Can you tell the difference between *DL-Lite* ontologies?

Roman Kontchakov

SCSIS, Birkbeck College, London

http://www.dcs.bbk.ac.uk/~roman

Frank Wolter and Michael Zakharyaschev

University of Liverpool Birkbeck College, London

Developing and maintaining ontologies

versions:

comparing logical consequences over some common vocabulary Σ not not the syntactic form of the axioms (as in diff)

• refinement:

adding new axioms but **preserving** the relationships

between terms of a certain part $\boldsymbol{\Sigma}$ of the vocabulary

• reuse:

importing an ontology and using its vocabulary Σ as originally defined (relationships between terms of Σ should not change)

new types of reasoning problems

related notions: conservative extensions, model conservativity, locality, etc.

$\boldsymbol{\Sigma}\text{-difference}$

Let \mathcal{T}_1 and \mathcal{T}_2 be TBoxes (in some DL \mathcal{L}) and Σ a signature (concept and role names) Σ -concept difference $\mathbf{CDiff}_{\Sigma}^{\mathcal{L}}(\mathcal{T}_1, \mathcal{T}_2)$ is the set of Σ -concept inclusions such that

 $\mathcal{T}_2 \models C \sqsubseteq D$ and $\mathcal{T}_1 \not\models C \sqsubseteq D$

 Σ -query difference $\mathsf{qDiff}_{\Sigma}^{\mathcal{L}}(\mathcal{T}_1,\mathcal{T}_2)$ is the set of pairs $(\mathcal{A},q(\vec{x}))$, where

 $\operatorname{sig}(\mathcal{A}), \operatorname{sig}(q) \subseteq \Sigma, \quad (\mathcal{T}_2, \mathcal{A}) \models q(\vec{a}) \text{ and } (\mathcal{T}_1, \mathcal{A}) \not\models q(\vec{a}), \text{ for some } \vec{a}$

strong Σ -query difference sqDiff $_{\Sigma}^{\mathcal{L}}(\mathcal{T}_1, \mathcal{T}_2)$ is the set of triples $(\mathcal{T}, \mathcal{A}, q(\vec{x}))$, where

 $\mathsf{sig}(\mathcal{T},\mathcal{A}),\mathsf{sig}(q)\subseteq \Sigma, \quad (\mathcal{T}_2\cup\mathcal{T},\mathcal{A})\models q(\vec{a}), \ (\mathcal{T}_1\cup\mathcal{T},\mathcal{A})
eq q(\vec{a}), ext{ for some } \vec{a}$

MODULES: replacing an ontology in a context T

 \mathcal{T}_1 and \mathcal{T}_2 are $\sum_{\substack{\text{-query}\\\text{strong query}}}^{\text{concept}}$ inseparable iff $\overset{\circ}{\underset{sq}{\circ}}$ Diff $(\mathcal{T}_1, \mathcal{T}_2) = \emptyset$ and $\overset{\circ}{\underset{sq}{\circ}}$ Diff $(\mathcal{T}_2, \mathcal{T}_1) = \emptyset$ - ExpTime for \mathcal{EL} , 2ExpTime for \mathcal{ALCQI} , undecidable for \mathcal{ALCQIO} + tractable for acyclic \mathcal{EL} (e.g., SNOMED)

KR 2008 Sydney 18.09.08

DL-Lite: Description Logic for Databases

Example

Let \mathcal{T}_1 contain the axioms

 $\mathcal{T}_2 = \mathcal{T}_1 \cup \{ \forall isiting \sqsubseteq \geq 2 \text{ writes} \} \text{ and } \Sigma = \{ \texttt{teaches} \}$

• T_1 and T_2 are Σ -concept inseparable (Σ -entailment in both directions) $T_2 \models \text{Visiting} \sqsubseteq \text{Academic, but nothing new in the signature } \Sigma$

$\Sigma\text{-inseparability}$ in <code>DL-Lite</code>

Theorem

(1) In *DL-Lite*_{bool}: Strong Σ -query insep. $\Leftrightarrow \Sigma$ -query inseparability $\Rightarrow \Sigma$ -concept inseparability In each case the problem is Π_2^p -complete

(2) In *DL-Lite_{horn}*:

Strong Σ -query insep. $\Rightarrow \Sigma$ -query inseparability $\Rightarrow \Sigma$ -concept inseparability In each case the problem is **coNP**-complete

(3) In *DL-Lite*bool:

 Σ -query entailment and Σ -concept entailment

can be encoded by Quantified Boolean Formulas $\forall \exists \psi$

Σ -entailment: semantic criteria

Let Q be a set of numerical parameters and Σ a signature

 ΣQ -concepts B: $A_i \in \Sigma$ and $(\geq q R)$ with $q \in Q$ and $R \in \Sigma$

 ΣQ -type t is a set of ΣQ -concepts containing

- $B \text{ or } \neg B$ (but not both), for all B
- $\geq q R$ whenever q < q' and $\geq q' R \in t$, for all $\geq q R$

For a TBox \mathcal{T} ,

a ΣQ -type t is \mathcal{T} -realisable if t is satisfied in a model of \mathcal{T} a set Ξ of ΣQ -types is precisely \mathcal{T} -realisable if there is a model of \mathcal{T} realising precisely the types from Ξ

Theorem. Let Q denote the set of parameters occurring in $\mathcal{T}_1 \cup \mathcal{T}_2$

 $\mathcal{T}_1 \Sigma$ -concept entails \mathcal{T}_2 iff every \mathcal{T}_1 -realisable ΣQ -type is \mathcal{T}_2 -realisable

 $\mathcal{T}_1 \Sigma$ -query entails \mathcal{T}_2 iff every precisely \mathcal{T}_1 -realisable set Ξ of ΣQ -types is precisely \mathcal{T}_2 -realisable

Encoding Σ -concept entailment in QBF

Let $\mathcal T$ be a TBox, Q a set of numerical parameters and t a $\operatorname{sig}(\mathcal T)Q$ -type

$$\mathbf{t}_0 \text{ is } \mathcal{T}\text{-realisable with } \mathbf{t}_1, \dots, \mathbf{t}_n \text{ being witnesses'} = \Phi_{\mathcal{T}}(b_0, b_1, \dots, b_n)$$

 b_j is the vector of all propositional variables B^* of the type $oldsymbol{t}_j$

Then the condition

'every \mathcal{T}_1 -realisable ΣQ -type \boldsymbol{t} is \mathcal{T}_2 -realisable'

is described by the following QBF

$$\forall b_0^{\Sigma Q} \Big[\exists b_0^{\mathcal{T}_2 \setminus \Sigma Q} \exists b_1^{\mathcal{T}_1} \dots \exists b_{n_1}^{\mathcal{T}_1} \ \Phi_{\mathcal{T}_1} (b_0^{\Sigma Q} \cdot b_0^{\mathcal{T}_1 \setminus \Sigma Q}, b_1^{\mathcal{T}_1}, \dots, b_{n_1}^{\mathcal{T}_1}) \rightarrow \\ \exists b_0^{\mathcal{T}_2 \setminus \Sigma Q} \exists b_1^{\mathcal{T}_2} \dots \exists b_{n_2}^{\mathcal{T}_2} \ \Phi_{\mathcal{T}_2} (b_0^{\Sigma Q} \cdot b_0^{\mathcal{T}_2 \setminus \Sigma Q}, b_1^{\mathcal{T}_2}, \dots, b_{n_2}^{\mathcal{T}_2}) \Big]$$

 $(b_0^{\Sigma Q}$ is the ΣQ -part of b_0 and $b_0^{\mathcal{T}_i \setminus \Sigma Q}$ contains the rest of the variables)

Experiments

TBox instances (standard Department Ontology + ICNARC)

		no. of	axioms		basic concepts		
series	description	instances	\mathcal{T}_1	\mathcal{T}_2	\mathcal{T}_1	\mathcal{T}_2	Σ
NN	\mathcal{T}_1 does not Σ -concept entail \mathcal{T}_2	420	59–154	74–198	47–121	49–146	5–52
YN	$\mathcal{T}_1 \Sigma$ -concept but not Σ -query entails \mathcal{T}_2	252	56–151	77–191	44–119	58–145	6–45
YY	\mathcal{T}_1 Σ -query entails \mathcal{T}_2	156	54–88	62–110	43–79	47–94	6–32

QBF solvers

- sKizzo 0.8.2 (http://skizzo.info/).
- 2clsQ (1st place QBF Competition 2006, http://www.cs.toronto.edu/~fbacchus/)
- yQuaffle (http://www.princeton.edu/~chaff/quaffle.html)
- QuBE 6.4 (http://www.star.dist.unige.it/)

	Σ -concept er	ntailment QBF	Σ -query entailment QBF			
series	variables	clauses	variables	clauses		
NN	1,469–11,752	2,391–18,277	1,715–15,174	5,763–163,936		
ΥN	1,460–11,318	2,352–17,424	1,755–14,723	7,006–151,452		
ΥY	1,526–4,146	2,200–6,079	1,510–4,946	5,121–29,120		

Experimental results: percentage of solved instances

Forgetting

studied under different names: forgetting, uniform interpolation, variable elimination...

A DL \mathcal{L} admits forgetting (has uniform interpolation) if, for every \mathcal{T} in \mathcal{L} and every Σ , there exists \mathcal{T}_{Σ} in \mathcal{L} with $sig(\mathcal{T}_{\Sigma}) \subseteq \Sigma$ such that \mathcal{T} and \mathcal{T}_{Σ} are Σ -concept inseparable in \mathcal{L}

Theorem Both *DL-Lite_{bool}* and *DL-Lite_{horn}* have uniform interpolation and the uniform interpolant can be constructed in exponential time

$$DL-Lite_{bool}^u$$
; C ::= ... | $\exists C$ | ...

(universal modality)

e.g., $(\geq 2 \text{ teaches}) \sqsubseteq \exists (\exists \text{teaches} \sqcap \leq 1 \text{ teaches})$

 \mathcal{T}_{Σ} with $\operatorname{sig}(\mathcal{T}_{\Sigma}) \subseteq \Sigma$ is a uniform interpolant of \mathcal{T} w.r.t. Σ in *DL-Lite*^u_{bool} if $\mathcal{T} \models C \sqsubseteq D$ iff $\mathcal{T}_{\Sigma} \models C \sqsubseteq D$, for every $C \sqsubseteq D$ in *DL-Lite*^u_{bool} with $\operatorname{sig}(C \sqsubseteq D) \sqsubseteq \Sigma$

 $\mathcal{T}' \Sigma$ -query entails \mathcal{T} iff $\mathcal{T}' \models C \sqsubseteq D$, for each $C \sqsubseteq D \in \mathcal{T}_{\Sigma}$

Theorem For every \mathcal{T} in *DL-Lite*_{bool} and every Σ one can construct a uniform interpolant \mathcal{T}_{Σ} of \mathcal{T} w.r.t. Σ in *DL-Lite*^u_{bool} in time exponential in \mathcal{T}

Future work

- investigate different variants of the QBF encoding (non-prenex/non-CNF) and/or different solvers (AQME or even a dedicated solver)
- QBF encoding of Σ -entailment in *DL-Lite*_{horn} (coNP instead of Π_2^p)
- module extraction algorithm (extended QBF encoding)
- approximation of Σ -difference