The *DL-Lite* Family and Relations

Roman Kontchakov

School of Computer Science and Information Systems, Birkbeck, London

http://www.dcs.bbk.ac.uk/~roman

joint work with

Alessandro Artale, Diego Calvanese and Michael Zakharyaschev

Motivating example: DL for Conceptual Modelling

DL-Lite!

The DL-Lite family

1. DL-Lit $e^{\mathcal{N}}_{bool}$ R ::= P P^-	combined complexity sat.: NP data comp. instance: in AC ⁰ data comp. query: coNP
$egin{array}{cccccccccccccccccccccccccccccccccccc$	\mathbb{C}_2
IBox axioms $C_1 \sqsubseteq C_2$	
2. <i>DL-Lite</i> ^N _{horn} TBox axioms $B_1 \sqcap \cdots \sqcap B_n \sqsubset B$	combined complexity: P data comp. instance: in AC ⁰ data comp. query: in AC ⁰
1 <i>10</i> <u>–</u>	
3. DL-Lite ^N _{krom} TBox axioms $B_1 \sqsubseteq B_2$ $B_1 \sqsubseteq \neg B_2$ $\neg B_1$	$ = B_2 $ comb. comp.: NLOGSPACE d.c. instance: in AC ⁰ d.c. query: coNP
4. $DL\text{-Lite}_{core}^{N} = DL\text{-Lite}_{horn}^{N} \cap DL\text{-Lite}_{krom}^{N}$	comb. comp.: NLOGSPACE d.c. instance: in AC ⁰ d.c. query: in AC ⁰

- NB: complexity by embedding in the 1-variable fragments of FOL
- NB: in AC⁰ informally means `as effective as relational databases', i.e., FO-rewritable
- NB: UNA is essential for encoding number restrictions

Free University of Bozen-Bolzano, 8.04.09

Embedding *DL-Lite* into FOL

Theorem The satisfiability problem for DL-Lite^N_{bool} knowledge bases is NP-complete <u>Proof</u> by embedding into the 1-variable fragment of first-order logic $\mathcal{T} = \{A \sqsubseteq \exists P^-, \exists P^- \sqsubseteq A, A \sqsubseteq \geq 2P, \top \sqsubseteq \leq 1P^-, \exists P \sqsubseteq A\}, \mathcal{A} = \{A(a), P(a, a')\}$ $\forall x \Big[(A(x) \rightarrow E_1P^-(x)) \land (E_1P^-(x) \rightarrow A(x)) \land (A(x) \rightarrow E_2P(x)) \land \neg E_2P^-(x) \land (E_1P(x) \rightarrow A(x)) \land (E_2P(x) \rightarrow E_1P(x)) \land (E_2P^-(x) \rightarrow E_1P^-(x))$ $\land (E_1P(x) \rightarrow E_1P^-(dp^-)) \land (E_1P^-(x) \rightarrow E_1P(dp)) \Big] \land A(a) \land E_1P(a) \land E_1P^-(a')$ $(\exists P)^T \neq \emptyset \text{ iff } (\exists P^-)^T \neq \emptyset$

 $(\exists P)^{\mathcal{I}} \neq \emptyset \quad \text{iff} \quad (\exists P^{-})^{\mathcal{I}} \neq \emptyset \\ (\exists x \ E_1 P(x) \leftrightarrow \exists x \ E_1 P^{-}(x))$

No fmp, but only **linear** number of (domain and range) witnesses needed

all points are in A , $\exists P^-$, $\geq 2\,P$

The DL-Lite family revisited

3D family $DL-Lite_{\alpha}^{\beta,\gamma}$

lpha concept inclusions

core: $B_1 \sqsubseteq B_2$, $B_1 \sqsubseteq \neg B_2$ Krom: $B_1 \sqsubseteq B_2$, $B_1 \sqsubseteq \neg B_2$, $\neg B_1 \sqsubseteq B_2$ Horn: $B_1 \sqcap \cdots \sqcap B_k \sqsubseteq B$ Bool: $C_1 \sqsubseteq C_2$

 β role inclusions

 \mathcal{R} : $R_1 \sqsubseteq R_2$

: not allowed

 γ number restrictions

: only $\exists R$

 $\mathcal{F}:\ \exists R \ ext{and}\ \geq 2\,R\sqsubseteq ot$ (functionality constraints)

 $\mathcal{N}: \ \geq q \, R$

+ 4th dimension: unique name assumption

UNA:
$$a_i^{\mathcal{I}} \neq a_j^{\mathcal{I}}$$
 for all $i \neq j$

The DL-Lite family: complexity-scape

Unique Name Assumption (UNA)

Theorem The satisfiability problem for $DL-Lite_{core}^{\mathcal{F}}$ (functionality only) KBs is **P**-complete for data complexity

$$\underbrace{\text{Proof}}_{k=1} \quad \varphi = \bigwedge_{k=1}^{n} (a_{k,1} \wedge a_{k,2} \to a_{k,3}) \wedge \bigwedge_{l=1}^{p} a_{l,0} \quad (\text{a Horn-3CNF formula})$$

$$\underbrace{\text{each } a_{k,j} \text{ and each } a_{l,0} \text{ is one of the propositional variables } a_1, \dots, a_m$$

$$\underbrace{a_{k,1}, a_{k,2}, a_{k,3} \text{ are all distinct}}_{k=1}$$

P-complete problem ` $\varphi \models a_j$?

$$\mathcal{T}: \geq 2 \, P \sqsubseteq \bot, \quad \geq 2 \, Q \sqsubseteq \bot, \quad \geq 2 \, S \sqsubseteq \bot, \quad \geq 2 \, T \sqsubseteq \bot$$

object names t , a_i^k , f_k , g_k , for $1 \leq k \leq n$, $1 \leq i \leq m$

NB: P-completeness means that it is not FO-rewritable (in fact, it's FO + LFP)

FO-rewritability = in AC^0 (rather than in LOGSPACE)

FO-rewritability:

given a query $q(\vec{a})$ and a TBox \mathcal{T} one can construct a query $q_{\mathcal{T}}(\vec{x})$ such that

 $(\mathcal{T},\mathcal{A})\models q(ec{a})$ iff $\mathfrak{A}_{\mathcal{A}}\models q_{\mathcal{T}}(ec{a})$,

where $\mathfrak{A}_{\mathcal{A}}$ is the first-order model induced by \mathcal{A}

Fact Model checking in FOL (evaluating a FO-formula) is in AC⁰ for data complexity

circuit = DAG built from <u>unbounded</u> fan-in AND, OR and NOT gates

AC⁰ is the class of problems definable using a family of circuits of **constant depth** and **polynomial size**, which can be generated by a deterministic Turing machine in logarithmic time (in the size of the input) LOGTIME-uniformity

i.e., AC⁰ stands for polynomially many processors with the constant run-time

NB: PARITY is in LOGSPACE but not in AC⁰

(Immerman 1989, Dawar *et al* 1998) $AC^0 = FO + BIT(x,y)$

Theorem Without the UNA, instance checking in *DL-Lite_{core}* with equalities ($a \approx b$) is LOGSPACE-complete for data complexity (in particular, not FO-rewritable) Free University of Bozen-Bolzano, 8.04.09 8

Delicate balance: either numbers restrictions or role inclusions

 $DL-Lite_{core}^{\mathcal{F}}$ (i.e., $B_1 \sqsubseteq B_2, B_1 \sqsubseteq \neg B_2$) is **NLogSpace**-complete for combined complexity and in **AC**⁰ for data complexity (under the UNA)

 $DL-Lite_{core}^{\mathcal{R},\mathcal{F}}$ ($DL-Lite_{core}^{\mathcal{F}} + R_1 \sqsubseteq R_2$) is **ExpTime**-complete for combined complexity and **P**-complete for data complexity

Example 1: $A_1 \sqcap A_2 \sqsubseteq C$ can be simulated by the axioms:

Delicate balance: either numbers restrictions or role inclusions (2)

 $DL-Lite_{core}^{\mathcal{R},\mathcal{F}}$ ($DL-Lite_{core}^{\mathcal{F}} + R_1 \sqsubseteq R_2$) is **ExpTime**-complete for combined complexity and **P**-complete for data complexity

Example 2: $A \sqsubseteq \exists R.B$ can be simulated by the axioms:

 $A \sqsubseteq \exists R_B$ $R_B \sqsubseteq R$ $\exists R_B^- \sqsubseteq C$

Example 3: $A \sqsubseteq \forall R.B$ can be simulated by using reification:

$$\begin{array}{c} R \\ & & & \\ & & \\ \geq 2 \, S_k \sqsubseteq \bot, \quad S_{k,B} \sqsubseteq S_k \quad \text{and} \quad S_{k,\neg B} \sqsubseteq S_k, \quad \text{for } k = 1,2 \\ & \exists S_{1,B} \equiv \exists S_{2,B} \quad \text{and} \quad \exists S_{1,\neg B} \equiv \exists S_{2,\neg B} \\ & \exists S_2 \sqsubseteq \exists S_{2,B} \sqcup \exists S_{2,\neg B} \\ & \exists S_{2,B}^- \sqsubseteq B \quad \text{and} \quad \exists S_{2,\neg B}^- \sqsubseteq \neg B \\ & A \sqsubseteq \neg \exists S_{1,\neg B}^- \end{array}$$

$DL-Lite_{\alpha}^{(\mathcal{RN})}$: pushing the limits of DL-Lite

role inclusions + number restrictions

(like in *DL-Lite*_A)

if R has a proper sub-role in \mathcal{T} then \mathcal{T} contains no *negative occurrences* of $\geq q R$ or $\geq q$ *inv*(R) with $q \geq 2$

• positive occurrences of qualified number restrictions $\geq q R.C$

 $\begin{array}{l} \text{if } \geq q \ R.C \ \text{occurs in } \mathcal{T} \ \text{then } \mathcal{T} \ \text{contains} \\ \text{ no } \textit{negative occurrences of } \geq q' \ R \ \text{or} \geq q' \ \textit{inv}(R) \ \text{with } q' \geq 2 \end{array}$

no TBox can contain both a functionality constraint $\geq 2\,R \sqsubseteq \perp$ and $\geq q\,R.C$, for any $q \geq 1$

role disjointness, symmetry, asymmetry, reflexivity and irreflexivity constraints

all these extensions do not change the complexity in particular, $\textit{DL-Lite}_{\alpha}^{(\mathcal{RN})}$ is the same as $\textit{DL-Lite}_{\alpha}^{\mathcal{N}}$

NB. transitive roles do not change the combined complexity (NLOGSPACE-hard for data complexity)

Publications

A. Artale, D. Calvanese, R. Kontchakov and M. Zakharyaschev.
 The DL-Lite Family and Relations. Technical Report BBKCS-09-03,
 School of Computer Science and Information Systems, Birkbeck, University of London.

[2] R. Kontchakov and M. Zakharyaschev. *DL-Lite and role inclusions*. In J. Domingue, Ch. Anutariya, editors, The Semantic Web, 3rd Asian Semantic Web Conference, ASWC 2008 (Bangkok, Thailand, December 8–11, 2008),

pp. 16–30, LNCS, vol. 5367, Springer 2008.

[3] A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov and M. Zakharyaschev. *Reasoning over Extended ER models*.

In C. Parent, K.-D. Schewe and V. C. Storey, editors, ER 2007 Conference Proceedings (Auckland, New Zealand, November 5–9, 2007), LNCS vol. 4801,

pp. 277–292. Springer, 2007.

[4] A. Artale, D. Calvanese, R. Kontchakov and M. Zakharyaschev. *DL-Lite in the Light of First-Order Logic*.
In Proceedings of the 22nd AAAI Conference on Artificial Intelligence (Vancouver, British Columbia, July 22-26, 2007), pp. 361–366. AAAI Press, 2007.