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Multi-Perspective Cost-Sensitive Context-Aware
Multi-Instance Sparse Coding and Its Application

to Sensitive Video Recognition
Weiming Hu, Xinmiao Ding, Bing Li, Jianchao Wang, Yan Gao, Fangshi Wang, and Stephen Maybank

Abstract—With the development of video-sharing websites,
P2P, micro-blog, mobile WAP websites, and so on, sensitive
videos can be more easily accessed. Effective sensitive video
recognition is necessary for web content security. Among web
sensitive videos, this paper focuses on violent and horror videos.
Based on color emotion and color harmony theories, we extract
visual emotional features from videos. A video is viewed as a
bag and each shot in the video is represented by a key frame
which is treated as an instance in the bag. Then, we combine
multi-instance learning (MIL) with sparse coding to recognize
violent and horror videos. The resulting MIL-based model can
be updated online to adapt to changing web environments. We
propose a cost-sensitive context-aware multi-instance sparse
coding (MI-SC) method, in which the contextual structure of
the key frames is modeled using a graph, and fusion between
audio and visual features is carried out by extending the classic
sparse coding into cost-sensitive sparse coding. We then propose
a multi-perspective multi-instance joint sparse coding (MI-J-SC)
method that handles each bag of instances from an independent
perspective, a contextual perspective, and a holistic perspective.
The experiments demonstrate that the features with an emotional
meaning are effective for violent and horror video recognition,
and our cost-sensitive context-aware MI-SC and multi-perspective
MI-J-SC methods outperform the traditional MIL methods and
the traditional SVM and KNN-based methods.

Index Terms—Cost-sensitive context-aware multi-instance
sparse coding (MI-SC), horror video recognition, multi-
perspective multi-instance joint sparse coding (MI-J-SC), video
emotional feature extraction, violent video recognition.
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I. INTRODUCTION

T HE EMERGENCE and development of video-sharing
websites, P2P, micro-blog, podcasting, mobile WAP

websites, and 3GP websites facilitate the dissemination of
sensitive videos, such as adult, horror, violent, and terrorist
videos. Fig. 1 shows some examples of violent videos and
horror videos. Diffusion of sensitive videos poses a major threat
to national security, social stability, and the physical, psycho-
logical, and mental health of viewers. Effective recognition
of sensitive videos is necessary for web content security [54].
Recognition of sensitive videos is a newly emergent research
topic in the multimedia and pattern recognition communities,
in the context of multimedia retrieval [55], [56], multimedia
content understanding [59], [60], and multimodal fusion [56],
[57], etc. In recent years a number of specific attempts have
been made to deal with the problem of sensitive video recogni-
tion, and most of them focus on adult video recognition [11],
[12], [18], [21]. In this paper, we focus on recognition of horror
videos and violent videos.

A. Related Work
Violent videos usually stimulate psychic impulses by

showing the use of force to injure others or oneself. The con-
tents of violent videos include fights, gun shots, explosions,
and self-mutilation. The current recognition methods usually
use visual features or audio features separately or fuse visual
and audio features. The visual features can be used to detect
human violence, such as kicking and fist fighting, in videos
[52]. For instance, Datta et al. [22] adopted an accelerated
motion vector to detect fight scenes. Wang et al. [44] detected
violence in videos using the accumulated squared derivative
features which were extracted from dense trajectories derived
from videos. Xu et al. [53] detected violent videos by capturing
distinctive local shape and motion patterns. Audio features can
be used to detect violent speech or actions. For instance, Cheng
et al. [23] used a hierarchical audio-based method to identify
car racing and gunplay. Theodoros et al. [24], [31] extracted
eight audio features from the frequency and time domains to
detect violent videos. Acar et al. [50] detected violent videos
using mid-level audio features in a bag-of-audio words method
using Mel-frequency Cepstral coefficients (MFCCs). Visual
and audio features can be combined to more accurately locate
violent scenes. Nam et al. [32] recognized violent videos by
detecting blood and flames and exploiting representative audio
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Fig. 1. Examples of frames taken from (a) violent videos and (b) horror videos.

effects, such as explosions and gunshots. Smeaton et al. [35]
combined visual and audio features to select representative
shots in an action video. Giannakopoulos et al. [43] detected
violence using the statistics of audio features and average
motion and motion orientation variance features. Lin and Wang
[45] combined auditory and visual classifiers in a co-training
way to detect violent shots in movies.
Horror videos strive to elicit the primary emotions of fear,

horror, and terror. The contents of horror videos [51] include
serial killings, ghosts, monsters, vampires, animal killing, and
irreligion. Horror information may arouse fears in children and
teenagers and even induce phobias [46], [47]. The earlier work
[5], [6], [8] on horror video recognition was carried out as a
part of a video scene classification based on human emotions.
Specific work on horror video recognition with its own charac-
teristics emerged [13], [14]. Xu et al. [14] detected audio emo-
tional events to locate horror video segments in videos which
are known a priori to contain such segments. Wu et al. [13] rep-
resented each video as a bag of independent frames and applied
multi-instance learning (MIL) to horror video recognition.
The current methods for violent and horror video recognition

have the following limitations.
• They focus on using low level visual, motion, and audio
features, or they only use affective audio features. Research
on affective color and visual semantics, together with af-
fective audio semantics in violent and horror videos, is still
exploratory, but the results of this research are available for
application to violent and horror video recognition.

• The current methods only focus on independent frames
and do not consider the underlying contextual cues within
violent and horror videos, even though contextual cues
between frames are useful for recognizing violence and
horror.

• While contexts between frames are useful for recognizing
violent and horror emotions, independent frame cues also
have emotional content. The independent frame cues, con-
textual cues among frames, and holistic features of the en-
tire video are different sources of information for violent
and horror video recognition. Well-chosen features from
different perspectives can embody a variety of discrimina-
tive information. The current violent and horror recogni-
tion algorithms do not include the fusion of multi-perspec-
tives to improve their performance.

• Web information changes rapidly. The current violent and
horror video algorithms, overall, are unable to update the
classifiers online when new training samples are obtained.

B. Our Work

As a variant of supervised learning, each sample for multi-
instance learning (MIL) is a bag of instances instead of a single
instance. Each bag is given a discrete or real-valued label. In
binary classification, a bag is considered as positive if at least
one instance in it is positive, and considered as negative if all
its instances are negative. As a prior, a violent or horror video
contains at least one violent or horror shot,1 and all the shots
in a non-violent or non-horror video are necessarily non-violent
or non-horror. If a video is treated as a bag and a shot in the
video is treated an instance in the bag, violent and horror video
recognition is consistent with the framework ofMIL. So, we use
MIL to recognize violent and horror videos.
The most current models for MIL in common use, such as

axis-parallel concepts [15], the diverse density (DD) method
[25], the expectation-maximization version of diverse density
(EM-DD) [27], the MI-kernel method [28], the mi-SVM and
MI-SVM [19], the mi-Graph and MI-Graph [29], and the
adaptive p-posterior mixture-model (PP-MM) kernel [42], are
trained in batch settings, in which the entire training set is
available before each training procedure begins. Babenko et al.
[48] proposed an online MIL algorithm based on a boosting
technique. However, this online method assumes that all the
instances in a positive bag are positive. This assumption is
easily violated in practical applications. Li et al. [49] extended
the MIL algorithm based on embedded instance selection [16],
[17] to an online MIL algorithm. However, a classifier still
needs to be retrained using the new samples. The citation-kNN
[26] is not part of the training process. It determines the label of
each test bag using the labeled bag samples nearest to the test
bag and the bag samples whose nearest bag samples contain
the test bag. However, the citation-kNN is sensitive to outlier
samples. Sparse coding (SC) is training-free, and the model
can be updated online each time the labeled sample set is
updated. Furthermore, SC is not sensitive to outliers, because
the sparsity regularization can suppress outliers in the sparse

1A shot is a consecutive sequence of frames captured by a camera action
which takes place between start and stop operations.
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representation. Therefore, we combine MIL with sparse coding
to form a multi-instance sparse coding (MI-SC) technique for
recognizing violent and horror videos.
The contributions of our work are summarized as follows.
• We extract color emotional features according to the results
from psychological experiments. These color emotional
features bridge the affective semantic gap to some extent.
The color emotional features together with low-level vi-
sual features, motion features, and audio features are used
for violent and horror video recognition.

• We propose a cost-sensitive context-aware MI-SC method
which can make use of the context among frames in the
same video and the context between visual and audio cues
for violent and horror video recognition. A video is divided
into a series of shots via shot segmentation and a key frame
from each shot is selected. The visual feature vector of each
key frame is extracted to represent the shot in which the key
frame exists. An audio feature vector is extracted for the
entire video. A video is represented as a bag of instances
which correspond to the visual feature vectors. A graph
is constructed using the key frames as nodes to represent
their contextual relations. A cost-sensitive sparse coding
model is constructed to represent the context between the
bag of visual feature vectors and the audio feature vector.
We solve the cost-sensitive context-awareMI-SC using the
existing feature sign search algorithm via a mathematical
transformation.

• We propose a multi-perspective multi-instance joint sparse
coding (MI-J-SC) method to combine information from a
contextual perspective, an independent perspective, and
a holistic perspective. The contexts between key frames
form only a contextual perspective for violent and horror
video recognition. A key frame also includes semantic
meaning, so treating a video as a bag of independent in-
stances can be considered as an independent perspective.
The holistic features for the entire video can be treated as
another perspective. The information from different per-
spectives more fully describes a video. The current MIL
lacks the ability to fuse multi-perspectives. We incorporate
the joint sparse coding into multi-instance classification
to fuse the features from multi-perspectives, in order to
obtain more accurate recognition of violent and horror
videos.

The experimental results show the effectiveness of the ex-
tracted video emotion features. The results on the violent and
horror video datasets show that our methods outperform the tra-
ditionalMIL-basedmethods and the traditional SVM andKNN-
based methods. The results on the general MIL datasets show
that our methods may be effective for other general multi-in-
stance problems.
The remainder of this paper is organized as follows:

Section II presents the MI-SC technique. Sections III and
IV propose our cost-sensitive context-aware MI-SC
and multi-perspective MI-J-SC methods, respectively.
Section V presents our method for extracting emotional fea-
tures and our method for recognizing violent and horror videos.
Section VI reports the experimental results. Section VII con-
cludes this paper.

II. MULTI-INSTANCE SPARSE CODING

Multi-instance sparse coding (MI-SC) carries out MIL using
the sparse coding technique. In the following, we first briefly
introduce sparse coding. Then, we describe the mechanism of
MIL via sparse coding.

A. Sparse Coding

The goal of sparse coding [20] is to represent each input
vector approximately as a weighted linear combination of
“basis vectors” such that a small number of weights are
non-zero. Given an -dimensional input vector and
basis vectors , a sparse vector

, whose entry is the weight of , is
found such that

(1)

The objective of sparse coding is usually formulated as the min-
imization of the reconstruction error with sparsity regularization

(2)

where the norm of is the sparsity term and is a
regularization factor to control the sparsity of .

B. MIL Via Sparse Coding

For MIL, a training dataset
consists of bags

and their labels . A bag consists of
instances: , where each
instance is a vector. The task of MI-SC is to sparsely
combine the training bags to represent a test bag.
Due to the set structure of the bags, a test bag cannot di-

rectly be sparsely and linearly reconstructed using the training
bags. We apply a mapping function : to map each
bag to a high dimensional vector space: (the
descriptions and handling of the mapping functions will be
detailed in Section III-C). Then, by mapping the training
bags to the high dimensional vector space, a basis matrix

for sparse coding is ob-
tained. Given a test bag , the sparse coding in the high
dimensional vector space is defined as

(3)

The label of is determined by the labels of the training sam-
ples whose weights are nonzero for sparsely representing . It
is clear that this is a training-free online learning model which
is updated only by changing the labeled samples. The limitation
of the above MI-SC is that the contexts among instances are not
modeled.

III. COST-SENSITIVE CONTEXT-AWARE MI-SC

To handle the above limitation, we formulate context-aware
MI-SC and cost-sensitive sparse coding, and propose a method
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for optimizing the coefficients for the cost-sensitive context-
aware MI-SC.

A. Context-Aware MI-SC

Traditional MIL usually assumes that instances in a bag are
independent of each other. Zhou et al. [29] built a graph [33] in
their SVM-based MIL method to model the contexts between
instances in each bag. This graph representation of contexts is
incorporated into our MI-SC method.
For a bag , a graph whose nodes are the instances in the

bag is constructed. The distances between instances are com-
puted. If the distance between two instances is smaller than a
preset threshold, then the weight for the edge between the cor-
responding two nodes is set to 1, otherwise the weight is set to
0. A matrix of the adjacency weights for is
obtained, where .
The training samples are represented as

, and a test
bag is given as . We apply a mapping function

to map each graph to a high dimensional
vector space: . Then, the basis matrix for spare
coding is replaced by . The
context-aware MI-SC is formulated as

(4)

B. Cost-Sensitive Sparse Coding

In real applications, each bag may be associated with an-
other kind of feature. For example, an audio is usually asso-
ciated with a video, and the holistic features of the audio can
overall characterize the entire video. We propose a cost-sensi-
tive sparse representation to incorporate the associated features
into the bags.
For each bag , its associated feature vector is

extracted. Then, the training set can be represented by
.

Given a test bag , we define a diagonal matrix
whose diagonal entries are the Euclidean distances between
the associated feature vector of the test bag and the associated
feature vectors of each training bag

(5)

To incorporate the associated features into the MI-SC, we for-
mulate cost-sensitive context-aware MI-SC in a high dimen-
sional feature space as follows:

(6)

where the diagonal matrix is included into the norm in (4).
The entries in are cost values for the different training sam-
ples. In this way, the training samples, whose associated feature
vectors have small distances to the associated feature vector of
the test bag, are more likely to be selected to reconstruct the test
bag. In the sensitive video recognition application, the videos

which have audio tracks similar to the test video are more likely
to be chosen to represent the test video.

C. Optimization

The traditional sparse coding optimization methods cannot
be directly applied to the cost-sensitive context-aware MI-SC
in (6). We transform the objective function in (6) to a form to
which the traditional sparse coding optimization can be applied.
Then the feature sign search (FSS) algorithm is used to solve for
the coefficient vector . Let , where . In order
to ensure that is invertible, we add a very small value to the
diagonal entries of , and obtain an inverse as follows:

(7)

Substituting into (6) yields

(8)

Let , where . Formula (8) is rewritten as

(9)

The function which is used to map bags into a high dimen-
sional space is difficult to define explicitly. Instead, the scalar
product in the high dimensional space is explic-
itly defined via a kernel function. So, we transform the objective
of (9) into a form involving scalar products . It is
clear that

(10)

Then, we only need to consider and . It is clear
that (11), shown at the bottom of the following page, and

(12)

It remains to define a graph kernel function to represent the
scalar product of graphs and in the high
dimensional feature space. The definition of a graph kernel func-
tion depends on a kernel function between any two instances.
The Gaussian radial basis function (RBF) kernel
between an instance in bag and an instance in bag
is defined as

(13)
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where is a scaling factor. Let be the weight for the instance
, in bag , which is defined as

(14)

where is the index for an instance in bag and is the ad-
jacency weight matrix for bag . The kernel function [29]
between graphs and is defined as

(15)

Using the graph kernel function, the objective function in (9)
is explicitly formulated, and then the optimization in (9) is effi-
ciently solved by the recently proposed feature-sign search al-
gorithm (FSS) [30].

D. Classification
After the optimal coefficient vector is obtained, we calcu-

late the reconstruction residual of the test bag for each bag label
, and the label with the smallest reconstruction residual is se-

lected as the label to which the test bag belongs. For each label
, we define a vector whose -th entry is

(16)

i.e., this vector only selects coefficients associated with labels
. The reconstruction residual of the test bag for label
is defined as

(17)

where . We assign the test bag the final label
which is defined as follows:

(18)

IV. MULTI-PERSPECTIVE MULTI-INSTANCE JOINT
SPARSE CODING

Based on the structured joint sparse representation [2], [3],
[34], we propose multi-perspective cost-sensitive MI-J-SC
which includes the above cost-sensitive context-aware MI-SC.

A. Structured Joint Sparse Representation

It is assumed that there are different types of feature and
labels in the training dataset. Let be the ma-

trix of each feature for the training samples
with label , where is the dimension of the -th type of fea-
ture and is the number of the training samples with label :

. Then, the matrix of the -th type of feature
for all the training samples is . The
-th type’s feature vector of a test sample is recon-

structed from the th feature vectors of the training samples

(19)

where is the reconstruction coefficient vector for
the -th feature vectors of the samples with label , and is the
residual term. Let
be the coefficient vector for the -th type of feature. Let

. The -mixed norm of is

(20)

where . Then, the recon-
struction in (19) can be represented by the least square regres-
sion based on the mixed-norm regularization [2], [3], [34]

(21)

The mixed-norm includes the norm of the vector of the
coefficients of the feature vectors for each training sample
and the norm of the vector of the norm values for all the
samples. The mixed-norm guarantees joint sparse represen-
tation. The reasons are summarized as follows.
• The norm in the mixed-norm ensures that the
training samples chosen to represent a test sample are as
few as possible.

• The norm in the norm ensures that when a training
sample is not chosen to represent a test sample, all the
feature vectors of the training sample are not chosen to
represent the test sample.

This structured joint sparse coding can effectively fuse infor-
mation from multiple features.

(11)
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B. Multi-Perspectives of Multi-Instances
We extend the above structured joint sparse representation

to MIL to fuse information from multi-perspectives. Different
perspectives can be defined according to different applications.
We define the following three multi-perspectives in the context
of sensitive video recognition:
1) Independent Perspective: As in traditional MIL, the

instances in a bag are treated as independent. We define
a mapping function : to map the feature
space of the bags to a -dimensional vector space:

. Then, the training samples are transformed to
. In the -dimen-

sional vector space, we define a kernel function between
any two bags and as follows:

(22)

where the kernel between two instances is defined as in
(13).
2) Contextual Perspective: The graph constrained MI-SC

in Section III-A is introduced to form a contextual per-
spective for MIL. We define a mapping function :

to map the features of each bag with a graph
to a -dimensional space: ( is just

in (4)). The context-aware training bags are transformed to
. In the -dimen-

sional vector space, the kernel function is defined as in
(15).
3) Holistic Perspective: Statistical histograms of instances in

bags can be used for bag classification. From a holistic perspec-
tive, we construct a feature histogram for a bag based on the
bag-of-words model [4]. Given the set of the training bag sam-
ples, all the instances are clustered to form a lexicon of code
words . Each instance in a bag is
mapped to a code word which is determined by

(23)

In bag , the number of occurrences of each
code word is counted:

, where is the number of entries
in a set. Then, bag is represented by a normalized histogram

(24)

Then, the set of the training samples is represented by
. We map

each histogram feature vector to a high dimensional fea-
ture space using a mapping function : . Then,

the histograms of the training samples are transformed to
. In this high dimen-

sional space, we define the kernel function between any two
bags as follows:

(25)

where is the Gaussian kernel function between two
code words and

(26)

C. Multi-Perspective Cost-Sensitive MI-J-SC

We use the structured joint sparse representation in
Section IV-A to fuse the information from multi-perspectives
such as defined in Section IV-B. Also, cost-sensitive sparse
coding can be applied to the structured joint sparse repre-
sentation. Then, we propose a multi-perspective cost-aware
MIL method by integrating multi-perspectives into a uni-
fied joint sparse coding framework based on the norm.
Given perspectives ( is 3 in this paper), the training
sample set is represented by matrices ,
where . Given a test
sample , its feature vector in each perspective is repre-
sented by . Let be the coefficient
vector for the training samples at perspective and be
the matrix of the coefficient vectors of the perspectives:

. Then, multi-perspective
cost-sensitive MI-SC is represented by

(27)

where is the cost matrix defined in (5). In (27), the first
term is the sum of the squared reconstruction errors from
different perspectives, and the second term is the regu-
larization to control the sparsity of the coefficients. We
group the training feature set of each perspective ac-
cording to the class labels of the training samples:

where is the matrix which
consists of the -th feature vectors of the training samples
with label . Accordingly, the -th coefficient vector in
is also grouped as: . Let

( ),
where is the number of the training samples with class .
Then, Equation (27) is rewritten as

(28)

where is the diagonal matrix whose entries are
those elements in corresponding to the training samples with
label .
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D. Optimization
The mixed-norm accelerated proximal gradient (APG)

algorithm [34] is introduced to optimize the object function in
(28). The APG cannot be directly applied to (28). We make
a transformation to (28). Let where

. .
. Let . It follows that (28) is

equivalent to

(29)

The APG algorithm can be applied to (29).
The APG algorithm alternately updates a coefficient matrix

and an aggregation matrix at each
iteration which consists of a generalized gradient mapping step
and an aggregation step.
In the generalized gradient mapping step, given the current

aggregation matrix , the coefficient matrix is updated. Let
. It is clear that (30), shown at

the bottom of the page, and

(31)

where the scalar product between bags
and is evaluated using a kernel function which

is explicitly defined in (15), (22), or (25). A matrix
is defined as follows:

(32)

Then,

(33)

and

(34)

where is the step size parameter.
In the aggregation step, the aggregation matrix is updated by

constructing a linear combination of and

(35)

where conventionally [36].

E. Classification
Using the obtained optimal coefficient matrix , the

reconstruction residual of the test bag for label
is defined as

(36)

where is a coefficient selector that only selects coeffi-
cients associated with label , i.e., the -th entry in is
defined as follows:

(37)

Similar to (18), the label that has the smallest residual is as-
signed to the test bag .

V. SENSITIVE VIDEO RECOGNITION
We apply the proposed cost-sensitive context-aware MI-SC

and multi-perspective MI-J-SC to recognize sensitive videos,
especially horror videos and violent videos. Given a set of
videos , they are labeled as
( , i.e., ) where a sensitive video is labeled
“1” and a non-sensitive video is labeled as “2”. Each video is
divided into shots by measuring mutual
information and joint entropy between frames [37]. In each shot,
we select the frame which is closest to the mean of the color
emotional features in the shot as a key frame, and then a key
frame set for video is obtained. The
visual and audio feature vector for each key frame is
extracted. An audio feature vector is extracted from the entire
audio associated with . A bag for each video is constructed by
treating the feature vector of each key frame as an instance, as
shown in Fig. 2. Then, the above MI-SC methods can be applied
to . The optimal coefficients obtained by the
cost-sensitive context-aware MI-SC or the multi- perspective
MI-J-SC are used to classify the test videos as sensitive or non-
sensitive. In the following, we describe the features extracted
from horror and violent videos.
The features extracted from videos are based on emotional

perception theory. Different colors, textures, and audio rhythms
may produce different emotions. So, we extract the following
video features that produce emotions in the viewers: color
emotional features, visual features, and audio features. These

(30)
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Fig. 2. Bag construction for each video.

emotion-producing features are used for horror video recog-
nition. Additional motion features are used for recognizing
violent videos.

A. Color Emotional Features
Ou et al. [38], [39] developed color emotionmodels for single

colors and harmony models for two color combinations by psy-
chophysical experiments. We extract color emotional features
based on these color emotion models.
Ou et al. found that color emotions for single-colors depend

on the following three factors: activity, weight, and heat, which
are defined as follows:

Activity

Weight
Heat

(38)

where ( ) and ( ) are the color components in
the CIELAB and CIELCH color spaces, respectively. Based on
(38), we define an emotional intensity (EI) for each pixel
as follows:

Activity Weight Heat (39)

Given a frame in a video, the EIs for all the pixels are computed.
Based on the EIs, a color emotion histogram is acquired and
employed as part of the color emotional features.
Ou and Luo [1] developed a quantitative two-color harmony

model which consists of three independent color harmony fac-
tors: hue effect , lightness effect , and chromatic ef-
fect . These three harmony factors for two colors are ex-
plicitly estimated using hues, saturations, and lightness values
of these two colors in the CIELAB color space (The details
can be found in [1]). The overall harmony score between
these two colors is defined as the sum of the three factors:

. Given a frame, for each pixel we calculate
the color harmony score between its color and the mean of
the colors of its surrounding pixels and the color harmony score

between its color and the mean of the colors of all the
pixels in the frame. The color harmony score of this pixel
is defined as the sum of the two scores: .
Based on the color harmony scores in the frame, we construct
a color harmony histogram which is used as another part of the
emotional features.

B. Visual Features

The visual emotional features include lighting features, color
features, texture features, and Rhythm features.
1) Lighting Feature: Lighting affects viewers’ feelings di-

rectly [5], [7]. The lighting effect is determined by two factors:
the general level of light and the proportion of shadow area. We
use the median of the values of all the pixels in a frame in
the Luv color space [7] to characterize the general level of the
light in the frame. The proportion of the pixels, whose lightness
values are below a certain shadow threshold, is used to estimate
the proportion of shadow area.
2) Color Feature: The color values used in the HSV space

are clearly distinguishable by human perception, so we use the
means and variances of components of the HSV color space in a
frame to characterize the main cues of colors in the frame. Par-
ticular colors have strong relations with movie genres [7]. The
particular colors in a frame can be represented by the covariance
matrix of the , , values of pixels in the frame

(40)

The determinant of (40), , is used as the feature for
the particular colors.
3) Texture Feature: Texture is another important factor rel-

evant to image emotion, because different textures give people
different feelings. Geusebroek and Smeulders [40] proposed a
six-stimulus basis for stochastic texture perception: Texture dis-
tributions in image scenes conform to a Weibull distribution as-
sociated with a random variable

(41)

where represents the contrast of the image (a higher value for
indicates more contrast), and represents the grain size of

the image (a higher value for indicates a smaller grain size,
i.e., more fine textures). The parameters and completely
characterize the spatial structure of the texture, and they are used
as the texture feature for horror and violent video recognition.
4) Rhythm Feature: In horror and violent videos, quick shot

switching and strong motions are often used to excite nervous
moods in the viewers. We use the inverse length of a shot to
represent the speed of shot switching. For a frame, the mean
and standard deviation of motions between frames in a short
clip centered at the frame are used to measure the quantity of
motion associated with the frame [10].
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C. Audio Features

Specific sounds and music are often used to highlight emo-
tional atmosphere and promote dramatic effects. The following
audio features [9] are extracted.
• The mean and variance of the 12 MFCCs (Mel-frequency
Cepstral coefficients) of each frame and the 12 MFCCS’
first-order differential, where the MFCCs are computed
from the fast Fourier transform (FFT) power coefficients.

• Spectral power which is used to measure the energy inten-
sity of an audio signal: For an audio signal , each frame
is weighted with a Hamming window , where is the
index of a sample in the frame. The spectral power of an
audio frame of the signal is calculated as

(42)

where is the number of samples of each frame, and is
the index of an order of the DFT coefficients.

• The mean and variance of the spectral centroids of the
audio signal, which are employed as measures of music
brightness.

• Time domain zero crossings rate which provides a measure
of the noisiness of an audio signal.

D. Motion Features

The following motion features are extracted especially for
violent video recognition:
1) Optical Flow: Corners in the previous frame are detected.

Optical flow is used to estimate the positions of the corners in
the current frame. The distance moved by each corner between
the previous and current frames is calculated. The sum, mean,
and standard deviation of the distances moved by the corners
are used as motion features.
2) Motion Template: The motion template is constructed

using the motion history image obtained from consecutive
frames. The motion template is segmented into a number of
regions. The global motion orientation of the template and
the mean and standard deviation of the motion orientations of
all these regions are calculated and used as additional motion
features.
Empirically, all the above color emotional features, visual

features, and audio features are useful for both horror video
recognition and violent video recognition. The above motion
features are useful only for violent video recognition, rather than
horror video recognition, because violent videos use much more
intense motions than horror videos to trigger strong emotions.
In each instance the used features are combined into a feature
vector. The value of each component in a feature vector is nor-
malized according to the maximum of the values of this com-
ponent over all the samples in the dataset. For the cost-sensitive
context-aware MI-SC, all the audio features extracted from an
entire video form a single audio feature vector for the video.
This audio feature vector is used to calculate the cost matrix.
For the multi-perspective MI-J-SC, the same features are used
in all the three perspectives.

VI. EXPERIMENTS

In the experiments, the color emotion histogram has 64
bins. The color harmony histogram has 25 bins. The shadow
threshold for lighting feature extraction was experimentally
determined as 0.18. For an audio signal, we extracted a
single-channel audio stream at 44.1 KHz and computed 12
MFCCs over 20 ms frames.
We used the precision , recall , and F1-measure

to evaluate the performance of an algorithm. Let be the
horror or violent videos in a dataset, and be the videos that
are recognized as horror or violent by the algorithm. The preci-
sion , recall , and F1-measure are defined as

(43)

The proposed sensitive video recognition methods were com-
pared with the following methods:
• EM-DD [27]: this is an MIL method which combines the
EM algorithm with the diverse density (DD) maximization
[25];

• mi-Graph [29]: this method uses a graph [33] to model the
contexts between instances in a bag;

• MI-kernel [28]: this method regards each bag as a set of
feature vectors and then applies a set-based kernel directly
for bag classification;

• MI-SVM: this method is extended from SVM to deal with
MIL problems. It represents a positive bag by the instance
farthest from the separating hyper-plane;

• mi-SVM: it looks for the hyper-plane such that for each pos-
itive bag there is at least one instance lying in the positive
half-space, and all the instances belonging to negative bags
lie in the negative half-space;

• Citation-KNN: it is extended from KNN to deal with MIL
problems. It considers not only the labels of the bags which
are nearest to the test bag, but also the labels of the bags
whose nearest samples contain the test bag;

• SVM: the feature vectors of the key frames in a video were
averaged into one vector. These averaged feature vectors
of all the training samples were used to construct a classical
SVM-based sensitive video classifier; and

• KNN: the KNN, instead of the SVM in the SVM-based
classifier, was used to train a classifier.

In the following, we report first the results of horror video
recognition, then the results of violent video recognition, and
finally the results on the general MIL datasets for validating the
effect of proposed MI-SC methods.

A. Horror Video Recognition

We downloaded horror and non-horror videos from the in-
ternet. This dataset consists of 400 horror videos and 400 non-
horror videos. These videos come from different countries, such
as China, US, Japan, South Korea, and Thailand. The genres of
the non-horror movies include comedy, action, drama, and car-
toon. Half of the horror videos and half of the non-horror videos
were used for training, and the remaining videos were used for
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TABLE I
EXPERIMENTAL RESULTS ON THE HORROR VIDEO DATASET (%)

testing. The average accuracies of ten times 10-fold cross vali-
dation were used to measure the performance of each method.
Table I shows the values of the average Precision , Recall
and F1-measure of our methods based on cost-sen-

sitive context-aware MI-SC and multi-perspective cost-sensi-
tive context-aware MI-J-SC, and also the values for the com-
peting methods based on mi-Graph, MI-kernel, MI-SVM, Cita-
tion-KNN, EM-DD, SVM, and KNN. In order to validate the ef-
fectiveness of the audio cost in the method based on cost-sensi-
tive context-aware MI-SC, the audio features were not included
in the feature vector in each instance when testing the method
based on cost-sensitive context-aware MI-SC. We also com-
pared the method based on cost-sensitive context-aware MI-SC
with the method based on the pure context-aware MI-SC ob-
tained by removing the audio cost from this method, i.e., the di-
agonal matrix D was fixed as . It is unfair
to compare the method based on the pure context-aware MI-SC
with the competing methods in which the audio features are
used. Therefore, we removed the audio features from the feature
vectors and compared the method based on the pure context-
aware MI-SC with the mi-Graph-based method without audio
features. From Table I, the following points were revealed.
• Our method based on multi-perspective cost-sensitive
MI-J-SC is much more accurate than all the other methods.
This shows that horror video recognition benefits from
multi-perspectives. The lower standard deviations imply
that our method is stable.

• The method based on the cost-sensitive context-aware
MI-SC has a higher mean F1 value and a much lower
standard deviation than the method based on the pure
context-aware MI-SC. This indicates that the visual-audio
context is useful for horror video recognition and the
method based on the cost-sensitive MI-SC effectively
fuses the visual and audio features.

• Our method based on cost-sensitive context-aware MI-SC,
our method based on multi-perspective cost-sensitive con-
text-aware MI-J-SC, the method based on the pure con-
text-aware MI-SC and the method based on the mi-Graph

TABLE II
RUNTIME IN SECONDS PER VIDEO FOR DIFFERENT METHODS

method, all of which model contextual cues among in-
stances in a bag, outperform other MIL-based methods in
which the instances are treated independently. This shows
that the contextual relations between instances are useful
for horror video recognition.

• The results of the mi-Graph-based MIL method, in which
SVMs rather than sparse coding are used, are reported. It is
seen that ourmethod based on cost-sensitive context-aware
MI-SC yields more accurate results than the mi-Graph-
based method with audio features. Although the method
based on the pure context-aware MI-SC yields less accu-
rate results than the mi-Graph-based method with audio
features, it yields more accurate results than the mi-Graph-
based method without audio features. It is apparent that the
sparse coding-based MIL methods outperform the SVM-
based MIL method for horror video recognition.

• The two non-MIL-based methods, the KNN-based method
and the pure SVM-based method, overall yield less accu-
rate results than the MIL-based methods. This is because
they use holistic features in videos. If a horror video con-
tains only a small number of horror frames, then the holistic
features inevitably weaken the features obtained from the
horror frames. The pure SVM-based method outperforms
the KNN-based method, because SVM considers experi-
ential risk and structural risk.

Furthermore, the training free characteristic of the sparse
coding classifiers makes it feasible to extend our methods based
on cost-sensitive context-aware MI-SC and multi-perspective
cost-sensitive context-aware MI-J-SC to online classifiers that
are necessary for network video analysis applications.
The computational efficiency of the proposed model is en-

sured by the efficient optimization methods for obtaining the
sparsity coefficient vector. The feature sign search (FSS) algo-
rithm in the cost-sensitive context-aware MI-SC produces a sig-
nificant speedup for sparse coding. The APG algorithm in the
multi-perspective cost-sensitive MI-J-SC is a fast algorithm for
solving the norm-regularized optimization. Table II com-
pares the runtimes of the proposed methods and other represen-
tative methods on the horror video dataset tested on a computer
with Intel(R) Core(TM)2QuadCPU. It is seen that the test speed
of our sparse coding-based methods is comparable to other rep-
resentative methods, not taking into account the fact that our
methods have no training time.
In the experiments, we fused different features to show their

different contributions for recognition. Seven different combi-
nations of the visual features (VF), the audio features (AF), and
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TABLE III
RESULTS FOR DIFFERENT FEATURE COMBINATIONS (%)

TABLE IV
EXPERIMENTAL RESULTS ON THE VIOLENT VIDEO DATASET (%)

the color emotion features (EF) were obtained. Table III shows
the precision, recall, and F1 measure for multi-perspective
MI-J-SC, mi-Graph, MI-SVM, SVM, and kNN using these
seven feature combinations on the horror video dataset. It is
seen that the best one among three types of features is the
audio feature, which has the highest F1 measure. Generally, the
combination of the visual features, the audio features, and the
color emotional features can improve the recognition accuracy,
which shows the complementary characteristics of the three
types of features.

B. Violent Video Recognition
We downloaded violent and non-violent movies from the

internet. This dataset consists of 400 violent videos and 400
non-violent videos. Half of the violent videos and half of the
non-violent videos were used for training, and the remaining
videos were used for testing. The average accuracies of ten
times 10-fold cross validation were used as the final perfor-
mances for each method. Table IV shows the recognition
results of our methods based on cost-sensitive context-aware

TABLE V
COMPARISON BETWEEN THE RESULTS (%) OF OUR METHODS AND THE
STATE-OF-THE-ART RESULTS ON THE HOLLYWOOD MOVIE TEST SET

MI-SC and multi-perspective cost-sensitive MI-J-SC, and the
competing methods based on mi-Graph, MI-kernel, MI-SVM,
Citation-KNN, EM-DD, SVM, and KNN. All the methods use
the same features including color emotional features, visual
features, audio features, and motion features which are all
introduced in Section V. It is seen that our methods yield more
accurate results than the competing methods, and our multi-per-
spective cost-sensitive context-aware MI-J-SC method yields
more accurate results than our cost-sensitive context-aware
MI-SC method. The results have the same characteristics as on
the horror dataset.
We also tested performance of violent video recognition

methods on the VSD (violent scene detection) 2014 dataset
[62], which benchmarks violence detection in Hollywood
movies at the MediaEval benchmarking initiative for mul-
timedia evaluation. The training set in the dataset has 24
Hollywood movies and contains binary annotations of all the
violent scenes, where a scene was identified by its start and
end frames. A set of 7 Hollywood movies was used for testing.
All the test violent segments were annotated at video frame
level, i.e., a violent segment was defined by its starting and
ending frame numbers. We segmented the test videos into
scenes and labeled the scenes as violent or non-violent using
the videos’ annotations at the frame level. Table V compares
the results of our methods for detecting violent scenes with the
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TABLE VI
ACCURACY (%) ON THE MIL BENCHMARK DATASETS

state-of-the-art results on the dataset. It is seen that the results
of our methods are better than the stat-of-the-art results. The
effectiveness of the extracted features and the MI-SC-based
classification in our methods is clearly shown.

C. MIL Datasets

Although we focused our multi-perspective context-aware
MI-J-SC method on applications to sensitive video recognition,
our method can be used in other applications. To verify the
generality of our multi-perspective context-aware MI-J-SC
method, we tested it on the general datasets which were widely
used to evaluate the performance of MIL methods. They in-
clude five benchmark datasets: Musk1, Musk2, Elephant, Fox,
and Tiger [15], [19]. The Musk1 and Musk2 datasets are musk
molecule datasets. Each molecule which corresponds to a bag
has several shape structures which correspond to instances.
Each structure was represented by a 166 dimensional vector.
The Musk1 dataset contains 47 positive and 45 negative bags.
The Musk2 dataset contains 39 positive and 63 negative bags.
The Elephant, Fox and Tiger datasets are image datasets. Each
image which corresponds to a bag was segmented into several
image patches which correspond to instances. A 230 dimen-
sional vector was extracted from each patch. Each of these
three datasets contains 100 positive and 100 negative bags.
We compared our multi-perspective context-aware MI-J-SC

method with the methods based on mi-Graph, MI-Graph,
MI-Kernel, MI-SVM, mi-SVM [19], Miss-SVM [41], PP-MM
kernel [42], the diverse density (DD) [25], and EM-DD [27].
For all the methods the same features from the benchmark
datasets were used. The performance of each method was
evaluated using the accuracy which is the proportion of the
samples which are correctly classified. Our multi-perspective
context-aware MI-J-SC method and the methods based on
mi-Graph, MI-Graph, and MI-Kernel were run by us. The
10-fold cross validations for ten times were carried out to yield
the average accuracies and standard deviations. The results of
the competing methods based on MI-SVM and mi-SVM [19],
Miss-SVM [41], PP-MM kernel [42], DD [25], and EM-DD
[27] were directly taken from [29]. All the results are shown

in Table VI. It is seen that our multi-perspective MI-J-SC
method achieves better performances than the methods based
on MI-Graph and mi-Graph on the Musk1, Elephant and Fox
datasets. The performances of the methods based on multi-per-
spective MI-J-SC, MI-Graph, mi-Graph, and MI-Kernel on the
Musk2 and Tiger datasets are comparable. More importantly,
our multi-perspective MI-J-SC method yields lower standard
deviations on all the benchmark datasets. This shows the sta-
bility of our multi-perspective context-aware MI-J-SC method.

VII. CONCLUSION
In this paper, we have proposed a cost-sensitive con-

text-aware MI-SC method in which a graph kernel has been
used to model the contexts among frames and cost-sensitive
sparse coding has been used to model the contexts between
visual cues and audio cues. We have also proposed a multi-per-
spective MI-SC method which can effectively fuse information
from the contextual perspective, the independent instance
perspective, and the holistic perspective. Based on the color
emotion and color harmony theories, we have extracted each
video’s color emotional features which are higher level features
in contrast with the low-level color and visual features. These
color emotional features together with the cost-sensitive con-
text-aware MI-SC method and the multi-perspective MI-J-SC
method have been applied to recognize violent and horror
videos. Experimental results have shown that the extracted
emotional features are effective for recognizing violent and
horror videos. It has been shown that our methods not only
are superior to traditional MIL-based methods and traditional
SVM and KNN-based methods on the violent and horror
video datasets but also may be effective in other general
multi-instance problems as tested on the general MIL datasets.
Although this paper focuses on the recognition of violent and
horror videos, our cost-sensitive context-aware MI-SC method
and our multi-perspective MI-J-SC method are available for
recognizing other types of web videos.
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