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Motivation

Connectedness

• is one of the most fundamental concepts of topology
(any textbook in the field contains a substantial chapter on connectedness)

• in spatial KR&R, the distinction between
connected and disconnected regions

is recognized as indispensable for various modelling and representation tasks

So far only sporadic attempts have been made to
investigate the computational complexity of spatial logics

with connectedness constraints
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S4u: syntax and semantics

terms:
τ ::= vi | τ | τ1 ∩ τ2 | τ ◦ | τ−

formulas:
ϕ ::= τ1 = τ2 | ¬ϕ | ϕ1 ∧ ϕ2

subsets of T

complement interior closure

true or false

e.g., M |= τ1 = τ2 iff τM
1 = τM

2

topological model M = (T, ·M)
T a topological space
·M a valuation

NB. This definition is as expressive as the ‘standard’ one

A space is called Aleksandrov if arbitrary intersections of open sets are open

Aleksandrov spaces === Kripke frames F = (W,R), R is a quasi-order on W

(Shehtman 99, Areces et. al 00): Sat(S4u,ALL) = Sat(S4u,ALEK),
and this set is PSPACE-complete

NB. Sat(S4u,ALL) 6= Sat(S4u,CON) (in contrast with S4)
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Connectedness

A topological space is connected iff
it is not the union of two non-empty, disjoint, open sets

Example:
(v1 6= 0) ∧ (v2 6= 0) ∧ (v1 ∪ v2 = 1) ∧ (v−1 ∩ v2 = 0) ∧ (v1 ∩ v−2 = 0)

is satisfiable in a topological space T iff T is not connected

X ⊆ T is connected in T just in case either it is empty,
or the topological space X (with the subspace topology) is connected

A maximal connected subset of X is called a component of X

An Aleksandrov space induced by F = (W,R) is connected iff F is connected
(i.e., between any two points x, y ∈W there is a path along the relation R ∪R−1)
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S4u over connected topological spaces

(Shehtman 99): Sat(S4u,CON) = Sat(S4u,CONALEK) = Sat(S4u,Rn), n ≥ 1,
and this set is PSPACE-complete

Example: generating all numbers from 0 to 2n − 1:c c c c c c c c
c c c c c c c
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1 2 3 4 5 6 7

0 and 2n − 1 are non-empty:
vn ∩ · · · ∩ v1 6= 0, vn ∩ · · · ∩ v1 6= 0

the closure ofmmm can share points only withm+ 1m+ 1m+ 1, for 0 ≤ m < 2n − 1:
(vj ∩ vk)− ⊆ vj, (vj ∩ vk)− ⊆ vj, for n ≥ j > k ≥ 1

(vk ∩ vk−1 ∩ · · · ∩ v1)
− ⊆ (vk ∩ vi) ∪ (vk ∩ vi), for n ≥ k > i ≥ 1

2n − 1 is a closed set:
(vn ∩ · · · ∩ v1)

− ⊆ vn ∩ · · · ∩ v1
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S4uc = S4u + connectedness predicate (1)

S4uc-formulas: ϕ ::= τ1 = τ2 | c(τ ) | ¬ϕ | ϕ1 ∧ ϕ2

M |= c(τ ) iff τM is connected in T

↓ one occurrence of c

Theorem. Sat(S4uc
1,ALL) is PSPACE-complete

Proof. Let ψ = (τ0 = 0) ∧
m∧
i=1

(τi 6= 0) ∧
(
c(σ) ∧ (σ 6= 0)

)
(conjunct of a full DNF)

1. guess a type (Hintikka set) tttσ containing σ and τ0
◦

(all points with σ are to be connected to tttσ)and expand the tableau branch by branch

bAA
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tttσ

2. for each i, guess a type tttτi containing τi and τ0
◦

and expand the tableau branch by branch

bAA
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A
A
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tttτi

– if σ appears in the tableau
then we construct a path to tttσ
(by “divide and conquer”)
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path of length 2|ψ|
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S4uc = S4u + connectedness predicate (2)

Theorem. Sat(S4uc,ALL) is in EXPTIME

Proof. Let ψ = (τ0 = 0) ∧
m∧
i=1

(τi 6= 0) ∧
k∧
i=1

(
c(σi) ∧ (σi 6= 0)

)
(conjunct of a full DNF)

The proof is by reduction toPDLwith converse and nominals [De Giacomo 95]

Let α and β be atomic programs and `i a nominal, for each σi

• the S4-box is simulated by [α∗]:
τ † is the result of replacing in τ each sub-term ϑ◦ with [α∗]ϑ

• the universal box is simulated by [γ], where γ = (β ∪ β− ∪ α ∪ α−)∗

ψ′ = [γ]¬τ †0 ∧
m∧
i=1

〈γ〉τ †i ∧
k∧
i=1

(
〈γ〉(`i ∧ σ†i ) ∧ [γ](σ†i → 〈(α ∪ α−;σ†i?)

∗〉`i)
)

ψ′ is satisfiable iff ψ is satisfiable

NB. Matching lower bound to follow. . .
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S4ucc = S4u + component counting predicates

S4ucc-formulas: ϕ ::= τ1 = τ2 | c≤k(τ ) | ¬ϕ | ϕ1 ∧ ϕ2

M |= c≤k(τ ) iff τM has at most k components in T

reduction to S4uc: (the vi are fresh variables) exponential if k coded in binary!

• c≤k(τ ) →

• ¬c≤k(τ ) →

(
τ =

⋃
1≤i≤k

vi
)
∧

∧
1≤i≤k

c(vi)

(
τ =

⋃
1≤i≤k+1

vi
)
∧

∧
1≤i≤k+1

(
vi 6= 0

)
∧

∧
1≤i<j≤k+1

(
τ ∩v−i ∩v

−
j = 0

)

(Pratt-Hartmann 02): Sat(S4ucc,ALL) = Sat(S4ucc,ALEK); this set is in NEXPTIME

Proof. 1. Full S4ucc is logspace-reducible to
its fragment with no negative occurrences of c≤k(τ )

2. This fragment of S4ucc has exponential fmp (by continuous topological filtration)
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S4uc in Euclidean spaces

• satisfiable in R2 but not in R:∧
1≤i≤3

c(vi) ∧
∧

1≤i<j≤3

(
vi ∩ vj 6= 0

)
∧

(
v1 ∩ v2 ∩ v3 = 0

)

• satisfiable in R3 but not in R2:∧
i∈{j,k}

(
vi ⊆ e◦j,k

)
∧

∧
1≤i≤5

(
vi 6= 0

)
∧

∧
{i,j}∩{k,l}=∅

(
ei,j ∩ ek,l = 0

)
∧

∧
1≤i<j≤5

c(e◦i,j)

• satisfiable in connected spaces but not in Rn, for any n ≥ 1:

(v1 ∩ v2 = 0) ∧
∧
i=1,2

(
(v−i ⊆ vi) ∧ c(vi)

)
∧ ¬c(v1 ∩ v2)

Theorem. Sat(S4ucc,R) is PSPACE-complete

Proof. Encoding in temporal logic with S and U over (R, <)
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Regular closed sets and B

X ⊆ T is regular closed if X = X◦− RC(T ) regular closed subsets of T

RC(T ) = sets of the form X◦− , for X ⊆ T

RC(T ) is a Boolean algebra (RC(T ),+,−, ∅, T )

where X + Y = X ∪ Y and −X = (X)−

B-terms: τ ::= ri | − τ | τ1 · τ2 regular closed sets!

B-formulas: ϕ ::= τ1 = τ2 | ¬ϕ | ϕ1 ∧ ϕ2

B is a fragment of S4u: B-terms h−→ S4-terms
h(ri) = v◦i

−
, h(τ1 · τ2) = (h(τ1) ∩ h(τ2))◦−, h(−τ1) =

(
h(τ1)

)−
Theorem. Sat(B, REG) = Sat(B,CONREG) = Sat(B, RC(Rn)), n ≥ 1,

and this set is NP-complete
Proof. Every satisfiable B-formula ϕ is satisfied

in a discrete topological space with ≤ |ϕ| points
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C = B + contact predicate

↓Whitehead’s ‘connection’ relation

C-formulas: ϕ ::= τ1 = τ2 | C(τ1, τ2) | ¬ϕ | ϕ1 ∧ ϕ2

M |= C(τ1, τ2) iff τM
1 ∩ τM

2 6= ∅ a.k.a. BRCC-8

.

.

.

.¬C(r, s)

r

s

DC(r, s)

r · s 6= 0
(−r) · s 6= 0
r · (−s) 6= 0

r

s
PO(r, s)

r · s = 0
C(r, s)

r

s
EC(r, s)

r = s

r s
EQ(r, s)

r · (−s) = 0
C(r,−s)

r s

TPP(r, s)

¬C(r,−s)

r s

NTPP(r, s)

s · (−r) = 0
C(s,−r)

r s

TPPi(r, s)

¬C(s,−r)

r s

NTPPi(r, s)
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Quasi-saw models for Ccc

Lemma. Every satisfiable Ccc-formula is satisfied in a quasi-saw model

c c c c c c c
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x1 x2 x3 x4 x5 x6 x7
depth 0W0

depth 1W1

A valuation may be defined only on points of depth 0
and ‘computed’ on points of depth 1

z ∈ τM ∩W1 iff there is x ∈ τM ∩W0 with zRx

c c cs s
c

PPPPPPPPP

s c c csx1 x2 x3

x4

x5 x6 x7
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Cc is ExpTime-hard

Theorem. Sat(Cc, REG) is EXPTIME-hard

Proof. LetDf2 be the bimodal logic of the full infinite binary tree G = (V,R1, R2)

with functional R1 and R2

Reduction of the global consequence relation ψ |=f
2 χ:

1. (a 6= 0) ∧ c(f0 + a) ∧ c(f1 + a)

2. every component of fj contains a sequence of points in s0
j , s

1
j , . . . , s5

j

(provided it contains a point in s0j )

3. d marks points representing nodes of the binary tree, d = s0
0 + s0

1

for each ϕ, qϕ means ‘ϕ holds at the point’

4. q¬ψ · s0
0 6= 0 and d ⊆ qχ

5. d · q¬ϕ = d · (−qϕ) and d · qϕ1∧ϕ2 = d · (qϕ1 · qϕ2)

6. s2
j is the R1-successor, s4

j is the R2-successor: s2
j ⊆ s0

j⊕1, s4
1 ⊆ s0

j⊕1, j = 0, 1

7. for each 2iϕ, mi,j
ϕ means ‘ϕ holds at the Ri-successor’

¬C(fj ·mi,j
ϕ , fj ·mi,j

¬ϕ)

(s0
j · q2iϕ ⊆ mi,j

ϕ ) and (mi,j
ϕ · s2i

j ⊆ qϕ) (similarly for mi,j
¬ϕ)
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Ccc is NExpTime-hard

Theorem. Sat(Cc, REG) is NEXPTIME-hard

Proof. By reduction of the 2n × 2n origin constrained tiling

Given n ∈ N, a finite set T of tile types t = (left(t), right(t), up(t),down(t))
and t0 ∈ T

.

.

decide whether there exists τ : [0, 2n]× [0, 2n]→ T such that

(i) for all i, j,

.

.

up(τ (i, j)) = down(τ (i, j + 1))

and
left(τ (i, j)) = right(τ (i+ 1, j))

(ii) τ (0, 0) = t0.

.

.

The 2n × 2n origin constrained tiling
is NEXPTIME-complete
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Ccc is NExpTime-hard

Theorem. Sat(Cc, REG) is NEXPTIME-hard

Proof. By reduction of the 2n × 2n origin constrained tiling

1. 2n-counter formulas Xn, . . . , X1 and 2n-counter formulas for Yn, . . . , Y1

2. 4-neighbours: ¬C(Xj · Yk, (−Xj) · (−Yk)) and ¬C((−Xj) · Yk, Xj · (−Yk))

3. perimeter: 0X · 0Y 6= 0, (2d − 1)X · (2d − 1)Y 6= 0,
c(0X + (2d − 1)Y ), c((2d − 1)X + 0Y )

4. interior: c((−X1) + 0Y ), c(X1 + 0Y ), c(0X + (−Y1)), c(0X + Y1)

5. chessboard: b =
(
X1 · (−Y1)

)
+
(
(−X1) · Y1

)
c≤2n−1

(b)

w =
(
(−X1) · (−Y1)

)
+
(
X1 · Y1

)
c≤2n−1

(w)

Note that (1)–(4) imply that each b and w contains at least 2n−1 components

6. ¬C(b · T, b · T ′) and ¬C(w · T, w · T ′), for T 6= T ′

7. standard tiling formulas
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Reduction from Cc to Bc

Bc is a fragment of Cc and the following formula is a Cc-validity:

c(τ1) ∧ c(τ2)→
(
c(τ1 + τ2)↔ C(τ1, τ2)

)
Let ϕ be a Cc-formula

• positive occurrence of C(τ1, τ2):

• negative occurrence of C(τ1, τ2):

Then ϕ is satisfiable in an Aleksandrov space iff
ϕ∗ is satisfiable in an Aleksandrov space

ϕ∗ = ϕ[t = 0]+ ∧
(
(t = 0) → c(t1 + t2) ∧

∧
i=1,2

(ti ≤ τi) ∧ c(ti)
)

ϕ∗ =
(
ϕ[t = 0]−

)
|s ∧

(
¬(t = 0) → ¬c(t1+t2) ∧

∧
i=1,2

c(ti)∧(τi ·s ≤ ti)
)

Topological Methods in Logic Tbilisi 5.06.08 15



Summary of the results

REG CONREG RC(Rn) RC(R2) RC(R)
n > 2

RCC-8
RCC-8c NP ? ≤PSPACE,≥NP
RCC-8cc ? ≤PSPACE,≥NP
B NP
Bc EXPTIME EXPTIME ? ? ≤PSPACE,≥NP
Bcc NEXPTIME NEXPTIME ? ? ≤PSPACE,≥NP
C NP PSPACE
Cc EXPTIME EXPTIME ≥EXPTIME ≥EXPTIME PSPACE
Ccc NEXPTIME NEXPTIME ≥NEXPTIME ≥NEXPTIME PSPACE

Cm NP PSPACE PSPACE PSPACE
Cmc EXPTIME EXPTIME ≥EXPTIME ≥EXPTIME PSPACE
Cmcc NEXPTIME NEXPTIME ≥NEXPTIME ≥NEXPTIME PSPACE

ALL CON Rn, n > 2 R2 R
S4u PSPACE PSPACE
S4uc EXPTIME EXPTIME ≥EXPTIME ≥EXPTIME PSPACE
S4ucc NEXPTIME NEXPTIME ≥NEXPTIME ≥NEXPTIME PSPACE
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