On dynamic topological and metric logics

Roman Kontchakov

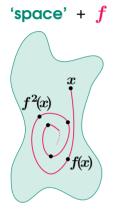
Department of Computer Science, King's College London

http://www.dcs.kcl.ac.uk/staff/romanvk

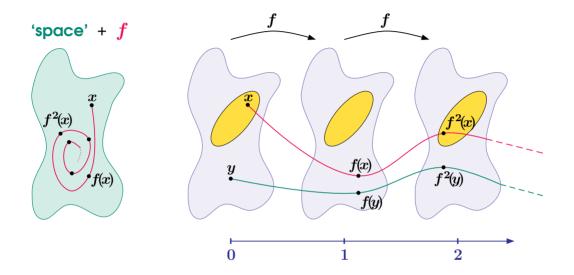
joint work with

Boris Konev, Frank Wolter and Michael Zakharyaschev

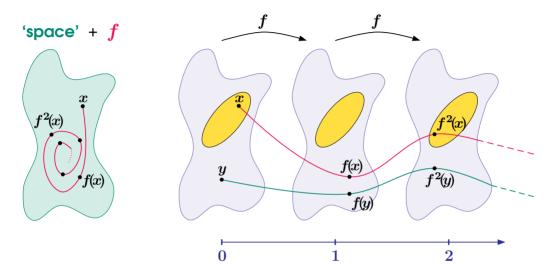
Dynamic systems



Dynamic systems



Dynamic systems



Temporal logic to describe and reason about behaviour of dynamic systems:

- variables p are interpreted by sets of points, i.e., point x is in p: $x \in p$
- x always stays in p: $x \in \Box_F p$
- x occurs in p infinitely often: $x \in \Box_F \diamondsuit_F p$

```
AiML 2004 11.09.04
```

Dynamic topological structure $\ \mathfrak{F} = \langle \mathfrak{T}, f
angle$

 $\mathfrak{T}=\langle T,\mathbb{I}
angle$ a topological space

T is the universe of $\mathfrak T$

 ${\mathbb I}$ is the interior operator on ${\mathfrak T}$

$$\mathbb{C} \quad \text{is the closure operator on } \mathfrak{T} \\ (\mathbb{C}X = -\mathbb{I} - X)$$

 $f\colon T o T$ a total continuous function

 $(X \text{ open} \Rightarrow f^{-1}(X) \text{ open})$

Dynamic topological structure $\ \mathfrak{F}=\langle\mathfrak{T},f
angle$ $\mathfrak{T}=\langle T,\mathbb{I}
angle$ a topological space

 $f\colon T o T$ a total continuous function

Dynamic topo-logic \mathcal{DTL}

- propositional variables p,q,\ldots
- the Booleans \neg , \land and \lor
- modal (topological) operators I and C
- temporal operators \bigcirc , \square_F and \diamondsuit_F

- T is the universe of $\mathfrak T$
- ${\mathbb I}$ is the interior operator on ${\mathfrak T}$
- $\mathbb{C} \quad \text{is the closure operator on } \mathfrak{T} \\ (\mathbb{C}X = -\mathbb{I} X)$

 $(X \text{ open} \Rightarrow f^{-1}(X) \text{ open})$

Dynamic topological structure $\mathfrak{F} = \langle \mathfrak{T}, f \rangle$ $\mathfrak{T} = \langle T, \mathbb{I}
angle$ a topological space T is the universe of \mathfrak{T} is the interior operator on ${\mathfrak T}$ Π $\mathbb C$ is the closure operator on $\mathfrak T$ $(\mathbb{C}X = -\mathbb{I} - X)$ $f: T \rightarrow T$ a total continuous function $(X \text{ open} \Rightarrow f^{-1}(X) \text{ open})$ Dynamic topo-logic \mathcal{DTL} \mathfrak{V} a valuation: subsets of Tpropositional variables p, q, \ldots the Booleans \neg , \land and \lor $-, \cap$ and \cup

- modal (topological) operators I and C
- temporal operators \bigcirc , \square_F and \diamondsuit_F

 $\mathfrak{V}(\bigcirc arphi) = f^{-1}(\mathfrak{V}(arphi))$

 \mathbb{I} and \mathbb{C}

Dynamic topological structure $\mathfrak{F} = \langle \mathfrak{T}, f \rangle$ $\mathfrak{T} = \langle T, \mathbb{I}
angle$ a topological space T is the universe of \mathfrak{T} is the interior operator on ${\mathfrak T}$ П $\mathbb C$ is the closure operator on $\mathfrak T$ $(\mathbb{C}X = -\mathbb{I} - X)$ $f\colon T o T$ a total continuous function $(X \text{ open} \Rightarrow f^{-1}(X) \text{ open})$ Dynamic topo-logic \mathcal{DTL} \mathfrak{V} a valuation: subsets of Tpropositional variables p, q, \ldots the Booleans \neg , \land and \lor $-, \cap$ and \cup modal (topological) operators I and C \mathbb{I} and \mathbb{C} $\mathfrak{V}(\bigcirc \varphi) = f^{-1}(\mathfrak{V}(\varphi))$ temporal operators \bigcirc , \square_F and \diamondsuit_F $\mathfrak{V}(\Box_F \varphi) = \bigcap^{\infty} f^{-n}(\mathfrak{V}(\varphi)) \quad \text{and} \quad \mathfrak{V}(\diamondsuit_F \varphi) = \bigcup^{\infty} f^{-n}(\mathfrak{V}(\varphi))$

Classes of dynamic topological structures

Topological spaces $\, \mathfrak{T} = \langle T, \mathbb{I}
angle \,$

- arbitrary topologies
- Aleksandrov: arbitrary (not only finite) intersections of open sets are open

— every Kripke frame $\mathfrak{G} = \langle U, R \rangle$, where R is a quasi-order,

induces the Aleksandrov topological space $\langle U, \mathbb{I}_{\mathfrak{G}} \rangle$:

 $\mathbb{I}_{\mathfrak{G}}X = \{x \in U \mid \forall y \ (xRy \to y \in X)\}$

- conversely, every Aleksandrov space is induced by a quasi-order

- Euclidean spaces \mathbb{R}^n , $n \geq 1$
- • •

Classes of dynamic topological structures

Topological spaces $\, \mathfrak{T} = \langle T, \mathbb{I}
angle \,$

- arbitrary topologies
- Aleksandrov: arbitrary (not only finite) intersections of open sets are open

— every Kripke frame $\mathfrak{G} = \langle U, R \rangle$, where R is a quasi-order,

induces the Aleksandrov topological space $\langle U, \mathbb{I}_{\mathfrak{G}} \rangle$:

 $\mathbb{I}_{\mathfrak{G}}X = \{x \in U \mid \forall y \ (xRy \to y \in X)\}$

- conversely, every Aleksandrov space is induced by a quasi-order

• Euclidean spaces \mathbb{R}^n , $n \geq 1$

• ...

<u>Functions</u> $f: T \to T$

- continuous
- homeomorphisms: continuous bijections with continuous inverses

• • • •

Known results

 \mathcal{DTL}_{\odot} — subset of \mathcal{DTL} containing **no** 'infinite' operators (\Box_F and \diamondsuit_F)

Artemov, Davoren & Nerode (1997): The two dynamic topo-logics $Log_{\langle \mathfrak{F}, f \rangle }$ and $Log_{\langle \mathfrak{F}, f \rangle } | \mathfrak{F}$ an Aleksandrov space} coincide, have the fmp, are finitely axiomatisable, and so decidable.

NB. $\text{Log}_{\bigcirc}\{\langle \mathfrak{F}, f \rangle\} \subseteq \text{Log}_{\bigcirc}\{\langle \mathbb{R}, f \rangle\}$ (Slavnov 2003, Kremer & Mints 2003)

Known results

 \mathcal{DTL}_{\odot} — subset of \mathcal{DTL} containing **no** 'infinite' operators (\Box_F and \diamondsuit_F)

Artemov, Davoren & Nerode (1997): The two dynamic topo-logics $Log_{\langle \mathfrak{F}, f \rangle }$ and $Log_{\langle \mathfrak{F}, f \rangle } | \mathfrak{F}$ an Aleksandrov space} coincide, have the fmp, are finitely axiomatisable, and so decidable.

NB. $\text{Log}_{\bigcirc}\{\langle \mathfrak{F}, f \rangle\} \subseteq \text{Log}_{\bigcirc}\{\langle \mathbb{R}, f \rangle\}$ (Slavnov 2003, Kremer & Mints 2003)

Kremer, Mints & Rybakov (1997): The three dynamic topo-logics

 $Log_{\bigcirc} \{ \langle \mathfrak{F}, f \rangle \mid f \text{ a homeomorphism} \}, \\ Log_{\bigcirc} \{ \langle \mathfrak{F}, f \rangle \mid \mathfrak{F} \text{ an Aleksandrov space, } f \text{ a homeomorphism} \}, \\ Log_{\bigcirc} \{ \langle \mathbb{R}, f \rangle \mid f \text{ a homeomorphism} \} \end{cases}$

coincide, have the fmp, are finitely axiomatisable, and so decidable.

Known results

 \mathcal{DTL}_{\odot} — subset of \mathcal{DTL} containing **no** 'infinite' operators (\Box_F and \diamondsuit_F)

Artemov, Davoren & Nerode (1997): The two dynamic topo-logics $Log_{\bigcirc}\{\langle \mathfrak{F}, f \rangle\}$ and $Log_{\bigcirc}\{\langle \mathfrak{F}, f \rangle \mid \mathfrak{F} \text{ an Aleksandrov space}\}$ coincide, have the fmp, are finitely axiomatisable, and so decidable.

NB. $\text{Log}_{\bigcirc}\{\langle \mathfrak{F}, f \rangle\} \subseteq \text{Log}_{\bigcirc}\{\langle \mathbb{R}, f \rangle\}$ (Slavnov 2003, Kremer & Mints 2003)

Kremer, Mints & Rybakov (1997): The three dynamic topo-logics

$$\begin{split} & \text{Log}_{\bigcirc}\{\langle\mathfrak{F},f\rangle\mid f \text{ a homeomorphism}\},\\ & \text{Log}_{\bigcirc}\{\langle\mathfrak{F},f\rangle\mid\mathfrak{F} \text{ an Aleksandrov space, } f \text{ a homeomorphism}\},\\ & \text{Log}_{\bigcirc}\{\langle\mathbb{R},f\rangle\mid f \text{ a homeomorphism}\} \end{split}$$

coincide, have the fmp, are finitely axiomatisable, and so decidable.

Open problem: axiomatisations and algorithmic properties of the full \mathcal{DTL} ?

Homeomorphisms: bad news

Theorem 1. No logic from the list below is recursively enumerable:

- Log $\{\langle \mathfrak{F}, f \rangle \mid f \text{ a homeomorphism} \}$,
- Log $\{\langle \mathfrak{F}, f \rangle \mid \mathfrak{F} \text{ an Aleksandrov space, } f \text{ a homeomorphism} \}$,
- Log $\{\langle \mathbb{R}^n, f \rangle \mid f$ a homeomorphism, $n \geq 1\}$.

Proof. By reduction of the undecidable but r.e. Post's Correspondence Problem to the satisfiability problem.

Homeomorphisms: bad news

Theorem 1. No logic from the list below is recursively enumerable:

- Log $\{\langle \mathfrak{F}, f \rangle \mid f \text{ a homeomorphism} \}$,
- Log $\{\langle \mathfrak{F}, f \rangle \mid \mathfrak{F} \text{ an Aleksandrov space, } f \text{ a homeomorphism} \}$,
- Log $\{\langle \mathbb{R}^n, f \rangle \mid f$ a homeomorphism, $n \geq 1\}$.

Proof. By reduction of the undecidable but r.e. Post's Correspondence Problem to the satisfiability problem.

NB. All these logics are different.

Continuous maps: some good news

Finite iterations:

- arbitrary finite flows of time
- finite change assumption (the system eventually stabilises)

Continuous maps: some good news

Finite iterations:

- arbitrary finite flows of time
- finite change assumption (the system eventually stabilises)

Theorem 2. The two topo-logics

Log^{*} { $\langle \mathfrak{F}, f \rangle$ } and Log^{*} { $\langle \mathfrak{F}, f \rangle | \mathfrak{F}$ an Aleksandrov space} coincide and are **decidable**, but **not in primitive recursive** time.

Proof. By Kruskal's tree theorem and reduction of the reachability problem for lossy channels.

Continuous maps: some good news

Finite iterations:

- arbitrary finite flows of time
- finite change assumption (the system eventually stabilises)

Theorem 2. The two topo-logics

Log^{*} { $\langle \mathfrak{F}, f \rangle$ } and Log^{*} { $\langle \mathfrak{F}, f \rangle$ | \mathfrak{F} an Aleksandrov space} coincide and are **decidable**, but **not in primitive recursive** time.

Proof. By Kruskal's tree theorem and reduction of the reachability problem for lossy channels.

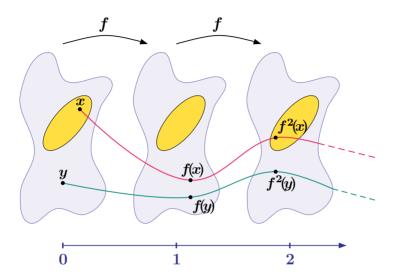
However:

Theorem 3. The two topo-logics

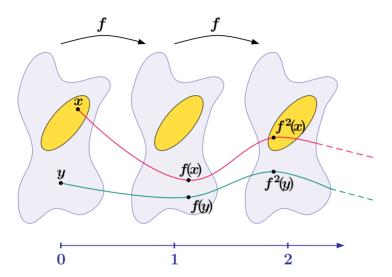
 $Log^* \{ \langle \mathfrak{F}, f \rangle \mid f \text{ a homeomorphism} \}$ and

Log^{*} { $\langle \mathfrak{F}, f \rangle | \mathfrak{F}$ an Aleksandrov space, f a homeomorphism} coincide but are **not recursively enumerable**.

Dynamics in metric spaces



Dynamics in metric spaces



A metric space $\mathfrak{D} = \langle W, d \rangle$, where $d: W \times W \to \mathbb{R}^+$ is a metric, induces the topological space $\mathfrak{T}_d = \langle W, \mathbb{I}_d \rangle$:

$$\mathbb{I}_d X = \{x \in W \mid \exists \delta > 0 \; \forall y \in W \; \left(d(x,y) < \delta \;
ightarrow \; y \in X) \}$$

Logics of metric spaces

 $\mathfrak{D} = \langle W, d
angle$ a metric space

- propositional variables p,q,\ldots
- the Booleans $\neg,\ \wedge \mbox{ and } \lor$
- interior I and closure C operators
- universal ∀ and existential ∃ modalities
- metric operators $\exists^{\leq a}$ and $\forall^{\leq a}$, for $a \in \mathbb{Q}^+$

Logics of metric spaces

$\mathfrak{D}=\langle W\!,d angle$ a metric space	${\mathfrak V}$ a valuation:	
• propositional variables p,q,\ldots	subsets of W	
• the Booleans \neg , \land and \lor	-, ∩ and ∪	
• interior I and closure C operators	$\mathbb{I}_{oldsymbol{d}}$ and $\mathbb{C}_{oldsymbol{d}}$	
 universal ∀ and existential ∃ modalities 		
• metric operators $\exists^{\leq a}$ and $\forall^{\leq a}$, for	r $a \in \mathbb{Q}^+$	
a $\mathfrak{V}(\exists^{\leq a} arphi) = \{x \in W$	$ \; \exists y \in \mathfrak{V}(arphi) \;$ such that $\; d(x,y)$	

 $\mathfrak{V}(\exists^{\leq a}\varphi) = \{x \in W \mid \exists y \in \mathfrak{V}(\varphi) \text{ such that } d(x,y) \leq a\}$

Logics of metric spaces

L	$\mathcal{O}=\langle W\!,d angle$ a metric space	${\mathfrak V}$ a valuation:
•	propositional variables $ p,q,\ldots$	subsets of W
•	the Booleans \neg , \land and \lor	$-, \cap$ and \cup
•	interior I and closure C operators	\mathbb{I}_d and \mathbb{C}_d
•	universal \forall and existential \exists modalities	5
•	metric operators $\exists^{\leq a}$ and $\forall^{\leq a}$, for $a\in$	\mathbb{Q}^+
	$\mathfrak{V}(\exists^{\leq a}\varphi) = \{x \in W \mid \exists y \in \mathfrak{V}(\varphi) \text{ such that } d(x,y) \leq a\}$	

 $\mathfrak{V}(orall^{\leq a}arphi)=\{x\in W\mid orall y\in \mathfrak{V}(arphi) ext{ such that } d(x,y)\leq a\}$

Wolter & Zakharyaschev (2004):

The set of valid \mathcal{MT} -formulas is **axiomatisable**.

The satisfiability of \mathcal{MT} -formulas is **EXPTIME-complete**.

Dynamic metric structure $\ \mathfrak{F} = \langle \mathfrak{D}, f angle$

 $\mathfrak{D} = \langle W, d
angle$ a metric space $f \colon W o W$ a metric automorphism (bijection, d(f(x), f(y)) = d(x, y))

Dynamic metric structure $\ \mathfrak{F} = \langle \mathfrak{D}, f
angle$

 $\mathfrak{D}=\langle W,d
angle$ a metric space $f\colon W o W$ a metric automorphism (bijection, d(f(x),f(y))=d(x,y))

Dynamic metric logic \mathcal{DML}

- propositional variables p,q,\ldots
- the Booleans \neg , \land and \lor
- modal (metric) operators $\exists^{\leq a}$ and $\forall^{\leq a}$, for $a \in \mathbb{Q}^+$
- interior I and closure C operators
- universal ∀ and existential ∃ modalities
- temporal operators \bigcirc , \square_F and \diamondsuit_F

Dynamic metric structure $\ \mathfrak{F} = \langle \mathfrak{D}, f
angle$

 $\mathfrak{D}=\langle W,d
angle$ a metric space $f\colon W o W$ a metric automorphism (bijection, d(f(x),f(y))=d(x,y))

Dynamic metric logic \mathcal{DML}

- propositional variables p,q,\ldots
- the Booleans \neg , \land and \lor
- modal (metric) operators $\exists^{\leq a}$ and $\forall^{\leq a}$, for $a \in \mathbb{Q}^+$
- interior I and closure C operators
- universal ∀ and existential ∃ modalities
- temporal operators \bigcirc , \square_F and \diamondsuit_F

Dynamic metric structure $\ \mathfrak{F} = \langle \mathfrak{D}, f
angle$

 $\mathfrak{D}=\langle W,d
angle$ a metric space $f\colon W o W$ a metric automorphism (bijection, d(f(x),f(y))=d(x,y))

Dynamic metric logic \mathcal{DML}

- propositional variables p, q, \ldots
- the Booleans \neg , \land and \lor
- modal (metric) operators $\exists^{\leq a}$ and $\forall^{\leq a}$, for $a \in \mathbb{Q}^+$
- interior I and closure C operators
- universal ∀ and existential ∃ modalities
- temporal operators \bigcirc , \square_F and \diamondsuit_F

Theorem 4. The set of valid \mathcal{DML} -formulas is **decidable**.

However, the decision problem is **not elementary**.

Proof. Quasimodels, reduction to monadic second-order logic and yardsticks.

Open problems and future research

The field still remains a big research challenge...

- Axiomatisation of decidable logics/fragments
- Various topological and metric spaces: Euclidean, compact, etc.
- functions: Lipschitz continuous, contracting maps, etc.
- Model checking

• . . .