The DL-Lite Family

and Relations

Roman Kontchakov

School of Computer Science and Information Systems, Birkbeck, London

```
http://www.dcs.bbk.ac.uk/~roman
```

joint work with
Alessandro Artale, Diego Calvanese
and Michael Zakharyaschev

Motivating example: DL for Conceptual Modelling

Translating into DL:

TopManager \sqsubseteq Manager
AreaManager $\sqsubseteq \neg$ TopManager
Manager \sqsubseteq AreaManager \sqcup TopManager
Employee $\sqsubseteq \exists$ salary. \top
\exists salary ${ }^{-} . \top \sqsubseteq$ Integer
≥ 2 salary. ${ }^{\top} \sqsubseteq \perp$
Project $\sqsubseteq \geq \mathbf{3}$ worksOn ${ }^{-}$.T
$\mathrm{CEO} \sqcap(\geq \mathbf{5}$ worksOn.T) $\sqcap \exists$ manages. $T \sqsubseteq \perp$
manages \sqsubseteq worksOn

> DL-Lite!

The DL-Lite family

1. DL-Lite bool

$$
\begin{array}{lllll}
R & ::=P & P^{-} \\
B & ::=\perp & A & \geq q R \\
C & ::=B & \neg C & C_{1} \sqcap C_{2}
\end{array}
$$

TBox axioms $\quad C_{1} \sqsubseteq C_{2}$
2. DL-Lite horn

TBox axioms $\quad B_{1} \sqcap \cdots \sqcap B_{n} \sqsubseteq B$
combined complexity: P data comp. instance: in $A C^{0}$ data comp. query: in AC^{0}
3. DL-Lite ${ }_{\text {krom }}^{\mathcal{N}}$

TBox axioms $\quad B_{1} \sqsubseteq B_{2} \quad B_{1} \sqsubseteq \neg B_{2} \quad \neg B_{1} \sqsubseteq B_{2}$ comb. comp.: NLOGSPACE d.c. instance: in $A C^{0}$ d.c. query: coNP
4. DL-Lite $e_{\text {core }}^{\mathcal{N}}=D L$-Lite horn $_{\mathcal{N}}^{\mathcal{N}} \cap D L$-Lite $e_{\text {krom }}^{\mathcal{N}}$
comb. comp.: NLOGSPACE d.c. instance: in A^{0}
d.c. query: in AC^{0}

NB: complexity by embedding in the 1-variable fragments of FOL
NB: in AC^{0} informally means 'as effective as relational databases', i.e., FO-rewritable
NB: UNA is essential for encoding number restrictions

Embedding DL-Lite into FOL

Theorem The satisfiability problem for DL-Lite $\mathcal{E}_{\text {bool }}^{\mathcal{N}}$ knowledge bases is NP-complete
Proof by embedding into the 1 -variable fragment of first-order logic

$$
\left.\begin{array}{r}
\mathcal{T}=\left\{A \sqsubseteq \exists P^{-}, \exists P^{-} \sqsubseteq A, A \sqsubseteq \geq 2 P, \top \sqsubseteq \leq 1 P^{-}, \exists P \sqsubseteq A\right\}, \mathcal{A}=\left\{A(a), P\left(a, a^{\prime}\right)\right\} \\
\forall x\left[\left(A(x) \rightarrow E_{1} P^{-}(x)\right) \wedge\left(E_{1} P^{-}(x) \rightarrow A(x)\right) \wedge\left(A(x) \rightarrow E_{2} P(x)\right) \wedge \neg E_{2} P^{-}(x) \wedge\left(E_{1} P(x) \rightarrow A(x)\right)\right. \\
\wedge\left(E_{2} P(x) \rightarrow E_{1} P(x)\right) \wedge\left(E_{2} P^{-}(x) \rightarrow E_{1} P^{-}(x)\right)
\end{array}\right] \begin{aligned}
& \left.\wedge\left(E_{1} P(x) \rightarrow E_{1} P^{-}\left(d p^{-}\right)\right) \wedge\left(E_{1} P^{-}(x) \rightarrow E_{1} P(d p)\right)\right] \wedge A(a) \wedge E_{1} P(a) \wedge E_{1} P^{-}\left(a^{\prime}\right) \\
& \text { all points are in } A, \exists P^{-}, \geq 2 P r P^{(\exists P)^{\mathcal{I}} \neq \emptyset \text { iff }\left(\exists P^{-}\right)^{\mathcal{I}} \neq \emptyset} \begin{array}{l}
\left(\exists x E_{1} P(x) \leftrightarrow \exists x E_{1} P^{-}(x)\right)
\end{array}
\end{aligned}
$$

No fmp,
but only linear number of (domain and range) witnesses needed!

The DL-Lite family revisited

3D family DL-Lite $\boldsymbol{\alpha}_{\alpha}^{\boldsymbol{\beta}, \gamma}$
a concept inclusions

$$
\begin{array}{ll}
\text { core: } & B_{1} \sqsubseteq B_{2}, B_{1} \sqsubseteq \neg B_{2} \\
\text { Krom: } & B_{1} \sqsubseteq B_{2}, B_{1} \sqsubseteq \neg B_{2}, \neg B_{1} \sqsubseteq B_{2} \\
\text { Horn: } & B_{1} \sqcap \cdots \sqcap B_{k} \sqsubseteq B \\
\text { Bool: } & C_{1} \sqsubseteq C_{2}
\end{array}
$$

β role inclusions

$$
\mathcal{R}: \quad \boldsymbol{R}_{1} \sqsubseteq \boldsymbol{R}_{\mathbf{2}}
$$

: not allowed
γ number restrictions

$$
\begin{aligned}
: & \text { only } \exists \boldsymbol{R} \\
\mathcal{F}: & \exists \boldsymbol{R} \text { and } \geq 2 \boldsymbol{R} \sqsubseteq \perp \text { (functionality constraints) } \\
\mathcal{N}: & \geq \boldsymbol{q} \boldsymbol{R}
\end{aligned}
$$

+4th dimension: unique name assumption UNA: $a_{i}^{\mathcal{I}} \neq \boldsymbol{a}_{j}^{\mathcal{I}}$ for all $i \neq j$

The DL-Lite family: complexity-scape

with/without UNA role inclusions
no UNA no role inclusions

UNA
no role inclusions

coNP = instance checking

Unique Name Assumption (UNA)

Theorem The satisfiability problem for D L-Lite $e_{\text {core }}^{\mathcal{F}}$ (functionality only) KBs is P-complete for data complexity

Proof

$$
\varphi=\bigwedge_{k=1}^{n}\left(a_{k, 1} \wedge a_{k, 2} \rightarrow a_{k, 3}\right) \wedge \bigwedge_{l=1}^{p} a_{l, 0} \quad \text { (a Horn-3CNF formula) }
$$ $a_{k, 1}, a_{k, 2}, a_{k, 3}$ are all distinct.

P-complete problem ' $\varphi \models a_{j}$?'
$\mathcal{T}: \quad \geq 2 P \sqsubseteq \perp, \quad \geq 2 Q \sqsubseteq \perp, \quad \geq 2 S \sqsubseteq \perp, \quad \geq 2 T \sqsubseteq \perp$ object names $t, a_{i}^{k}, f_{k}, g_{k}$, for $1 \leq k \leq n, 1 \leq i \leq m$
$\mathcal{A}:$

$$
\begin{array}{ll}
S\left(a_{i}^{1}, a_{i}^{2}\right), \ldots, S\left(a_{i}^{n-1}, a_{i}^{n}\right), S\left(a_{i}^{n}, a_{i}^{1}\right), & \text { for } 1 \leq i \leq m \\
P\left(a_{k, 1}^{k}, f_{k}\right), \quad P\left(a_{k, 2}^{k}, g_{k}\right), Q\left(g_{k}, a_{k, 3}^{k}\right), \quad Q\left(f_{k}, a_{k, 1}^{k}\right), & \text { for } 1 \leq k \leq n \\
T\left(t, a_{l, 0}^{1}\right), & \text { for } 1 \leq l \leq p
\end{array}
$$

$$
\varphi \models a_{j} \quad \text { iff } \quad(\mathcal{T}, \mathcal{A}) \models T\left(t, a_{j}^{1}\right) \quad \text { (without the UNA) }
$$

NB: P-completeness means that it is not FO-rewritable (in fact, it's FO + LFP)

FO-rewritability $=$ in AC^{0} (rather than in LogSpace)

FO-rewritability:
given a query $\boldsymbol{q}(\vec{a})$ and a TBox \mathcal{T} one can construct a query $\boldsymbol{q}_{\mathcal{T}}(\vec{x})$ such that

$$
(\mathcal{T}, \mathcal{A}) \models q(\vec{a}) \quad \text { iff } \quad \mathfrak{A}_{\mathcal{A}} \models q_{\mathcal{T}}(\vec{a}),
$$

where $\mathfrak{A}_{\mathcal{A}}$ is the first-order model induced by \mathcal{A}
Fact Model checking in FOL (evaluating a FO-formula) is in AC^{0} for data complexity
circuit = DAG built from unbounded fan-in And, Or and Not gates
$A C^{0}$ is the class of problems definable using a family of circuits of constant depth and polynomial size, which can be generated by a deterministic Turing machine in logarithmic time

> (in the size of the input) LOGTIME-uniformity
i.e., AC^{0} stands for polynomially many processors with the constant run-time

NB: Parity is in LogSpace but not in AC ${ }^{0}$
(Immerman 1989, Dawar et al 1998) AC ${ }^{0}=\mathrm{FO}+\mathrm{BIT}(\mathrm{x}, \mathrm{y})$
Theorem Without the UNA, instance checking in DL-Lite core with equalities ($a \approx b$)
is LOGSPACE-Complete for data complexity (in particular, not FO-rewritable)

Delicate balance: either numbers restrictions or role inclusions

DL-Lite $\underset{\text { core }}{\mathcal{F}}$ (i.e., $\boldsymbol{B}_{1} \sqsubseteq \boldsymbol{B}_{2}, \boldsymbol{B}_{1} \sqsubseteq \neg \boldsymbol{B}_{\mathbf{2}}$) is NLogSpace-complete for combined complexity and in $A C^{0}$ for data complexity (under the UNA)

> DL-Lite $\underset{\text { core }}{\mathcal{R}, \mathcal{F}}\left(\right.$ LL-Lite core $+\boldsymbol{R}_{1} \sqsubseteq \boldsymbol{R}_{2}$) is ExpTime-complete for combined complexity and P-complete for data complexity

Example 1: $\quad \boldsymbol{A}_{\boldsymbol{1}} \sqcap \boldsymbol{A}_{\mathbf{2}} \sqsubseteq \boldsymbol{C}$ can be simulated by the axioms:

$$
\begin{aligned}
A_{1} & \sqsubseteq \exists R_{1} & A_{2} & \sqsubseteq \exists \boldsymbol{R}_{2} \\
\boldsymbol{R}_{1} & \sqsubseteq \boldsymbol{R}_{12} & R_{2} & \sqsubseteq \boldsymbol{R}_{12} \\
\geq \mathbf{2 ~} \boldsymbol{R}_{12} & \sqsubseteq \perp & & \\
\exists \boldsymbol{R}_{1}^{-} & \sqsubseteq \exists R_{3}^{-} & & \\
\exists \boldsymbol{R}_{3} & \sqsubseteq C & R_{2} & \sqsubseteq R_{23} \\
\boldsymbol{R}_{3} & \sqsubseteq \boldsymbol{R}_{23} & & \\
\geq \mathbf{2 ~} \boldsymbol{R}_{23}^{-} & \sqsubseteq \perp & &
\end{aligned}
$$

Delicate balance: either numbers restrictions or role inclusions (2)

DL-Lite ${ }_{\text {core }}^{\mathcal{R}, \mathcal{F}}\left(D L\right.$-Lite ${ }_{\text {core }}^{\mathcal{F}}+\boldsymbol{R}_{1} \sqsubseteq \boldsymbol{R}_{\mathbf{2}}$) is ExpTime-complete for combined complexity and P -complete for data complexity

Example 2: $\boldsymbol{A} \sqsubseteq \exists \boldsymbol{R} . \boldsymbol{B}$ can be simulated by the axioms:

$$
A \sqsubseteq \exists R_{B} \quad R_{B} \sqsubseteq R \quad \exists R_{B}^{-} \sqsubseteq C
$$

Example 3: $\boldsymbol{A} \sqsubseteq \forall \boldsymbol{R} . \boldsymbol{B}$ can be simulated by using reification:

$$
\begin{gathered}
\geq 2 S_{k} \sqsubseteq \perp, \quad S_{k, B} \sqsubseteq S_{k} \quad \text { and } \quad S_{k, \neg B} \sqsubseteq S_{k} \quad \text { for } k=1,2 \\
\exists S_{1, B} \equiv \exists S_{2, B} \quad \text { and } \quad \exists S_{1, \neg B} \equiv \exists S_{2, \neg B} \\
\exists S_{2} \sqsubseteq \exists S_{2, B} \sqcup \exists S_{2, \neg B} \\
\exists S_{2, B}^{-} \sqsubseteq B \quad \text { and } \exists S_{2, \neg B}^{-} \sqsubseteq \neg B \\
A \sqsubseteq \neg \exists S_{1, \neg B}^{-}
\end{gathered}
$$

DL-Lite ${ }_{\alpha}^{(\mathcal{R N})}$: pushing the limits of DL-Lite

- role inclusions + number restrictions
(like in $D L_{-L i t e}^{\mathcal{A}}$)
if \boldsymbol{R} has a proper sub-role in \mathcal{T} then \mathcal{T} contains no negative occurrences of $\geq \boldsymbol{q} \boldsymbol{R}$ or $\geq \boldsymbol{q} \operatorname{inv}(\boldsymbol{R})$ with $\boldsymbol{q} \geq \mathbf{2}$
- positive occurrences of qualified number restrictions $\geq \boldsymbol{q} \boldsymbol{R} . \boldsymbol{C}$
if $\geq \boldsymbol{q} \boldsymbol{R} . \boldsymbol{C}$ occurs in \mathcal{T} then \mathcal{T} contains no negative occurrences of $\geq \boldsymbol{q}^{\prime} R$ or $\geq \boldsymbol{q}^{\prime} \operatorname{inv}(\boldsymbol{R})$ with $\boldsymbol{q}^{\prime} \geq \mathbf{2}$
no TBox can contain both a functionality constraint $\geq \mathbf{2 R} \sqsubseteq \perp$ and $\geq q R$. C, for any $q \geq 1$
- role disjointness, symmetry, asymmetry, reflexivity and irreflexivity constraints
all these extensions do not change the complexity
in particular, $D L$-Lite ${ }_{\alpha}^{(\mathcal{R N})}$ is the same as DL-Lite ${ }_{\alpha}^{\mathcal{N}}$

NB. transitive roles do not change the combined complexity
(NLOGSPACE-hard for data complexity)

Publications

[1] A. Artale, D. Calvanese, R. Kontchakov and M. Zakharyaschev.
The DL-Lite Family and Relations. Technical Report BBKCS-09-03,
School of Computer Science and Information Systems, Birkbeck, University of London.
[2] R. Kontchakov and M. Zakharyaschev. DL-Lite and role inclusions.
In J. Domingue, Ch. Anutariya, editors, The Semantic Web, 3rd Asian Semantic Web Conference, ASWC 2008 (Bangkok, Thailand, December 8-11, 2008), pp. 16-30, LNCS, vol. 5367, Springer 2008.
[3] A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov and M. Zakharyaschev.
Reasoning over Extended ER models.
In C. Parent, K.-D. Schewe and V. C. Storey, editors, ER 2007 Conference Proceedings (Auckland, New Zealand, November 5-9, 2007), LNCS vol. 4801,
pp. 277-292. Springer, 2007.
[4] A. Artale, D. Calvanese, R. Kontchakov and M. Zakharyaschev.
DL-Lite in the Light of First-Order Logic.
In Proceedings of the 22nd AAAI Conference on Artificial Intelligence
(Vancouver, British Columbia, July 22-26, 2007), pp. 361-366. AAAI Press, 2007.

