
Logic-based Ontology Comparison

and Module Extraction in OWL 2 QL

Roman Kontchakov

Dept. of Computer Science and Inf. Systems, Birkbeck, University of London

http://www.dcs.bbk.ac.uk/~roman

joint work with

B. Konev, M. Ludwig, T. Schneider, F. Wolter and M. Zakharyaschev

http://www.dcs.bbk.ac.uk/~roman

Large-scale ontologies

• Life-sciences, healthcare, and other knowledge intensive areas depend on
having a common language for gathering and sharing knowledge

• Such a common language is provided by reference terminologies

• Examples:

– SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms)

– NCI (National Cancer Institute Ontology)

– FMA (Foundational Model of Anatomy)

– GALEN

– . . .

• Typical size: at least 50,000 terms and axioms

• Trend towards axiomatising reference terminologies in
(‘lightweight’) description logics

Leicester 25.11.11 1

Description logic ALCHIQ

Vocabulary:

• individuals a0, a1, . . .
(e.g., john, mary) (nominals in ML/constants in FO)

• concept names A0, A1, . . .
(e.g., Person, Female) (variables in ML/unary predicates in FO)

• role names R0, R1, . . .
(e.g., hasChild, loves) (modalities in ML/binary predicates in FO)

Leicester 25.11.11 1

Description logic ALCHIQ

Vocabulary:

• individuals a0, a1, . . .
(e.g., john, mary) (nominals in ML/constants in FO)

• concept names A0, A1, . . .
(e.g., Person, Female) (variables in ML/unary predicates in FO)

• role names R0, R1, . . .
(e.g., hasChild, loves) (modalities in ML/binary predicates in FO)

I = (∆I, ·I) an interpretation

aIi ∈ ∆I

AIi ⊆ ∆I

RIi ⊆ ∆I ×∆I

Leicester 25.11.11 1

Description logic ALCHIQ

Vocabulary:

• individuals a0, a1, . . .
(e.g., john, mary) (nominals in ML/constants in FO)

• concept names A0, A1, . . .
(e.g., Person, Female) (variables in ML/unary predicates in FO)

• role names R0, R1, . . .
(e.g., hasChild, loves) (modalities in ML/binary predicates in FO)

I = (∆I, ·I) an interpretation

aIi ∈ ∆I

AIi ⊆ ∆I

RIi ⊆ ∆I ×∆I

• roles

R ::= Ri | R−i (R−i)I = {(y, x) | (x, y) ∈ RIi }

• concepts

C ::= Ai | ¬C | C1 u C2 | ∃R.C | ∀R.C | ≥ qR .C

Leicester 25.11.11 1

Description logic ALCHIQ

Vocabulary:

• individuals a0, a1, . . .
(e.g., john, mary) (nominals in ML/constants in FO)

• concept names A0, A1, . . .
(e.g., Person, Female) (variables in ML/unary predicates in FO)

• role names R0, R1, . . .
(e.g., hasChild, loves) (modalities in ML/binary predicates in FO)

I = (∆I, ·I) an interpretation

aIi ∈ ∆I

AIi ⊆ ∆I

RIi ⊆ ∆I ×∆I

• roles

R ::= Ri | R−i (R−i)I = {(y, x) | (x, y) ∈ RIi }

• concepts

C ::= Ai | ¬C | C1 u C2 | ∃R.C | ∀R.C | ≥ qR .C

.

.

b

b
b

b

b

C

∃R.C

∀R.C

≡

¬(∃R.¬C)

‘there are
at least q
distinct
R-successors
that are in C’

Leicester 25.11.11 1

Description logic ALCHIQ (cont.)

knowledge base K = TBox T + ABoxA

• T is a set of terminological axioms of the form C v D and R v S

• A is a set of assertional axioms of the form C(a) and R(a, b)

Leicester 25.11.11 2

Description logic ALCHIQ (cont.)

knowledge base K = TBox T + ABoxA

• T is a set of terminological axioms of the form C v D and R v S

• A is a set of assertional axioms of the form C(a) and R(a, b)

Reasoning: – satisfiability K
is there a model I for K (I |= C v D iff CI ⊆ DI)

(I |= R v S iff RI ⊆ SI)

– subsumption K |= C v D
I |= C v D, for each I with I |= K

– instance checking K |= C(a)
aI ∈ CI , for each I with I |= K

– query answering K |= q(~a), q(~a) a positive existential formula
I |= q(a) (as a first-order structure), for each I with I |= K

Leicester 25.11.11 2

Description logic ALCHIQ (cont.)

knowledge base K = TBox T + ABoxA

• T is a set of terminological axioms of the form C v D and R v S

• A is a set of assertional axioms of the form C(a) and R(a, b)

Reasoning: – satisfiability K
is there a model I for K (I |= C v D iff CI ⊆ DI)

(I |= R v S iff RI ⊆ SI)

– subsumption K |= C v D
I |= C v D, for each I with I |= K

– instance checking K |= C(a)
aI ∈ CI , for each I with I |= K

– query answering K |= q(~a), q(~a) a positive existential formula
I |= q(a) (as a first-order structure), for each I with I |= K

OWL 1.0 DL is based on SHOIQ(D), OWL 2.0 on SROIQ(D)
ALCHIQ + transitive roles + nomimals + concrete domains

SHOIQ(D) + role chains + disjoint roles + self (diagonal)
Leicester 25.11.11 2

Developing and Maintaining Ontologies

• versions:
comparing logical consequences over some common vocabulary Σ

not a syntactic form of axioms (diff)

Leicester 25.11.11 3

Developing and Maintaining Ontologies

• versions:
comparing logical consequences over some common vocabulary Σ

not a syntactic form of axioms (diff)

• refinement:
adding new axioms but preserving the relationships

between terms of a certain part Σ of the vocabulary

Leicester 25.11.11 3

Developing and Maintaining Ontologies

• versions:
comparing logical consequences over some common vocabulary Σ

not a syntactic form of axioms (diff)

• refinement:
adding new axioms but preserving the relationships

between terms of a certain part Σ of the vocabulary

• reuse:
importing an ontology and using its vocabulary Σ as originally defined

(relationships between terms of Σ should not change)

Leicester 25.11.11 3

Developing and Maintaining Ontologies

• versions:
comparing logical consequences over some common vocabulary Σ

not a syntactic form of axioms (diff)

• refinement:
adding new axioms but preserving the relationships

between terms of a certain part Σ of the vocabulary

• reuse:
importing an ontology and using its vocabulary Σ as originally defined

(relationships between terms of Σ should not change)

• module extraction:
computing a subsetM (ideally as small as possible) of an ontology T that

‘says’ the same about Σ as T

new types of reasoning problems

Leicester 25.11.11 3

Σ-Inseparability

Let T1 and T2 be TBoxes and Σ a signature (concept and role names)

When do T1 and T2 ‘say’ the same about Σ?

Leicester 25.11.11 4

Σ-Inseparability

Let T1 and T2 be TBoxes and Σ a signature (concept and role names)

When do T1 and T2 ‘say’ the same about Σ?

• T1 and T2 are Σ-concept inseparable if, for all Σ-concept inclusionsC v D,

T1 ≡c
Σ T2 T1 |= C v D iff T2 |= C v D

Leicester 25.11.11 4

Σ-Inseparability

Let T1 and T2 be TBoxes and Σ a signature (concept and role names)

When do T1 and T2 ‘say’ the same about Σ?

• T1 and T2 are Σ-concept inseparable if, for all Σ-concept inclusionsC v D,

T1 ≡c
Σ T2 T1 |= C v D iff T2 |= C v D

• T1 and T2 are Σ-query inseparable if, for all Σ-queries q(~x) and ABoxes A,

T1 ≡q
Σ T2 (T1,A) |= q(~a) iff (T2,A) |= q(~a), for all ~a

• . . .

Leicester 25.11.11 4

Σ-Inseparability

Let T1 and T2 be TBoxes and Σ a signature (concept and role names)

When do T1 and T2 ‘say’ the same about Σ?

• T1 and T2 are Σ-concept inseparable if, for all Σ-concept inclusionsC v D,

T1 ≡c
Σ T2 T1 |= C v D iff T2 |= C v D

• T1 and T2 are Σ-query inseparable if, for all Σ-queries q(~x) and ABoxes A,

T1 ≡q
Σ T2 (T1,A) |= q(~a) iff (T2,A) |= q(~a), for all ~a

• . . .

• T1 and T2 are Σ-model inseparable if, for all Σ-interpretations I,

T1 ≡m
Σ T2 ∃ I1 ⊇ I I1 |= T1 iff ∃ I2 ⊇ I I2 |= T2

Leicester 25.11.11 4

Examples

Example 1. Σ = {Lecturer,Course}

T1 = ∅, T2 = {Lecturer v ∃teaches, ∃teaches− v Course}

• Is T1 ≡c
Σ T2 ? • Is T1 ≡q

Σ T2 ?

Leicester 25.11.11 5

Examples

Example 1. Σ = {Lecturer,Course}

T1 = ∅, T2 = {Lecturer v ∃teaches, ∃teaches− v Course}

• Is T1 ≡c
Σ T2 ? • Is T1 ≡q

Σ T2 ?

Take A = {Lecturer(a)}, q = ∃y Course(y). Then (T1,A) 6|= q but (T2,A) |= q

Leicester 25.11.11 5

Examples

Example 1. Σ = {Lecturer,Course}

T1 = ∅, T2 = {Lecturer v ∃teaches, ∃teaches− v Course}

• Is T1 ≡c
Σ T2 ? • Is T1 ≡q

Σ T2 ?

Take A = {Lecturer(a)}, q = ∃y Course(y). Then (T1,A) 6|= q but (T2,A) |= q

Example 2. Σ = {Lecturer}

T1 = ∅, T2 = {Lecturer v ∃teaches, Lecturer u ∃teaches− v ⊥}

• Is T1 ≡c
Σ T2 ? • Is T1 ≡q

Σ T2 ?

Leicester 25.11.11 5

Strong Σ-Inseparability

Example 3. Σ = {A}

T1 = ∅, T2 = { > v ∃R, ∃R− v B, B uA v ⊥ }

• Is T1 ≡q
Σ T2 ? • Is T1 ∪ T ≡q

Σ T2 ∪ T , where T = {> v A} ?

Leicester 25.11.11 6

Strong Σ-Inseparability

Example 3. Σ = {A}

T1 = ∅, T2 = { > v ∃R, ∃R− v B, B uA v ⊥ }

• Is T1 ≡q
Σ T2 ? • Is T1 ∪ T ≡q

Σ T2 ∪ T , where T = {> v A} ?

modules are being replaced in the context of a bigger ontology!

Leicester 25.11.11 6

Strong Σ-Inseparability

Example 3. Σ = {A}

T1 = ∅, T2 = { > v ∃R, ∃R− v B, B uA v ⊥ }

• Is T1 ≡q
Σ T2 ? • Is T1 ∪ T ≡q

Σ T2 ∪ T , where T = {> v A} ?

modules are being replaced in the context of a bigger ontology!

• T1 and T2 are strongly Σ-concept inseparable if, for all Σ-TBoxes T ,

T1 ≡sc
Σ T2 T1 ∪ T ≡c

Σ T2 ∪ T

Leicester 25.11.11 6

Strong Σ-Inseparability

Example 3. Σ = {A}

T1 = ∅, T2 = { > v ∃R, ∃R− v B, B uA v ⊥ }

• Is T1 ≡q
Σ T2 ? • Is T1 ∪ T ≡q

Σ T2 ∪ T , where T = {> v A} ?

modules are being replaced in the context of a bigger ontology!

• T1 and T2 are strongly Σ-concept inseparable if, for all Σ-TBoxes T ,

T1 ≡sc
Σ T2 T1 ∪ T ≡c

Σ T2 ∪ T

• T1 and T2 are strongly Σ-query inseparable if, for all Σ-TBoxes T ,

T1 ≡sq
Σ T2 T1 ∪ T ≡q

Σ T2 ∪ T

Leicester 25.11.11 6

Why OWL 2 QL?

• [GLW06] concept inseparability in ALC is 2ExpTime-complete

• [LWW07] concept inseparability in ALCQI is 2ExpTime-complete
in ALCQIO is undecidable

• [LW07] model inseparability in EL is undecidable
concept inseparability in EL is ExpTime-complete

• [KWZ07] (strong) concept and query inseparability
in DL-Lite without role inclusions is Πp

2- and coNP-complete
for the Bool and Horn fragments, respectively

QBF encoding

Leicester 25.11.11 7

Why OWL 2 QL?

• [GLW06] concept inseparability in ALC is 2ExpTime-complete

• [LWW07] concept inseparability in ALCQI is 2ExpTime-complete
in ALCQIO is undecidable

• [LW07] model inseparability in EL is undecidable
concept inseparability in EL is ExpTime-complete

• [KWZ07] (strong) concept and query inseparability
in DL-Lite without role inclusions is Πp

2- and coNP-complete
for the Bool and Horn fragments, respectively

QBF encoding

• what about role inclusions?

Leicester 25.11.11 7

Why OWL 2 QL?

• [GLW06] concept inseparability in ALC is 2ExpTime-complete

• [LWW07] concept inseparability in ALCQI is 2ExpTime-complete
in ALCQIO is undecidable

• [LW07] model inseparability in EL is undecidable
concept inseparability in EL is ExpTime-complete

• [KWZ07] (strong) concept and query inseparability
in DL-Lite without role inclusions is Πp

2- and coNP-complete
for the Bool and Horn fragments, respectively

QBF encoding

• what about role inclusions?

OWL 2 QL is a W3C standard language for OBDA

Leicester 25.11.11 7

OWL 2 QL

OWL 2 QL represents inclusions between 1-ary predicates (concepts) and the
domains and ranges of 2-ary predicates (roles), as in ER data models

Staff

Research Visiting Academic

disj

Project ManagerProject

worksOn

1..*

1..*

manages

1..2

Leicester 25.11.11 8

OWL 2 QL

OWL 2 QL represents inclusions between 1-ary predicates (concepts) and the
domains and ranges of 2-ary predicates (roles), as in ER data models

Staff

Research Visiting Academic

disj

Project ManagerProject

worksOn

1..*

1..*

manages

1..2

Academic v Staff

∃manages.> v ProjectManager

∃manages−.> v Project

Project v ∃manages−.>

manages v worksOn

≥ 3 manages−.> v ⊥

ProjectManager v Academic t Visiting

Leicester 25.11.11 8

DL-LiteHcore and Canonical Models

R = P | P− B = ⊥ | > | A | ∃R

B1 v B2 B1 uB2 v ⊥ R1 v R2 R1 uR2 v ⊥

Leicester 25.11.11 9

DL-LiteHcore and Canonical Models

R = P | P− B = ⊥ | > | A | ∃R

B1 v B2 B1 uB2 v ⊥ R1 v R2 R1 uR2 v ⊥

Ex.: T = {A v ∃S, ∃S− v ∃T, ∃R v ∃T, T v R−} and K = (T , {A(a)})

canonical modelMK:

A

a aw[S]

S

aw[S]w[T]

T,R−

aw[S]w[T]w[T]

T,R− . . .

Leicester 25.11.11 9

DL-LiteHcore and Canonical Models

R = P | P− B = ⊥ | > | A | ∃R

B1 v B2 B1 uB2 v ⊥ R1 v R2 R1 uR2 v ⊥

Ex.: T = {A v ∃S, ∃S− v ∃T, ∃R v ∃T, T v R−} and K = (T , {A(a)})

canonical modelMK:

A

a aw[S]

S

aw[S]w[T]

T,R−

aw[S]w[T]w[T]

T,R− . . .

generating model GK
= tail︸︷︷︸

the last element

(MK): A

a w[S]

S

w[T]

T,R−

T,R−

Leicester 25.11.11 9

DL-LiteHcore and Canonical Models

R = P | P− B = ⊥ | > | A | ∃R

B1 v B2 B1 uB2 v ⊥ R1 v R2 R1 uR2 v ⊥

Ex.: T = {A v ∃S, ∃S− v ∃T, ∃R v ∃T, T v R−} and K = (T , {A(a)})

canonical modelMK:

A

a aw[S]

S

aw[S]w[T]

T,R−

aw[S]w[T]w[T]

T,R− . . .

generating model GK
= tail︸︷︷︸

the last element

(MK): A

a w[S]

S

w[T]

T,R−

T,R−

a generates witnesses w[S] and w[T]: a ; w[S] ; w[T]

• a ; w[S] if [S] is minimal, K |= ∃S(a) and K 6|= S(a, b), for all b

• w[S] ; w[T] if [T] is minimal, T |= ∃S− v ∃T and [S−] 6= [T]

Leicester 25.11.11 9

Σ-Query Entailment and Homomorphisms

queries = conjunctive queries (CQs)

Theorem K |= q ⇔ MK |= q, for all consistent K and all CQ q

Leicester 25.11.11 10

Σ-Query Entailment and Homomorphisms

queries = conjunctive queries (CQs)

Theorem K |= q ⇔ MK |= q, for all consistent K and all CQ q

answers to CQs are preserved under homomorphisms

Leicester 25.11.11 10

Σ-Query Entailment and Homomorphisms

queries = conjunctive queries (CQs)

Theorem K |= q ⇔ MK |= q, for all consistent K and all CQ q

answers to CQs are preserved under homomorphisms

for all A, there is a Σ-hom. h : M(T2,A) →M(T1,A) =⇒=⇒=⇒ T1 Σ-query entails T2

‘every answer over T2 is also an answer over T1’

Leicester 25.11.11 10

Σ-Query Entailment and Homomorphisms

queries = conjunctive queries (CQs)

Theorem K |= q ⇔ MK |= q, for all consistent K and all CQ q

answers to CQs are preserved under homomorphisms

for all A, there is a Σ-hom. h : M(T2,A) →M(T1,A) =⇒=⇒=⇒ T1 Σ-query entails T2

‘every answer over T2 is also an answer over T1’

⇐=⇐=⇐=××× queries are finite!

Leicester 25.11.11 10

Σ-Query Entailment and Homomorphisms

queries = conjunctive queries (CQs)

Theorem K |= q ⇔ MK |= q, for all consistent K and all CQ q

answers to CQs are preserved under homomorphisms

for all A, there is a Σ-hom. h : M(T2,A) →M(T1,A) =⇒=⇒=⇒ T1 Σ-query entails T2

‘every answer over T2 is also an answer over T1’

⇐=⇐=⇐=××× queries are finite!

Theorem
T1

Σ-query
entails
T2

===
T1

Σ-concept/role
entails
T2

+++
M(T2,{B(a)}) is

finitely Σ-homomorphically
embeddable intoM(T1,{B(a)}),
for all T1-consistent Σ-concepts B

Leicester 25.11.11 10

Σ-Query Entailment and Homomorphisms

queries = conjunctive queries (CQs)

Theorem K |= q ⇔ MK |= q, for all consistent K and all CQ q

answers to CQs are preserved under homomorphisms

for all A, there is a Σ-hom. h : M(T2,A) →M(T1,A) =⇒=⇒=⇒ T1 Σ-query entails T2

‘every answer over T2 is also an answer over T1’

⇐=⇐=⇐=××× queries are finite!

Theorem
T1

Σ-query
entails
T2

===
T1

Σ-concept/role
entails
T2

+++
M(T2,{B(a)}) is

finitely Σ-homomorphically
embeddable intoM(T1,{B(a)}),
for all T1-consistent Σ-concepts B

NLogSpace

Leicester 25.11.11 10

Complexity of Σ-query Entailment

Theorem Checking Σ-query entailment is PSpace-hard

Proof sketch: consider a QBF ∀X1∃X2∀X3∃X4 ((¬X1 ∨X2) ∧X3)

Leicester 25.11.11 11

Complexity of Σ-query Entailment

Theorem Checking Σ-query entailment is PSpace-hard

Proof sketch: consider a QBF ∀X1∃X2∀X3∃X4 ((¬X1 ∨X2) ∧X3)

A
a

X1
1

R

X0
1

R

X1
2R

X0
2

R

X1
3R

X0
3

R

X1
4R

X0
4

R

Leicester 25.11.11 11

Complexity of Σ-query Entailment

Theorem Checking Σ-query entailment is PSpace-hard

Proof sketch: consider a QBF ∀X1∃X2∀X3∃X4 ((¬X1 ∨X2) ∧X3)

A
a

X1
1

R

X0
1

R

X1
2R

X0
2

R

X1
3R

X0
3

R

X1
4R

X0
4

RG1

A
a

X1
1

R,T
−
j

X0
1

R,T −
j

X1
2R,T

−
j

X0
2

R,T
−
j

X1
3R,T

−
j

X0
3

R,T
−
j

X1
4R,T

−
j

X0
4

R,T
−
j

T1 T1

T1

T2

T2

Leicester 25.11.11 11

Complexity of Σ-query Entailment

Theorem Checking Σ-query entailment is PSpace-hard

Proof sketch: consider a QBF ∀X1∃X2∀X3∃X4 ((¬X1 ∨X2) ∧X3)

A
a

X1
1

R

X0
1

R

X1
2R

X0
2

R

X1
3R

X0
3

R

X1
4R

X0
4

RG1

A
a

X1
1

R,T
−
j

X0
1

R,T −
j

X1
2R,T

−
j

X0
2

R,T
−
j

X1
3R,T

−
j

X0
3

R,T
−
j

X1
4R,T

−
j

X0
4

R,T
−
j

T1 T1

T1

T2

T2

G2

A
a

A

X1
1

R

X0
1

R

R

R

X1
3

R

X0
3

R

w
R

R
T1

T1

T2

T2

Leicester 25.11.11 11

Complexity of Σ-query Entailment

Theorem Checking Σ-query entailment is PSpace-hard

Proof sketch: consider a QBF ∀X1∃X2∀X3∃X4 ((¬X1 ∨X2) ∧X3)

A
a

X1
1

R

X0
1

R

X1
2R

X0
2

R

X1
3R

X0
3

R

X1
4R

X0
4

RG1

A
a

X1
1

R,T
−
j

X0
1

R,T −
j

X1
2R,T

−
j

X0
2

R,T
−
j

X1
3R,T

−
j

X0
3

R,T
−
j

X1
4R,T

−
j

X0
4

R,T
−
j

T1 T1

T1

T2

T2

G2

A
a

A

X1
1

R

X0
1

R

R

R

X1
3

R

X0
3

R

w
R

R
T1

T1

T2

T2

Theorem Checking Σ-query entailment is in ExpTime
(alternating 2-way automata)

Leicester 25.11.11 11

Polynomial (Incomplete) Algorithms

T1

Σ-query
entails
T2

≥≥≥
T1

Σ-concept/role
entails
T2

+++
there is a Σ-simulation

of G(T2,{B(a)}) in G(T1,{B(a)}),

for all T1-consistent Σ-concepts B

‘every transition in G(T2,{B(a)}) can be replicated in G(T1,{B(a)})’

Leicester 25.11.11 12

Polynomial (Incomplete) Algorithms

T1

Σ-query
entails
T2

≥≥≥
T1

Σ-concept/role
entails
T2

+++
there is a Σ-simulation

of G(T2,{B(a)}) in G(T1,{B(a)}),

for all T1-consistent Σ-concepts B

‘every transition in G(T2,{B(a)}) can be replicated in G(T1,{B(a)})’

T1

Σ-query
entails
T2

≤≤≤
T1

Σ-concept/role
entails
T2

+++
there is a forward Σ-simulation

of G(T2,{B(a)}) in G(T1,{B(a)}),

for all T1-consistent Σ-concepts B

‘every transition in G(T2,{B(a)}) can be replicated in G(T1,{B(a)}) by a forward transition’

Leicester 25.11.11 12

Polynomial (Incomplete) Algorithms

T1

Σ-query
entails
T2

≥≥≥
T1

Σ-concept/role
entails
T2

+++
there is a Σ-simulation

of G(T2,{B(a)}) in G(T1,{B(a)}),

for all T1-consistent Σ-concepts B

‘every transition in G(T2,{B(a)}) can be replicated in G(T1,{B(a)})’

T1

Σ-query
entails
T2

≤≤≤
T1

Σ-concept/role
entails
T2

+++
there is a forward Σ-simulation

of G(T2,{B(a)}) in G(T1,{B(a)}),

for all T1-consistent Σ-concepts B

‘every transition in G(T2,{B(a)}) can be replicated in G(T1,{B(a)}) by a forward transition’

Lemma If the Ti contain no role inclusions or T1 = ∅ then ≥ is replaced by =

Leicester 25.11.11 12

Polynomial (Incomplete) Algorithms

T1

Σ-query
entails
T2

≥≥≥
T1

Σ-concept/role
entails
T2

+++
there is a Σ-simulation

of G(T2,{B(a)}) in G(T1,{B(a)}),

for all T1-consistent Σ-concepts B

‘every transition in G(T2,{B(a)}) can be replicated in G(T1,{B(a)})’

T1

Σ-query
entails
T2

≤≤≤
T1

Σ-concept/role
entails
T2

+++
there is a forward Σ-simulation

of G(T2,{B(a)}) in G(T1,{B(a)}),

for all T1-consistent Σ-concepts B

‘every transition in G(T2,{B(a)}) can be replicated in G(T1,{B(a)}) by a forward transition’

Lemma If the Ti contain no role inclusions or T1 = ∅ then ≥ is replaced by =

Theorem Without role inclusions, Σ-query entailment is NLogSpace-complete

Leicester 25.11.11 12

Strong Query Entailment

T1 and T2 are strongly Σ-query inseparable if, for all Σ-TBoxes T ,

T1 ≡sq
Σ T2 T1 ∪ T ≡q

Σ T2 ∪ T

exponentially many (2|Σ|2) TBoxes T

Leicester 25.11.11 13

Strong Query Entailment

T1 and T2 are strongly Σ-query inseparable if, for all Σ-TBoxes T ,

T1 ≡sq
Σ T2 T1 ∪ T ≡q

Σ T2 ∪ T

exponentially many (2|Σ|2) TBoxes T

more subtle (use the form of OWL 2 QL axioms)

T1

stronlgly
Σ-query
entails
T2

===
T1

Σ-query
entails
T2

+++

for each Σ-TBox T with a single
B1 v B2 or R1 v R2,

B is T2 ∪ T -consistent,
for all T1 ∪T -consistent Σ-concepts B

NLogSpace

Leicester 25.11.11 13

What is a Module?

Let S be an inseparability relation, T a TBox and Σ a signature.

M⊆ T is (a minimal module of T cannot be made smaller)

• an SΣ-module of T if M≡S
Σ T

• a depleting SΣ-module of T if ∅ ≡S
Σ∪sig(M) T \M

Leicester 25.11.11 14

What is a Module?

Let S be an inseparability relation, T a TBox and Σ a signature.

M⊆ T is (a minimal module of T cannot be made smaller)

• an SΣ-module of T if M≡S
Σ T

• a depleting SΣ-module of T if ∅ ≡S
Σ∪sig(M) T \M

• there may be (exponentially) many minimal modules

• there is precisely one minimal depleting ≡q
Σ-module

• depleting ≡q
Σ-module ⇒⇒⇒ ≡q

Σ-module

Leicester 25.11.11 14

What is a Module?

Let S be an inseparability relation, T a TBox and Σ a signature.

M⊆ T is (a minimal module of T cannot be made smaller)

• an SΣ-module of T if M≡S
Σ T

• a depleting SΣ-module of T if ∅ ≡S
Σ∪sig(M) T \M

• there may be (exponentially) many minimal modules

• there is precisely one minimal depleting ≡q
Σ-module

• depleting ≡q
Σ-module ⇒⇒⇒ ≡q

Σ-module

• minimal module extraction algorithm runs in O(|T |)

• minimal module extraction algorithm runs in O(|T |2)

but the simulation check is complete

Leicester 25.11.11 14

Module Extraction Algorithms

• minimal SΣ-module

input T ,Σ
M := T
for each α ∈M do

if M\ {α} ≡S
Σ M then M :=M\ {α}

end for

output M

NB: depends
on the order
of axioms in T

Leicester 25.11.11 15

Module Extraction Algorithms

• minimal SΣ-module

input T ,Σ
M := T
for each α ∈M do

if M\ {α} ≡S
Σ M then M :=M\ {α}

end for

output M

NB: depends
on the order
of axioms in T

• minimal depleting SΣ-module

input T ,Σ
T ′ := T ; Γ := Σ; W := ∅
while T ′ \W 6= ∅ do

choose α ∈ T ′ \W
W :=W ∪ {α}
if W 6≡S

Γ ∅ then

T ′ := T ′ \ {α}; W := ∅; Γ := Γ ∪ sig(α)
endif

end while

output T \ T ′

Leicester 25.11.11 15

Practical Minimal Module Extraction

MQM = Minimal Query inseparability Module
MSQM = Minimal Strong Query inseparability Module
MDQM = Minimal Depleting Query inseparability Module

LUBM (145)

31

M
Q

M

32

M
SQ

M

34

M
D

Q
M

34

>
⊥

M

IMDB (66)

20

M
Q

M

20

M
SQ

M

25

M
D

Q
M

30

>
⊥

M

Umbrella (1519)

98

M
Q

M

101

M
SQ

M

315

M
D

Q
M

391

>
⊥

M

Mimosa (763)

47

M
Q

M

56

M
SQ

M
90

M
D

Q
M

105

>
⊥

M

Core (1233)

83

M
Q

M

87

M
SQ

M

375

M
D

Q
M

375

>
⊥

M

Leicester 25.11.11 16

Practical Minimal Module Extraction

MQM = Minimal Query inseparability Module
MSQM = Minimal Strong Query inseparability Module
MDQM = Minimal Depleting Query inseparability Module

LUBM (145)

31

M
Q

M

32

M
SQ

M

34

M
D

Q
M

34

>
⊥

M

IMDB (66)

20

M
Q

M

20

M
SQ

M

25

M
D

Q
M

30

>
⊥

M

Umbrella (1519)

98

M
Q

M

101

M
SQ

M

315

M
D

Q
M

391

>
⊥

M

Mimosa (763)

47

M
Q

M

56

M
SQ

M
90

M
D

Q
M

105

>
⊥

M

Core (1233)

83

M
Q

M

87

M
SQ

M

375

M
D

Q
M

375

>
⊥

M

checking query inseparability < 1 sec
checking strong query inseparability < 1 min

only in 9 out of 75,000 query entailment checks
did not give a definitive answer due to incompleteness

Leicester 25.11.11 16

Σ-inseparability for DL-LiteNbool

B ::= ⊥ | Ai | ∃R | ≥ q R
C ::= B | ¬C | C1uC2 | C1tC2

strong Σ-query inseparability ⇔⇔⇔ Σ-query inseparability

⇔⇔⇔ strong Σ-concept inseparability ⇒⇒⇒ Σ-concept inseparability

– in each case, the problem is Πp
2-complete

– can be encoded by Quantified Boolean Formulas ∀∀∀∃∃∃ψ

– modules extracted by QBF solvers

R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Selmer, F. Wolter and M. Zakharyaschev.
Minimal Module Extraction from DL-Lite Ontologies using QBF Solvers.
In C. Boutilier, editor, Proceedings of IJCAI-09 (Pasadena, July 11-17), pp. 836–841, 2009

Leicester 25.11.11 17

Example

Let T1 contain the axioms

Research v ∃worksIn, ∃worksIn− v Project,

Project v ∃manages−, ∃manages v Academic t Visiting,

∃teaches v Academic t Research, Academic v ∃teaches u ≤ 1 teaches,

Research u Visiting v ⊥, ∃writes v Academic t Research,

T2 = T1 ∪ {Visiting v ≥ 2 writes} and Σ = {teaches}

Leicester 25.11.11 18

Example

Let T1 contain the axioms

Research v ∃worksIn, ∃worksIn− v Project,

Project v ∃manages−, ∃manages v Academic t Visiting,

∃teaches v Academic t Research, Academic v ∃teaches u ≤ 1 teaches,

Research u Visiting v ⊥, ∃writes v Academic t Research,

T2 = T1 ∪ {Visiting v ≥ 2 writes} and Σ = {teaches}

– T1 and T2 are Σ-concept inseparable (Σ-entailment in both directions)

T2 |= Visiting v Academic, but nothing new in the signature Σ

Leicester 25.11.11 18

Example

Let T1 contain the axioms

Research v ∃worksIn, ∃worksIn− v Project,

Project v ∃manages−, ∃manages v Academic t Visiting,

∃teaches v Academic t Research, Academic v ∃teaches u ≤ 1 teaches,

Research u Visiting v ⊥, ∃writes v Academic t Research,

T2 = T1 ∪ {Visiting v ≥ 2 writes} and Σ = {teaches}

– T1 and T2 are Σ-concept inseparable (Σ-entailment in both directions)

T2 |= Visiting v Academic, but nothing new in the signature Σ

– T1 does not Σ-query entail T2:
A = {teaches(a, b), teaches(a, c)}
q = ∃x

(
(∃teaches)(x) ∧ (≤ 1 teaches)(x)

)
‘is there anybody who teaches precisely one module?’

.

.

b

bb
b

Research

Visiting
Project

a
b

c

(T1,A) 6|= q (I |= (T1,A) but I 6|= q)

Leicester 25.11.11 18

Example

Let T1 contain the axioms

Research v ∃worksIn, ∃worksIn− v Project,

Project v ∃manages−, ∃manages v Academic t Visiting,

∃teaches v Academic t Research, Academic v ∃teaches u ≤ 1 teaches,

Research u Visiting v ⊥, ∃writes v Academic t Research,

T2 = T1 ∪ {Visiting v ≥ 2 writes} and Σ = {teaches}

– T1 and T2 are Σ-concept inseparable (Σ-entailment in both directions)

T2 |= Visiting v Academic, but nothing new in the signature Σ

– T1 does not Σ-query entail T2:
A = {teaches(a, b), teaches(a, c)}
q = ∃x

(
(∃teaches)(x) ∧ (≤ 1 teaches)(x)

)
‘is there anybody who teaches precisely one module?’

.

.

b

bb
b

Research

Visiting
Project

a
b

c

(T1,A) 6|= q (I |= (T1,A) but I 6|= q)

(T2,A) |= q

.

.

b

bb
b

Research

Visiting t Academic
Project

a
b

c

Leicester 25.11.11 18

Example

Let T1 contain the axioms

Research v ∃worksIn, ∃worksIn− v Project,

Project v ∃manages−, ∃manages v Academic t Visiting,

∃teaches v Academic t Research, Academic v ∃teaches u ≤ 1 teaches,

Research u Visiting v ⊥, ∃writes v Academic t Research,

T2 = T1 ∪ {Visiting v ≥ 2 writes} and Σ = {teaches}

– T1 and T2 are Σ-concept inseparable (Σ-entailment in both directions)

T2 |= Visiting v Academic, but nothing new in the signature Σ

– T1 does not Σ-query entail T2:
A = {teaches(a, b), teaches(a, c)}
q = ∃x

(
(∃teaches)(x) ∧ (≤ 1 teaches)(x)

)
‘is there anybody who teaches precisely one module?’

.

.

b

bb
b

Research

Visiting
Project

a
b

c

(T1,A) 6|= q (I |= (T1,A) but I 6|= q)

(T2,A) |= q

.

.

b

bb
b

Research

Visiting t Academic
Project

a
b

c

.

.

b

b

b

b
b

Research

Academic
Project

a
b

c

Leicester 25.11.11 18

Conclusions

• despite its PSpace-hardness, (strong) Σ-query inseparability
can be decided efficiently for real-world OWL 2 QL ontologies

• can our techniques be extended to
more expressive DLs such as DL-Litehorn or even ELI?

• how can these algorithms be utilised for analysing and visualising
the difference between ontology versions?

Leicester 25.11.11 19

