The Combined Approach to Query Answering in DL-Lite

Roman Kontchakov

Department of Computer Science and Inf. Systems, Birkbeck College, London

```
http://www.dcs.bbk.ac.uk/~roman
```

joint work with
Carsten Lutz, David Toman,
Frank Wolter and Michael Zakharyaschev

Pure Query Rewriting

`DL-Lite family includes the first DLs specifically tailored for effective query answering over large amounts of instances.'
D. Calvanese et al., 2007
effective $=$ in AC^{0} for data complexity

Pure Query Rewriting：an Example of PerfectRef

```
q(x)\leftarrow TeachesTo (x, y), HasTutor (y,z)
    Student }\sqsubseteq\exists\exists\mathrm{ HasTutor }\operatorname{HasTutor (}\mp@subsup{\boldsymbol{x}}{\boldsymbol{1}}{},\mp@subsup{\boldsymbol{y}}{1}{})\leftarrow\operatorname{Student}(\mp@subsup{\boldsymbol{x}}{\boldsymbol{1}}{}
q(x)}\leftarrow\mathrm{ TeachesTo (x,y), Student(y)
    \existsTeachesTo-}\sqsubseteq\Student Student (\mp@subsup{\boldsymbol{x}}{2}{})\leftarrowTeachesTO (\mp@subsup{\boldsymbol{y}}{2}{},\mp@subsup{\boldsymbol{x}}{2}{}
q(x)\leftarrow TeachesTo (x,y),TeachesTo ( }\mp@subsup{x}{2}{},y
                                    unification
q(x)\leftarrow TeachesTo(x,y)
                            Professor }\sqsubseteq\exists\mathrm{ TeachesTo TeachesTo (x, 利, 踓)}\leftarrow\operatorname{Professor (}\mp@subsup{\boldsymbol{x}}{\boldsymbol{3}}{}
q(x)}\leftarrow\operatorname{Professor (x)
\existsHasTutor}\mp@subsup{}{}{-}\sqsubseteq\mathrm{ Professor Professor ( }\mp@subsup{\boldsymbol{x}}{\boldsymbol{4}}{})\leftarrow\operatorname{HasTutor (}\mp@subsup{\boldsymbol{y}}{4}{},\mp@subsup{\boldsymbol{x}}{4}{}
q(x)}\leftarrowHasTutor ( ( y , x)
```

Intuitive!

NB．what if Student has many subclasses？ヨTeachesTo？
$\mathcal{O}\left((|\mathcal{T}| \cdot|\boldsymbol{q}|)^{|q|}\right)$ subqueries

Combined Approach in $\mathcal{E L}$

(Lutz, Toman \& Wolter, 2008)
query answering in $\mathcal{E L}$ is PTime-complete for data complexity

\mathcal{A}^{\prime} is computed in polytime in \mathcal{A} and only when \mathcal{A} is updated

Variants of DL-Lite

TBox concept inclusions

$$
\begin{array}{ll}
\text { DL-Lite } \text { horn: }_{\mathcal{N}} & C_{1} \sqcap \cdots \sqcap C_{n} \sqsubseteq C \\
\text { DL-Lite } & \text { core: }
\end{array} C_{1} \sqsubseteq C_{2}, \quad C_{1} \sqsubseteq \neg C_{2}
$$

ABox assertions: $C(a), \quad R(a, b)$

$$
\begin{aligned}
& \text { DL-Lite }{ }_{\alpha}^{\mathcal{F}}=D \text { L-Lite }{ }_{\alpha}^{\mathcal{N}} \text { with } \exists R \text { and } \geq 2 R \sqsubseteq \perp \text { only } \\
& D L \text {-Lite }{ }_{\alpha}^{(\mathcal{H N})}=D L \text {-Lite } \alpha_{\alpha}^{\mathcal{N}} \text { with (restricted) role inclusions, } \\
& \text { role disjointness, etc. } \\
& D L \text {-Lite }{ }_{\alpha}^{(\mathcal{H F})}=D L \text {-Lite }{ }_{\alpha}^{\mathcal{F}} \text { with (restricted) role inclusions, } \begin{array}{c}
\text { role disjointness, etc. } \\
\text { roser }
\end{array}
\end{aligned}
$$

In all these languages, answering positive existential queries (under UNA) is in AC^{0} for data complexity
positive existential formulas are built from $\boldsymbol{A}(\boldsymbol{x})$ and $\boldsymbol{R}(\boldsymbol{x}, \boldsymbol{y})$ using \exists, \wedge and \vee

ABox Expansion in DL-Lite

canonical interpretation $\mathcal{I}_{\mathcal{K}}$:

$\Delta^{\mathcal{I}}=\operatorname{Ind}(\mathcal{A}) \cup\left\{c_{\boldsymbol{R}} \mid \boldsymbol{R}\right.$ is generating in $\left.\mathcal{K}\right\}$

$$
\begin{aligned}
& \boldsymbol{a} \leadsto \boldsymbol{c}_{\boldsymbol{R}_{1}} \leadsto \cdots \leadsto \boldsymbol{c}_{\boldsymbol{R}_{n}} \quad \boldsymbol{R}_{n} \text { is generating } \\
& \mathcal{K} \models \exists \boldsymbol{R}_{1}(a) \text { but } \boldsymbol{R}_{1}(\boldsymbol{a}, \boldsymbol{b}) \notin \mathcal{A} \text { for all } b \in \operatorname{lnd}(\mathcal{A}) \\
& \mathcal{T} \models \exists \boldsymbol{R}_{i}^{-} \sqsubseteq \exists \boldsymbol{R}_{i+1} \quad \text { and } \boldsymbol{R}_{i}^{-} \neq \boldsymbol{R}_{i+1}
\end{aligned}
$$

$$
\begin{aligned}
& A^{\mathcal{I}_{\mathcal{K}}}=\{a \mid \mathcal{K} \models A(a)\} \cup\left\{c_{R} \mid \mathcal{T} \models \exists R^{-} \sqsubseteq A\right\} \\
& P^{\mathcal{I}_{\mathcal{K}}}=\{(a, b) \mid \boldsymbol{P}(a, b) \in \mathcal{A}\} \cup\left\{\left(d, c_{P}\right) \mid \boldsymbol{d} \leadsto c_{P}\right\} \cup\left\{\left(c_{P^{-}}, d\right) \mid d \sim c_{P^{-}}\right\}
\end{aligned}
$$

$\mathcal{I}_{\mathcal{K}}$ is not a model

$$
\mathcal{T}=\left\{A \sqsubseteq \exists P, \geq 2 P^{-} \sqsubseteq \perp\right\}, \mathcal{A}=\{A(a), A(b)\}
$$

$\mathcal{I}_{\mathcal{K}}$ does not give the right answers

$$
\begin{aligned}
& q=\exists v P(v, v), \quad \mathcal{T}=\left\{A \sqsubseteq \exists P, \exists P^{-} \sqsubseteq \exists P\right\}, \quad \mathcal{A}=\{A(a)\} \\
& q=\exists v_{2}\left(P\left(v_{1}, v_{2}\right) \wedge P\left(v_{3}, v_{2}\right)\right), \quad \mathcal{T}=\{A \sqsubseteq \exists P\}, \mathcal{A}=\{A(a), A(b)\}
\end{aligned}
$$

The unravelling $\mathcal{U}_{\mathcal{K}}$ is almost a (canonical) model of $\mathcal{I}_{\mathcal{K}}$ and does give the right answers

Query Rewriting for DL-Lite horn

we rewrite a given $\mathrm{CQ} \boldsymbol{q}$ into an FO query \boldsymbol{q}^{\dagger} such that

- answers to q in $\mathcal{U}_{\mathcal{K}}=$ answers to q^{\dagger} in $\mathcal{I}_{\mathcal{K}}$
- $\left|q^{\dagger}\right|=\mathcal{O}(|q| \cdot|\mathcal{T}|)$

$$
q^{\dagger}=\exists \vec{u}\left(\varphi \wedge \varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}\right)
$$

$$
\varphi_{1}=\bigwedge_{v \notin \vec{u} R \text { is a role in } \mathcal{T}}\left(v \neq c_{R}\right)
$$

`all answer variables must get ABox values'

NB. if φ_{1} is replaced with $\varphi_{1}^{\prime}=\bigwedge_{v \notin \vec{u}} \neg \operatorname{aux}(v)$, where aux is a new relation containing all c_{R}, then $\left|q^{\dagger}\right|=\mathcal{O}(|q|)$

Query Rewriting for DL-Lite ${ }_{\text {horn }}^{\mathcal{N}}$

- answers to \boldsymbol{q} in $\mathcal{U}_{\mathcal{K}}=$ answers to \boldsymbol{q}^{\dagger} in $\mathcal{I}_{\mathcal{K}}$
$\mathcal{U}_{\mathcal{K}}$ is a 'forest' model, so if t is matched to a non-ABox element then
a part of \boldsymbol{q} containing t must be homomorphically embeddable into a tree
a tree witness $f_{R, t}: \operatorname{term}(\boldsymbol{q}) \rightarrow\left(\mathbf{N}_{\mathbf{R}}^{-}\right)^{*} \quad$ (finite words over roles)
$-f_{R, t}(t)=\varepsilon$
- if $f_{R, t}(s)=\varepsilon$ and $\boldsymbol{R}\left(s, s^{\prime}\right) \in \boldsymbol{q}$ then $f_{R, t}\left(s^{\prime}\right)=\boldsymbol{R}$
- if $f_{R, t}(s)=w \cdot \boldsymbol{S}$ and $S^{\prime}\left(s, s^{\prime}\right) \in \boldsymbol{q}$ with $\boldsymbol{S}^{\prime} \neq \boldsymbol{S}^{-}$then $\boldsymbol{f}_{R, t}\left(s^{\prime}\right)=\boldsymbol{w} \cdot \boldsymbol{S} \cdot \boldsymbol{S}^{\prime}$
- if $f_{R, t}(s)=\boldsymbol{w} \cdot \boldsymbol{S}$ and $\boldsymbol{S}^{-}\left(s, s^{\prime}\right) \in \boldsymbol{q}$ then $\boldsymbol{f}_{R, t}\left(s^{\prime}\right)=\boldsymbol{w}$

$$
\begin{aligned}
& q=\exists v P(v, v): \quad f_{P, v} \text { does not exist } \\
& q=\exists v_{2}\left(P\left(v_{1}, v_{2}\right) \wedge P\left(v_{3}, v_{2}\right)\right): \quad P_{P, v_{1}}\left(v_{3}\right)=\varepsilon \\
& q=\exists t_{1} t_{2} t_{3} t_{4}\left(R\left(t_{1}, t_{2}\right) \wedge S\left(t_{2}, t_{3}\right) \wedge S\left(t_{4}, t_{3}\right)\right): \\
& \quad f_{R, t_{1}}\left(t_{2}\right)=R, \quad f_{R, t_{1}}\left(t_{1}\right)=\varepsilon, \quad f_{R, t_{1}}\left(t_{3}\right)=R \cdot S, \quad f_{R, t_{1}}\left(t_{4}\right)=R, \\
& \quad f_{S, t_{4}}\left(t_{3}\right)=S, \quad f_{S, t_{4}}\left(t_{4}\right)=\varepsilon, \quad f_{S, t_{4}}\left(t_{2}\right)=\varepsilon, \quad f_{S, t_{4}}\left(t_{1}\right) \text { is not defined }
\end{aligned}
$$

Query Rewriting for DL-Lite horn

$$
\varphi_{2}=\bigwedge_{\substack{R\left(t, t^{\prime}\right) \in q \\ f_{R, t} \text { does not exist }}}\left(t^{\prime} \neq c_{R}\right)
$$

if no tree witness exists then t cannot be mapped to a non-ABox element

$$
\varphi_{3}=\bigwedge_{\substack{R\left(t, t^{\prime}\right) \in q \\ f_{R, t} \text { exists }}}\left(\bigvee_{\substack{R\left(s, s^{\prime}\right) \in q \\ f_{R, t}(s)=\varepsilon}}\left(s^{\prime}=c_{R}\right) \quad \rightarrow \bigwedge_{\substack{f_{R, t}(s)=\varepsilon}}(s=t)\right)
$$

if both s and t are labelled with ε for role \boldsymbol{R} and s^{\prime} is mapped onto $\boldsymbol{c}_{\boldsymbol{R}}$, for $\boldsymbol{R}\left(s, s^{\prime}\right) \in \boldsymbol{q}$, then $s=t$

NB. in fact, $f_{R, t}(s)=\varepsilon$ induces an equivalence relation \equiv_{q}^{R}, and so, $\left|\varphi_{3}\right|=\mathcal{O}(|q|)$

Canonical Interpretation by FO Queries

regard the ABox as a relational instance and then define (domain-independent) FO-queries $q_{A}^{\mathcal{T}}(x)$ and $q_{P}^{\mathcal{T}}(x, y)$ constructing $\mathcal{I}_{\mathcal{K}}$ 1. for each concept C, define queries $\exp _{C}^{\mathcal{T}, j}(x)$: e.g.,

$$
\exp _{A}^{\mathcal{T}, 0}(x)=A(x) \quad \exp _{C}^{\tau_{C}^{, j, j+1}}(x)=\bigvee_{C_{1} \sqcap \ldots C_{n} \sqsubseteq C} \bigwedge_{1 \leq i \leq n} \exp _{C_{i}}^{\mathcal{T}^{, j}}(x)
$$

no more than $|\mathcal{T}|$ steps required
2. $q_{P}^{\mathcal{T}}(x, y)=P(x, y) \vee\left(\operatorname{gen}_{P}^{\mathcal{T}}(x) \wedge\left(y=c_{P}\right)\right) \vee\left(\operatorname{gen}_{P^{-}}^{\mathcal{T}}(y) \wedge\left(x=c_{P^{-}}\right)\right)$
3. $\boldsymbol{q}_{A}^{\mathcal{T}}(x)=\exp _{A}^{\mathcal{T}}(x) \wedge D(x), \quad$ where $D(x)=\bigwedge_{c_{R} \in N_{1}^{\tau}}\left(\left(x=c_{R}\right) \rightarrow \exists z \operatorname{gen}_{R}^{\mathcal{T}}(z)\right)$
such queries can be implemented as materialised views
(updates!)
Example: $\quad \mathrm{h}(\boldsymbol{x}, \boldsymbol{y})=\mathrm{h}(\boldsymbol{x}, \boldsymbol{y}) \vee \quad \mathrm{h}=$ hasTutor, $\mathrm{t}=$ teachesTo

$$
\left(\left(\exists y^{\prime} \mathrm{h}\left(x, y^{\prime}\right) \vee \mathrm{S}(x) \vee\left(x=c_{t}\right) \vee \exists y^{\prime} \dagger\left(y^{\prime}, x\right)\right) \wedge \neg \exists y^{\prime} \mathrm{h}\left(x, y^{\prime}\right) \wedge\left(y=c_{h}\right)\right) \vee
$$

$\exists z\left(\left(\exists y^{\prime} \dagger\left(z, y^{\prime}\right) \vee \mathrm{P}(z) \vee\left(z=c_{h}\right) \vee \exists y^{\prime} \mathrm{h}\left(y^{\prime}, z\right)\right) \wedge \neg \exists y^{\prime} \dagger\left(z, y^{\prime}\right) \wedge\left(x=c_{t}\right) \wedge\left(y=c_{h}\right)\right)$

Combining the two Rewriting Steps

- polynomial pure query rewriting for $D L-L i t e e_{\text {core }}^{\mathcal{F}}$ and even for $D L$-Lite $\mathcal{c o r e ~}_{\mathcal{N}}^{\mathcal{N}}$ (if the aggregation function COUNT is available) otherwise $\left|\exp _{\geq k R}^{\mathcal{T}, 0}(x)\right|=\mathcal{O}\left(k^{2}\right)$, which is exponential in \mathcal{T} if binary coding of \boldsymbol{k} is used

Example: $\quad q(x)=\left(x \neq c_{h}\right) \wedge\left(x \neq c_{t}\right) \wedge$

$$
\begin{aligned}
& \left(\dagger(\boldsymbol{x}, \boldsymbol{y}) \vee\left(\left(\mathrm{P}(\boldsymbol{x}) \vee \exists \boldsymbol{y}^{\prime} \mathrm{h}\left(\boldsymbol{y}^{\prime}, \boldsymbol{x}\right)\right) \wedge \neg \exists \boldsymbol{y}^{\prime} \dagger\left(\boldsymbol{x}, \boldsymbol{y}^{\prime}\right) \wedge\left(\boldsymbol{y}=\boldsymbol{c}_{t}\right)\right) \vee\right. \\
& \left.\quad \exists \boldsymbol{w}\left(\left(\mathrm{S}(\boldsymbol{w}) \vee \exists \boldsymbol{y}^{\prime} \dagger\left(\boldsymbol{y}^{\prime}, \boldsymbol{w}\right)\right) \wedge \neg \exists \boldsymbol{y}^{\prime} \mathrm{h}\left(\boldsymbol{w}, \boldsymbol{y}^{\prime}\right) \wedge\left(\boldsymbol{x}=\boldsymbol{c}_{\boldsymbol{h}}\right) \wedge\left(\boldsymbol{y}=\boldsymbol{c}_{t}\right)\right)\right) \wedge \\
& \left(\mathrm { h } (\boldsymbol { y } , \boldsymbol { z }) \vee \left(\left(\mathrm{S}(\boldsymbol{y}) \vee \exists{\left.\left.z^{\prime} \dagger\left(\boldsymbol{z}^{\prime}, \boldsymbol{y}\right)\right) \wedge \neg \exists \boldsymbol{z}^{\prime} \mathrm{h}\left(\boldsymbol{y}, \boldsymbol{z}^{\prime}\right) \wedge\left(\boldsymbol{z}=\boldsymbol{c}_{\boldsymbol{h}}\right)\right) \vee}^{\left.\quad \exists \boldsymbol{w}^{\prime}\left(\left(\mathrm{P}\left(\boldsymbol{w}^{\prime}\right) \vee \exists \boldsymbol{z}^{\prime} \mathrm{h}\left(\boldsymbol{z}^{\prime}, \boldsymbol{w}^{\prime}\right)\right) \wedge \neg \exists \boldsymbol{z}^{\prime} \dagger\left(\boldsymbol{w}^{\prime}, z^{\prime}\right) \wedge\left(\boldsymbol{y}=\boldsymbol{c}_{t}\right) \wedge\left(\boldsymbol{z}=\boldsymbol{c}_{\boldsymbol{h}}\right)\right)\right)}\right.\right.\right.
\end{aligned}
$$

which is equivalent to

$$
q(x)=\dagger(x, y) \vee \mathrm{P}(x) \vee \exists y^{\prime} \mathrm{h}\left(y^{\prime}, x\right)
$$

Other Applications of the Technique

- only exponential blowup for positive existential query answering in DL-Lite horn
- without the UNA, the technique is applicable to query answering in $D L$-Lite $e_{\text {hom }}^{(\mathcal{H})}$
(and this is P-complete for data complexity)
- experiments show that the approach is competitive
with executing the original query over the data
(the formulas $\varphi_{1}-\varphi_{3}$ introduce additional selection conditions on top of the original query)

Open Questions

- is the exponential blowup unavoidable for role inclusions?
- is the exponential blowup unavoidable for positive existential queries?
- are there other fragments with pure polynomial rewriting?
more at http://www.dcs.bbk.ac.uk/~roman/

