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Motivation

Connectedness

e is one of the most fundamental concepts of topology
(any textbook in the field contains a substantial chapter on connectedness)

e inspatial KR&R, the distinction between
connected and disconnected regions
is recognized as indispensable for various modelling and representation tasks

So far only sporadic attempts have been made to
investigate the computational complexity of spatial logics
with connectedness constraints



S4,: syntax and semantics

terms: subsets of T

T u= v | T | mNT | ™ | T
complement interior closure
formulas: true or false topological model Mt = (T, -™)
T atopological space
= T =T = AN ;
v 1=7 | e | e e 2 g valuation

eg. . MEN =1 Iff Tlm = 'rém
This definition is as expressive as the ‘standard’ one

A space is called Aleksandrov if arbitrary intersections of open sets are open

Aleksandrov spaces = Kripke frames F' = (W, R), R is a quasi-order on W

(Shehtman 99, Areces ef. al 00): Sat(S4,, ALL) = Sat(S4,,, ALEK),
and this set is PSPACE-complete

Sat(S4,, ALL) # Sat(S4,, CON) (in confrast with S4)



Connectedness

A topological space is connected iff
it is not the union of two non-empty, disjoint, open sets

Example:
(v1 #0) A (v2#0) A (ViUwve=1) A (v; Ny =0) A (v1Nwvy, =0)
is satisfiable in a topological space T iff T is not connected

X C Tis connected in T just in case either it is empty,
or the topological space X (with the subspace topology) is connected

A maximal connected subset of X is called a component of X

An Aleksandrov space induced by F = (W, R) is connected iff F'isconnected
(i.e., between any two points z,y € W there is a path along the relation R U R—1)
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S4, over connected topological spaces

(Shehtman 99): Sat(S4,,, CoN) = Sat(54,,, CONALEK) = Sat(S4,,R™), n > 1,
and this set is PSPACE-complete

Example: generating all numbers from 0 to 2™ —

NN

0 and 2" — 1 are non-empty:
Tp N+ Noy #0, vpoNee-Novy #0

the closure of m can share points only withm + 1, for0 < m < 2™ — 1.

(Ujmv_k)_gvja (’U_Jﬂ'v_k)_g’U_J, forn>3>k2>1
(Ve NUg—1N---Nv1)~ C (v ND;) U (T N v;), form > k>i>1
2" — 1is a closed seft:

(vp,N---Nvy)” Cv,N---Nwy



S4,c = S84, + connectedness predicate (1)

S84, c-formulas: p = c(T)

M = c(r) iff 77is connectedin T

l one occurrence of e

Theorem. Sat(S4,c', ALL) is PSPACE-complete
Proof. Let ¢ = (19 =0) A /\(Tz #0) A (C(O') A (o # 0)) (conjunct of a full DNF)
=1

1. guess a type (Hintikka set) t, containing o and 7,°
and expond the tableau branch by branch (all points with o are to be connected to t,)

2. for each ¢, guess a type t,, confaining =, and 7,°
and expand the tableau branch by branch

- if o Appears in the tableau .

then we construct a path to t, o
(by “divide and conquer”)

t,o ot,
path of length 21%!



S4,c = S84, + connectedness predicate (2)

Theorem. Sat(S4,c, ALL) isin EXPTIME
k

Proof. Let ¥ = (1o =0) A /n((n- # 0) A /\ (e(o3) A (05 #0))  (conjunct of a full DNP)

The proof is by reduction to PDL with converse and nominals [De Giacomo 99|
Let a and 3 be atomic programs and £; a nominal, for each o;

e the S4-box is simulated by [a*]:
71 is the result of replacing in = each sub-term 9° with [a*]9
e the universal box is simulated by [v], where v = (BUB~Ua U a™)*

¢ =Pl A ANt A A& A A Ble] = (@Uasal?))e))

=1 =1
v’ is safisfiable iff 4 is safisfiable

Matching lower bound to follow. ..



S4,cc = S84, + component counting predicates

S84, ce-formulas: p n= T =T | cfk(‘r) | —p | Y1 A o

M = c=*(7) iff 77 has at most k components in T

reduction to §4,c¢:  ¢he v; are fresh variables) exponential if k coded in binary!
o k(1) —» (7= U v;) A /\ c(v;)
1<i<k 1<i<k
o K1) - (r= | w) A AN (w#0) A A (rnv;Nnv; =0)
1<i<k+1 1<i<k+1 1<i<j<k+1

(Pratt-Hartmann 02): Sat(S4,cc, ALL) = Sat(S4,cc, ALEK); this set is in NEXPTIME

Proof. 1. Full 84,cc is logspace-reducible to
its fragment with no negative occurrences of ¢<k(r)

2. This fragment of §4,,cc has exponential fmp (by continuous topological filtration)

Topological Methods in Logic Toilisi 5.06.08 7



S4,c in Euclidean spaces

e satisfiable in R2 but not in R:

/\ c(v;) A /\ vzﬂvg ) A (vlﬁfvzﬂfvg:O)

1<:<3 1<i<5<3

e satisfiable in R? but not in R2:

/\ ('vz C e; k) A /\ ('vi #* 0) A /\ (ei,j M ek = 0) A /\ C(eg,j)

ie{s,k} 1<:<5 {é,330{k,i}=0 1<i<i<5

e satisfiable in connected spaces buf not in R™, forany n > 1:

(v Nwvy =0) A ./\ (v Cvs) A (@) A —e(or NTy)

Theorem. Sat(S4,cc,R) is PSPACE-complete

Proof. Encoding in femporal logic with § and U over (R, <)



Regular closed sets and B

X C Tis regular closed if X = X°~ RC(T) regular closed subsets of T

RC(T) = sets of the form X°~,for X C T

RC(T) is a Boolean algebra (RC(T), +, —,0,T)
where X+Y =XUY aoand —-X=(X)—

B-terms: T u= -7 | TT regular closed sets!
B-formulas: p = T=T2 | @ | 1 Ap2
B isa of S4,: B-terms — S4-terms

h(T,,;) = 'vf_, h(Tl . 7'2) = (h(Tl) M h(Tz))o_, h(—Tl) = (h(’Tl))_

Theorem. Sat(B, REG) = Sat(B, CONREG) = Sat(B,RC(R"™)), n > 1,

and this set is NP-complete
Proof. Every satisfiable B-formula ¢ is satisfied

in a discrete topological space with < |¢| points
9



C = B + contact predicate

lWhiTeheod’s ‘connection’ relation
C-formulas: P u= T =Ty | C(11,7T2) | —p | Pp1 N P
M= C(m,7m2) iff TN A£0

a.k.a. BRCC-8
r-s=0 r-(—s)=0 s-(—r)=0
—|C(T, S) C(r? 3) C(T’ _3) : 0(37 _r)
DC(r, s) EC(r, s)
@ TPP(r, s) TPPi(r, s)
g EQ(r, ) NTPP(r, s) NTPPi(r, s)
PO(r, s)
r-s#0 —
(—7r) - Zé;é 0 r=s —C(r,—s) —C(s, —T)
r-(—s)#0
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Quasi-saw models for Ccc
Lemma. Every satisfiable Cce-formula is safisfied in a quasi-saw model
Wy o o2 e o o e 7 depth 0
v N NAYN N e
A valuation may be defined only on points of depth O
and ‘computed’ on points of depth 1

z € T N W, iff thereisx € 7™ N W, with zRx

1 L2 3 L5 e 7

11



Cc is ExpTime-hard

Theorem. Sat(Cc, REG) is EXPTIME-hard

Proof. Let D{ be the bimodal logic of the full infinite binary tree & = (V, R;, R)
with R, and Rs

Reduction of the global consequence relation v =5 x:

l.(a#0) AN c(fot+a) AN c(fi+a)

2. every component of f; contains a sequence of points in sg, s} ..... s?

(provided it contains a point in s;.’)

3. d marks points representing nodes of the binary free, d = s + s?
foreach ¢, g, means ‘e holds at the point’

4,950 #0 and dC gy

5.d-qpo=d-(—q,) anNd d-qune, =d- (e * Dps)
6. s2is the Ry-successor, s} is the Ry-successor: s C 80, 87 C 80g,, j = 0,1
7. for each O, mi;j means ‘¢ holds at the R;-successor’

~C(f5 - my, fi-mb,
0 > Y o
(87 *do,e S M) ana (M7 - 550 Cqy) (similarly for m®2)

12



Ccc is NExpTime-hard

Theorem. Sat(Cc, REG) is NEXPTIME-hard
Proof. By reduction of the 2™ x 2™ origin constrained filing
Given n € N, afiniteset T' of file types t = (leff(t), right(t), up(t), down(t))

IENENXM T

decide whether there exists 7: [0, 2] x [0,2"] — T such that

() foralls,y,

D, | up( (i, §)) = down(r(,j + 1))

and

AKX rett(r (i, ) = right(r (i + 1,3))

Gy (0, 0) = to.

The 2™ x 2™ origin constrained tiling
is NEXPTIME-complete
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Ccc is NExpTime-hard

Theorem. Sat(Cc, REG) is NEXPTIME-hard
Proof. By reduction of the 2™ x 2™ origin constrained filing

1. 2™-counter formulas X,,, ..., X, and 2™-counter formulas for Y,,, ..., Y;
2. 4-neighbour3: —|C(Xj . Yk, (—XJ) . (—Yk)) and —|C((—XJ) . Yk,, Xj . (—Yk))

3. perimeter: O0x -0y #0, (29 —1)x - (24— 1)y #0,
c(0x + (24— 1)y). c((2¢4—1)x + Oy)

4. interior: c((—X1) +0y), ¢(X1+0y), c(0x+ (—Y1)), c(0x + Y1)

5. chessboard: b= (X;-(-Y1)) + ((—=X1) - Y1) <2 (b)
w=((-X1) - (—Y)) + (X1 - Y1) <2 (w)
Note that (1)-(4) imply that each b and w contains at least 2~ components

6. Cb-T,b-T") and -C(w-T, w-T"), forT # T’

7. standard tiling formulas
14



Reduction from Cc to Bc
Bcis a fragment of Ce and the following formula is a Ce-validity:

c(m) N e(m) — (c(Tl + 72) «— C(71, 7'2))

Let ¢ be a Cc-formula

e positive occurrence of C (7, 72):

e = Qlt=0" A ((t=0) — clti+ts) A N\ (t: <) Acts))

1=1,2

e negative occurrence of C (71, 72):

e* = (et=017), AN (2(t=0) — —cltitts) A\ elti)A(ri-s < t))
1=1,2
Then ¢ is satisfiable in an Aleksandrov space  iff
p* is satisfiable in an Aleksandrov space

15



Summary of the results

REG CONREG RC(R™) RC(RR?) RC(R)
n>22
RCC-8
RCC-8¢ NP ? <PSPACE,>NP!
RCC-8cc ? <PSPACE,>NP!
B NP
Be EXPTIME EXPTIME ? ? <PSPACE,>NP!
Bcce NEXPTIME | NEXPTIME ? ? <PSPACE,>NP
C NP PSPACE
Ce EXPTIME EXPTIME >EXPTIME >EXPTIME PSPACE
Ccc NEXPTIME | NEXPTIME | >NEXPTIME | >NEXPTIME PSPACE
cm NP PSPACE PSPACE PSPACE
C™c EXPTIME EXPTIME >EXPTIME >EXPTIME PSPACE
C™cc | NEXPTIME | NEXPTIME | >NEXPTIME | >NEXPTIME PSPACE
| | AL | CoN | R.n>2 | R? R
S4, PSPACE PSPACE
S4,c EXPTIME EXPTIME >EXPTIME >EXPTIME PSPACE
S4,cc | NEXPTIME | NEXPTIME | >NEXPTIME | >NEXPTIME PSPACE
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