Logic-based Ontology Comparison and Module Extraction in OWL 2 QL

Roman Kontchakov

Dept. of Computer Science and Inf. Systems, Birkbeck, University of London

http://www.dcs.bbk.ac.uk/~roman

joint work with

B. Konev, M. Ludwig, T. Schneider, F. Wolter and M. Zakharyaschev

Large-scale ontologies

- Life-sciences, healthcare, and other knowledge intensive areas depend on having a **common language** for gathering and sharing knowledge
- Such a common language is provided by reference terminologies
- Examples:
 - SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms)
 - NCI (National Cancer Institute Ontology)
 - FMA (Foundational Model of Anatomy)
 - Galen
 - ...
- Typical size: at least **50,000** terms and axioms
- Trend towards axiomatising reference terminologies in

('lightweight') description logics

Description logic \mathcal{ALCHIQ}

Vocabulary:

- individuals a_0, a_1, \dots (e.g., john, mary) (nominals in ML/constants in FO)
- concept names A_0, A_1, \dots (e.g., Person, Female) (variables in ML/unary predicates in FO)
- role names R_0, R_1, \dots (e.g., hasChild, loves) (modalities in ML/binary predicates in FO)

Description logic \mathcal{ALCHIQ}

Vocabulary:

- individuals a_0, a_1, \dots (e.g., john, mary) (nominals in ML/constants in FO)
- concept names A₀, A₁, ...
 (e.g., Person, Female) (variables in ML/unary predicates in FO)

 $a_i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

 $A_i^\mathcal{I} \subseteq \Delta^\mathcal{I}$

 $R_i^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Delta^\mathcal{I}$

(unary predicates in FO)

 $\mathcal{I} = (\Delta^{\mathcal{I}}, \, \cdot^{\mathcal{I}})$ an interpretation

• role names R_0, R_1, \dots (e.g., hasChild, loves)

(e.g., hasChild, loves) (modalities in ML/binary predicates in FO)

Leicester 25.11.11

1

Description logic ALCHIQ

Vocabulary:

- individuals a_0, a_1, \ldots (e.g., john, mary) (nominals in ML/constants in FO)
- concept names A_0, A_1, \ldots (e.g., Person, Female) (variables in ML/unary predicates in FO)

 $A_i^\mathcal{I} \subseteq \Delta^\mathcal{I}$

 $\mathcal{I} = (\Delta^{\mathcal{I}}, \, \cdot^{\mathcal{I}})$ an interpretation

- role names R_0, R_1, \ldots (e.g., hasChild, loves) (modalities in ML/binary predicates in FO)
- $R_i^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Delta^\mathcal{I}$

 $a_i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

roles

R ::= R_i | R_i^-

$$(R_i^-)^\mathcal{I} = \{(y,x) \mid (x,y) \in R_i^\mathcal{I}\}$$

concepts

$$C \hspace{0.1in} ::= \hspace{0.1in} A_i \hspace{0.1in} \mid \hspace{0.1in} \neg C \hspace{0.1in} \mid \hspace{0.1in} C_1 \sqcap C_2 \hspace{0.1in} \mid \hspace{0.1in} \exists R.C \hspace{0.1in} \mid \hspace{0.1in} orall R.C \hspace{0.1in} \mid \hspace{0.1in} \geq qR.C$$

Description logic \mathcal{ALCHIQ}

Vocabulary:

- individuals a_0, a_1, \dots (e.g., john, mary) (nominals in ML/constants in FO)
- concept names A₀, A₁, ...
 (e.g., Person, Female) (variables in ML/unary predicates in FO)

 $A_i^\mathcal{I} \subseteq \Delta^\mathcal{I}$

 $\mathcal{I} = (\Delta^{\mathcal{I}}, \, \cdot^{\mathcal{I}})$ an interpretation

- role names R_0, R_1, \dots (e.g., hasChild, loves) (modalities in ML/binary predicates in FO)
- $R_i^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Delta^\mathcal{I}$

 $a_i^\mathcal{I} \in \Delta^\mathcal{I}$

roles

R ::= R_i | R_i^-

$$(R_i^-)^\mathcal{I} = \{(y,x) \mid (x,y) \in R_i^\mathcal{I}\}$$

• concepts

Description logic ALCHIQ (cont.)

knowledge base \mathcal{K} = TBox \mathcal{T} + ABox \mathcal{A}

- \mathcal{T} is a set of **terminological axioms** of the form $C \sqsubseteq D$ and $R \sqsubseteq S$
- \mathcal{A} is a set of **assertional axioms** of the form C(a) and R(a,b)

Description logic ALCHIQ (cont.)

knowledge base \mathcal{K} = TBox \mathcal{T} + ABox \mathcal{A}

- \mathcal{T} is a set of **terminological axioms** of the form $C \sqsubseteq D$ and $R \sqsubseteq S$
- \mathcal{A} is a set of **assertional axioms** of the form C(a) and R(a,b)

Reasoning:- satisfiability \mathcal{K}
is there a model \mathcal{I} for \mathcal{K} $(\mathcal{I} \models C \sqsubseteq D)$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}})$
 $(\mathcal{I} \models R \sqsubseteq S)$ iff $R^{\mathcal{I}} \subseteq S^{\mathcal{I}})$ - subsumption $\mathcal{K} \models C \sqsubseteq D$
 $\mathcal{I} \models C \sqsubseteq D$, for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$ - instance checking $\mathcal{K} \models C(a)$
 $a^{\mathcal{I}} \in C^{\mathcal{I}}$, for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$ - query answering $\mathcal{K} \models q(\vec{a}), q(\vec{a})$ a positive existential formula
 $\mathcal{I} \models q(a)$ (as a first-order structure), for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$

Description logic ALCHIQ (cont.)

knowledge base \mathcal{K} = TBox \mathcal{T} + ABox \mathcal{A}

- \mathcal{T} is a set of **terminological axioms** of the form $C \sqsubseteq D$ and $R \sqsubseteq S$
- \mathcal{A} is a set of **assertional axioms** of the form C(a) and R(a,b)

Reasoning: – satisfiability \mathcal{K} is there a model \mathcal{I} for \mathcal{K} $(\mathcal{I} \models C \sqsubseteq D \quad \text{iff} \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}})$ $(\mathcal{I} \models R \sqsubset S \quad \text{iff} \quad R^{\mathcal{I}} \subseteq S^{\mathcal{I}})$

> - subsumption $\mathcal{K} \models C \sqsubseteq D$ $\mathcal{I} \models C \sqsubseteq D$, for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$

- instance checking $\mathcal{K} \models C(a)$ $a^{\mathcal{I}} \in C^{\mathcal{I}}$, for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$

- query answering $\mathcal{K} \models q(\vec{a})$, $q(\vec{a})$ a positive existential formula $\mathcal{I} \models q(a)$ (as a first-order structure), for each \mathcal{I} with $\mathcal{I} \models \mathcal{K}$

• versions:

comparing logical consequences over some common vocabulary Σ not a syntactic form of axioms (diff)

• versions:

comparing logical consequences over some common vocabulary Σ not a syntactic form of axioms (diff)

• refinement:

adding new axioms but **preserving** the relationships between terms of a certain part Σ of the vocabulary

• versions:

comparing logical consequences over some common vocabulary Σ not a syntactic form of axioms (diff)

• refinement:

adding new axioms but **preserving** the relationships between terms of a certain part Σ of the vocabulary

• reuse:

importing an ontology and using its vocabulary Σ as originally defined (relationships between terms of Σ should not change)

versions:

comparing logical consequences over some common vocabulary Σ not a syntactic form of axioms (diff)

• refinement:

adding new axioms but **preserving** the relationships between terms of a certain part Σ of the vocabulary

• reuse:

importing an ontology and using its vocabulary Σ as originally defined (relationships between terms of Σ should not change)

module extraction:

computing a subset ${\cal M}$ (ideally as small as possible) of an ontology ${\cal T}$ that `says' the same about Σ as ${\cal T}$

new types of reasoning problems

Σ -Inseparability

Let \mathcal{T}_1 and \mathcal{T}_2 be TBoxes and Σ a signature (concept and role names)

When do \mathcal{T}_1 and \mathcal{T}_2 'say' the same about Σ ?

$\Sigma\text{-Inseparability}$

Let \mathcal{T}_1 and \mathcal{T}_2 be TBoxes and Σ a signature (concept and role names)

When do \mathcal{T}_1 and \mathcal{T}_2 'say' the same about Σ ?

• \mathcal{T}_1 and \mathcal{T}_2 are Σ -concept inseparable if, for all Σ -concept inclusions $C \sqsubseteq D$,

 $\mathcal{T}_1\equiv^c_\Sigma \mathcal{T}_2$

 $\mathcal{T}_1 \models C \sqsubseteq D$ iff $\mathcal{T}_2 \models C \sqsubseteq D$

$\Sigma\text{-Inseparability}$

Let \mathcal{T}_1 and \mathcal{T}_2 be TBoxes and Σ a signature (concept and role names)

When do \mathcal{T}_1 and \mathcal{T}_2 'say' the same about Σ ?

• \mathcal{T}_1 and \mathcal{T}_2 are Σ -concept inseparable if, for all Σ -concept inclusions $C \sqsubseteq D$,

$$\mathcal{T}_1 \equiv^c_{\Sigma} \mathcal{T}_2$$
 $\mathcal{T}_1 \models C \sqsubseteq D$ iff $\mathcal{T}_2 \models C \sqsubseteq D$

• \mathcal{T}_1 and \mathcal{T}_2 are Σ -query inseparable if, for all Σ -queries $q(\vec{x})$ and ABoxes \mathcal{A} ,

$$\mathcal{T}_1 \equiv^q_{\Sigma} \mathcal{T}_2$$
 $(\mathcal{T}_1, \mathcal{A}) \models q(\vec{a}) \quad \text{iff} \quad (\mathcal{T}_2, \mathcal{A}) \models q(\vec{a}), \, \, ext{for all } \vec{a}$

. . .

$\Sigma\text{-Inseparability}$

Let \mathcal{T}_1 and \mathcal{T}_2 be TBoxes and Σ a signature (concept and role names)

When do \mathcal{T}_1 and \mathcal{T}_2 'say' the same about Σ ?

• T_1 and T_2 are Σ -concept inseparable if, for all Σ -concept inclusions $C \sqsubseteq D$,

$$\mathcal{T}_1 \equiv^c_{\Sigma} \mathcal{T}_2$$
 $\mathcal{T}_1 \models C \sqsubseteq D$ iff $\mathcal{T}_2 \models C \sqsubseteq D$

• \mathcal{T}_1 and \mathcal{T}_2 are Σ -query inseparable if, for all Σ -queries $q(\vec{x})$ and ABoxes \mathcal{A} ,

$$\mathcal{T}_1 \equiv^q_\Sigma \mathcal{T}_2$$
 $(\mathcal{T}_1, \mathcal{A}) \models q(\vec{a}) \;\; ext{iff} \;\; (\mathcal{T}_2, \mathcal{A}) \models q(\vec{a}), \;\; ext{for all } \vec{a}$

- . . .
- \mathcal{T}_1 and \mathcal{T}_2 are Σ -model inseparable if, for all Σ -interpretations \mathcal{I} ,

$$\begin{array}{c} \mathcal{T}_1 \equiv^m_\Sigma \mathcal{T}_2 \\ \exists \ \mathcal{I}_1 \supseteq \mathcal{I} \quad \mathcal{I}_1 \models \mathcal{T}_1 \quad \text{iff} \quad \exists \ \mathcal{I}_2 \supseteq \mathcal{I} \quad \mathcal{I}_2 \models \mathcal{T}_2 \end{array}$$

Example 1. $\Sigma = \{\text{Lecturer}, \text{Course}\}$ $\mathcal{T}_1 = \emptyset, \qquad \mathcal{T}_2 = \{\text{Lecturer} \sqsubseteq \exists \text{teaches}, \exists \text{teaches}^- \sqsubseteq \text{Course}\}$ $\bullet \quad \text{is} \quad \mathcal{T}_1 \equiv_{\Sigma}^c \mathcal{T}_2 ? \qquad \bullet \quad \text{is} \quad \mathcal{T}_1 \equiv_{\Sigma}^q \mathcal{T}_2 ?$

Example 1. $\Sigma = \{ \text{Lecturer}, \text{Course} \}$ $\mathcal{T}_1 = \emptyset, \quad \mathcal{T}_2 = \{ \text{Lecturer} \sqsubseteq \exists \text{teaches}, \exists \text{teaches}^- \sqsubseteq \text{Course} \}$ • Is $\mathcal{T}_1 \equiv_{\Sigma}^c \mathcal{T}_2$?• Is $\mathcal{T}_1 \equiv_{\Sigma}^q \mathcal{T}_2$?

Take $\mathcal{A} = \{ \text{Lecturer}(a) \}$, $q = \exists y \text{ Course}(y)$. Then $(\mathcal{T}_1, \mathcal{A}) \not\models q$ but $(\mathcal{T}_2, \mathcal{A}) \models q$

Example 1. $\Sigma = \{$ Lecturer, Course $\}$ $\mathcal{T}_1 = \emptyset, \qquad \mathcal{T}_2 = \{ \text{Lecturer} \sqsubseteq \exists \text{teaches}, \exists \text{teaches}^- \sqsubset \text{Course} \}$ • Is $\mathcal{T}_1 \equiv_{\Sigma}^c \mathcal{T}_2$? • Is $\mathcal{T}_1 \equiv_{\Sigma}^q \mathcal{T}_2$? Take $\mathcal{A} = \{ \text{Lecturer}(a) \}$, $q = \exists y \text{ Course}(y)$. Then $(\mathcal{T}_1, \mathcal{A}) \not\models q$ but $(\mathcal{T}_2, \mathcal{A}) \models q$ **Example 2.** $\Sigma = \{$ **Lecturer** $\}$ $\mathcal{T}_1 = \emptyset$, $\mathcal{T}_2 = \{ \text{Lecturer} \sqsubseteq \exists \text{teaches}, \text{Lecturer} \sqcap \exists \text{teaches}^- \sqsubseteq \bot \}$

• Is $\mathcal{T}_1 \equiv_{\Sigma}^c \mathcal{T}_2$? • Is $\mathcal{T}_1 \equiv_{\Sigma}^q \mathcal{T}_2$?

Example 3.
$$\begin{split} \Sigma &= \{A\} \end{split}$$
 $\mathcal{T}_1 = \emptyset, \quad \mathcal{T}_2 = \{ \top \sqsubseteq \exists R, \ \exists R^- \sqsubseteq B, \ B \sqcap A \sqsubseteq \bot \} \end{aligned}$ $\bullet \quad \text{Is} \quad \mathcal{T}_1 \equiv_{\Sigma}^q \mathcal{T}_2 ? \quad \bullet \quad \text{Is} \quad \mathcal{T}_1 \cup \mathcal{T} \equiv_{\Sigma}^q \mathcal{T}_2 \cup \mathcal{T}, \text{ where } \mathcal{T} = \{\top \sqsubseteq A\} ?$

Example 3.
$$\begin{split} \Sigma &= \{A\} \\ \hline \mathcal{T}_1 &= \emptyset, \quad \mathcal{T}_2 = \{ \top \sqsubseteq \exists R, \ \exists R^- \sqsubseteq B, \ B \sqcap A \sqsubseteq \bot \} \\ \bullet \quad \text{is} \quad \mathcal{T}_1 \equiv_{\Sigma}^q \mathcal{T}_2 ? \quad \bullet \quad \text{is} \quad \mathcal{T}_1 \cup \mathcal{T} \equiv_{\Sigma}^q \mathcal{T}_2 \cup \mathcal{T}, \text{ where } \mathcal{T} = \{\top \sqsubseteq A\} ? \end{split}$$

modules are being replaced in the **context** of a bigger ontology!

Example 3.
$$\begin{split} \Sigma &= \{A\} \\ \hline \mathcal{T}_1 &= \emptyset, \quad \mathcal{T}_2 = \{ \top \sqsubseteq \exists R, \ \exists R^- \sqsubseteq B, \ B \sqcap A \sqsubseteq \bot \} \\ \bullet \quad \text{ls} \quad \mathcal{T}_1 \equiv^q_{\Sigma} \mathcal{T}_2 ? \quad \bullet \quad \text{ls} \quad \mathcal{T}_1 \cup \mathcal{T} \equiv^q_{\Sigma} \mathcal{T}_2 \cup \mathcal{T}, \text{ where } \mathcal{T} = \{\top \sqsubseteq A\} ? \end{split}$$

modules are being replaced in the **context** of a bigger ontology!

• T_1 and T_2 are strongly Σ -concept inseparable if, for all Σ -TBoxes T,

$$\mathcal{T}_1 \equiv^{sc}_{\Sigma} \mathcal{T}_2 \ \mathcal{T}_1 \cup \mathcal{T} \equiv^c_{\Sigma} \mathcal{T}_2 \cup \mathcal{T}$$

Example 3.
$$\begin{split} \Sigma &= \{A\} \\ & \mathcal{T}_1 = \emptyset, \quad \mathcal{T}_2 = \{ \top \sqsubseteq \exists R, \ \exists R^- \sqsubseteq B, \ B \sqcap A \sqsubseteq \bot \} \\ \bullet \quad \text{ls} \quad \mathcal{T}_1 \equiv_{\Sigma}^q \mathcal{T}_2 ? \quad \bullet \quad \text{ls} \quad \mathcal{T}_1 \cup \mathcal{T} \equiv_{\Sigma}^q \mathcal{T}_2 \cup \mathcal{T}, \text{ where } \mathcal{T} = \{\top \sqsubseteq A\} \ ? \end{split}$$

modules are being replaced in the **context** of a bigger ontology!

• \mathcal{T}_1 and \mathcal{T}_2 are strongly Σ -concept inseparable if, for all Σ -TBoxes \mathcal{T} ,

$$\mathcal{T}_1 \equiv^{sc}_{\Sigma} \mathcal{T}_2 \cup \mathcal{T}$$

• T_1 and T_2 are strongly Σ -query inseparable if, for all Σ -TBoxes T,

$$\mathcal{T}_1 \equiv^{sq}_\Sigma \mathcal{T}_2 \ \mathcal{T}_1 \cup \mathcal{T} \equiv^q_\Sigma \mathcal{T}_2 \cup \mathcal{T}$$

Why OWL 2 QL?

- [GLW06] concept inseparability in \mathcal{ALC} is 2ExpTime-complete
- [LWW07] concept inseparability in \mathcal{ALCQI} is 2ExpTime-complete in \mathcal{ALCQIO} is undecidable
- [LW07] model inseparability in \mathcal{EL} is undecidable concept inseparability in \mathcal{EL} is ExpTime-complete
- [KWZ07] (strong) concept and query inseparability in *DL-Lite* without role inclusions is Π_2^p - and coNP-complete for the Bool and Horn fragments, respectively QBF encoding

Why OWL 2 QL?

- [GLW06] concept inseparability in \mathcal{ALC} is 2ExpTime-complete
- [LWW07] concept inseparability in \mathcal{ALCQI} is 2ExpTime-complete in \mathcal{ALCQIO} is undecidable
- [LW07] model inseparability in \mathcal{EL} is undecidable concept inseparability in \mathcal{EL} is ExpTime-complete
- [KWZ07] (strong) concept and query inseparability in *DL-Lite* without role inclusions is Π_2^p - and coNP-complete for the Bool and Horn fragments, respectively QBF encoding
- what about role inclusions?

Why OWL 2 QL?

- [GLW06] concept inseparability in \mathcal{ALC} is 2ExpTime-complete
- [LWW07] concept inseparability in \mathcal{ALCQI} is 2ExpTime-complete in \mathcal{ALCQIO} is undecidable
- [LW07] model inseparability in \mathcal{EL} is undecidable concept inseparability in \mathcal{EL} is ExpTime-complete
- [KWZ07] (strong) concept and query inseparability in *DL-Lite* without role inclusions is Π_2^p - and coNP-complete for the Bool and Horn fragments, respectively QBF encoding
- what about role inclusions?

OWL 2 QL is a W3C standard language for OBDA

OWL 2 QL

OWL 2 QL represents inclusions between 1-ary predicates (**concepts**) and the domains and ranges of 2-ary predicates (**roles**), as in ER data models

OWL 2 QL

OWL 2 QL represents inclusions between 1-ary predicates (**concepts**) and the domains and ranges of 2-ary predicates (**roles**), as in ER data models

ProjectManager ⊑ Academic ⊔ Visiting

$R = P \mid$	P^-	$B = \perp \mid \top \mid$	$A \mid \exists R$
$B_1 \sqsubseteq B_2$	$B_1 \sqcap B_2 \sqsubseteq \bot$	$R_1 \sqsubseteq R_2$	$R_1 \sqcap R_2 \sqsubseteq \bot$

 $\textbf{Ex.: } \mathcal{T} = \{ A \sqsubseteq \exists S, \ \exists S^- \sqsubseteq \exists T, \ \exists R \sqsubseteq \exists T, \ T \sqsubseteq R^- \} \ \text{ and } \ \mathcal{K} = (\mathcal{T}, \{A(a)\})$

queries = conjunctive queries (CQs)

Theorem $\mathcal{K}\models q \; \Leftrightarrow \; \mathcal{M}_{\mathcal{K}}\models q$, for all consistent \mathcal{K} and all CQ q

queries = conjunctive queries (CQs)

Theorem $\mathcal{K}\models q \; \Leftrightarrow \; \mathcal{M}_{\mathcal{K}}\models q$, for all consistent \mathcal{K} and all CQ q

answers to CQs are preserved under homomorphisms

queries = conjunctive queries (CQs)

Theorem $\mathcal{K} \models q \iff \mathcal{M}_{\mathcal{K}} \models q$, for all consistent \mathcal{K} and all CQq

answers to CQs are preserved under homomorphisms

for all \mathcal{A} , there is a Σ -hom. $h: \mathcal{M}_{(\mathcal{T}_2,\mathcal{A})} \to \mathcal{M}_{(\mathcal{T}_1,\mathcal{A})} \implies \mathcal{T}_1 \Sigma$ -query entails \mathcal{T}_2

`every answer over \mathcal{T}_2 is also an answer over \mathcal{T}_1 '

queries = conjunctive queries (CQs)

Theorem $\mathcal{K}\models q \; \Leftrightarrow \; \mathcal{M}_{\mathcal{K}}\models q$, for all consistent \mathcal{K} and all CQ q

answers to CQs are preserved under homomorphisms

for all \mathcal{A} , there is a Σ -hom. $h: \mathcal{M}_{(\mathcal{T}_2,\mathcal{A})} \to \mathcal{M}_{(\mathcal{T}_1,\mathcal{A})} \implies \mathcal{T}_1 \Sigma$ -query entails \mathcal{T}_2

`every answer over \mathcal{T}_2 is also an answer over \mathcal{T}_1 '

= queries are finite!

Σ -Query Entailment and Homomorphisms

queries = conjunctive queries (CQs)

Theorem $\mathcal{K}\models q \; \Leftrightarrow \; \mathcal{M}_{\mathcal{K}}\models q$, for all consistent \mathcal{K} and all $\mathbb{C}\mathbb{Q} q$

answers to CQs are preserved under homomorphisms

for all \mathcal{A} , there is a Σ -hom. $h: \mathcal{M}_{(\mathcal{T}_2, \mathcal{A})} \to \mathcal{M}_{(\mathcal{T}_1, \mathcal{A})} \implies \mathcal{T}_1 \Sigma$ -query entails \mathcal{T}_2

`every answer over \mathcal{T}_2 is also an answer over \mathcal{T}_1 '

queries are finite!

Σ -Query Entailment and Homomorphisms

queries = conjunctive queries (CQs)

Theorem $\mathcal{K}\models q \; \Leftrightarrow \; \mathcal{M}_{\mathcal{K}}\models q$, for all consistent \mathcal{K} and all CQ q

answers to CQs are preserved under homomorphisms

for all \mathcal{A} , there is a Σ -hom. $h: \mathcal{M}_{(\mathcal{T}_2, \mathcal{A})} \to \mathcal{M}_{(\mathcal{T}_1, \mathcal{A})} \implies \mathcal{T}_1 \Sigma$ -query entails \mathcal{T}_2

`every answer over \mathcal{T}_2 is also an answer over \mathcal{T}_1 '

queries are finite!

Theorem Checking Σ -query entailment is **PSpace**-hard <u>Proof sketch</u>: consider a QBF $\forall X_1 \exists X_2 \forall X_3 \exists X_4 ((\neg X_1 \lor X_2) \land X_3)$

Theorem Checking Σ -query entailment is in **ExpTime**

(alternating 2-way automata)

`every transition in $\mathcal{G}_{(\mathcal{T}_2,\{B(a)\})}$ can be replicated in $\mathcal{G}_{(\mathcal{T}_1,\{B(a)\})}$

`every transition in $\mathcal{G}_{(\mathcal{T}_2, \{B(a)\})}$ can be replicated in $\mathcal{G}_{(\mathcal{T}_1, \{B(a)\})}$ by a forward transition'

`every transition in $\mathcal{G}_{(\mathcal{T}_2, \{B(a)\})}$ can be replicated in $\mathcal{G}_{(\mathcal{T}_1, \{B(a)\})}$ by a forward transition'

Lemma If the \mathcal{T}_i contain no role inclusions or $\mathcal{T}_1 = \emptyset$ then \geq is replaced by =

`every transition in $\mathcal{G}_{(\mathcal{T}_2, \{B(a)\})}$ can be replicated in $\mathcal{G}_{(\mathcal{T}_1, \{B(a)\})}$ by a forward transition'

Lemma If the \mathcal{T}_i contain no role inclusions or $\mathcal{T}_1 = \emptyset$ then \geq is replaced by =

Theorem Without role inclusions, Σ -query entailment is **NLogSpace**-complete

Strong Query Entailment

\mathcal{T}_1 and \mathcal{T}_2 are strongly Σ -query inseparable if, for all Σ -TBoxes \mathcal{T} ,

 $\mathcal{T}_1\equiv^{sq}_\Sigma\mathcal{T}_2$

 $\mathcal{T}_1 \cup \mathcal{T} \equiv^q_\Sigma \mathcal{T}_2 \cup \mathcal{T}$

exponentially many ($2^{|\Sigma|^2}$) TBoxes ${\mathcal T}$

Strong Query Entailment

\mathcal{T}_1 and \mathcal{T}_2 are strongly Σ -query inseparable if, for all Σ -TBoxes \mathcal{T} ,

 $\mathcal{T}_1\equiv^{sq}_\Sigma\mathcal{T}_2$

$$\mathcal{T}_1 \cup \mathcal{T} \equiv^q_\Sigma \mathcal{T}_2 \cup \mathcal{T}$$

exponentially many ($2^{|\Sigma|^2}$) TBoxes ${\mathcal T}$

more subtle (use the form of OWL 2 QL axioms)

NLogSpace

What is a Module?

Let S be an inseparability relation, \mathcal{T} a TBox and Σ a signature.

 $\mathcal{M} \subseteq \mathcal{T}$ is (a **minimal module of** \mathcal{T} cannot be made smaller)

• an S_{Σ} -module of \mathcal{T} if $\mathcal{M} \equiv^{S}_{\Sigma} \mathcal{T}$

• a depleting S_{Σ} -module of \mathcal{T} if $\emptyset \equiv^{S}_{\Sigma \cup sig(\mathcal{M})} \mathcal{T} \setminus \mathcal{M}$

What is a Module?

Let S be an inseparability relation, $\mathcal T$ a TBox and Σ a signature.

 $\mathcal{M} \subseteq \mathcal{T}$ is (a **minimal module of** \mathcal{T} cannot be made smaller)

• an S_{Σ} -module of \mathcal{T} if $\mathcal{M} \equiv^{S}_{\Sigma} \mathcal{T}$

• there may be (exponentially) many minimal modules

- a depleting S_{Σ} -module of \mathcal{T} if $\emptyset \equiv^{S}_{\Sigma \cup sig(\mathcal{M})} \mathcal{T} \setminus \mathcal{M}$
 - there is precisely **one** minimal depleting \equiv_{Σ}^{q} -module
 - depleting \equiv_{Σ}^{q} -module $\Rightarrow \equiv_{\Sigma}^{q}$ -module

What is a Module?

Let S be an inseparability relation, $\mathcal T$ a TBox and Σ a signature.

 $\mathcal{M} \subseteq \mathcal{T}$ is (a **minimal module of** \mathcal{T} cannot be made smaller)

- an S_{Σ} -module of \mathcal{T} if $\mathcal{M} \equiv^{S}_{\Sigma} \mathcal{T}$
 - there may be (exponentially) many minimal modules
 - minimal module extraction algorithm runs in $\mathcal{O}(|\mathcal{T}|)$

- a depleting S_{Σ} -module of \mathcal{T} if $\emptyset \equiv^{S}_{\Sigma \cup sig(\mathcal{M})} \mathcal{T} \setminus \mathcal{M}$
 - there is precisely **one** minimal depleting \equiv_{Σ}^{q} -module
 - depleting \equiv_{Σ}^{q} -module $\Rightarrow \equiv_{\Sigma}^{q}$ -module
 - minimal module extraction algorithm runs in $\mathcal{O}(|\mathcal{T}|^2)$

but the simulation check is complete

Module Extraction Algorithms

• minimal S_{Σ} -module

 $\begin{array}{l} \text{input }\mathcal{T},\Sigma\\ \mathcal{M}:=\mathcal{T}\\ \text{for each }\alpha\in\mathcal{M}\text{ do}\\ \text{ if }\mathcal{M}\setminus\{\alpha\}\equiv^S_\Sigma\mathcal{M}\text{ then }\mathcal{M}:=\mathcal{M}\setminus\{\alpha\}\\ \text{end for}\\ \text{ output }\mathcal{M}\end{array}$

NB: depends on the order of axioms in ${\cal T}$

Module Extraction Algorithms

• minimal S_{Σ} -module

 $\begin{array}{l} \text{input }\mathcal{T},\Sigma\\ \mathcal{M}:=\mathcal{T}\\ \text{for each }\alpha\in\mathcal{M}\text{ do}\\ \text{ if }\mathcal{M}\setminus\{\alpha\}\equiv^S_{\Sigma}\mathcal{M}\text{ then }\mathcal{M}:=\mathcal{M}\setminus\{\alpha\}\\ \text{end for}\\ \text{ output }\mathcal{M}\end{array}$

NB: depends on the order of axioms in ${\cal T}$

• minimal depleting S_{Σ} -module

$$\begin{array}{l} \text{input }\mathcal{T}, \Sigma \\ \mathcal{T}' := \mathcal{T}; \ \Gamma := \Sigma; \ \mathcal{W} := \emptyset \\ \text{while } \mathcal{T}' \setminus \mathcal{W} \neq \emptyset \text{ do} \\ \text{ choose } \alpha \in \mathcal{T}' \setminus \mathcal{W} \\ \mathcal{W} := \mathcal{W} \cup \{\alpha\} \\ \text{ if } \mathcal{W} \not\equiv_{\Gamma}^{S} \emptyset \text{ then} \\ \mathcal{T}' := \mathcal{T}' \setminus \{\alpha\}; \ \mathcal{W} := \emptyset; \ \Gamma := \Gamma \cup \operatorname{sig}(\alpha) \\ \text{ endif} \\ \text{ end while} \\ \text{ output } \mathcal{T} \setminus \mathcal{T}' \end{array}$$

Practical Minimal Module Extraction

MQM = Minimal Query inseparability Module MSQM = Minimal Strong Query inseparability Module MDQM = Minimal Depleting Query inseparability Module

Practical Minimal Module Extraction

MQM = Minimal Query inseparability Module MSQM = Minimal Strong Query inseparability Module MDQM = Minimal Depleting Query inseparability Module

checking query inseparability < 1 secchecking strong query inseparability < 1 min

only in 9 out of 75,000 query entailment checks did not give a definitive answer due to incompleteness

Σ -inseparability for *DL-Lite*^{\mathcal{N}}_{bool}

B	::=	⊥	A_i	$\exists R \mid \geq q R$	
$oldsymbol{C}$::=	B	$\neg C$	$C_1 \sqcap C_2 \mid C_1 \sqcup C_2$	

strong Σ -query inseparability \Leftrightarrow Σ -query inseparability

- \Leftrightarrow strong Σ -concept inseparability \Rightarrow Σ -concept inseparability
 - in each case, the problem is Π_2^p -complete
 - can be encoded by Quantified Boolean Formulas $~~ orall \exists ~ \psi$
 - modules extracted by QBF solvers

R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Selmer, F. Wolter and M. Zakharyaschev. *Minimal Module Extraction from DL-Lite Ontologies using QBF Solvers.* In C. Boutilier, editor, Proceedings of IJCAI-09 (Pasadena, July 11-17), pp. 836–841, 2009

Let \mathcal{T}_1 contain the axioms

Research 🔄 ∃worksIn,	∃worksIn ⁻ ⊑ Project,	
Project \sqsubseteq ∃manages ⁻ ,	∃manages \sqsubseteq Academic ⊔ Visiting,	
$\exists teaches \sqsubseteq$ Academic \sqcup Research,	Academic \sqsubseteq $\exists teaches \sqcap \leq 1 teaches,$	
Research \sqcap Visiting $\sqsubseteq \bot$,	\exists writes \sqsubseteq Academic \sqcup Research,	

 $\mathcal{T}_2 = \mathcal{T}_1 \cup \{ \text{Visiting } \sqsubseteq \ge 2 \text{ writes} \} \text{ and } \Sigma = \{ \text{teaches} \}$

Let \mathcal{T}_1 contain the axioms

Research 🔄 ∃worksIn,	∃worksIn ⁻ ⊑ Project,	
Project \sqsubseteq 3manages $^-$,	∃manages \sqsubseteq Academic ⊔ Visiting,	
$\exists teaches \sqsubseteq$ Academic \sqcup Research,	Academic \sqsubseteq $\exists teaches \sqcap \leq 1 teaches,$	
Research \sqcap Visiting $\sqsubseteq \perp$,	\exists writes \sqsubseteq Academic \sqcup Research,	

 $\mathcal{T}_2 = \mathcal{T}_1 \cup \{ \forall isiting \sqsubseteq \geq 2 \text{ writes} \} \text{ and } \Sigma = \{ \texttt{teaches} \}$

Let \mathcal{T}_1 contain the axioms

 $\mathcal{T}_2 = \mathcal{T}_1 \cup \{ \forall isiting \sqsubseteq \geq 2 \text{ writes} \} \text{ and } \Sigma = \{ \texttt{teaches} \}$

Let \mathcal{T}_1 contain the axioms

 $\mathcal{T}_2 = \mathcal{T}_1 \cup \{ \text{Visiting } \sqsubseteq \geq 2 \text{ writes} \} \text{ and } \Sigma = \{ \text{teaches} \}$

Let \mathcal{T}_1 contain the axioms

 $\mathcal{T}_2 = \mathcal{T}_1 \cup \{ \text{Visiting } \sqsubseteq \ge 2 \text{ writes} \} \text{ and } \Sigma = \{ \text{teaches} \}$

Conclusions

- despite its PSpace-hardness, (strong) Σ -query inseparability can be decided efficiently for <u>real-world</u> OWL 2 QL ontologies
- can our techniques be extended to

more expressive DLs such as $DL-Lite_{horn}$ or even \mathcal{ELI} ?

 how can these algorithms be utilised for analysing and visualising the difference between ontology versions?