding the $\mathbb{N} \times \mathbb{N}$ tiling problem in Int(2)

Theorem.

$$(artheta\wedge\gamma')\ o\ \exists x\,(D(x) oot)$$

does not belong to Int iff T tiles $\mathbb{N} \times \mathbb{N}$

$$\begin{array}{c} (\gamma'): \text{ generating an } \mathbb{N} \times \mathbb{N} \text{-like grid} \\ \\ \forall x \exists y \ \text{succ}_H(x, y) \ \land \ \forall x \exists y \ \text{succ}_V(x, y) \\ \\ \forall x \forall y \ (\text{succ}_H(x, y) \lor (\text{succ}_H(x, y) \to \bot)) \end{array}$$

$$egin{aligned} &orall x orall y \left(egin{subarray}{ccc} \mathsf{SUCC}_H(x,y) & \wedge & \exists x \left(D(x) \ \wedge \ \mathsf{SUCC}_V(y,x)
ight) &
ightarrow \ &orall y \left(\mathsf{SUCC}_V(x,y) \
ightarrow \ &orall x \left(D(x) \
ightarrow \ \mathsf{SUCC}_H(y,x)
ight)
ight) \end{aligned}$$

Quantified modal logics with expanding domains

Theorem. Let *L* be any propositional modal logic having a Kripke frame that contains a point with infinitely many successors.

Then the two-variable fragment of $\mathbf{Q}^e L$ is undecidable.

Using the Kripke trick:

$$oldsymbol{R}(x,y) \hspace{0.4cm} \sim \hspace{-0.4cm} \diamond ig(P(x) \wedge Q(y) ig)$$

Theorem. For almost all standard propositional modal logics L,

the monadic two-variable fragment of $Q^e L$ is undecidable.

Open problems

1. Is the monadic two-variable fragment of Int decidable?

The monadic fragment with arbitrarily many variables is undecidable (Mints et al. 1965, Gabbay 1981, etc.)

2. What is the complexity of Int(1) = MIPC?

Conjectures

- 3. The two-variable fragment of the quantified extension of a propositional superintuitionistic or modal logic L is decidable iff L is tabular.
- 4. All logics of the form $(L_1 \times (L_2 \times L_3))^{ex}$, where L_1 , L_2 and L_3 are any Kripke complete propositional modal logics between K and S5, are undecidable