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Abstract

This paper aims to take general tensors as inputs for 
supervised learning. A supervised tensor learning (STL) 
framework is established for convex optimization 
based learning techniques such as support vector 
machines (SVM) and minimax probability machines 
(MPM). Within the STL framework, many 
conventional learning machines can be generalized to 
take nth–order tensors as inputs. We also study the 
applications of tensors to learning machine design and 
feature extraction by linear discriminant analysis 
(LDA). Our method for tensor based feature extraction 
is named the tenor rank–one discriminant analysis 
(TR1DA). These generalized algorithms have several 
advantages: 1) reduce the curse of dimension problem 
in machine learning and data mining; 2) avoid the 
failure to converge; and 3) achieve better separation 
between the different categories of samples. As an 
example, we generalize MPM to its STL version, 
which is named the tensor MPM (TMPM). TMPM 
learns a series of tensor projections iteratively. It is 
then evaluated against the original MPM. Our 
experiments on a binary classification problem show 
that TMPM significantly outperforms the original 
MPM.

1. Introduction 

Supervised learning [1–3] is an important topic in 
machine learning and data mining and their 
applications. Generally, only one–dimensional vectors 
are accepted as inputs by existing supervised learning 
machines, such as support vector machines (SVM) [2], 
and minimax probability machines (MPM) [3]. 
However, in the real world many data items such as 
images are represented by 2nd–order or high–order 
tensors rather than the one dimensional vectors. We 
develop a supervised tensor learning (STL) framework 
in order to apply convex optimization based supervised 
learning techniques to tensor data. 

The motivation for the STL framework comes from 
the following observations. 

Data structures in the real world: in many 
computer vision applications objects are represented as 
2nd–order, 3rd–order, or higher–order tensors. For 
example, grey level face images [5] are usually 
represented as 2nd–order tensors; an attention region 
[6], which is used in natural image understanding [4], 
is represented as a 3rd–order tensor; another 3rd–order 
tensor example is the bi–level down sampled silhouette 
images used to represent human gait [7]; and moreover, 
video sequences [8] are 4th–order tensors. 

Data structures for conventional learning methods 
are restricted to one–dimensional vectors, i.e. the 1st–
order tensors as inputs. Learning machines such as 
MPM and SVM obtain top–level performances in 
machine learning and data mining; however, they have 
to convert many data items naturally represented by 
high –order tensors to one–dimensional vectors in 
order to comply with their input requirements. As a 
result of this conversion, much useful information in 
the original data is destroyed, leading to an increased 
number of classification errors. In addition, the 
conversion to vector input usually leads to the so 
called curse of dimension problem since the dimension 
of the feature space becomes much larger than the 
number of training samples. If the data are represented 
in their natural, high–order tensors, then this curse of 
dimension problem is usually reduced. 

The main contributions of this paper are as follows. 
Tensor–plane (a set of projection orientations): 

by an iterative scheme, the STL–based classifier’s 
optimal tensor–plane can be obtained. Our method 
aims to approach an optimization criterion iteratively; 
and this criterion can be any convex functions, such as, 
the margin maximization (SVM) and the probability of 
correct classification of future data maximization 
(MPM). 

Kernelization: a kernel space representation of 
general tensor inputs is developed. 

Tensor MPM (TMPM): as an example, MPM is 
generalized to its STL version, named the tensor MPM 
(TMPM). TMPM is then compared with MPM on a 
sample image classification problem. In addition, 
TMPM is kernelized. 
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Stability analysis: in a series of experiments we 
observe that TMPM converges quickly within a very 
few iterations (around 5). Furthermore, unlike many 
other learning models, it is stable under different 
choices of initial values [11], i.e. it does not become 
trapped in a local minimum.

Feature extraction: we study tensor–based 
feature extraction based on linear discriminant analysis 
(LDA). In this effort [18], we inherit the merits from 
both the defined differential scatter based discriminant 
criterion (DSDC) and the rank–one (or rank–n) tensor 
decomposition; as a result DSDC can extract features 
from tensors. The new established feature extraction 
algorithm is named the tenor rank–one discriminant 
analysis (TR1DA). 

2. Supervised tensor learning (STL) 

This section introduces some basic concepts in 
convex optimization based supervised learning; 
establishes a STL framework for general tensors with 
an iterative procedure; and also deduces a kernel 
extension of the STL framework for high–order tensor 
pattern classification using convex optimization. 

2.1. Convex optimization based learning 

The intrinsic connections between machine learning 
methods and convex optimization techniques have 
been well studied. Examples include quadratic 
programming [1] in SVM and second order cone 
programming [3] in MPM. More recently, some 
convex optimization tools, such as semi–definite 
programming [12], have become popular because they 
are simple and yet powerful. Below, ix  ( 1 xi n )

and iy  ( 1 yi n ) are tensors belonging to the 

positive class and the negative class respectively. 

A. Support Vector Machines (SVM) 

SVM [2] is an effective bi–category classification 
algorithm with sound theoretical foundations and a 
good generalization ability. It aims to maximize the 
margin between the positive and negative samples as: 

min

1,1
. .

1,1 .

T

T
i x

T
j y

w w

w x b i n
s t

w y b j n

                       (1) 

where w  is the optimal projection orientation for 
bi-category classification. 

B. Minimax probability machines (MPM) 

 MPM maximizes the probability of correct 
classification for future data, or alternatively, 
minimizes the maximum of the Mahalanobis distances 
of the positive and negative samples. It is a second 
order cone programming: 

, 0,
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. .
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, x  and 

y  are the covariance matrices of x  and y , and w  is 

the optimal projection orientation for classification. MPM 
has a solid theoretical foundation based on the 
powerful Marshall and Olkin’s theorem [15]. MPM 
can outperform SVM consistently [3]. 

2.2. Supervised tensor learning framework 

Motivated by the successes of convex optimization 
based learning algorithms and the effective image 
representation by general tensors [13] [14], we propose 
a tensor framework for this type of learning algorithm. 
Generally, convex optimization based learning can be 
written as: 

0
max , ,

, , ,1
. .

, , ,1

w

x T
i i i x

y T
j j j y

f w b

C w x b i n
s t

C w y b j n

                 (3) 

where x
iC  and y

jC are linear or quadratic constrained 

functions. It is not difficult to show that (1) and (2) can 
be unified into (3). The optimal hyper–plane for the 
classification can thus be written as: 

sign Tg z w z b .                                  (4) 

Here, if 1g z , then z  belongs to the positive 

class; otherwise, it belongs to the negative class. 
Based on (3) and (4), we can use the tensor idea to 

re–represent convex optimization learning with nth–
order tensors as inputs by: 

1 2
0

1 1 2 2

1 1 2 2

max , ,..., , ,

... , , ,1
. .

... , , ,1

n
w

x
i i n n i x

y
j j n n j y

f w w w b

C x w w w b i n
s t

C y w w w b j n

    (5) 

and the optimal classification function is: 

1 1 2 2sign ... n ng z z w w w b             (6) 
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where k kw  is the mode–k product in tensor analysis 

[14]. It is defined as: k kB A w . Here, we use a set 

of projection orientations 1|nk kw  (optimal tensor plane)

for classification. 

Table 1. Alternating procedure (AP) for STL. 

In
pu

t:

The positive nth–order tensor points ix , 1 xi n

and the negative nth–order tensor points iy ,

1 yi n .

O
ut

pu
t

A supervised tensor classifier based on the optimal
tensor plane and the following bias:  

1 1 2 2sign ... n ng z z w w w b ,

where i  denotes the mode–i product [14]. 

St
ep

 1
. Initialization: Set m  as the nth–order tensor defined

by 
1 1

1 1

2 2

yx
nn

i j
i jx x

m x y
n n

.

St
ep
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. 

Estimate the initial values for kw ( 1 k n ),

according to 
0 0 0

1 1 2 2,1
min ...
k

n n Fw k n
m w w w ,

where 0 0 0
1 1 2 2 ... n nm w w w .

For 1p , 2, …, N or (until converged), do: 

       For 1l ,…,n, do: 

St
ep
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where x
iC  and y

jC  are constrained functions. Here,
1p

i l lx w  is defined by: 
1 1 1 1

1 1 1 1 1 1... ...p p p p
i l l l l n nx w w w w .

St
ep

 4
. 

Find the optimal bias b  for all the projected
positive and negative training samples by: 

1 1 2 2

1 1 2 2

max ,

... , ,

. . ... , ,

1 ,1

x N N N
i i n n i

y N N N
j j n n j

x y

f b

C x w w w b

s t C y w w w b

i n j n

According to the definition of this novel tensor 
oriented supervised learning framework, we can 
directly represent objects in their original format for  
machine learning and data mining applications in 
computer vision etc. However, so far, no closed–form 

solutions to (5) are known. In the next section, an 
alternating approach is developed to solve (5). 

2.3. Alternating approach 

In our tensor based supervised learning framework, 
we define and study an optimal tensor plane ( 1|ni iw , a 

set of projection orientations) to approach the objective 
function with some constrained functions, which are 
related to the positive and negative samples. A close–
form solution does not exist, so we develop an 
alternating procedure (AP) for the framework, listed in 
Table 1. In this table, Steps 2 and 3 finds the optimal 
tensor plane 1|ni iw  and Step 4 finds the optimal bias b.

2.4. Kernelization 

As for many other machine learning and data 
mining algorithms, the STL framework can be 
kernelized directly. The kernelized model is: 

1
0

1 1

1 1

max ,..., , ,

... , , ,1
. .

... , , ,1

n
w

x
i i n n i x

y
j j n n j y

f w w b

C x w w b i n
s t

C y w w b j n

(7)

and the optimal classification function is: 

1 1sign ... n ng z z w w b       (8) 

where k  is the mode–k product in tensor analysis [14] 

and  is a nonlinear mapping function. 

The key issue in kernelization is how to calculate 

1 1 ...i n nx w w . The answer is to perform 

tensor rank–one decomposition, i.e. x  can be 

decomposed into 1 1
1

...
j

n
i i i

i i n n i j
j

x w w w . In 

the kernel space the decomposition can be written as: 

1 1
1

...
j

n
i i i

i i n n i j
j

x w w w .

With this representation, the kernel trick can be 
utilized directly: 

1 1
1 1

...

,

k l

n n
i

i n n i k l
k l

l i i
i k k l i k k

k l k

k i
i k k

k

x w w w w

w w w w

K w w

           (9)

where kK  is a typical kernel function, such as the 

Gaussian function and the polynomial function. By this 
kind of representation, we can have n  kernel functions 
for the tensor learning framework in the kernel space 
with the nth–order tensors as inputs. 
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The alternating procedure can also be kernelized 
because the lth kernel tensor projection orientation is 

1

x yn n
i i

l l l
i

w w , which is similar to vector based 

kernel algorithms, such as kernel discriminant analysis. 
Here, i

l  is the linear combination coefficient for the 

lth direction of the ith training sample. Based on these 
observations, it is straightforward to outline the kernel 
AP. In this paper, we do not focus on the kernel 
method, because the kernel parameter, defined in 
kernel functions, tuning is still a problem and the 
number of the kernel parameters is much more than 
that in the 1st–order form. 

2.5. LDA–based feature extraction: TR1DA 

TR1DA extends the STL framework for feature 
extraction based on linear discriminant analysis (LDA). 
Because TR1DA includes many variables, we first 
define the variables. ,

k
i jX  is the ith object in the jth class 

in the kth training iteration. For k=1, we have 
1
, ,i j i jX X . Moreover, ,

k
i jX  is an Mth–order tensor. 

,1

jnk k
j i j ji

nM X  is the jth class mean tensor in the kth

training iteration and 
1

ck k
jj

cM M  is the total 

mean tensor of all objects in the kth training iteration. 
j

iu  is the jth direction base vector for decomposition in 

the ith training iteration. With these definitions, 
TR1DA is defined by the following equations: 

1 1 1 1
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1

1

1

1

|

,
1

1 1

,
1

argmax

l

l

l M
k l

l
i

l

M Tk k l
i i k

c
l

TM Ti k k l
i k

l

Mu Tk k l
j i i knc

l

TM Ti j k k l
j i i k

l

n u

u

u

u

M M
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             (11) 

where 1
, ,i j i jX X .

From the definition of the problem, which is given 
by (10) and (11), we know that TR1DA can be 
calculated by a greedy approach, because of the lack of 
the closed form solution for the problem. The greedy 
approach is illustrated in Figure 1. The calculation of 

,
r
i jX  is based on the given 1

,
r
i jX  and 1 1|d M

r du . With the 

given 1
,

r
i jX  and 1 1|d M

r du , we calculate 1
,
r
i j  via 

1 1
, , 11 d

Mr r d
i j i j rd

uX . The projection orientations 

1 1|d M
r du  are obtained by the alternating least square 

(ALS) method. In ALS, we obtain the optimal base 
vector 1

d
ru   given 1 1|

i i d
r i Mu . We can conduct the 

procedure iteratively to obtain 1 1|d M
r du . The flowchart 

of the algorithm is given in Figure 1 and the detailed 
procedure for TR1DA is given in [18] due to length 
constraints. More extensions, such as a graph 
embedding extension and a kernel extension for 
TR1DA, are also given in [18]. 

1 1 2
, 1 1 1...r M

i j r r ru u u

1
,

r
i jX

1
1ru

2
1ru

1
M
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1
1ru

2
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1
M
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1
,
r
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1
,

r
i jX ,

r
i jX

Figure 1. Greedy approach in TR1DA. 

With TR1DA, we can obtain 1 1|d M
r du  iteratively. 

The coordinate value 1
,
k
i j  can represent the original 

tensor X . For recognition, the prototype pX  for each 
individual class in the database and the test tensor tX
to be classified are projected onto the bases to get the 
prototype weight vector 1|k R

p k and test weight vector 

1|k R
t k . The test tensor class is found by minimizing 

the distance 
1 1| |k R k R

t k p k
.

Unlike existing tensor extensions of discriminant 
analysis, TR1DA can converge (all 1

1|
d r R
r d Mu  do not 

change any more during training stage). We can check 
the convergence through 

1
1l l

k kt t
u u  where 

is a small number. If 
1

1l l
k kt t

u u , the calculated 

projection orientation in the tth iteration is equivalent to 
the (t+1)th iteration. 

3. Tensor minimax probability machines 
(TMPM): an instance of STL framework 
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We can easily generalize existing STL based 
convex optimization based machine learning and data 
mining algorithms. In this section, we generalize MPM 
to tensor MPM (TMPM) as an example. MPM is 
recently built and reported to achieve a top–level 
performance [3]. Moreover, MPM has a very strong 
probability theory foundation based on the powerful 
Marshall and Olkin’s theorem [15]. TMPM aims at 
maximizing the probability of the correct classification 
for future data points according to: 

, , 0,1
max                       s.t.                    
k

k k

k k

b w k n

T
k k k k k kx w

T
k k k k k ky w

x w w b w w

b y w w w w

      (12) 
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1

,
1

1 xn

k k i k k
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x w x w
n

,

1

1 yn

k k j k k
jy

y w y w
n

, and 
k kx w  and 

k ky w  are the covariance matrices of k kx w  and 

k ky w  respectively. 

Table 2. Alternating procedure (AP) for tensor
minimax probability machines (TMPM). 
Input

:
Same as in Table 1. 

O
ut

pu
t A tensor minimax probability machine using the

optimal tensor plane and the bias:  

1 1 2 2sign ... n ng z z w w w b .

Step1. Same as Step 1 in Table 1. 
Step2. Same as Step 2 in Table 1. 

For 1p , 2, …, N or (until converged), do: 

       For 1l ,…,n, do: 

St
ep

 3
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St
ep
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Find the optimal bias b  for all the projected
positive/negative training samples according to: 

1 1 2 2
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max                           s.t.            
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...

b

N N N
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N N N
j n n

x w w w b

b y w w w

The optimization problem for learning in (12) is a 
sequential second–order cone programming in convex 

optimization. Based on the procedure developed in 
Section 2.3, to solve (12) is straightforward. In Table 2, 
we have only listed Step 3 and Step 4, which require 
more detail, while Step 1 and Step 2 are the same as in 
the procedure shown in Table 1. 

We now turn to analyze the computational 
complexity of this generalized TMPM. If the second 
order cone programming is solved by the primal–dual 
interior–point method, the computational complexity 

of TMPM is
3

1

L
i

i

O N n , when the input tensors 

belong to
1 ... Ln nR  and  N  iterations are required for 

convergence. 
Regarding kernelization, the key issue in a kernel 

tensor minimax probability machine (KTMPM) is the 
adaptation of (12) to the kernel trick. Here, we present 
our results for the positive class only. For the negative 
class, the deduction process is similar. We define 
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(15)

where l
q   is linear combination coefficients, like i

l

defined in Section 2.4. With (13), (14), and (15), the 
KTMPM can be implemented according to AP, which 
is similar to the procedure listed in Table 2. 

 Figure 2 illustrates TMPM for learning with nth–
order tensors as inputs. All the data in the figure come 
from the experiment section below. First, we have a set 
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of samples to train TMPM. We then get three 1st–order 
tensors as the projection orientations for classification. 
To represent the outer product of the three 1st–order 
tensors conveniently, we only do the outer product for 
the first and second projection 1st–order tensors, the 
first and third projection 1st–order tensors, and the 
second and third projection 1st–order tensors, 
respectively. The results of each production are shown 
as a 2–dimensional tensor plane. With these tensor 
planes, we can project the training or testing data onto 
a real axis easily through 1 1 2 2 ...i i n nx w w w .

After projections, we can calculate the optimal bias 
according to the criterion of the 0th–order TMPM. 

Figure 2. The proposed learning framework. 

4. Experimental results 

With the established STL framework, TMPM is 
developed as an example of a generalized learning 
machine. In this section, its performance is examined 
with a binary image classification problem. The 
experimental results show that the STL version 
outperforms the original vector based version in terms 
of the ability for generalization and the stability for 
different initial parameters 1|ni iw  as referred to in 

Abstract. 

4.1. Sample binary classification problem 

To categorize images into groups based on their 
semantic contents is a very important and challenging 
issue. The fundamental task is binary classification. A 
hierarchical structure can be built using a series of 
binary classifiers. As a result, this semantic image 
classification [19] can make the growing image 
repositories easy to search and browse [17]; moreover, 
the semantic image classification is of great help for 
many other applications. 

In this STL based classification environment, two 
groups of images are separated from each other by a 
trained TMPM. Inputs (representing features) of 
TMPM are the regions of interest (ROIs) within the 
pictures, which are extracted by the attention model [6] 
and represented as 3rd–order tensors. 

Figure 3. Attention model for classification. 

The attention model [6] is capable of reproducing 
human–level performances for a number of pop–out 
tasks [16]. A target “pops–out” from its surroundings 
when it has it’s a unique orientation, color, intensity, or 
size. Pop–out targets are always easily noticed by an 
observer. Therefore, utilizing the attention model to 
describe an image’s semantic information is reasonable. 

As shown in Figure 3, to represent an attention 
region from an image consists of several steps: 1) 
extract the salient map as introduced by Itti et al. in [6]; 
2) find the most attentive region, whose center has the 
largest value in the salient map; 3) extract the attention 
region by a square (called ROI) in size of 64 64 ; and 
4) finally, represent this ROI in the hue, saturation, and 
value (HSV) perceptual color space. Consequently, we 
have a 3rd–order tensor for the image representation.  

Note that although we only select a small region 
from the image, the size of the extracted 3rd–order 
tensor is already as large as 64 64 3 ; if we vectorize 
it, the dimensionality of the vector will be 12288 . 
From the next subsection, we will be aware that the 
numbers of elements in the training and test sets are 
only of hundreds, much smaller than12288 .Therefore, 
the small samples size (SSS) problem is always met 
when a 3rd–order tensor is converted to a vector for 
input to a conventional learning machine. In contrast, 
our tensor oriented supervised learning scheme can 
reduce the SSS problem and at the same time represent 
the ROIs much more naturally. 

4.2. Training/test data sets 
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The training set and the test set for the following 
experiments are built upon the Corel photo gallery [17], 
from which 100 images are selected for each of the 
two sets. These 200 images are processed to extract the 
3rd–tensor attention features for TMPM. 

Figure 4. Some successful attention ROIs. 

Figure 5. Some unsuccessful attention ROIs. 

We choose the “Tiger” category and the “Leopard” 
category for binary classification experiments since it 
is a very difficult task for a machine to distinguish 
between them. The “Tiger” and “Leopard” 
classification is carried out in the next subsection. We 
choose the top N images as a training set according to 
the image IDs, while all the images are used to form 
the corresponding test set. 

Table 3. TMPM vs. MPM.
 Training Error Rate Testing Error Rate 

STS TMPM MPM TMPM MPM 
5 0.0000 0.4000 0.4600 0.5050 

10 0.0000 0.5000 0.4250 0.4900 
15 0.0667 0.4667 0.3250 0.4150 
20 0.0500 0.5000 0.2350 0.4800 
25 0.0600 0.4800 0.2400 0.4650 
30 0.1167 0.5000 0.2550 0.4600 

We introduced 3rd–order tensor attention ROIs, 
which can mostly be found correctly from the images. 
Some successful results, respectively extracted from 
the “Tiger” category and the “Leopard” category, are 
shown in Figure 4. By this means, the underlying data 
structures are well kept for the next step: classification. 
However, we should note that the attention model 
sometimes cannot depict the semantic information in 
an image. This is because the attention model always 
locates the region that is different from its 
surroundings and thus might be “cheated” when some 
complex or bright background exists. Some 
unsuccessful ROIs in the “tiger” (top) and “leopard” 
(bottom) categories are shown in Figure 5. It should be 
emphasized that in order to keep the following 
comparative experiments fair and automatic, these 

wrongly extracted ROIs were not excluded from each 
training set. 

4.3. Binary classification performance 

We carried out the binary classification (“Tiger” 
and “Leopard”) experiments on the above training/ test 
sets. The proposed tensor based TMPM algorithm is 
compared with the original MPM. The experimental 
results are shown in Table 3. Error rates for both 
training and testing are reported, as the size of the 
training set (STS) increases from 5 to 30. 

From the training error rates in Table 3, it can be 
seen that the traditional method (MPM) cannot learn a 
satisfactory model for classification when the size of 
the sample set is small. However, the learning 
algorithm TMPM under the proposed STL framework 
has a good characteristic on the volume control 
according to the computational learning theory and its 
real performances. 

Also from Table 3, based on the testing error rates 
of the comparative experiments, the proposed TMPM 
algorithm more effectively represents the intrinsic 
discriminant information (in forms of 3rd–order ROIs). 
TMPM learns a better classification model for unseen 
data classification than MPM and thus has a better 
performance on the testing set. It is observed that the 
TMPM error rate is a decreasing function of the size of 
the training set. This is consistent with statistical 
learning theory. 

5. Experimental–based convergence and 
stability analysis 

In this section we study two important issues in 
machine learning and data mining, namely, the 
convergence property and the insensitiveness to the 
initial values. 

We carry out a series of experiments based on the 
same database employed in Section 4. Experimental 
results prove that TMPM converges well. In addition, 
it is insensitive to the initial values and thus has a good 
stability.  

Figure 6 shows tensor projected position values 

1 1 2 2 ...i i n nx w w w  of the original general 

tensors with an increasing number of learning 
iterations using 10 training samples for each class. We 
find that the projected values converge to stable values. 
As shown in Figure 6, five to six iterations are usually 
enough to achieve convergence. 

Figure 7 shows TMPM is insensitive to the initial 
values. Many learning algorithms converge to different 
local minima with different initial parameter values for 
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1|ni iw . This is the so–called local minimum problem. 

However, our new TMPM does not slump into this 
local minimum problem, which is proved by a set of 
experiments, with different initial parameters, 10 
learning iterations, and 20 training samples. 
Theoretically, this is also true, because each sub–
optimization problem to optimize iw  is convex. 
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Figure 6. TMPM converges effectively. 
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Figure 7. TMPM is stable with different initial 
values in 10 learning iterations (20 training samples 
in each class). 

6. Conclusion 

In this paper, we have developed a supervised 
tensor learning (STL) framework to generalize convex 
optimization based schemes so that they accept nth–
order tensors as inputs. We have also studied the 
tensor rank–one discriminant analysis (TR1DA)
method for extracting features from tensors. Under this 
STL framework, a novel approach called tensor 
minimax probability machines (TMPM) has been 
developed to learn a series of projections for 
classification. TMPM has the following properties: 1) 
it can reduce the curse of dimension problem 

meaningfully and directly by using the tensor based 
representation, which reduces the number of 
parameters in the learning procedure; 2) it makes a 
better use of the information on the input than vector 
based discriminant analysis, efficiently; 3) it converges 
within a few training iterations; and 4) it is insensitive 
to the initial parameter values. The stability of the 
proposed scheme has also been analyzed. 
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