Logic-based Ontology Comparison and Module Extraction in OWL 2 QL

Roman Kontchakov

Dept. of Computer Science and Inf. Systems, Birkbeck, University of London
http://www.dcs.bbk.ac.uk/~roman
joint work with
B. Konev, M. Ludwig, T. Schneider, F. Wolter and M. Zakharyaschev

Large-scale ontologies

- Life-sciences, healthcare, and other knowledge intensive areas depend on having a common language for gathering and sharing knowledge
- Such a common language is provided by reference terminologies
- Examples:
- SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms)
- NCl (National Cancer Institute Ontology)
- FMA (Foundational Model of Anatomy)
- GALEN
- Typical size: at least 50,000 terms and axioms
- Trend towards axiomatising reference terminologies in
('lightweight') description logics

Description logic $\mathcal{A L C H I Q}$

Vocabulary:

- individuals a_{0}, a_{1}, \ldots
(e.g., john, mary) (nominals in ML/constants in FO)
- concept names $\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \ldots$
(e.g., Person, Female) (variables in ML/unary predicates in FO)
- role names $\boldsymbol{R}_{\mathbf{0}}, \boldsymbol{R}_{1}, \ldots$
(e.g., hasChild, loves) (modalities in ML/binary predicates in FO)

Description logic $\mathcal{A L C H} \mathcal{I} \mathcal{Q}$

Vocabulary:

- individuals a_{0}, a_{1}, \ldots

> (e.g., john, mary) (nominals in ML/constants in FO)

- concept names $\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \ldots$
(e.g., Person, Female) (variables in ML/unary predicates in FO)
- role names R_{0}, R_{1}, \ldots
(e.g., hasChild, loves) (modalities in ML/binary predicates in FO) $\boldsymbol{R}_{i}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

Description logic $\mathcal{A L C H I Q}$

Vocabulary:

$$
\mathcal{I}=\left(\Delta^{\mathcal{I}}, \cdot{ }^{\mathcal{I}}\right) \text { an interpretation }
$$

$$
a_{i}^{I} \in \Delta^{I}
$$

(e.g., john, mary) (nominals in ML/constants in FO)

- concept names $\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \ldots$
(e.g., Person, Female) (variables in ML/unary predicates in FO)
- role names R_{0}, R_{1}, \ldots
(e.g., hasChild, loves) (modalities in ML/binary predicates in FO) $\boldsymbol{R}_{i}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- roles

$$
R::=R_{i} \left\lvert\, \begin{array}{lll}
R & R_{i}^{-} & \left(R_{i}^{-}\right)^{\mathcal{I}}=\left\{(y, x) \mid(x, y) \in R_{i}^{\mathcal{T}}\right\}
\end{array}\right.
$$

- concepts

$$
C::=A_{i}|\neg C| C_{1} \sqcap C_{2}|\quad \exists R . C \quad| \quad \forall R . C \quad \mid \geq q R . C
$$

Description logic $\mathcal{A L C H I Q}$

Vocabulary:

$$
\mathcal{I}=\left(\Delta^{\mathcal{I}}, \cdot{ }^{\mathcal{I}}\right) \text { an interpretation }
$$

$$
a_{i}^{\mathcal{I}} \in \Delta^{\mathcal{I}}
$$

$$
\text { (e.g., john, mary) (nominals in ML/constants in } \mathrm{FO} \text {) }
$$

- concept names $\boldsymbol{A}_{0}, \boldsymbol{A}_{1}, \ldots$
(e.g., Person, Female) (variables in ML/unary predicates in FO)
- role names $R_{0}, \boldsymbol{R}_{1}, \ldots$
(e.g., hasChild, loves) (modalilies in ML/binary predicates in FO) $R_{i}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
- roles

$$
\boldsymbol{R}::=R_{i} \quad \mid \quad R_{i}^{-} \quad\left(R_{i}^{-}\right)^{\mathcal{I}}=\left\{(y, x) \mid(x, y) \in R_{i}^{\tau}\right\}
$$

- concepts

$$
C::=A_{i}|\neg C| C_{1} \sqcap C_{2}|\quad \exists R . C \quad| \quad \forall R . C \quad \mid \geq q R . C
$$

'there are at least \boldsymbol{q} distinc \dagger \boldsymbol{R}-successors that are in C^{\prime}

Description logic $\mathcal{A L C H I Q}$ (cont.)

$$
\text { knowledge base } \mathcal{K}=\operatorname{TBox} \mathcal{T}+\operatorname{ABox} \mathcal{A}
$$

- \mathcal{T} is a set of terminological axioms of the form $\boldsymbol{C} \sqsubseteq D$ and $\boldsymbol{R} \sqsubseteq S$
- \mathcal{A} is a set of assertional axioms of the form $C(a)$ and $R(a, b)$

Description logic $\mathcal{A L C H I \mathcal { L }}$ (cont.)

knowledge base $\mathcal{K}=\operatorname{TBox} \mathcal{T}+$ ABox \mathcal{A}

- \mathcal{T} is a set of terminological axioms of the form $\quad C \sqsubseteq D$ and $R \sqsubseteq S$
- \mathcal{A} is a set of assertional axioms of the form $\boldsymbol{C (a)}$ and $R(a, b)$

Reasoning: - satisfiability \mathcal{K}

$$
\begin{array}{ll}
\text { is there a model } \mathcal{I} \text { for } \mathcal{K} & \left(\mathcal{I} \models C \sqsubseteq D \text { iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}\right) \\
& \left(\mathcal{I} \models R \sqsubseteq S \quad \text { iff } \quad R^{\mathcal{I}} \subseteq S^{\mathcal{I}}\right)
\end{array}
$$

- subsumption $\mathcal{K} \models C \sqsubseteq D$
$\mathcal{I} \models C \sqsubseteq D$, for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$
- instance checking $\mathcal{K} \models C(a)$
$a^{\mathcal{I}} \in C^{\mathcal{I}}$, for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$
- query answering $\mathcal{K} \models q(\vec{a}), q(\vec{a})$ a positive existential formula $\mathcal{I} \models q(a)$ (as a fifstorders stucture), for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$

Description logic $\mathcal{A L C H I \mathcal { L }}$ (cont.)

knowledge base $\mathcal{K}=\operatorname{TBox} \mathcal{T}+\operatorname{ABox} \mathcal{A}$

- \mathcal{T} is a set of terminological axioms of the form $\boldsymbol{C} \sqsubseteq D$ and $\boldsymbol{R} \sqsubseteq S$
- \mathcal{A} is a set of assertional axioms of the form $\boldsymbol{C (a)}$ and $R(a, b)$

Reasoning: - satisfiability \mathcal{K}

$$
\begin{array}{ll}
\text { is there a model } \mathcal{I} \text { for } \mathcal{K} & \left(\mathcal{I} \models C \sqsubseteq D \text { iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}\right) \\
& \left(\mathcal{I} \models R \sqsubseteq S \quad \text { iff } \quad R^{\mathcal{I}} \subseteq S^{\mathcal{I}}\right)
\end{array}
$$

- subsumption $\mathcal{K} \models C \sqsubseteq D$
$\mathcal{I} \models C \sqsubseteq D$, for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$
- instance checking $\mathcal{K} \models C(a)$
$a^{\mathcal{I}} \in C^{\mathcal{I}}$, for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$
- query answering $\mathcal{K} \models q(\vec{a}), q(\vec{a})$ a positive existential formula $\mathcal{I} \models q(a)$ (as a first-order structure), for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$

OWL 1.0 DL is based on $\mathcal{S H O} \mathcal{Z}(D)$,
OWL 2.0 on $\mathcal{S R O I Q}(D)$
$\mathcal{A L C H} \mathcal{H} \mathcal{Q}+$ transitive roles + nomimals + concrete domains
$\mathcal{S H O \mathcal { I }}(\boldsymbol{D})+$ role chains + disjoint roles + self (diagonal)

Developing and Maintaining Ontologies

- versions:
comparing logical consequences over some common vocabulary Σ not a syntactic form of axioms (diff)

Developing and Maintaining Ontologies

- versions:
comparing logical consequences over some common vocabulary Σ not a syntactic form of axioms (diff)
- refinement:
adding new axioms but preserving the relationships between terms of a certain part Σ of the vocabulary

Developing and Maintaining Ontologies

- versions:
comparing logical consequences over some common vocabulary Σ not a syntactic form of axioms (diff)
- refinement:
adding new axioms but preserving the relationships between terms of a certain part Σ of the vocabulary
- reuse:
importing an ontology and using its vocabulary Σ as originally defined (relationships between terms of $\boldsymbol{\Sigma}$ should not change)

Developing and Maintaining Ontologies

- versions:
comparing logical consequences over some common vocabulary Σ not a syntactic form of axioms (diff)
- refinement:
adding new axioms but preserving the relationships between terms of a certain part Σ of the vocabulary
- reuse:
importing an ontology and using its vocabulary Σ as originally defined (relationships between terms of $\boldsymbol{\Sigma}$ should not change)
- module extraction:
computing a subset $\boldsymbol{\mathcal { M }}$ (ideally as small as possible) of an ontology \mathcal{T} that 'says' the same about Σ as $\boldsymbol{\mathcal { T }}$

new types of reasoning problems

Σ-Inseparability

Let \mathcal{T}_{1} and \mathcal{T}_{2} be TBoxes and Σ a signature (concept and role names)
When do \mathcal{T}_{1} and $\mathcal{T}_{2}{ }^{\text {'say' }}$ the same about $\boldsymbol{\Sigma}$?

Σ-Inseparability

Let \mathcal{T}_{1} and \mathcal{T}_{2} be TBoxes and Σ a signature (concept and role names)
When do \mathcal{T}_{1} and \mathcal{T}_{2} 'say' the same about Σ ?

- \mathcal{T}_{1} and \mathcal{T}_{2} are Σ-concept inseparable if, for all Σ-concept inclusions $\boldsymbol{C} \sqsubseteq \boldsymbol{D}$,

$$
\mathcal{T}_{1} \equiv{ }_{\Sigma}^{c} \mathcal{T}_{2} \quad \mathcal{T}_{1} \models C \sqsubseteq D \text { iff } \mathcal{T}_{2} \models C \sqsubseteq D
$$

-Inseparability

Let \mathcal{T}_{1} and \mathcal{T}_{2} be TBoxes and Σ a signature (concept and role names)
When do \mathcal{T}_{1} and \mathcal{T}_{2} 'say' the same about Σ ?

- \mathcal{T}_{1} and \mathcal{T}_{2} are Σ-concept inseparable if, for all $\boldsymbol{\Sigma}$-concept inclusions $\boldsymbol{C} \sqsubseteq \boldsymbol{D}$,

$$
\mathcal{T}_{1} \equiv{ }_{\Sigma}^{c} \mathcal{T}_{2}
$$

$$
\mathcal{T}_{1} \models C \sqsubseteq D \quad \text { iff } \quad \mathcal{T}_{2} \models C \sqsubseteq D
$$

- \mathcal{T}_{1} and \mathcal{T}_{2} are Σ-query inseparable if, for all Σ-queries $\boldsymbol{q}(\vec{x})$ and ABoxes \mathcal{A},

$$
\mathcal{T}_{1} \equiv{ }_{\Sigma}^{q} \mathcal{T}_{2} \quad\left(\mathcal{T}_{1}, \mathcal{A}\right) \models q(\vec{a}) \quad \text { iff } \quad\left(\mathcal{T}_{2}, \mathcal{A}\right) \models q(\vec{a}), \text { for all } \vec{a}
$$

Σ-Inseparability

Let \mathcal{T}_{1} and \mathcal{T}_{2} be TBoxes and Σ a signature (concept and role names)
When do \mathcal{T}_{1} and \mathcal{T}_{2} 'say' the same about Σ ?

- \mathcal{T}_{1} and \mathcal{T}_{2} are Σ-concept inseparable if, for all $\boldsymbol{\Sigma}$-concept inclusions $\boldsymbol{C} \sqsubseteq \boldsymbol{D}$,

$$
\mathcal{T}_{1} \equiv{ }_{\Sigma}^{c} \mathcal{T}_{2}
$$

$$
\mathcal{T}_{1} \models C \sqsubseteq D \quad \text { iff } \quad \mathcal{T}_{2} \models C \sqsubseteq D
$$

- \mathcal{T}_{1} and \mathcal{T}_{2} are Σ-query inseparable if, for all Σ-queries $\boldsymbol{q}(\vec{x})$ and ABoxes \mathcal{A},

$$
\mathcal{T}_{1} \equiv{ }_{\Sigma}^{q} \mathcal{T}_{2} \quad\left(\mathcal{T}_{1}, \mathcal{A}\right) \models q(\vec{a}) \quad \text { iff } \quad\left(\mathcal{T}_{2}, \mathcal{A}\right) \models q(\vec{a}), \text { for all } \vec{a}
$$

- \mathcal{T}_{1} and \mathcal{T}_{2} are Σ-model inseparable if, for all Σ-interpretations \mathcal{I},

$$
\mathcal{T}_{1} \equiv{ }_{\Sigma}^{m} \mathcal{T}_{2} \quad \exists \mathcal{I}_{1} \supseteq \mathcal{I} \quad \mathcal{I}_{1} \models \mathcal{T}_{1} \quad \text { iff } \quad \exists \mathcal{I}_{2} \supseteq \mathcal{I} \quad \mathcal{I}_{2} \models \mathcal{T}_{2}
$$

Examples

Example 1. $\Sigma=\{$ Lecturer, Course $\}$

$$
\mathcal{T}_{1}=\emptyset, \quad \mathcal{T}_{2}=\left\{\text { Lecturer } \sqsubseteq \exists \text { teaches, } \exists \text { teaches }{ }^{-} \sqsubseteq \text { Course }\right\}
$$

- Is $\mathcal{T}_{1} \equiv_{\Sigma}^{c} \mathcal{T}_{2}$? - Is $\mathcal{T}_{1} \equiv_{\Sigma}^{q} \mathcal{T}_{2}$?

Examples

Example 1. $\Sigma=\{$ Lecturer, Course $\}$

$$
\mathcal{T}_{1}=\emptyset, \quad \mathcal{T}_{2}=\left\{\text { Lecturer } \sqsubseteq \exists \text { teaches, } \exists \text { teaches }{ }^{-} \sqsubseteq \text { Course }\right\}
$$

- Is $\mathcal{T}_{1} \equiv{ }_{\Sigma}^{c} \mathcal{T}_{2}$? - Is $\mathcal{T}_{1} \equiv{ }_{\Sigma}^{q} \mathcal{T}_{2}$?

Take $\mathcal{A}=\{\operatorname{Lecturer}(a)\}, \quad q=\exists y \operatorname{Course}(y) . \quad$ Then $\left(\mathcal{T}_{1}, \mathcal{A}\right) \not \models q$ but $\left(\mathcal{T}_{2}, \mathcal{A}\right) \vDash q$

Examples

Example 1. $\Sigma=\{$ Lecturer, Course $\}$

$$
\mathcal{T}_{1}=\emptyset, \quad \mathcal{T}_{2}=\left\{\text { Lecturer } \sqsubseteq \exists \text { teaches, } \exists \text { teaches }{ }^{-} \sqsubseteq \text { Course }\right\}
$$

- Is $\mathcal{T}_{1} \equiv{ }_{\Sigma}^{c} \mathcal{T}_{2}$? - Is $\mathcal{T}_{1} \equiv{ }_{\Sigma}^{q} \mathcal{T}_{2}$?

Take $\mathcal{A}=\{\operatorname{Lecturer}(a)\}, \quad q=\exists y \operatorname{Course}(y) . \quad$ Then $\left(\mathcal{T}_{1}, \mathcal{A}\right) \not \models q$ but $\left(\mathcal{T}_{2}, \mathcal{A}\right) \vDash q$

Example 2. $\Sigma=\{$ Lecturer $\}$

$$
\mathcal{T}_{1}=\emptyset, \quad \mathcal{T}_{2}=\left\{\text { Lecturer } \sqsubseteq \exists \text { teaches, Lecturer } \sqcap \exists \text { teaches }^{-} \sqsubseteq \perp\right\}
$$

- Is $\mathcal{T}_{1} \equiv_{\Sigma}^{c} \mathcal{T}_{2}$? - Is $\mathcal{T}_{1} \equiv_{\Sigma}^{q} \mathcal{T}_{2}$?

Strong Σ-Inseparability

Example 3. $\Sigma=\{A\}$

$$
\mathcal{T}_{1}=\emptyset, \quad \mathcal{T}_{2}=\left\{\top \sqsubseteq \exists R, \quad \exists R^{-} \sqsubseteq B, \quad B \sqcap A \sqsubseteq \perp\right\}
$$

- Is $\mathcal{T}_{1} \equiv_{\Sigma}^{q} \mathcal{T}_{2}$? - Is $\mathcal{T}_{1} \cup \mathcal{T} \equiv \equiv_{\Sigma}^{q} \mathcal{T}_{2} \cup \mathcal{T}$, where $\mathcal{T}=\{\top \sqsubseteq A\}$?

Strong Σ-Inseparability

Example 3. $\Sigma=\{\boldsymbol{A}\}$
$\mathcal{T}_{1}=\emptyset, \quad \mathcal{T}_{2}=\left\{\top \sqsubseteq \exists R, \exists R^{-} \sqsubseteq B, B \sqcap A \sqsubseteq \perp\right\}$

- Is $\mathcal{T}_{1} \equiv_{\Sigma}^{q} \mathcal{T}_{2}$? - |s $\mathcal{T}_{1} \cup \mathcal{T} \equiv{ }_{\Sigma}^{q} \mathcal{T}_{2} \cup \mathcal{T}$, where $\mathcal{T}=\{\top \sqsubseteq A\}$?
modules are being replaced in the context of a bigger ontology!

Strong Σ-Inseparability

Example 3. $\Sigma=\{A\}$

$$
\mathcal{T}_{1}=\emptyset, \quad \mathcal{T}_{2}=\left\{\top \sqsubseteq \exists R, \quad \exists R^{-} \sqsubseteq B, \quad B \sqcap A \sqsubseteq \perp\right\}
$$

- Is $\mathcal{T}_{1} \equiv{ }_{\Sigma}^{q} \mathcal{T}_{2}$? \quad Is $\mathcal{T}_{1} \cup \mathcal{T} \equiv{ }_{\Sigma}^{q} \mathcal{T}_{2} \cup \mathcal{T}$, where $\mathcal{T}=\{\top \sqsubseteq A\}$?
modules are being replaced in the context of a bigger ontology!
- \mathcal{T}_{1} and \mathcal{T}_{2} are strongly Σ-concept inseparable if, for all Σ-TBoxes \mathcal{T},

$$
\mathcal{T}_{1} \equiv_{\Sigma}^{s c} \mathcal{T}_{2}
$$

$$
\mathcal{T}_{1} \cup \mathcal{T} \equiv{ }_{\Sigma}^{c} \mathcal{T}_{2} \cup \mathcal{T}
$$

Strong Σ-Inseparability

Example 3. $\Sigma=\{A\}$

$$
\mathcal{T}_{1}=\emptyset, \quad \mathcal{T}_{2}=\left\{\top \sqsubseteq \exists R, \quad \exists R^{-} \sqsubseteq B, \quad B \sqcap A \sqsubseteq \perp\right\}
$$

- Is $\mathcal{T}_{1} \equiv{ }_{\Sigma}^{q} \mathcal{T}_{2}$? \quad Is $\mathcal{T}_{1} \cup \mathcal{T} \equiv{ }_{\Sigma}^{q} \mathcal{T}_{2} \cup \mathcal{T}$, where $\mathcal{T}=\{\top \sqsubseteq A\}$?
modules are being replaced in the context of a bigger ontology!
- \mathcal{T}_{1} and \mathcal{T}_{2} are strongly Σ-concept inseparable if, for all Σ-TBoxes \mathcal{T},

$$
\mathcal{T}_{1} \equiv_{\Sigma}^{s c} \mathcal{T}_{2}
$$

$$
\mathcal{T}_{1} \cup \mathcal{T} \equiv{ }_{\Sigma}^{c} \mathcal{T}_{2} \cup \mathcal{T}
$$

- \mathcal{T}_{1} and \mathcal{T}_{2} are strongly Σ-query inseparable if, for all Σ-TBoxes \mathcal{T},

$$
\mathcal{T}_{1} \equiv_{\Sigma}^{s q} \mathcal{T}_{2}
$$

$$
\mathcal{T}_{1} \cup \mathcal{T} \equiv{ }_{\Sigma}^{q} \mathcal{T}_{2} \cup \mathcal{T}
$$

Why OWL 2 QL?

- [GLWO6] concept inseparability in $\mathcal{A L C}$ is 2ExpTime-complete
- [LWW07] concept inseparability in $\mathcal{A L C Q I}$ is 2ExpTime-complete in $\mathcal{A L C \mathcal { Q } \mathcal { O }}$ is undecidable
- [LWO7] model inseparability in $\mathcal{E L}$ is undecidable concept inseparability in $\mathcal{E L}$ is ExpTime-complete
- [KWZO7] (strong) concept and query inseparability
in DL-Lite without role inclusions is Π_{2}^{p} - and coNP-complete for the Bool and Horn fragments, respectively QBF encoding

Why OWL 2 QL?

- [GLWO6] concept inseparability in $\mathcal{A L C}$ is 2ExpTime-complete
- [LWW07] concept inseparability in $\mathcal{A L C Q I}$ is 2ExpTime-complete in $\mathcal{A L C \mathcal { Q } \mathcal { O }}$ is undecidable
- [LWO7] model inseparability in $\mathcal{E L}$ is undecidable concept inseparability in $\mathcal{E} \mathcal{L}$ is ExpTime-complete
- [KWZO7] (strong) concept and query inseparability
in DL-Lite without role inclusions is Π_{2}^{p} - and coNP-complete for the Bool and Horn fragments, respectively QBF encoding
- what about role inclusions?

Why OWL 2 QL?

- [GLWO6] concept inseparability in $\mathcal{A L C}$ is 2ExpTime-complete
- [LWW07] concept inseparability in $\mathcal{A L C Q I}$ is 2ExpTime-complete in $\mathcal{A L C \mathcal { Q } \mathcal { O }}$ is undecidable
- [LWO7] model inseparability in $\mathcal{E L}$ is undecidable concept inseparability in $\mathcal{E} \mathcal{L}$ is ExpTime-complete
- [KWZO7] (strong) concept and query inseparability
in DL-Lite without role inclusions is Π_{2}^{p} - and coNP-complete for the Bool and Horn fragments, respectively QBF encoding
- what about role inclusions?

OWL 2 QL is a W3C standard language for OBDA

OWL 2 QL

OWL 2 QL represents inclusions between 1-ary predicates (concepts) and the domains and ranges of 2-ary predicates (roles), as in ER data models

OWL 2 QL

OWL 2 QL represents inclusions between 1-ary predicates (concepts) and the domains and ranges of 2-ary predicates (roles), as in ER data models

Academic \sqsubseteq Staff	
\exists manages. $\top \subseteq$ ProjectManager	
\exists manages- ${ }^{-} \top \sqsubseteq$ Project	
Project $\sqsubseteq \exists$ manages ${ }^{-}$. \top	1..*
manages \sqsubseteq worksOn	Pro
≥ 3 manages $^{-} . \top \sqsubseteq \perp$	
ProjectManager \sqsubseteq Academic \sqcup	

DL-Lite ${ }_{\text {core }}^{\mathcal{H}}$ and Canonical Models

| $\boldsymbol{R}=\boldsymbol{P} \mid \boldsymbol{P}^{-}$ | $\boldsymbol{B}=\perp \mid$ 丁\| $\boldsymbol{A} \mid \exists \boldsymbol{R}$ | | |
| :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{B}_{1} \sqsubseteq \boldsymbol{B}_{\mathbf{2}}$ | $\boldsymbol{B}_{\mathbf{1}} \sqcap \boldsymbol{B}_{\mathbf{2}} \sqsubseteq \perp$ | $\boldsymbol{R}_{\mathbf{1}} \sqsubseteq \boldsymbol{R}_{\mathbf{2}}$ | $\boldsymbol{R}_{\mathbf{1}} \sqcap \boldsymbol{R}_{\mathbf{2}} \sqsubseteq \perp$ |

DL-Lite ${ }_{\text {core }}^{\mathcal{H}}$ and Canonical Models

$\boldsymbol{R}=\boldsymbol{P} \mid \boldsymbol{P}^{-}$	$\boldsymbol{B}=\perp \mid$ † $\boldsymbol{A} \mid \exists \boldsymbol{R}$		
$\boldsymbol{B}_{\mathbf{1}} \sqsubseteq \boldsymbol{B}_{\mathbf{2}}$	$\boldsymbol{B}_{\mathbf{1}} \sqcap \boldsymbol{B}_{\mathbf{2}} \sqsubseteq \perp$	$\boldsymbol{R}_{\mathbf{1}} \sqsubseteq \boldsymbol{R}_{\mathbf{2}}$	$\boldsymbol{R}_{\mathbf{1}} \sqcap \boldsymbol{R}_{\mathbf{2}} \sqsubseteq \perp$

Ex.: $\mathcal{T}=\left\{A \sqsubseteq \exists S, \exists S^{-} \sqsubseteq \exists T, \exists R \sqsubseteq \exists T, T \sqsubseteq R^{-}\right\}$and $\mathcal{K}=(\mathcal{T},\{A(a)\})$
canonical model $\boldsymbol{\mathcal { M }}_{\mathcal{K}}$:

DL-Lite ${ }_{\text {core }}^{\mathcal{H}}$ and Canonical Models

$\boldsymbol{R}=\boldsymbol{P} \mid \boldsymbol{P}^{-}$	$\boldsymbol{B}=\perp \mid$ † \| $\boldsymbol{A} \mid \exists \boldsymbol{R}$		
$\boldsymbol{B}_{\mathbf{1}} \sqsubseteq \boldsymbol{B}_{\mathbf{2}}$	$\boldsymbol{B}_{\mathbf{1}} \sqcap \boldsymbol{B}_{\mathbf{2}} \sqsubseteq \perp$	$\boldsymbol{R}_{\mathbf{1}} \sqsubseteq \boldsymbol{R}_{\mathbf{2}}$	$\boldsymbol{R}_{\mathbf{1}} \sqcap \boldsymbol{R}_{\mathbf{2}} \sqsubseteq \perp$

Ex.: $\mathcal{T}=\left\{A \sqsubseteq \exists S, \exists S^{-} \sqsubseteq \exists T, \exists R \sqsubseteq \exists T, T \sqsubseteq R^{-}\right\}$and $\mathcal{K}=(\mathcal{T},\{A(a)\})$
canonical model $\boldsymbol{\mathcal { M }}_{\mathcal{K}}$:

generating model $\mathcal{G}_{\mathcal{K}}$

$$
=\underbrace{\text { tail }}_{\text {the last element }}\left(\mathcal{M}_{\mathcal{K}}\right):
$$

DL-Lite ${ }_{\text {core }}^{\mathcal{H}}$ and Canonical Models

$$
\begin{array}{|cccc|c|}
\hline \boldsymbol{R}=\boldsymbol{P} \mid \boldsymbol{P}^{-} & \boldsymbol{B}=\perp \mid \text { 丁| } \boldsymbol{A} \mid \exists \boldsymbol{R} \\
\hline \boldsymbol{B}_{1} \sqsubseteq \boldsymbol{B}_{2} & \boldsymbol{B}_{1} \sqcap \boldsymbol{B}_{2} \sqsubseteq \perp & \boldsymbol{R}_{1} \sqsubseteq \boldsymbol{R}_{\mathbf{2}} & \boldsymbol{R}_{1} \sqcap \boldsymbol{R}_{\mathbf{2}} \sqsubseteq \perp
\end{array}
$$

Ex.: $\mathcal{T}=\left\{A \sqsubseteq \exists S, \exists S^{-} \sqsubseteq \exists T, \exists R \sqsubseteq \exists T, T \sqsubseteq R^{-}\right\}$and $\mathcal{K}=(\mathcal{T},\{A(a)\})$
canonical model $\mathcal{M}_{\mathcal{K}}$:

generating model $\mathcal{G}_{\mathcal{K}}$

$$
=\underbrace{\text { tail }}_{\text {the last element }}\left(\mathcal{M}_{\mathcal{K}}\right):
$$

a generates witnesses $w_{[S]}$ and $w_{[T]}: \quad a \leadsto w_{[S]} \leadsto w_{[T]}$

- $\boldsymbol{a} \leadsto \boldsymbol{w}_{[S]}$ if $[S]$ is minimal, $\mathcal{K} \models \exists \boldsymbol{S}(a)$ and $\mathcal{K} \not \models S(a, b)$, for all b
- $\boldsymbol{w}_{[S]} \leadsto \boldsymbol{w}_{[T]}$ if $[\boldsymbol{T}]$ is minimal, $\boldsymbol{T} \models \exists \boldsymbol{S}^{-} \sqsubseteq \exists \boldsymbol{T}$ and $\left[S^{-}\right] \neq[\boldsymbol{T}]$

Σ-Query Entailment and Homomorphisms

queries $=$ conjunctive queries (CQs)
Theorem $\mathcal{K} \models \boldsymbol{q} \Leftrightarrow \mathcal{M}_{\mathcal{K}} \models \boldsymbol{q}$, for all consistent \mathcal{K} and all $\mathrm{CQ} \boldsymbol{q}$

Σ-Query Entailment and Homomorphisms

> queries = conjunctive queries (CQs)

Theorem $\mathcal{K} \models \boldsymbol{q} \Leftrightarrow \mathcal{M}_{\mathcal{K}} \models \boldsymbol{q}$, for all consistent \mathcal{K} and all $\mathrm{CQ} \boldsymbol{q}$

> answers to CQs are preserved under homomorphisms

Σ-Query Entailment and Homomorphisms

queries $=$ conjunctive queries (CQs)
Theorem $\mathcal{K} \models \boldsymbol{q} \Leftrightarrow \mathcal{M}_{\mathcal{K}} \models \boldsymbol{q}$, for all consistent \mathcal{K} and all $\mathrm{CQ} \boldsymbol{q}$ answers to CQs are preserved under homomorphisms
for all \mathcal{A}, there is a Σ-hom. $h: \mathcal{M}_{\left(\mathcal{T}_{2}, \mathcal{A}\right)} \rightarrow \mathcal{M}_{\left(\mathcal{T}_{1}, \mathcal{A}\right)} \Longrightarrow \mathcal{T}_{1} \Sigma$-query entails \mathcal{T}_{2} 'every answer over \mathcal{T}_{2} is also an answer over $\mathcal{T}_{1}{ }^{\prime}$

Σ-Query Entailment and Homomorphisms

queries $=$ conjunctive queries (CQs)
Theorem $\mathcal{K} \models \boldsymbol{q} \Leftrightarrow \mathcal{M}_{\mathcal{K}} \models \boldsymbol{q}$, for all consistent \mathcal{K} and all $\mathrm{CQ} \boldsymbol{q}$

> answers to CQs are preserved under homomorphisms
for all \mathcal{A}, there is a Σ-hom. $\boldsymbol{h}: \mathcal{M}_{\left(\mathcal{T}_{2}, \mathcal{A}\right)} \rightarrow \mathcal{M}_{\left(\mathcal{T}_{1}, \mathcal{A}\right)} \Longrightarrow \mathcal{T}_{1} \Sigma$-query entails \mathcal{T}_{2} 'every answer over \mathcal{T}_{2} is also an answer over $\mathcal{T}_{1}{ }^{\prime}$
\dot{K}
queries are finite!

Σ-Query Entailment and Homomorphisms

> queries = conjunctive queries (CQs)

Theorem $\mathcal{K} \models \boldsymbol{q} \Leftrightarrow \mathcal{M}_{\mathcal{K}} \models \boldsymbol{q}$, for all consistent \mathcal{K} and all $\mathrm{CQ} \boldsymbol{q}$

> answers to CQs are preserved under homomorphisms
for all \mathcal{A}, there is a Σ-hom. $h: \mathcal{M}_{\left(\mathcal{T}_{2}, \mathcal{A}\right)} \rightarrow \mathcal{M}_{\left(\mathcal{T}_{1}, \mathcal{A}\right)} \Longrightarrow \mathcal{T}_{1} \Sigma$-query entails \mathcal{T}_{2} ${ }^{`}$ every answer over \mathcal{T}_{2} is also an answer over \mathcal{T}_{1} '
\Leftrightarrow
queries are finite!

Theorem

\mathcal{T}_{1}
$\boldsymbol{\Sigma}$-query
entails
\mathcal{T}_{2}
:---:
$\boldsymbol{\Sigma}$-concept/role
entails
\mathcal{T}_{2}
:---:
finitely $\boldsymbol{\Sigma}$-homomorphically
embeddable into $\mathcal{M}_{\left(\mathcal{T}_{1},\{B(a)\}\right)}$
for all \mathcal{T}_{1}-consistent $\boldsymbol{\Sigma}$-concepts \boldsymbol{B}

Σ-Query Entailment and Homomorphisms

> queries = conjunctive queries (CQs)

Theorem $\mathcal{K} \models \boldsymbol{q} \Leftrightarrow \mathcal{M}_{\mathcal{K}} \models \boldsymbol{q}$, for all consistent \mathcal{K} and all $\mathrm{CQ} \boldsymbol{q}$

> answers to CQs are preserved under homomorphisms
for all \mathcal{A}, there is a Σ-hom. $h: \mathcal{M}_{\left(\mathcal{T}_{2}, \mathcal{A}\right)} \rightarrow \mathcal{M}_{\left(\mathcal{T}_{1}, \mathcal{A}\right)} \Longrightarrow \mathcal{T}_{1} \Sigma$-query entails \mathcal{T}_{2} 'every answer over \mathcal{T}_{2} is also an answer over $\mathcal{T}_{1}{ }^{\prime}$
\Leftrightarrow
queries are finite!

Theorem

\mathcal{T}_{1}
$\boldsymbol{\Sigma}$-query
entails
\mathcal{T}_{2}
:---:
$\boldsymbol{\Sigma}$-concept/role
entails
\mathcal{T}_{2}
:---:
finitely $\boldsymbol{\Sigma}$-homomorphically
embeddable into $\mathcal{M}_{\left(\mathcal{T}_{1},\{B(a)\}\right),}$
for all \mathcal{T}_{1}-consistent $\boldsymbol{\Sigma}$-concepts \boldsymbol{B}

NLogSpace

Complexity of Σ-query Entailment

Theorem Checking Σ-query entailment is PSpace-hard
Proof sketch: consider a QBF $\forall \boldsymbol{X}_{1} \exists \boldsymbol{X}_{2} \forall \boldsymbol{X}_{3} \exists \boldsymbol{X}_{4}\left(\left(\neg \boldsymbol{X}_{1} \vee \boldsymbol{X}_{2}\right) \wedge \boldsymbol{X}_{3}\right)$

Complexity of Σ-query Entailment

Theorem Checking Σ-query entailment is PSpace-hard
Proof sketch: consider a QBF $\forall \boldsymbol{X}_{1} \exists \boldsymbol{X}_{2} \forall \boldsymbol{X}_{3} \exists \boldsymbol{X}_{4}\left(\left(\neg \boldsymbol{X}_{1} \vee \boldsymbol{X}_{2}\right) \wedge \boldsymbol{X}_{3}\right)$

Complexity of Σ-query Entailment

Theorem Checking Σ-query entailment is PSpace-hard
Proof sketch: consider a QBF $\forall \boldsymbol{X}_{1} \exists \boldsymbol{X}_{2} \forall \boldsymbol{X}_{3} \exists \boldsymbol{X}_{4}\left(\left(\neg \boldsymbol{X}_{1} \vee \boldsymbol{X}_{2}\right) \wedge \boldsymbol{X}_{3}\right)$

Complexity of Σ-query Entailment

Theorem Checking Σ-query entailment is PSpace-hard
Proof sketch: consider a QBF $\forall \boldsymbol{X}_{1} \exists \boldsymbol{X}_{2} \forall \boldsymbol{X}_{3} \exists \boldsymbol{X}_{4}\left(\left(\neg \boldsymbol{X}_{1} \vee \boldsymbol{X}_{2}\right) \wedge \boldsymbol{X}_{3}\right)$

Complexity of Σ-query Entailment

Theorem Checking Σ-query entailment is PSpace-hard
Proof sketch: consider a QBF $\forall \boldsymbol{X}_{1} \exists \boldsymbol{X}_{2} \forall \boldsymbol{X}_{3} \exists \boldsymbol{X}_{4}\left(\left(\neg \boldsymbol{X}_{1} \vee \boldsymbol{X}_{2}\right) \wedge \boldsymbol{X}_{3}\right)$

Theorem Checking Σ-query entailment is in ExpTime
(alternating 2-way automata)

Polynomial (Incomplete) Algorithms

'every transition in $\mathcal{G}_{\left(\mathcal{T}_{2},\{B(a)\}\right)}$ can be replicated in $\mathcal{G}_{\left(\mathcal{T}_{1},\{B(a)\}\right)}{ }^{\prime}$

Polynomial (Incomplete) Algorithms

'every transition in $\mathcal{G}_{\left(\boldsymbol{\mathcal { T }}_{2},\{B(a)\}\right)}$ can be replicated in $\mathcal{G}_{\left(\mathcal{T}_{1},\{B(a)\}\right)}{ }^{\prime}$

'every transition in $\mathcal{G}_{\left(\mathcal{T}_{2},\{B(a)\}\right)}$ can be replicated in $\mathcal{G}_{\left(\mathcal{T}_{1},\{B(a)\}\right)}$ by a forward transition'

Polynomial (Incomplete) Algorithms

'every transition in $\mathcal{G}_{\left(\mathcal{T}_{2},\{B(a)\}\right)}$ can be replicated in $\mathcal{G}_{\left(\mathcal{T}_{1},\{B(a)\}\right)}{ }^{\prime}$

'every transition in $\mathcal{G}_{\left(\mathcal{T}_{2},\{B(a)\}\right)}$ can be replicated in $\mathcal{G}_{\left(\mathcal{T}_{1},\{B(a)\}\right)}$ by a forward transition'
Lemma If the \mathcal{T}_{i} contain no role inclusions or $\mathcal{T}_{1}=\emptyset$ then \geq is replaced by $=$

Polynomial (Incomplete) Algorithms

$$
\begin{aligned}
& \text { there is a } \boldsymbol{\Sigma} \text {-simulation } \\
& \text { of } \mathcal{G}_{\left(\mathcal{T}_{2},\{B(a)\}\right)} \text { in } \mathcal{G}_{\left(\mathcal{T}_{1},\{B(a)\}\right),} \\
& \text { for all } \mathcal{T}_{1} \text {-consistent } \boldsymbol{\Sigma} \text {-concepts } \boldsymbol{B}
\end{aligned}
$$

'every transition in $\mathcal{G}_{\left(\mathcal{T}_{2},\{B(a)\}\right)}$ can be replicated in $\mathcal{G}_{\left(\mathcal{T}_{1},\{B(a)\}\right)}{ }^{\prime}$

'every transition in $\mathcal{G}_{\left(\mathcal{T}_{2},\{B(a)\}\right)}$ can be replicated in $\mathcal{G}_{\left(\mathcal{T}_{1},\{B(a)\}\right)}$ by a forward transition'

Lemma If the $\mathcal{T}_{\boldsymbol{i}}$ contain no role inclusions or $\mathcal{T}_{\boldsymbol{1}}=\emptyset$ then \geq is replaced by $=$
Theorem Without role inclusions, Σ-query entailment is NLogSpace-complete

Strong Query Entailment

\mathcal{T}_{1} and \mathcal{T}_{2} are strongly Σ-query inseparable if, for all Σ-TBoxes \mathcal{T},

$$
\mathcal{T}_{1} \equiv_{\Sigma}^{s q} \mathcal{T}_{2}
$$

$$
\mathcal{T}_{1} \cup \mathcal{T} \equiv{ }_{\Sigma}^{q} \mathcal{T}_{2} \cup \mathcal{T}
$$

exponentially many $\left(2^{|\Sigma|^{2}}\right)$ TBoxes \mathcal{T}

Strong Query Entailment

\mathcal{T}_{1} and \mathcal{T}_{2} are strongly Σ-query inseparable if, for all Σ-TBoxes \mathcal{T},

$$
\mathcal{T}_{1} \equiv_{\Sigma}^{s q} \mathcal{T}_{2}
$$

$$
\mathcal{T}_{1} \cup \mathcal{T} \equiv{ }_{\Sigma}^{q} \mathcal{T}_{2} \cup \mathcal{T}
$$

exponentially many $\left(2^{|\Sigma|^{2}}\right)$ TBoxes \mathcal{T}
more subtle (use the form of OWL 2 QL axioms)

NLogSpace

What is a Module?

Let \boldsymbol{S} be an inseparability relation, \mathcal{T} a TBox and Σ a signature.
$\mathcal{M} \subseteq \mathcal{T}$ is (a minimal module of \mathcal{T} cannot be made smaller)

- an S_{Σ}-module of \mathcal{T} if $\mathcal{M} \equiv{ }_{\Sigma}^{S} \mathcal{T}$
- a depleting S_{Σ}-module of \mathcal{T} if $\emptyset \equiv_{\Sigma \operatorname{Ssig}(\mathcal{M})}^{S} \mathcal{T} \backslash \mathcal{M}$

What is a Module?

Let S be an inseparability relation, \mathcal{T} a TBox and Σ a signature.
$\mathcal{M} \subseteq \mathcal{T}$ is
(a minimal module of \mathcal{T} cannot be made smaller)

- an S_{Σ}-module of \mathcal{T} if $\mathcal{M} \equiv{ }_{\Sigma}^{S} \mathcal{T}$
- there may be (exponentially) many minimal modules
- a depleting S_{Σ}-module of \mathcal{T} if $\emptyset \equiv_{\Sigma \operatorname{Vsig}(\mathcal{M})}^{S} \mathcal{T} \backslash \mathcal{M}$
- there is precisely one minimal depleting \equiv_{Σ}^{q}-module
- depleting \equiv_{Σ}^{q}-module $\Rightarrow \equiv_{\Sigma}^{q}$-module

What is a Module?

Let \boldsymbol{S} be an inseparability relation, \mathcal{T} a TBox and Σ a signature.
$\boldsymbol{\mathcal { M }} \subseteq \boldsymbol{\mathcal { T }}$ is
(a minimal module of \mathcal{T} cannot be made smaller)

- an S_{Σ}-module of \mathcal{T} if $\mathcal{M} \equiv{ }_{\Sigma}^{S} \mathcal{T}$
- there may be (exponentially) many minimal modules
- minimal module extraction algorithm runs in $\mathcal{O}(|\mathcal{T}|)$
- a depleting S_{Σ}-module of \mathcal{T} if $\emptyset \equiv_{\Sigma \operatorname{Ssig}(\mathcal{M})}^{S} \mathcal{T} \backslash \mathcal{M}$
- there is precisely one minimal depleting $\equiv \equiv_{\Sigma}^{q}$-module
- depleting \equiv_{Σ}^{q}-module $\Rightarrow \equiv_{\Sigma}^{q}$-module
- minimal module extraction algorithm runs in $\mathcal{O}\left(|\mathcal{T}|^{2}\right)$
but the simulation check is complete

Module Extraction Algorithms

- minimal S_{Σ}-module

```
input \mathcal{T, \Sigma}
\mathcal{M}}:=\mathcal{T
for each }\boldsymbol{\alpha}\in\mathcal{M}\mathrm{ do
    if }\mathcal{M}\{\alpha}\equiv\mp@subsup{\sum}{\Sigma}{S}\mathcal{M}\mathrm{ then }\mathcal{M}:=\mathcal{M}\{\alpha
end for
output \boldsymbol{M}
```


Module Extraction Algorithms

- minimal S_{Σ}-module

```
input \mathcal{T, \Sigma}
M}:=\mathcal{T
for each }\boldsymbol{\alpha}\in\mathcal{M}\mathrm{ do
    if }\mathcal{M}\{\alpha}\equiv\mp@subsup{\equiv}{\Sigma}{S}\mathcal{M}\mathrm{ then }\mathcal{M}:=\mathcal{M}\{\alpha
end for
output \boldsymbol{M}
```

- minimal depleting S_{Σ}-module

NB: depends on the order of axioms in \mathcal{T}

```
input \mathcal{T, \Sigma}
```

input \mathcal{T, \Sigma}
\mathcal{T}
\mathcal{T}
while }\mp@subsup{\mathcal{T}}{}{\prime}
mathcal{W}\not=\emptyset\mathrm{ do
while }\mp@subsup{\mathcal{T}}{}{\prime}
mathcal{W}\not=\emptyset\mathrm{ do
choose }\alpha\in\mp@subsup{\mathcal{T}}{}{\prime}
mathcal{W
choose }\alpha\in\mp@subsup{\mathcal{T}}{}{\prime}
mathcal{W
\mathcal { W } : = \mathcal { W } \cup \{ \alpha \}
\mathcal { W } : = \mathcal { W } \cup \{ \alpha \}
if \mathcal{W}\not\equiv\mp@subsup{\}{\Gamma}{S}\emptyset}\mathrm{ then
if \mathcal{W}\not\equiv\mp@subsup{\}{\Gamma}{S}\emptyset}\mathrm{ then
\mathcal{T}
\mathcal{T}
endif
endif
end while
end while
output }\mathcal{T}
mp@subsup{\mathcal{T}}{}{\prime

```
output }\mathcal{T}\\mp@subsup{\mathcal{T}}{}{\prime
```


Practical Minimal Module Extraction

$M Q M=$ Minimal Query inseparability Module
MSQM = Minimal Strong Query inseparability Module
MDQM = Minimal Depleting Query inseparability Module

Practical Minimal Module Extraction

$M Q M=$ Minimal Query inseparability Module
MSQM = Minimal Strong Query inseparability Module
MDQM = Minimal Depleting Query inseparability Module

checking query inseparability <1 sec checking strong query inseparability <1 min
only in 9 out of 75,000 query entailment checks
did not give a definitive answer due to incompleteness

Σ-inseparability for DL-Lite bool

B	$::=$	\perp	A_{i}	$\mid \exists R \quad \geq q R$		
C	$::=$	B	\mid	$\neg C$	\mid	$C_{1} \sqcap C_{2}$

strong Σ-query inseparability $\Leftrightarrow \Sigma$-query inseparability
\Leftrightarrow strong Σ-concept inseparability $\Rightarrow \Sigma$-concept inseparability

- in each case, the problem is Π_{2}^{p}-complete
- can be encoded by Quantified Boolean Formulas $\forall \exists \psi$
- modules extracted by QBF solvers
R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Selmer, F. Wolter and M. Zakharyaschev. Minimal Module Extraction from DL-Lite Ontologies using QBF Solvers. In C. Boutilier, editor, Proceedings of IJCAI-09 (Pasadena, July 11-17), pp. 836-841, 2009

Example

Let \mathcal{T}_{1} contain the axioms

Research $\sqsubseteq \exists$ worksin,	\exists worksin ${ }^{-} \sqsubseteq$ Project,
Project $\sqsubseteq \exists$ manages ${ }^{-}$,	\exists manages \sqsubseteq Academic \sqcup Visiting,
\exists teaches \sqsubseteq Academic \sqcup Research,	Academic $\sqsubseteq \exists$ teaches $\sqcap \leq 1$ teaches,
Research \sqcap Visiting $\sqsubseteq \perp$,	\exists writes \sqsubseteq Academic \sqcup Research,

$\mathcal{T}_{2}=\mathcal{T}_{1} \cup\{$ Visiting $\sqsubseteq \geq \mathbf{2}$ writes $\}$ and $\boldsymbol{\Sigma}=\{$ teaches $\}$

Example

Let \mathcal{T}_{1} contain the axioms

Research $\sqsubseteq \exists$ worksin,	\exists worksin ${ }^{-} \sqsubseteq$ Project,
Project $\sqsubseteq \exists$ manages ${ }^{-}$,	\exists manages \sqsubseteq Academic \sqcup Visiting,
\exists teaches \sqsubseteq Academic \sqcup Research,	Academic $\sqsubseteq \exists$ teaches $\sqcap \leq 1$ teaches,
Research \sqcap Visiting $\sqsubseteq \perp$,	\exists writes \sqsubseteq Academic \sqcup Research,

$\mathcal{T}_{2}=\mathcal{T}_{1} \cup\{$ Visiting $\sqsubseteq \geq \mathbf{2}$ writes $\}$ and $\boldsymbol{\Sigma}=\{$ teaches $\}$

- \mathcal{T}_{1} and \mathcal{T}_{2} are Σ-concept inseparable ($\boldsymbol{\Sigma}$-entailment in both directions)
$\mathcal{T}_{2} \models$ Visiting \sqsubseteq Academic, but nothing new in the signature $\boldsymbol{\Sigma}$

Example

Let \mathcal{T}_{1} contain the axioms

Research $\sqsubseteq \exists$ worksin,
Project $\sqsubseteq \exists$ manages $^{-}$,
\exists teaches \sqsubseteq Academic \sqcup Research, Research \sqcap Visiting $\sqsubseteq \perp$,
\exists worksln ${ }^{-} \sqsubseteq$ Project,
ヨmanages \sqsubseteq Academic \sqcup Visiting,
Academic $\sqsubseteq \exists$ łeaches $\sqcap \leq \mathbf{1}$ teaches,
\exists writes \sqsubseteq Academic \sqcup Research,
$\mathcal{T}_{2}=\mathcal{T}_{1} \cup\{$ Visiting $\sqsubseteq \geq \mathbf{2}$ writes $\}$ and $\boldsymbol{\Sigma}=\{$ †eaches $\}$

- \mathcal{T}_{1} and \mathcal{T}_{2} are $\boldsymbol{\Sigma}$-concept inseparable ($\boldsymbol{\Sigma}$-entailment in both directions)
$\mathcal{T}_{2} \models$ Visiting \sqsubseteq Academic, but nothing new in the signature $\boldsymbol{\Sigma}$
- \mathcal{T}_{1} does not Σ-query entail \mathcal{T}_{2} :
$\mathcal{A}=\{$ teaches $(\boldsymbol{a}, \boldsymbol{b})$, teaches $(\boldsymbol{a}, \boldsymbol{c})\}$
$q=\exists x((\exists$ teaches $)(x) \wedge(\leq 1$ teaches $)(x))$
'is there anybody who teaches precisely one module?'

$$
\left(\mathcal{T}_{1}, \mathcal{A}\right) \not \models q \quad\left(\mathcal{I} \models\left(\mathcal{T}_{1}, \mathcal{A}\right) \text { but } \mathcal{I} \not \models q\right)
$$

Example

Let \mathcal{T}_{1} contain the axioms

Research $\sqsubseteq \exists$ worksin,
Project $\sqsubseteq \exists$ manages $^{-}$,
\exists teaches \sqsubseteq Academic ப Research, Research \sqcap Visiting $\sqsubseteq \perp$,

\exists worksln ${ }^{-} \sqsubseteq$ Project,
\exists manages \sqsubseteq Academic \sqcup Visiting,
Academic $\sqsubseteq \exists$ ヨeaches $\sqcap \leq \mathbf{1}$ teaches,
\exists writes \sqsubseteq Academic \sqcup Research,

$\mathcal{T}_{2}=\mathcal{T}_{1} \cup\{$ Visiting $\sqsubseteq \geq \mathbf{2}$ writes $\}$ and $\boldsymbol{\Sigma}=\{$ teaches $\}$

- \mathcal{T}_{1} and \mathcal{T}_{2} are Σ-concept inseparable ($\boldsymbol{\Sigma}$-entailment in both directions)
$\mathcal{T}_{2} \models$ Visiting \sqsubseteq Academic, but nothing new in the signature $\boldsymbol{\Sigma}$
- \mathcal{T}_{1} does not $\boldsymbol{\Sigma}$-query entail \mathcal{T}_{2} :
$\mathcal{A}=\{$ teaches (a, b), teaches $(a, c)\}$
$q=\exists x((\exists$ teaches $)(x) \wedge(\leq 1$ teaches $)(x))$
'is there anybody who teaches precisely one module?'

$$
\begin{aligned}
& \left(\mathcal{T}_{1}, \mathcal{A}\right) \not \models q \\
& \left(\mathcal{T}_{2}, \mathcal{A}\right) \models q
\end{aligned}
$$

Example

Let \mathcal{T}_{1} contain the axioms

Research $\sqsubseteq \exists$ worksin,
Project $\sqsubseteq \exists$ manages $^{-}$,
\exists teaches \sqsubseteq Academic ப Research, Research \sqcap Visiting $\sqsubseteq \perp$,

\exists worksln ${ }^{-} \sqsubseteq$ Project,
\exists manages \sqsubseteq Academic \sqcup Visiting,
Academic $\sqsubseteq \exists$ ヨeaches $\sqcap \leq \mathbf{1}$ teaches,
\exists writes \sqsubseteq Academic \sqcup Research,

$\mathcal{T}_{2}=\mathcal{T}_{1} \cup\{$ Visiting $\sqsubseteq \geq \mathbf{2}$ writes $\}$ and $\boldsymbol{\Sigma}=\{$ teaches $\}$

- \mathcal{T}_{1} and \mathcal{T}_{2} are Σ-concept inseparable ($\boldsymbol{\Sigma}$-entailment in both directions)
$\mathcal{T}_{2} \models$ Visiting \sqsubseteq Academic, but nothing new in the signature $\boldsymbol{\Sigma}$
- \mathcal{T}_{1} does not $\boldsymbol{\Sigma}$-query entail \mathcal{T}_{2} :
$\mathcal{A}=\{$ teaches (a, b), teaches $(a, c)\}$ $q=\exists x((\exists$ teaches $)(x) \wedge(\leq 1$ teaches $)(x))$
'is there anybody who teaches precisely one module?'

$$
\begin{aligned}
& \left(\mathcal{T}_{1}, \mathcal{A}\right) \not \models q \\
& \left(\mathcal{T}_{2}, \mathcal{A}\right) \models q
\end{aligned}
$$

Conclusions

- despite its PSpace-hardness, (strong) Σ-query inseparability can be decided efficiently for real-world OWL 2 QL ontologies
- can our techniques be extended to more expressive DLs such as D L-Lite $_{\text {horn }}$ or even $\mathcal{E L} \mathcal{L}$?
- how can these algorithms be utilised for analysing and visualising the difference between ontology versions?

