
1 
 

Dual L1-Normalized Context Aware Tensor Power Iteration and Its 

Applications to Multi-Object Tracking and Multi-Graph Matching 

Weiming Hu, Xinchu Shi, Zongwei Zhou, and Junliang Xing 

(National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences; CAS Center for Excellence 

in Brain Science and Intelligence Technology; University of Chinese Academy of Sciences, Beijing 100190)  

{wmhu, xcshi, zwzhou, jlxing}@nlpr.ia.ac.cn 

Haibin Ling 

(Department of Computer and Information Science, Temple University, Philadelphia, USA) 

hbling@temple.edu 

Stephen Maybank 

(Department of Computer Science and Information Systems, Birkbeck College, Malet Street, London WC1E 7HX) 

sjmaybank@dcs.bbk.ac.uk 

 

Abstract: The multi-dimensional assignment problem is universal for data association analysis such as data 

association-based visual multi-object tracking and multi-graph matching. In this paper, multi-dimensional 

assignment is formulated as a rank-1 tensor approximation problem. A dual L1-normalized context/hyper-context 

aware tensor power iteration optimization method is proposed. The method is applied to multi-object tracking 

and multi-graph matching. In the optimization method, tensor power iteration with the dual unit norm enables 

the capture of information across multiple sample sets. Interactions between sample associations are modeled as 

contexts or hyper-contexts which are combined with the global affinity into a unified optimization. The 

optimization is flexible for accommodating various types of contextual models. In multi-object tracking, the 

global affinity is defined according to the appearance similarity between objects detected in different frames. 

Interactions between objects are modeled as motion contexts which are encoded into the global association 

optimization. The tracking method integrates high order motion information and high order appearance variation. 

The multi-graph matching method carries out matching over graph vertices and structure matching over graph 

edges simultaneously. The matching consistency across multi-graphs is based on the high-order tensor 

optimization. Various types of vertex affinities and edge/hyper-edge affinities are flexibly integrated. 

Experiments on several public datasets, such as the MOT16 challenge benchmark, validate the effectiveness of 

the proposed methods. 

Index terms: Multi-dimensional assignment, Context/hyper-context aware tensor power iteration, Multi-object 

tracking, Multi-graph matching 

1. Introduction 

Multi-dimensional assignment is an important problem in data association analysis. Its aim is to find a one-

to-one mapping between data in multiple sets. Many tasks can be formulated as multi-dimensional assignment. 
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For instance, in data association-based multi-object tracking, a batch of evidence [8, 9] is collected within a time 

span and tracking is treated as a multi-frame multi-object association problem. Multi-graph matching involves a 

search for correspondences across multi-sets of feature vectors where each feature vector is represented by a 

vertex and each set of feature vectors is represented by a graph.  

In this paper, we propose a new multi-dimensional assignment method and apply it to data association-based 

multi-object tracking and multi-graph matching. In order to put our work into context, multi-dimensional 

assignment, data association-based multi-object tracking, and multi-graph matching are reviewed. 

1.1. Related work 

1.1.1. Multi-dimensional assignment 

The integer optimization for multi-dimensional assignment is NP-hard for three or higher dimensional 

association. Some methods handle the global association using hierarchical strategies [5] in which the optimum 

local associations are carried out first and then are used to obtain longer tracks. There exist some approximate 

solutions, such as semi-definite programming [41] and Lagrange relaxation [42], for the multi-dimensional 

assignment problem. The existing methods can be classified into network flow-based, sampling-based, and 

iterative approximation-based: 

⚫ Network flow-based methods [2, 17, 25] decompose the global association affinity as the product of 

pairwise affinities between consecutive sample sets and then formulate multi-dimensional assignment 

as a network flow problem, which can be solved using linear programming [12], shortest path 

algorithms [2], the max-flow/min-cut optimization [25], or greedy search [17, 45], etc. These methods 

yield optimal solutions with polynomial time complexity. Their limitation is that only pairwise affinities 

are used and high order sequential information and longtime variation in sample features are not 

modeled. 

⚫ Sampling-based methods use probabilistic sampling strategies (e.g. Markov chain Monte Carlo 

sampling) [43, 44] to find a global solution for data association. The limitations of these methods are 

that the high-dimensional state estimation in multi-dimensional assignment typically requires a large 

computational cost and tuning the parameters to obtain a convergence is always difficult. 

⚫ The iterative approximation-based methods [7] iteratively solve two-frame assignments to search 

for the global solution by using the global affinity. These methods model the high order affinity. The 

limitations of these methods are that the computational complexity is high and the contexts between 

samples are not modeled. 
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1.1.2. Data association-based multi-object tracking 

Multi-object tracking methods can be roughly divided into Bayesian filtering-based and data association-

based. Bayesian filtering-based methods use only observations in the current frame to estimate the current object 

states [4, 13]. Data association-based methods use observations in the previous and current frames to estimate 

the states of the objects in these frames simultaneously, using the results of object detection in these frames. The 

association-based methods have become popular recently [8, 9]. They are reliable, in general, for solving data 

association jointly across multi-frames. This paper focuses on data association-based tracking. 

Association-based multi-object tracking can be formulated as a network flow problem [2, 17, 25] by 

decomposing the global affinity between objects in a sequence of frames as the product of local pairwise affinities 

between objects in consecutive frames. The decomposition of the affinity leads to an efficient solution. However, 

the association discriminability is limited in that multi-frame motion information, which is useful for reducing 

the association ambiguity, is lost. Collins [7] used the global affinity between objects to enhance the association 

robustness. The limitation of his method is that interactions between the moving objects are not utilized to 

improve association accuracy. 

Because motion contexts [1, 10, 16, 21] can reduce intrinsic association ambiguities caused by appearance 

similarity, occlusion, fast motion, and so on, modeling interactions among objects is useful for multi-object 

tracking. The classic social force model [11] used in pedestrian tracking [14, 15, 18] defines a series of social 

forces for an object to ensure collision avoidance and a desired direction for the destination. Its limitations are 

that it is complicated and requires pre-training from similar scenes, as well as prior knowledge, for example about 

the destination which is usually unavailable. Most methods that include an interaction-based motion model [1, 

14, 15, 21] are limited to a predictive tracking framework. In [1], the motion context is a collection of trajectories 

of objects. It was used to predict and reacquire occluded objects. In [5], the association problem was formulated 

as finding the maximum weighted independent set. The interaction between two trajectories was embedded as a 

soft constraint. The limitation of these methods is that the local temporal association is often troubled by the 

intrinsic motion ambiguity. 

1.1.3. Multi-graph matching 

While matching two graphs has been studied intensively, multi-graph matching has received relatively less 

attention. In the following, two graph matching and multi-graph matching are reviewed respectively. 

Matching two graphs is traditionally formulated as an optimization problem which is solved by the graduated 
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assignment algorithm [46], the integer projected fixed point method [47], the spectral matching methods [48, 49], 

the path-following algorithms [39, 50, 51], etc. Both the pairwise edge affinity and the hyper-edge affinity are 

exploited in two-graph matching. The pairwise edge affinity is generally sensitive to the scaling and rotation, 

while hyper-edge affinity explores high-order structure information and is more robust to certain geometric 

transformations [29, 30, 52]. In particular, the algorithm in [29] uses a high-order tensor for hyper-graph matching 

between two graphs. Lee et al. [30] proposed a hypergraph matching method by reinterpreting the random walk 

concept on the hyper-graph in a probabilistic manner. Leordeanu et al. [65] proposed a hypergraph matching 

method, in which the parameters combining structural information and appearance information were learnt in a 

semi-supervised way. Nguyen et al. [66] proposed two tensor block coordinate ascent methods for hypergraph 

matching. Zeng et al. [67] proposed a graph matching method to address non-rigid surface matching. The 

limitation of two-graph matching is that high-order affinity among multi-graphs, which can be used to increase 

the matching consistency between vertices in different graphs, is not exploited. 

Multi-graph matching methods can be roughly divided into affinity-driven and consistency-driven. The 

affinity-driven methods [19, 20, 35, 53] formulate multi-graph matching as an optimization problem in which the 

objective is usually the summation of the overall pairwise matching affinities [19], sometimes supplemented by 

matching consistency regularization [35]. For example, Sole-Ribalta and Serratosa [19] applied the graduated 

assignment algorithm [46] repeatedly across graph pairs to achieve cross graph matching. Yan et al. [35] carried 

out multi-graph matching by iteratively approximating the global-optimal affinity, while using regularization to 

gradually increase the consistency. The consistency-driven methods [34, 36] put more attention on the matching 

consistency. Yan et al. [36] proposed an iterative optimization solution with a rigid matching consistency 

constraint. Pachauri et al. [34] pooled all pairwise matching solutions into a single matrix and then estimated the 

globally consistent array of matches. The limitation of the above work is that high-order information both across 

multi-graphs and across hyper-edges is not handled. 

In summary, the main limitation in the current methods for multi-dimensional assignment is that high order 

sequential information and longtime variation in sample features as well as the contexts between samples are not 

simultaneously modeled with low computational complexity. Correspondingly, the main limitations in the current 

methods for data association-based multi-object tracking are that motion contexts are not efficiently utilized 

without pre-training from similar scenes to model the interactions between moving objects, and multi-frame high-

order motion information is not effectively combined with high-order appearance variation. The main limitations 

in the current methods for multi-graph matching are that high-order information across multi-graphs and high-
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order information across hyper-edges are not simultaneously modeled. 

1.2. Our work 

Our work handles the above main limitations in the current methods for multi-dimensional assignment, as 

well as data association-based multi-object tracking and multi-graph matching. As tensors are the tools for 

effectively representing high order information, we introduce rank-1 tensor approximation which has effective 

solutions with solid mathematical support, such as tensor power iteration, into the multi-dimensional assignment 

problem. Then, a dual L1-normalized context/hyper-context aware tensor power iteration optimization method 

for multi-set sample association is proposed and applied to multi-object tracking and multi-graph matching [56]. 

In our dual L1-normalized context/hyper-context aware tensor power iteration optimization method, a high-

order tensor is constructed from a sequence of sets of samples. The low rank approximation to this tensor has the 

same affinity formulation as the multi-dimensional assignment problem. A tensor power iteration method with 

row/column unit norm (i.e., dual L1-normalized) is proposed to solve the context/hyper-context aware tensor 

approximation problem. Interactions between sample associations are modeled as contexts or hyper-contexts and 

combined with the global affinity into the power iteration solution. In our multi-object tracking method, objects 

detected in each frame are treated as samples in a set. The global affinity is defined according to the appearance 

similarity between objects in different frames. Motion contexts are constructed to model the interaction between 

associations. Then, the dual L1-normalized context-aware tensor power iteration optimization is applied to obtain 

the associations of the objects. In the multi-graph matching method, each vertex in a graph is treated as a sample, 

and the graph is treated as a sample set [20]. The affinity of the vertices is formulated as a global association 

affinity and the structure affinity over a set of hyper-edges as a hyper-context affinity. The dual L1-normalized 

hyper-context aware tensor power iteration optimization is applied to match the vertices in the graphs. 

The contributions of our work are summarized as follows: 

⚫ We formulate the objective of multi-dimensional assignment as the objective of rank-1 tensor 

approximation, and incorporate context into the multi-dimensional assignment formulation. By 

mathematical derivation, we ensure that the context-aware multi-dimensional assignment problem is 

solvable and propose an effective context-aware tensor power iteration method, in which the additional 

runtime for modeling the contexts is very small. We incorporate hyper-contexts into the multi-

dimensional assignment problem and propose an effective hyper-context aware power iteration method. 

In this way, our dual L1-normalized context/hyper-context aware tensor power iteration optimization 
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method captures information across multiple sample sets. Contexts or hyper-contexts are utilized to 

characterize interactions between sample associations. The optimization framework provides the 

flexibility to use different context information. 

⚫ Our multi-object tracking method constructs the motion contexts to model the interaction between 

moving objects. The tracking method effectively integrates high-order motion information and high-

order appearance variation. 

⚫ In contrast with the previous multi-graph matching methods, which use only pairwise affinities and 

ignore the high-order information in multi-sets of vertices, our multi-graph matching method works on 

high-order affinity tensors and naturally improves the matching. The information on the vertex 

affinities and the information on the edge/hyper-edge affinities are combined in a flexible way. 

We test our multi-object tracking method and multi-graph matching method on several datasets, such as the 

MOT16 challenge benchmark. For different datasets or different applications, different affinities between objects 

are defined. For example, on the MOT16 challenge benchmark dataset, the affinities are defined using the features 

from deep siamese neural networks. It is shown that our methods have excellent performance in comparison with 

the state of the art. 

The remainder of the paper is organized as follows: Section 2 briefly introduces rank-1 tensor approximation. 

Section 3 describes the dual L1-normalized rank-1 tensor approximation. Sections 4 and 5 propose context and 

hyper-context aware tensor power iterations. Sections 6 and 7 present our multi-object tracking method and our 

multi-graph matching method respectively. Section 8 demonstrates the experimental results. Section 9 

summarizes the paper. 

2. Rank-1 Tensor Approximation 

A tensor is the high dimensional generalization of a matrix. Each element in a K-order tensor 

1 ... ...k KI I I
  is represented as 

1 1 1... ...k k k Ki i i i ia
− +

 where 1 k ki I  . Each order of a tensor is associated with a 

mode. The k-mode product of a tensor 1 1 1... ...k k k KI I I I I− +  
   and a matrix k kI J

W   is a new tensor 

1 1 1... ...k k k KI I J I I− +  
  whose entries are 

1 1 1 1 1 1... ... ...

1

k

k k i K k k k K k k

k

I

i i j i i i i i i i i j

i

b a w
− + − +

=

= .                              (1) 

This k-mode product is notated as k=  W . In particular, the k-mode product of  and a vector kI
w  

is a K−1 order tensor: 
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1 1 1 1 1 1... ... ...

1

( )
k

k i K k k k K k

k

I

k i i i i i i i i i i

i

a w
− + − +

=

 =w .                            (2) 

A rank-1 tensor 1 1 1... ...ˆ k k k KI I I I I− +  
  is a specific tensor which can be represented as the outer product 

(  ) of K vectors 1
ˆ{ }kIk K

k=w : 1 2ˆ ˆ ˆ ˆ ˆ= ... ...k K w w w w , i.e., an element in ˆ  is represented as: 

1 1 1 2

1 1 2
... ... ... ...

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ=( ... ... ) ... ...
k K k K k K

k K k K
i i i i i i i i i ic w w w w   =w w w ,                        (3) 

where ˆ
k

k
iw  is the ki th element in ˆ k

w . Let  1{ }kIk K
k=w  be K L2 unit-normalized column vectors and let W 

be the matrix composed of 1{ }kIk K
k=w  . A rank-1 approximation to a tensor 1 1 1... ...k k k KI I I I I− +  

   is 

obtained by finding the vectors 1{ }kIk K
k=w   and a scalar    for minimizing the following square of the 

Frobenius norm: 

( )
1 2

1 2 1 2

1 2

22
1 1 2

...
, ,

1 1 1

min ... =min .... ...
K

K K

K

I I I
k K K

i i i i i i
F

i i i

a w w w
 

 
= = =

−   − 
W W

w w w .                  (4) 

By solving (4), the tensor  is approximated by the rank-1 tensor 1 ...k K  w w w . A function g is defined as: 

1 2

1 2 1 2

1 2

1 2 1 2 1 2
1 2 ...

1 1 1

( , ,..., ) ... .... ...
K

K K

K

I I I
K K K

K i i i i i i

i i i

g a w w w
= = =

=    = w w w w w w .                (5) 

With some derivations as shown in [26, 27], the optimization in (4) has the following equivalent form: 

1 2max ( , ,..., )Kg
W

w w w .                                 (6) 

Tensor power iteration [26, 27] has been proposed to optimize (6). 

3. Dual L1-Normalized Rank-1 Tensor Approximation 

Many applications, such as multi-frame data association and multi-graph matching, can be formulated as 

multi-dimensional assignment problems [7]. We transform the multi-dimensional assignment problem to a rank-

1 tensor approximation problem. Then, mathematical techniques for rank-1 tensor approximation are introduced 

to solve the multi-dimensional assignment problem. 

3.1. Formulation 

Suppose that there is a sequence of K+1 sets of samples and each set has N samples1. Let ki  be a sample 

index in the kth set. A trajectory 0 1 2... Ki i i i  is a sequence of K+1 samples from the K+1 sets respectively (We 

 
1 We assume that there is the same number of samples in each set. When there are different numbers of samples in each set, virtual 

samples are added to the sets to make the number of samples in each set the same. After the association is carried out, the samples 

associated with the virtual samples are the isolated samples. 
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index sample sets stating from 0 for description convenience). Let 
0 1 2 ... Ki i i ia  be the affinity of trajectory 0 1... Ki i i  

whose label 
0 1... Ki i ix  is 1 if the trajectory is actually existent, otherwise is 0. An actually existent trajectory has 

higher affinity between the samples in it. Multi-dimensional assignment is formulated as: 

0 1 0 1

0 1

... ...

1 1 1

max ....
K K

K

N N N

i i i i i i

i i i

a x
= = =

  ,                                 (7) 

0 1

0 1

0 1 1 1

...

... ...

1 1 1

{0,1},0 ;

. .
{1,2,.., } , ... ... 1.

K

k K

k k K

i i i

N N N N N

k i i i i

i i i i i

x k K

s t
i N x

− += = =

  


  =


  
                        (8) 

Actually existent trajectories are found by solving this constrained integer optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The relation between the association matrix and the association vector: The sample association (𝑖𝑘 , 𝑖𝑘+1) between two 

consecutive sets k and k+1 is represented by vector 𝜗𝑘+1 ∈ 𝑅𝑁×𝑁. The upper part shows all the possible associations between three 

consecutive sets; The lower part shows the corresponding vector representation. The relation between the second sample in set 0 

and the first sample in frame 1 (𝑖0 = 2, 𝑖1 = 1) corresponds to the fourth element 𝜗4
1 in association vector 𝜗1; The association 

(𝑖1 = 1, 𝑖2 = 3) corresponds to the third element 𝜗3 
2  in association vector 𝜗2. 

 

We decompose a global association 
0 1... Ki i ix  into a sequence of pairwise associations: 

 
0 1 0 1 1 2 1

1 2
... , , ,...

K K K

K
i i i i i i i i ix x x x

−
= ,                                  (9) 

where 
1, {0,1}

k k

k
i ix
−

  is the association between the 1ki − th sample in the k-1th set and the ki th sample in the 

kth set. Only if all the pairwise associations in the sequence are true (i.e., take value 1), is the global association 

also true. It is apparent that there are 2N   associations between two consecutive sample sets. In order to 

transform multi-dimensional assignment to a rank-1 tensor approximation problem, we flatten (unfold) the 
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association matrix 
1,k k

k
i i

N N
x

− 
 
 

 between the k-1th sample set and the kth sample set into a vector 
2

1k
k

N
kw

=
 
 


. To 

more clearly distinguish the association matrix and the flattened association vector, we use bold italic font to 

indicate the elements in an association vector. The relation between the association matrix and the association 

vector is illustrated in Fig. 1. The equivalent relation between the association index k  in the vector and the 

indices 1ki −  and ki  in the association matrix is: 

1( 1)k k ki N i−= − + .                                    (10) 

In this way, an association indexed by 1( , )k ki i−  in the association matrix 
1,k k

k
i i

N N
x

− 
 
 

 is also indexed by k  

in the association vector ( )
2

1k
k

N
k kw

=
=w 


: 

1,k k k

k k
i ix w
−

=  . 

We rearrange the affinity 
0 1 2 ... Ki i i ia  using the indices in association vectors { }k

w . In the k-1th set the index 

1ki −  of the sample included in the association k  is /k N   , where     is the up rounding operator; and in 

the kth set the ki  index of the sample included in the k th association is ( )/ 1k k N N− −    : 

( )
1 /

/ 1 .

k k

k k k

i N

i N N

− =    


= − −   

，

 
                                (11) 

The consecutive associations k  and 1k+  have affinity only if they share the same sample in the kth set. Then, 

we define the affinity 
1 2 ... K

s    of the global association consisting of the consecutive pairwise associations 

1{ }K
k k=  as follows: 

( )
0 1

1 2

... 1
...

/ 1 / , 1,2,... 1

0 .

K

K

i i i k k ka if N N N k K
s

otherwise

+
 − − = = −       

= 


 

  
              (12) 

where ( ) 1/ 1 /k k kN N N+− − =          means that associations k  and 1k+  share the same sample in in the 

kth sample set.  

Using the pairwise association vectors 1{ }k K
k=w  and the affinities defined on 1{ }k K

k=w , we can transform 

multi-dimensional assignment to rank-1 tensor approximation. Let 
2N KW   be the matrix composed of 

1{ }k K
k=w . Using (10) and (12), the objective of multi-dimensional assignment formulated in (7) is transformed to 

the objective of rank-1 tensor approximation: 
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2 2 2

1 2 1 2 1 2

1 2

1 2 1 2
...

1 1 1

max ( , ,..., ) max .... ...
K K K

K

N N N
K Kg s w w w

= = =

=   
W W

w w w       
  

.                   (13) 

The global constraint in (8) is decomposed into the following local pairwise constraints: 

1

1

1

,

1

,

1

1

1

k k

k

k k

k

N
k
i i

i

N
k
i i

i

x

x

−

−

−

=

=


=



 =







  1 k K  ,                               (14) 

where 
1,k k

k
i ix
−

 is an element in the association matrix and it is equal to 
k

kw . The dual L1 norm in (14) is that both 

the rows and columns in the association matrix 
1,k k

k
i i

N N
x

− 
 
 

 are L1-normalized. This ensures that one sample in 

the current set associates with only one sample in the subsequent set, and one sample in the subsequent set 

associates with only one sample in the current set. The optimization objective in (13) is the same as in (6). 

However, the original rank-1 tensor approximation in (6) is constrained by the L2 norm, while the optimization 

in (13) is constrained by the dual L1 norm. The methods for the original rank-1 tensor approximation are not 

suitable for solving the dual L1 normalized rank-1 tensor approximation. 

3.2. Solution 

We carry out the optimization in (13) by an iterative algorithm that finds the association variables 

2

1,...,

1,...,
{ }

k
k

k k K

N
w =

= 
. In each iteration some association variables are updated while the remaining association variables 

are fixed. It is required that in each iteration the value of the objective function is increased. 

A power iteration method is utilized to adapt the dual L1 unit norm constraint. The integer constraint on 

k

kw  is relaxed to a real value constraint: 0 1
k

kw  . Then, 
k

kw  represents the probability of the association 

between the 1ki − th sample in the k-1th set and the ki th sample in the kth set. A tensor power is used to iteratively 

update 
2

1{ }
k k

k k Nw ==w    followed by a dual L1 unit normalization. The iteration is based on the partial differential 

of 1 1( ,..., , ,..., )k k Kg +
w w w w  for each association vector element 

k

kw : 

2 2 2 2

1 1 1 1

1 1 1

1 1
1 1 1

... ...

1 1 1 1

( ,..., , ,..., )
... ... ... ... .

k K k k K

k k Kk

k k K N N N N
k k K

k

g
s w w w w

w − +

− +

+
− +

= = = =


=


   

w w w w
      

   

             (15) 

Let ( )k w   be the kth association vector at the   th iteration. It has elements 
2

1{ ( )}
k k

k Nw  =   . At the 1 +  th 

iteration, on considering the update of ( )k w  , with all other association vectors 
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1 1 1{ ( 1),..., ( 1), ( ),..., ( )}k k K   − ++ +w w w w  fixed, the following equations are used to update k
w : 

2 2 2 2

1 2 1 1 1

1 1 1

1 1 1
...

1 1 1 1

( 1) ( ) ... ... ( 1)... ( 1) ( )... ( )
k k K k k K

k k K

N N N N
k k k k Kw w s w w w w     

− +

− +

− +

= = = =

+  + +          
   

,          (16) 

1

1

1

,

,

,

1

( 1)
( 1)

( 1)

k k

k k

k k

k

k
i ik

i i N
k
i l

l

x
x

x






−

−

−

=

+
+ 

+

,                                (17) 

1

1

1

1

,

,

,

1

( 1)
( 1)

( 1)

k k

k k

k k

k

k
i ik

i i N
k
l i

l

x
x

x






−

−

−

− =

+
+ 

+

,                               (18) 

where (17) and (18) carry out the dual L1 normalization corresponding to the constraint in (14), ensuring the one 

to one mapping between samples in consecutive sets. We can prove that 

1 1 1 1

1 1 1 1( ( 1),..., ( 1), ( )..., ( )) ( ( 1),..., ( ), ( ),..., ( ))
k k K k k K

k k K k k Kg g       
+ +

+ ++ +  +w w w w w w w w        .       (19) 

The convergence shown in (19) ensures that (16), (17), and (18) form an effective iteration algorithm for solving 

the dual L1 normalized rank-1 tensor approximation problem. The original rank-1 tensor approximation in Section 

2, constrained by the L2 unit norm, has been proved to converge. In the following, we first prove that the iteration 

for the rank-1 tensor approximation constrained by the L1 unit norm is convergent, and then give the proof of 

convergence of the dual L1 normalized rank-1 tensor approximation. 

Proposition A: For the L1 normalized rank-1 tensor approximation, each element 
1

1
iw  in 1

w  is updated by: 

2

1 1 1 2 2

2

1 1 2
...1

1 1

1
( 1) ( ) ... ( )... ( )

K

K K

K

I I
K

i i i i i i i

i i

w w a w w
C

   
= =

+ =   ,                          (20) 

where 1C  is the L1 normalization factor of 1( 1) +w : 

1 2

1 1 2 2

1 2

1 1 2
...

1 1 1

( ) ... ( )... ( )  
= = =

=  
K

K K

K

I I I
K

i i i i i i

i i i

C w a w w .                          (21) 

Then, we have 

1 2 1 2( ( 1), ( ),..., ( )) ( ( ), ( ),..., ( ))K Kg g     + w w w w w w .                      (22) 

Namely, with the L1 normalized 1( 1) +w , the iteration using (20) converges. 

Proof: We define two temporary vectors 
11 2( , ,..., )If f f=G  and 

11 2( , ,..., )Iu u u=U : 



12 
 

2

1 1 2 2

2

1 1 1

2
...

1 1

1

... ( )... ( ),

( ).

K

K K

K

I I
K

i i i i i i

i x

i i i

f a w w

u u w

 



= =


=




 =

 
                               (23) 

Then, the following equation holds 

1 2

1 2 1 2

1 2

1 2

1 2 1 1 2

1 2

1 2

1 1 1 2 2

1 2

1 2

1 2
...

1 1 1

2
...

1 1 1

2
...

1 1 1

( ( ), ( ),..., ( ))

... ( ) ( )... ( )

... ( )... ( )

... ( )... ( )

  

  

 

 

= = =

= = =

= = =

=

=

=

=

 

 

  

w w w

K

K K

K

K

K K

K

K

K K

K

K

I I I
K

i i i i i i

i i i

I I I
K

i i i i i i i

i i i

I I I
K

i i i i i i i

i i i

g

a w w w

a u u w w

u u a w w

,U U G

                              (24) 

where ‘ , ’ and ‘◦’ denote the inner product and the Hadamard product (element-wise product) respectively. With 

the L1 norm constraint 
2 1

2 1
( ) 1= =U w , the application of the Cauchy-Schwarz inequality to (24) yields 

1 2

2 2 2
( ( ), ( ),..., ( )) ,Kg    =  =w w w U U G U U G U G .                    (25) 

After 1
w  is iterated using (20), the objective function is represented as: 

1 2 1 2

1 2

1 2 1 2
...

1 1 1

1 1

2

21 1

( ( 1), ( ),..., ( )) ... ( 1) ( )... ( )

1 1
( 1), ( ), ( ) ,

1 1
, .

     

  

+ = +

= + = =

= =

 w w w

w G w G w G G

U G U G U G

K K

K

N K
i i i i i i

i i i

g a w w w

C C

C C

                 (26) 

It is apparent that 

1 2

1 1 2 2

1 2

1 1 2 1 2
...

1 1 1

( ) ... ( )... ( ) ( ( ), ( ),..., ( ))     
= = =

= =   w w w
K

K K

K

I I I
K K

i i i i i i

i i i

C w a w w g .                (27) 

By combining formulae (25), (26), and (27), we prove the inequality (22). The convergence for the iterations of  

2
w , …, and K

w  can be proved in the same way as for 1
w . 

Proposition B: For the dual L1-normalized rank-1 tensor approximation, the following equations are used 

to update 
1

w : 

2 2 2

1 1 1 2 2

1 2

1 1 2
...

1 1 1

( 1) ( ) ... ( )... ( )
K K

K

N N N
Kw w s w w   

= = =

+         
  

                         (28) 
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0 1

0 1

0 1

1

1
,1

,
1

,

1

( 1)
( 1)

( 1)

i i

i i N

l l

l

x
x

x





=

+
+ 

+
,                                    (29) 

0 1

0 1

0 1

0

1
,1

,
1

,

1

( 1)
( 1)

( 1)

i i

i i N

l l

l

x
x

x





=

+
+ 

+
,                                    (30) 

where (29) and (30) carry out the dual L1 normalization. Then, we have 

1 2 1 2

1 2 1 2( ( 1), ( ),..., ( )) ( ( ), ( ),..., ( ))
K K

K Kg g     + w w w w w w      .                     (31) 

Proof: Similar to the definition of G using (23), we define a vector 21 2( , ,..., )
N

f f f=G  as follows: 

2 2

1 1 2 2

2

2
...

1 1

... ( )... ( ) 
= =

=   K K

K

N N
Kf s w w    

 

 ( 2
11 N  ).                         (32) 

Let 
0 0 0 0

1
,1 ,2 ,( , ,..., )N

i i i i Nf f f =G  ( 01 i N   ), where 0 1{ , }N
ji j =   are defined using (11). Set 

0 0 1{ }N
i i ==G G  . 

The objective function is represented as: 

0 0

0

1 2 1

1

( ( 1), ( ),..., ( )) (( 1), ,
N

K
i i

i

g    
=

+ = + =w w w w G w G .                     (33) 

The objective function is the sum of N components 
0 0
,i iw G . Each component 

0 0
,i iw G  corresponds to a 

L1 normalized rank-1 tensor approximation whose iteration convergence is proved in Proposition A. Therefore, 

the iterations in (28), (29) and (30) for the dual L1-normalized rank-1 tensor approximation also converge. The 

convergence for the iterations of 
2

w , …, and 
K

w  can be proved in the same way as for 
1

w . 

3.3. Discussion 

In the solution, it is assumed that the sample sets have the same number of samples. When different numbers 

of samples exist in different sample sets, virtual samples are added to sample sets to make the number of samples 

in each set the same. The affinities to virtual samples are set to a fixed small value. This fixed small value 

corresponds to the probability that samples appear or disappear. The same small affinity of the virtual samples in 

a set to the samples in other sets ensures that the virtual samples do not influence the matching of the non-virtual 

samples in the sets. After finalization of association, the isolated samples in one set are associated with the virtual 

samples in other sets. 

The above tensor formulation has various applications, depending on the form of the elements 
1 k K

s      in 

the tensor. In particular, two applications are 2D assignment and network flow. If 
1 k K

s      is decomposed as 
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the sum of pairwise affinities: 
1 1k K k

K k

k
s s  =

=     , where 
k

ks   denotes the affinity of the k  th association 

between the k-1th sample set and the kth sample set, then the objective in (13) is reformulated as: 

2
1

1 1 k kk

K NK k k

k
N s w−

= =   
 . This optimization corresponds to the 2D assignment problem. When the affinity is 

computed as the product of pairwise affinities: 
1 1k K k

K k

k
s s  =

=     , the objective in (13) is rewritten as 

2

11 k kk

K N k k

k
s w

==   
. This objective is appropriate for network flow [2]. As a result, tensor approximation provides 

a flexible framework to take advantage of global and local association affinities. However, the above tensor 

approximation does not encode context information between trajectories. 

4. Context-Aware Tensor Power Iteration 

Contexts between samples can be used to reduce the unreliability of sample associations. For example, the 

moving vehicles in a local spatiotemporal space usually have similar motion patterns. The determination of the 

association for a vehicle can be improved using the motion information about other vehicles. We combine the 

pairwise contextual relations between associations into the optimization objective and propose a dual L1-

normalized context-aware tensor power iteration algorithm to determine the relations between samples. 

Let 
k k

kc   be the contextual affinity between two associations indicated by 
k

kw  and 
k

kw  respectively. 

Embedding the contextual affinity into the temporal affinity in (13) yields a joint optimization which is a linear 

combination of the temporal affinity and the contextual affinity: 

2 2 2 2 2

1 1

1

1
... ...

1 1 1 1 1 =1

max ... ... ... ... 
= = = = =

 
+ 

 
 
    

W k K k K k k k k

k K k k

N N N K N N
k K k k k

k

s w w w c w w         
    

,                 (34) 

where α is a weighting parameter which is used to balance the effects of the two affinities, and the second term 

models the contexts between associations. The optimization is also constrained by (14) as well as 0 1
k

kw  .  

The new optimization in (34) is more difficult than the basic one in (13) due to the quadratic contextual term. 

We make some reformulations to (34) to make it solvable by iterations. From (14), it is apparent that 

2

1

1
1, 1,2,...,

k

k

N
kw k K

N =

= = 


.                                 (35) 

By using (35), the first term in (34) is rewritten as follows: 
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2 2 2

1 1

1 1

2 2 2 2

1 1

1

2 2 2

1 1

1

1

1

1

1 1 1 1

1

1 1

1

1

k K k K

k K

k k K k K

k k K

k K k k K

k k K

N N N
k K

N N N N
k k K

N N N
k k K

s w w w

w s w w w
N

s w w w w
N

=

=

 

=

 

= = = =

 

= =

           

 
=            
 
 

=          

  

   

 

     
  

      
   

      
  

2

1 1

.
N

=

 


                     (36) 

By using (35), the second term in (34) is rewritten as follows: 

2 2 2 2 2

2 2 2 2

1

1

1 =1 1 =1 =1

1

1
1 =1 =1 =1

1

1
,

k k k k k k k k f

k k k k f

k k k k K

k k K

N N N N N
fk k k k k k

f k

N N N N
k k k K

K

c w w c w w w
N

c w w w w
N

= = 

−
=

  
 =  

   
   

=          

    

   

        
    

     
   

                      (37) 

where 
k

kw  is not included in the continued multiplication 
f k

  because it already exists in the preceding term. 

Merging (36) and (37), the optimization (34) is rewritten as: 

2 2 2 2 2 2 2

1 1

1

2

1 1

1 2
... ...

1 1 1 1 =1 1 =1

1

2
=1

max ... ... ... ...

1
max

k K k K k k k k f f f f

k K k k f f

k k

k K k k K

K

N N N N N N N
f f fK k k k

f k

kN
k k K

K

s w w w c w w c w w

c
s w w w w

N N

 



= = = =  =

  −

+ +

 
 =     +     
 
 

       



             
      

 

      
 

2 2 2 2 2

1 1 =1 =1 1 =1

.
f f f f

k k f f

N N N N N
f f f

f k

c w w
=  =

+         
   

    (38) 

We apply the block update strategy [7] to optimize (38) iteratively. Namely, when the block variables in 
k

w  are 

updated to yield a local optimization, other block variables { | }f f kw  are fixed. In this way, the complicated 

optimization in the global space reduces to a simplified solution in a local space. The second term in the right 

hand of the equality sign in (38) can be omitted. Thus, the optimization (38) reduces to: 

2 2 2 2

1 1

1

1

2
1 =1 =1 =1

max k k

k K k k Kk

k k K

kN N N N
k k K

K

c
s w w w w

N


  −

=

 
      +     
 
 

   
w

 

      
   

.                   (39) 

The problem in solving (39) is that 
k

kw  and 
k

kw  lie in the same block vector 
k

w  and couple with each 

other. Namely, when 
k

kw   is updated, 
k

kw   cannot be fixed. To solve this problem, we decouple the 

interdependency between 
k

kw  and 
k

kw  to simplify the optimization. If two association hypotheses indicated 

by 
k

kw  and 
k

kw  share the same object in the k-1th sample set or in the kth sample set (i.e., 1 1k ki j− −=  or 

k ki j= , where the relation between 1kj −  and k  is defined as in (11)), then we set their contextual affinity 

k k

kc   to 0. This is because one sample does not exist in two real associations between two sample sets. Then, we 
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reformulate (39) as follows: 

2 2 2

1 1

1 1 1

1

2
1 =1 : } =1

max
1

k k

k K k k Kk

k k k k K

kN N N
k k K

K
j i

cN
s w w w w

N N



− −

  −
= 

 
      +     
 −
 

   
w

 

      
   

.                (40) 

Let 
1... ...k k Kl l j le  be the element of a (K+1)-order augmented tensor, which is defined as: 

1 1... ... 21

k k

k k K k K

k

K

cN
e s

N N


  −

= +
−

 

       .                               (41) 

Then, (40) is transformed to: 

2 2 2

1 1

1

2 2 2

1 1

1 1 1

1
... ...

1 =1 =1

1
... ...

1 1 =1 : } =1

max

max .

k k K k k Kk

k k k K

k k K k k Kk

k k k k k K

N N N
k k K

N N N N
k k K

i j i

e w w w w

e w w w w

− −

= 

= = 

           

=           

   

    

w

w

       
    

       
   

                  (42) 

In (42), (40) is decomposed into a series of the following optimizations: 

2 2 2

1 1

1 1 1

1
... ...

1 =1 : } =1

max
k k K k k Kk

k k k k K

N N N
k k K

j i

e w w w w

− −= 

       ς
w

      
   

.                    (43) 

In (43), the interdependency between 
k

kw  and 
k

kw  is decoupled. The optimization in (43) has the same form 

with (13). Then, we can use the dual L1 normalized tensor power iteration method in Section 3 to solve (43). 

In actual calculation, it is not necessary to construct the (K+1)-order augmented tensor using (41). Instead 

we carry out the following iteration: 

2 2

1 1

1

2 2

1 1

1 1 1

1
... ...

1 { | } 1{ | }

1
... ...

1 { | } 1 { | }

( 1) ( )

( ) .

k k k k K k f K

f K k k k

k k K f K k k k

f K k k k

N N
k k k k K

f k j i

N N
k k K k k

f k j i

w w e w w w w

w s w w w c w

 



− −

=  = 

=  = 

+           

           +

   

   

         
   

         
   

                (44) 

It is seen that in the iteration the computation only involves the pairwise associations including the current set k. 

While the computational complexity of the iteration in the dual L1 normalized tensor power iteration is 2( )KO N , 

the computational complexity in (44) is  2 2 2( ) ( )K KO N N O N+ =  as 2 2( ) ( )KO N O N . Considering the 

contexts only slightly increases the runtime. The dual L1 normalized context-aware tensor power iteration is 

outlined as follows: 

Input: temporal affinities 
1 ,...,{ }

K
s  , contexts { }

k k

kc  , the maximum number Γ of iterations 

Temporary variables: temporal affinity score 
1,k k

k
i i
−

 and context score 
1,k k

k
i i
−

 

Output: associations { }
k

kw  
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τ=1 

While τ<=Γ 

For k=1, 2, …, K do 

For 1 1,2,...,ki N− =  do 

For 1,2,...,ki N=  do 

2 2

1 1 1

1

1
, ... ...

1 { | } 1
k k k K f K

f K

N N
k K

i i

f k

s w w w
−

=  =

=                 
  

;                       (45) 

1

1 1

,

{ | }


−

− −

= k k k k k

k k k

k k
i i

j i

c w  


;                                           (46) 

End For 

1 1 1

1

1 1 1

, , ,

,

, , ,

1

( )
,

( )

k k k k k k

k k

k k k k k k

k

k
i i i i i ik

k i i N
k
i j i j i j

j

x
i x

x

 

 

− − −

−

− − −

=

+
 

+

;                                (47) 

End For 

1

1

1

1

,

1 ,

,

1

, k k

k k

k k

k

k
i ik

k i i N
k
j i

j

x
i x

x

−

−

−

−

−

=

 



;                                                 (48) 

End For 

        τ=τ+1; 

    End While 

5. Hyper Context-Aware Power Iteration 

We replace the pairwise contexts formulated in Section 4 with hyper-contexts among triples of associations. 

Suppose that 
k

kw  , 
k

kw  , 
k

kw   represent, respectively, the associations on samples pairs 
1

1

k k

k k
i i−

−   , 

1

1

k k

k k
j j−

−  , and 
1

1

k k

k k
l l−

−   between the k-1th sample set and the kth sample set. The affinity of the hyper-

context among 
k

kw , 
k

kw , and 
k

kw  is represented as 
k k k

kc   . By replacing the context affinity with the hyper-

context affinity, the objective of hyper-context aware tensor approximation is extended as: 

2 2 2 2 2 2

1 1

1

1
... ...

1 1 1 1 1 =1 =1

max ... ... ... ...
k K k K k k k k k k

k K k k k

N N N K N N N
k K k k k k

k

s w w w c w w w
= = = = =

+     
W

           
     

.                 (49) 

Using tensor power iteration to solve the above optimization, we only need to replace (46) with 

1

1 1 1 1

,

{ | }{ | }
k k k k k k k

k k k k k k

k k k
i i

j i l i

c w w
−

− − − − 

=       
 

.                             (50) 
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6. Multi-Object Tracking 

Multi-object tracking can be carried out in a batch or online mode: 

⚫ Batch mode: For a batch of K+1 successive frames, N objects in each frame are detected, and 2N  

association hypotheses are generated between two consecutive frames. Then, a K order tensor is 

constructed by computing the temporal affinity. The context affinities are computed. Based on these 

affinities, the dual L1 norm context-aware tensor power iteration is applied to find the real associations 

between the detected objects. After that, the next batch of K+1 successive frames is processed in the 

same way as for the preceding batch, where the two batches share a common boundary frame. Serial 

expansion of the associations in all the batches in a video yields the global trajectories of the detected 

objects. 

⚫ Online mode: Given a new frame, it is combined with the preceding K frames. The dual L1 normalized 

context-aware tensor power iteration is applied to find the object associations between these K+1 

frames. 

The main components of the multi-object tracking algorithm include association hypothesis generation, tensor 

construction, definition of the contextual affinity, and initialization and termination. An association hypothesis 

between two objects from two consecutive frames respectively is generated only when they are spatially close to 

each other. Removing unnecessary association hypotheses in this way greatly reduces the computational 

complexity and storage space. In a scene, moving objects may enter, exit, reappear, be occluded, or be missed, 

etc. There may be detections that have no associated detection in consecutive frames. To handle this issue, virtual 

detections are introduced in each frame to drop out the isolated detections and thus avoid disturbing the real 

detection associations. Appearance models and motion models are used to construct the temporal affinity. The 

contextual affinity is defined using motion contexts. The context-aware tensor power iteration is applied to obtain 

the real valued associations between detections. The real valued solutions must be discretized to meet the integer 

and one-to-one mapping constraints in the assignment. We regard the real valued solutions as the costs for the 

corresponding associations, and apply the Hungarian algorithm to obtain the binary association outputs. In the 

following, we detail tensor construction, definition of the contextual affinity, and the computational complexity 

analysis. 

6.1. Tensor construction 

The form of the elements 
1 k K

s      in (34) depends on the application and the particular temporal affinities. 
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In some applications the temporal affinities are based on motion models while in other applications it is necessary 

to combine appearance models and motion models to define the temporal affinity. Two methods for defining 

temporal affinities are described. 

The first method defines the temporal affinity of a trajectory based on a global motion affinity 
1 2 ... K

m   

and appearance affinities given by associations between consecutive frames. Let 
1

1

k k k

k k k
i i−

−=z  be the spatial 

displacement of the association between objects 
1

1

k

k
i −

−  at frame k-1 and 
k

k
i  at frame k. If objects 

1

1

k

k
i −

−  and 

k

k
i  are the same object, 

k

k
z  is the velocity vector of the object. The global motion affinity is defined as: 

11

1 2

1
1

111
2 2

... 2 21 1
1

2 2 2 2

2( )
exp

k kk k

K

k k
k k

k kk T kK

k k k k
k

m
++

+
+

++−

+ +
=

 
 

= + 
 +
 


z zz z

z z z z

  

 

   

,                        (51) 

where the first part in the exponential term is the cosine of two velocity vectors measuring their direction 

consistency and the second part measures their amplitude consistency. This motion affinity describes object 

motion inertia: an object has similar velocities in consecutive frames. For an object 
k

k
i , we use a gray scale 

histogram 1 2{ , ,...}
k ki ih h  and the area 

k

k
ib  of the box bounding the object to represent its appearance. We define 

the appearance affinity 
k

ka  of an association 
1

1( , )
k k

k k
i i−

−  as follows: 

( ) 1

1

1

1

1

1 1
min , min ,

2 2

k k

k k k

k k

k k
i ik bin bin

i i k k
bin i i

b b
a h h

b b

−

−

−

−

−

 
 = +
 
 

 .                          (52) 

The two terms in the right hand of the equal sign represent the similarities of appearance and area respectively. 

Combining (51) and (52), the temporal affinity of a trajectory is defined as follows: 

1 2 1 2 1 2

1 2
... ...K K K

Ks a a a m=        .                                (53) 

The second method that we use for defining the tensors is taken from [7]. The temporal affinity is: 

1 2 1

1
1

... 0
2 2

1 1
K k k k

K K
k k k

k k

s E 
+

−
+

= =

= − − − z z z     ,                           (54) 

where 0E  is a constant used to make the affinity positive and η is a weighting parameter. The second term on 

the right hand side of (54) penalizes large position translation for any association and the third term penalizes 

changes in velocity between consecutive associations. The intuition is that the changes in velocity and the spatial 

translation of the same object between consecutive frames are not large. 
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6.2. Motion contexts 

Motion contexts are used to define the contextual affinity 
k k

kc   between two associations k  and k . 

Low-level contexts and high-level contexts are proposed to represent interactions between associations on 

detected objects and interactions between trajectory segments, respectively. When between-frame motions are 

large, low-level context is valuable, such as in the low-frame rate or fast motion applications. In pedestrian 

tracking, inaccurately located object detections along with low-speed motion make raw detection-based low-level 

context unreliable. High level interactions are more reliable. 

6.2.1. Low level context 

We formulate the interaction between two associated detected objects using the motion consistency of the 

objects. Let 
k

k
z  and  

k

k
z  be the spatial displacement vectors for the association hypotheses 

1

1( , )
k k

k k
i i−

−  and 

1

1( , )
k k

k k
j j−

−  respectively. The motion consistency 
k k

km   between these two association hypotheses is defined 

as a linear combination of the orientation similarity and the speed similarity between the motion vectors 
k

k
z  

and  
k

k
z : 

2 2

2 2

2 2 2 2

k kk k

k k

k k
k k

k kk T k

k

k k k k
m = +

+

z z(z ) z

z z z z

  

 

   

,                            (55) 

where λ is a weighting parameter balancing the orientation similarity (the first part to the right of the equality 

sign) and the speed similarity (the second part to the right of the equality sign). 

It is only necessary to model interactions between associations of objects with similar motions in local 

spatial neighborhoods. Furthermore, associations with contexts cannot share the same object in the same frame, 

because one object only belongs to one real association between two frames. We define the low-level motion 

context as a selective representation. The context 
k k

kc   between associations 
1

1( , )
k k

k k
i i−

−  and 
1

1( , )
k k

k k
j j−

−  is 

set to their motion consistency 
k k

km   only if they satisfy the following three conditions (otherwise 
k k

kc   is set 

to 0): 

⚫ 1 1k ki j− −  and k ki j , 

⚫ 
1 1

1 1

2
k k

k k
i j L
− −

− −   and 
2

k k

k k
i j L  where L is a distance threshold, 

⚫ 
-1 1( , ),( , )

max
k k k k

k

k
k i i j j

j
j m

−
= . 
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The first condition is a one-to-one mapping constraint. The second is a spatial distance mask. The third selects 

the association 1 )k kj j−（ ，   most similar to the association 1 )k ki i−（ ，  from the associations including object 

1kj −  . This sparse representation of non-maximum removal is used to bind the most similar associations as 

contexts and suppress the influences from noisy and conflicting association pairs. 

6.2.2. High level context 

We devise two types of high level contexts to model the motion interaction on associations between tracklets 

(trajectory segments). Fig. 2 shows the two types of high level contexts. The first context, as shown in Fig. 2(a), 

includes the interactions between two associated tracklets and a tracklet. The second one includes the interactions 

between two associations of tracklets. 

 

 

 

 

 

(a)                                     (b) 

Fig. 2. High-level motion contexts: (a) Interaction between tracklet association (Tj, Tl) and tracklet Ti; (b) Interaction between two 

tracklet associations (Tf, Th) and (Tj, Tl). 

 

When two tracklets jT  and lT  are associated with the motion iT  of an object as shown in Fig. 2(a), it is 

more likely that there is a true association between jT   and lT  . We use this prior knowledge to measure 

contextual affinity between jT  and lT . Suppose that the i-th tracklet iT  is represented by
 

1
{ , ,..., }

i i i
s s et t t

i i i
+ , 

where i
st   and i

et   denote, respectively, the start time and the end time of iT  . Let t
iz   be the spatial 

displacement from the target 
1t

i
−

  to 
t
i  . For two tracklets :{ ,..., }

j j
s et t

j j jT   and :{ ,..., }
l l
s et t

l l lT  , there 

exists association hypothesis 
1 1

:{ ,..., , ,..., , ,..., }
j l l lj j

e s s es e t t t tt t
jl j j jl jl l lT

+ −
, where ( )t j l

jl e st t t   is the virtual 

object interpolated using jT  and lT . Then, the motion consistency ,jl im  between association hypothesis jlT  

and tracklet iT  is defined as their motion orientation similarity: 

,

2 2

1
l
s

j
e

t T tt
jl i

jl i l j t t
s e t t jl i

m
t t =

=
−


(z ) z

z z
,                                (56) 

where t
jlz  is the spatial displacement from target 1t

jl
−  to t

jl .  

We select the spatial neighboring tracklets around jlT   and overlapped with jT   and lT   in the time 
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window and use them to measure the contexts for motion consistency between jT   and lT  . These spatial 

neighboring tracklets { }c cT  satisfy the following conditions: 

⚫ c j
s et t  and l c

s et t , 

⚫ 
2

j j
e et t

c j L  and 
2

ll
ss tt

c l L . 

Let C be the number of tracklets in { }c cT . The motion context for the tracklet pair jlT  is estimated by: 

,

1

1 C

jl jl c

c

c m
C =

=  .                                      (57) 

The term jlc  is the contextual affinity between jT  and lT . 

The second type of context, shown in Fig. 2(b), measures the motion interactions between tracklet 

association hypotheses. We define these motion contexts based on motion consistency between the association 

hypotheses. Suppose that association hypothesis jlT  connects tracklets jT  and lT , and association hypothesis 

fhT   connects tracklets fT   and hT  , as shown in Fig. 2(b). Let max{ , }jf j f
e e et t t=   and min{ , }lh l h

s s st t t=  . The 

motion consistency ,jl fhm  between jlT  and fhT  is estimated by: 

,

1
2 2

)1
lh
s

jf
e

t T tt
jl fh

jl fh lh jf t t
s e t t jl fh

m
t t = +

=
−


(z z

z z
,                               (58) 

where 
t
jlz (

t
fhz ) is the spatial displacement from object 1 1( )− −t t

jl fh  to ( )t t
jl fh . 

The context ,jl fhc  between jlT  and fhT  is set to their motion consistency ,jl fhm  only if the following 

conditions are satisfied (otherwise ,jl fhc  is set to 0): 

⚫ jf lh
e st t , 

⚫ j f  and l h , 

⚫ 
2

jfjf
ee tt

j f L  and 
2

lh lh
s st t

h l L . 

6.3. Computational complexity 

The computational complexity of our multi-object tracking method depends on the number of high-order 

trajectory hypotheses. An association hypothesis between two objects from consecutive frames respectively is 

made only when they are spatially close to each other. For a set of K+1 consecutive frames, each frame has N 
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objects and every object has I association candidates in the next frame. Then, there are NMK trajectory hypotheses. 

For the maximum number Γ of iterations, the computational complexity of one set association is O(ΓK2NIK). 

7. Multi-Graph Matching 

We apply the proposed dual L1 normalized context/hyper-context aware tensor power iteration algorithm to 

multi-graph matching. A graph  is represented as ( , , )= , where  is the vertex set,  is the edge 

set, and  is the attribute set. The attribute set  includes the vertex features such as the position, appearance 

information, as well as the edge properties such as the distance and orientation. Given K+1 graphs 

0{ ( , , )} ==k k k k K
k   

with the same number N of vertices, the task of multi-graph matching is to find an 

optimal one-to-one correspondence between the vertices in the K+1 graphs respectively. The solution is denoted 

by a K+1th order assignment tensor. An element 
0 1... Ki i ix  in the tensor denotes the group-wise matching between 

the vertices 0( )
k

k k K
i kv =  in turn. If the matching is true, then 

0 1... 1
Ki i ix = , otherwise 

0 1... 0
Ki i ix = . The vertex 

affinity of the group-wise matching is denoted by 
0 1... Ki i ia  . The structural affinity over the edge set 

0 0 1 1

0 1{ , , }
K K

K
i j i j i je e e  between vertex correspondences 

0 1... Ki i ix  and 
0 1... Kj j jx  is denoted as 

0 0 1 1

0 1( , , , )
K K

K
i j i j i js e e e . 

The objective function for multi-graph matching is formulated as: 

0 0 0 0 0 0

0 0 0

0 0 0 0
... ...

1 1 1 1 1 =1 =1

max ... ... ... ... ... ( , , ) ...
k K k K K K K K

k K K K

N N N N N N N
k K K K K

i i i i i i i i E i j i j j j

i i i i i j j

a x x x x x s e e x x
= = = = =

+              .       (59) 

We transform the optimization (59) into the optimization in (34) or the optimization in (49). The high-order 

matching 
0 1... Ki i ix  is decomposed into pairwise ones: 

0 1 0 1 1 2 1

1 2
... , , ,...

K K K

K
i i i i i i i i ix x x x

−
= , where 

1,k k

k
i ix
−

 is an element in 

the assignment vector 
k

x   for matching graphs 
1k−
  and 

k
 . The group-wise edge affinity 

0 0 1 1

0 1( , , , )
K K

K
i j i j i js e e e  is decomposed into pairwise edge affinities as follows: 

0 0 1 1 1 1

0 1
,

1

( , , , )
K K k k k k

K
K k

E i j i j i j i i j j

k

s e e e c
− −

=

  ,                            (60) 

where 
1 1,− −k k k k

k
i i j jc  is the pairwise similarity between edge 

1 1

1

k k

k
i je
− −

−  in 
1k−
 and edge 

k k

k
i je  in 

k
. As shown 

in (10), matrix index elements 1( , )k ki i−  and 1( , )k kj j−  are transformed to vector index elements k  and k . 

Substitution of (60) into the term after α in (59) yields: 

2 2

1 1 =1
k k k k

k k

K N N
k k k

k

c w w
= =

     
 

.                                   (61) 
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In this way, multi-graph matching problem is transformed into the dual L1 normalized context-aware tensor power 

iteration problem in Section 4. 

For multiple hyper-graph matching, hyper-edges are considered based on vertex triples. Let 
k k k

k
i j lc  be the 

affinity between hyper-edges 
1 1 1

1

k k k

k
i j le
− − −

−   and 
k k k

k
i j le   corresponding to vertex triples 

1 1 1

1 1 1{ , , }
k k k

k k k
i j lv v v
− − −

− − −   and 

{ , , }
k k k

k k k
i j lv v v   respectively. We decompose the group-wise hyper-edge affinity 

0 0 0 1 1 1

0 1( , , , )
K K K

K
i j l i j l i j ls e e e     into 

pairwise hyper-edge affinities as follows: 

0 0 0 1 1 1 1 1 1

0 1
, ,

1

( , , , )
K K K k k k k k k

K
K k

E i j l i j l i j l i i j j l l

k

s e e e c
− − −

=

  .                         (62) 

Substitution of (62) into the term after α in (59) yields the hyper context-aware tensor power iteration problem 

in Section 5. 

The vertex affinity used in the optimization is defined by considering the local appearance similarity 

between vertices that correspond to image feature points. Each vertex is associated with a shape context feature 

vector [28] of a feature point in an image. Let 
k

k
iy  be the column feature vector of vertex 

k

k
iv  . All the feature 

vectors from the vertex set 
0 1

0 1{ , , , }
K

K
i i iv v v   are stacked into a matrix 

0 1 0 1

0 1
... { , , , }

K K

K
i i i i i i= Y y y y  . Let 

0 1...( , )
Ki i ieigen dY  be the d-th eigenvalue of the matrix 

0 1... Ki i iY  when the eigenvalues are ranked in descending 

order. The high-order vertex affinity 
0 1... Ki i ia  is computed as: 

0 1

0 1

0 1

...

...

...

( ,1)

( , )

K

K

K

i i i

i i i

i i id

eigen
a

eigen d
=


Y

Y
 .                               (63) 

This vertex affinity measures the compactness of the feature vector set. 

We define the contextual affinity 
k k k

kc    by considering the difference in angles formed by hyperedges as 

hyper-contexts. Let 
k

kw   represent the matching between vertices 
1

1

k

k
iv
−

−   and 
k

k
iv  . Let 

k

kw   be the matching 

between vertices 
1

1

k

k
jv
−

−  and 
k

k
jv . Let 

k

kw  be the matching between vertices 
1

1

k

k
lv
−

−  and 
k

k
lv . The hyper-edge on 

the vertex triple 
1 1 1

1 1 1{ , , }
k k k

k k k
i j lv v v
− − −

− − −  in 
1k−
 forms a triangle whose three angles 

1 1 1
1 2 3{ , , }k k k  − − −

 are used as the 

features for this hyper-edge. The hyper-edge on the vertex triple { , , }
k k k

k k k
i j lv v v  in 

k
 has its triangle features 

1 2 3{ , , }k k k   . The triangle structure of the hyper-edge is invariant to rotation and scaling. The relation between 

hyper-edges and triangle features is illustrated in Fig. 3. The hyper-edge affinity 
k k k

kc    [29, 30] is defined as: 
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23 1

1

2

(sin sin )
exp

2k k k

k k
h hk hc 

 



−

=

 
− 

= −
 
 
 


  ,                          (64) 

where σ2 is a regularized factor. 

 

 

 

 

 

 

 

 

Fig. 3. Hyper-edges and their triangle features. 

 

Using the hyper-context tensor power iteration solution, a sequence of real-valued pairwise matching vectors 

1{ }k K
k=w  is obtained. The real-valued matching matrix is further discretized using the Hungarian algorithm. Given 

the pairwise matching vectors 1{ }k K
k=w , the group-wise matching 

0 1
{ }

Ki i ix   is derived naturally. 

The computational complexity for our multi-graph matching method depends on the number of hyper-edge 

triples. The number of group-wise matches grows with the number of graphs. For K+1 graphs, each graph has N 

vertices and each vertex has I matching candidates. There are NIK matches and K(NI)3 hyper-edge triples. In this 

way, the computational complexity is 2 3( ( ) )KO NI K K NI +  for Γ iterations. A divide-and-conquer strategy 

can be used for acceleration. 

8. Experimental Results 

The experimental results for multi-object tracking are shown first (Please see the supplemental videos), 

followed by the experimental results for multi-hyper-graph matching. 

8.1. Multi-object tracking 

We evaluated the proposed multi-object tracking methods on the following five public datasets: Columbus 

Large Image Format (CLIF) [22], PSU-data [10], PETS 2009, TUD-Stadtmitte, and MOT16 challenge. 

8.1.1. CLIF and PSU 

The CLIF and PSU datasets contain low frame-rate sequences, on which the proposed low-level motion 

context was used. Three CLIF sequences, CLIF1, CLIF2, and CLIF3, were used. There are 80~100 objects in 

each frame in CLIF1 and CLIF2, and 150~200 objects in CLIF3. These sequences are very challenging, because 
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of fast motions, a large number of objects, small apparent sizes of objects, and similar object appearances, etc. 

The PSU dataset consists of three sparse sequences, “Sparse-1”, “Sparse-2”, and “Sparse-3” with 3∼5 people per 

frame and three dense sequences, “Dense-1”, “Dense-2”, and “Dense-3” with 25~20 people per frame. These 

sequences are challenging because of the large spatial displacement per frame and the unavailability of object 

appearance information. 

We compared our methods with the following four multi-object tracking methods: 

⚫ Hungarian assignment algorithm: This is an optimal solution for each association of two successive 

frames (i.e., each single pair of successive frames). The association among K+1 successive frames is 

carried out by K pairwise associations, each of which is determined by the Hungarian assignment 

algorithm. This comparison is used to show the effect of multi-frame associations in contrast with two 

frame associations. 

⚫ Network flow algorithm [17]: As stated in Section 3.3, when the temporal affinity is computed as the 

product of pairwise affinities (i.e., affinities between two successive frames), the tensor rank-1 

approximation-based algorithm reduces to the network flow-based algorithm which is a pairwise 

association-based method. This comparison is used to show the effect of high-order affinity 

representation in contrast with two frame association-based affinity representation. 

⚫ Min-cost flow algorithm [6]: This framework incorporates the high-order constraints in three 

consecutive frames for multi-object tracking by using candidate matching pairs. The framework is 

solved efficiently through Lagrangian relaxation to min-cost network flow. This comparison is used to 

show the effect of utilizing higher order information in our tensor power iteration. 

⚫ Iterated Conditional Modes (ICM)-like method [7]: This ICM-like method is similar to ours in that 

it is multi-assignment-based and uses a global affinity representation and a block update strategy. The 

difference is that in each iteration step the ICM-like method uses the Hungarian algorithm to yield 

binary object association relations. 

We used the correct matching percentage and the false matching percentage to evaluate the association 

performance. Let cm(t), wm(t), and g(t) be, respectively, the numbers of correct associations, false associations, 

and ground truth associations between frame t-1 and frame t. The correct match percentage cP   and false 

matching percentage fP  are defined as: 
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Because the sum of the numbers of the correct and false associations is not necessarily equal to the number of 

ground truth associations, the sum of cP  and fP  is not necessarily equal to 1. 

As there are no training samples on the CLIF dataset and the PSU dataset, we randomly selected 12 

consecutive frames from each of these two datasets to tune the parameters. The number of frames in a batch for 

association determination was taken to 5 and 6 for the CLIF and PSU datasets respectively. On the CLIF dataset, 

the temporal affinity defined in (53) was used. On the PSU dataset, the temporal affinity defined in (54) was used, 

and η in (54) was set to 0.5. The parameter α in (34) was set to 10 and 5 for the CLIF and PSU datasets respectively. 

A larger α was used on the CLIF dataset, since the object motions are better-regulated in the CLIF scenarios and 

modeling motion interaction contexts is more important. The parameter λ in (55) was 0.6 and 2.0 for the CLIF 

and PSU datasets respectively. A smaller λ was used on the CLIF dataset, since the orientation consistency is 

more remarkable in the CLIF scenarios due to path constraints. The number of iterations was set to 100 for all 

the sequences, because in all the experiments, when 100 iterations were reached, the dual L1-normalized rank-1 

tensor approximation method and the dual L1-normalized context-aware tensor power iteration method both 

showed convergence. 

Table 1. Comparison results on the CLIF dataset 

      Performance 

 Method 

Correct matching percentage False matching percentage 

CLIF-1 CLIF-2 CLIF-3 CLIF-1 CLIF-2 CLIF-3 

Hungarian 77.8 88.9 85.9 22.0 11.6 14.2 

Network flow 65.4 71.6 74.6 34.1 28.1 25.7 

ICM 83.1 89.6 87.3 16.9 10.3 12.9 

Tensor approximation 91.1 92.1 91.4 11.9 9.4 9.4 

Context power iteration 94.7 96.0 95.8 6.0 4.8 4.1 

 

Table 2. Comparison results on the sparse scene of the PSU dataset 

      Performance 

 Method 

Correct matching percentage False matching percentage 

Sparse-1 Sparse-2 Sparse-3 Sparse-1 Sparse-2 Sparse-3 

Network flow [17] 94.57 99.72 99.96 5.43 0.28 0.04 

Hungarian 98.84 99.97 99.97 1.03 0.01 0.00 

ICM 98.87 99.97 99.95 0.97 0.01 0.00 

Min-cost flow [6] - - - 0.41 0.00 0.00 

Tensor approximation 99.45 99.98 99.99 0.50 0.00 0.00 

Context power iteration 99.74 99.98 99.99 0.24 0.00 0.00 
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Table 1 shows the quantitative comparison results on the CLIF dataset. Tables 2 and 3 show the quantitative 

comparison results on the sparse and dense scenes of the PSU dataset, respectively, where the results for the 

network flow method [17] were taken from [7]. From these tables, the following points are revealed: 

⚫ Our rank-1 tensor approximation method and our dual L1 normalized context-aware tensor power 

iteration method perform better than the ICM-like method. One reason is that the association 

probability is retained in the iteration process in our methods till the final decision. 

⚫ Our dual L1 normalized context-aware tensor power iteration method performs better than our rank-1 

tensor approximation method. In particular, on the CLIF dataset both cP  and fP  are improved, and 

fP  has a remarkable relative decrease. This demonstrates that the proposed motion contexts and their 

solution are effective. The motion context is very useful for reducing the association ambiguity, as the 

decision of the local association is influenced by not only its temporal coherence on the whole trajectory, 

but also its spatial interaction with other associations. Though the performances of the rank-1 tensor 

approximation method on the PSU dataset are close to saturation, yet the embedding of the proposed 

motion context improves the results remarkably. 

⚫ Our dual L1 normalized context-aware method improves the false matching rate more prominently than 

the correct matching rate. This is because motion consistency contexts reduce the uncertainty of 

associations, which directly reduces the false matches and thereby indirectly increases the correct 

matching rate. 

⚫ The min-cost flow [6] has excellent performance on the PSU dataset, but our dual L1 normalized 

context-aware tensor power iteration method yields better results. 

Table 3. Comparison results on the dense scene of the PSU dataset 

      Performance 

 Method 

Correct matching percentage False matching percentage 

Dense-1 Dense-2 Dense-3 Dense-1 Dense-2 Dense-3 

Network flow [17] 78.65 98.64 99.77 21.35 1.36 0.23 

Hungarian 92.40 99.62 99.86 7.37 0.35 0.11 

ICM 93.63 99.74 99.91 6.26 0.24 0.08 

Min-cost flow [6] - - - 1.46 0.17 0.10 

Tensor approximation 96.98 99.78 99.94 3.01 0.20 0.05 

Context power iteration 98.41 99.88 99.94 1.58 0.11 0.05 

 

⚫ On more challenging sequences, our methods yield a larger increase of performance than on less 

challenging sequences. 
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⚫ The two frame associations-based multi-object tracking methods, the Hungarian assignment algorithm 

and the network flow algorithm, perform much worse than the rank-1 tensor approximation method 

and the dual L1 normalized context-aware tensor power iteration method. On the CLIF dataset and the 

dense scene of the PSU dataset, our methods yield much higher correct matching percentages and much 

lower false matching percentages than the Hungarian assignment algorithm and the network flow 

algorithm. This indicates that it is very effective to utilize the global temporal affinity and capture high-

order motion, instead of utilizing only the pairwise association affinity. 
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Fig. 4. Results of multi-object association for different methods on the CLIF-3 sequence: (a) Dual L1 normalized context-aware 

tensor power iteration (with 2 mismatches); (b) Rank-1 tensor approximation (with 8 mismatches); (c) ICM-like association (with 

13 mismatches); (d) Hungarian association (with 30 mismatches); (e) Network flow (with 26 mismatches). White/black rectangles: 

vehicle detections in the current/last frame; Red/green lines: associations on two orientations. 
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        (a)              (b)                (c)                (d)                (e)               (f) 

Fig. 5. Multi-object association results of different methods on 360 example frames in the Sparse-1 sequence: (a) Dual L1 normalized 

context-aware tensor power iteration (with 0 mismatches); (b) Rank-1 tensor approximation (with 0 mismatches); (c) Min-cost flow 

(with 0 mismatches) (d) ICM-like (with 1 mismatches); (e) Hungarian association (with 7 mismatches); (f) Network flow (with 6 

mismatches). 

 

 

 

 

 

 

 

 

 

 

 

 

       (a)               (b)                (c)              (d)                 (e)                (f) 

Fig. 6. Multi-object association results of different methods on 220 example frames in the Dense-1 sequence: (a) Dual L1 normalized 

context-aware tensor power iteration (with 1 mismatch); (b) Rank-1 tensor approximation (with 6 mismatches); (c) Min-cost flow 

(1 mismatches) (d) ICM-like (with 22 mismatches); (e) Hungarian association (with 13 mismatches); (f) Network flow (with 30 

mismatches). 

 

Figs. 4, 5, and 6 show some examples of the association results of the rank-1 tensor approximation method, 

the dual L1 normalized context-aware tensor power iteration method, and the competing methods on the CLIF-3 

sequence, the Sparse-1 sequence, and the Dense-1 sequence, respectively. It is seen that the rank-1 tensor 

approximation method and the dual L1 normalized context-aware tensor power iteration method yield fewer 

mismatches (association errors) than the two frame associations-based methods, the Hungarian association 

method and the network flow method. Our methods perform better than the Hungarian association method and 

the network flow method on both sparse and dense scenarios. These comparisons indicate the effectiveness of 

the high order temporal affinities. 
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(a)                                            (b) 

Fig. 7. The affinity and association performance variations in the iteration process for the rank-1 tensor approximation for one 

frame set in the PSU dataset: (a) The curve of the affinity as a function of the number of iterations; (b) Correct match rate curve. 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                               (b) 

Fig. 8. The affinity and association performance variations in the iteration process for the dual L1 normalized context-aware tensor 

power iteration for one frame set in the PSU dataset: (a) The curves of different affinities as functions of the number of iterations; 

(b) The correct matching rate curve. 

 

The Dense-1 sequence was used as an example to show the process of convergence of our rank-1 tensor 

approximation and our dual L1 normalized context-aware tensor power when the number of iterations increases. 

Fig. 7 (a) shows the curve of the temporal affinity as a function of the number of variations for the rank-1 tensor 

approximation. Fig. 7(b) shows the curve of the correct associations, where a binary decision is made for every 

10 iterations. It is seen that the rank-1 tensor approximation tends to converge and the association results are 

improved when the number of iterations increases. Fig. 8(a) shows the curves of the temporal affinity, the motion 

context affinity, and the temporal and context combined affinity as functions of the number of iterations for the 

dual L1 normalized context-aware tensor power iteration. Fig. 8(b) shows the curve of the correct associations. It 

is seen that the temporal affinity, the context affinity, and the combined affinity all increase together during the 

iteration process, and the association performance improves gradually. Therefore, the designed association 
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affinities are reasonable. 

Table 4. Runtimes of different multi-object tracking methods on the CLIF dataset and the PSU dataset (seconds) 

        Sequences 

 Method 
CLIF-1 CLIF-2 CLIF-3 Dense-1 Dense-2 Sparse-1 

Network flow [17] 10 10 24 9 17 2 

Hungarian 34 31 383 2 2 1 

ICM 93 100 1113 23452 842 15 

Our tensor approximation 86 116 455 936 320 13 

Our context power iteration 88 119 459 942 323 14 

 

All tests run on a laptop (2.1GHz Intel Core i7 with 8G memory) without code optimization. Table 4 

compares the runtimes of our rank-1 tensor approximation method, our dual L1 normalized context-aware tensor 

power iteration method, and the competing methods on the CLIF dataset and the PSU dataset, where the runtime 

for the object detection is excluded but the runtime required to build the affinity tensors is included. The following 

points are noted: 

⚫ The rank-1 tensor approximation method and the dual L1 normalized context-aware tensor power 

iteration method overall require less runtime than the ICM-like method, in particular on the larger and 

more complex sequences CLIF-3 and Dense-1 which include more objects, have lower frame rates, 

and require the production of more global trajectory hypotheses. 

⚫ The runtimes of the rank-1 tensor approximation method and the dual L1 normalized context-aware 

tensor power iteration method are higher than the runtimes of the Hungarian association method and 

the network flow method. This indicates that modeling high-order temporal affinities require more 

runtimes. 

⚫ The runtime difference between our rank-1 tensor approximation method and our context-aware power 

iteration method is very marginal. This indicates that modeling context in our context-aware power 

iteration method does not increase the runtime by very much. The motion contexts are efficiently 

modeled in our context-aware power iteration method. 

8.1.2. PETS 2009 and TUD-Stadtmitte 

Two pedestrian datasets, PETS 2009 and TUD-Stadtmitte, were used to test the performance of high-level 

motion context-based power iteration for pedestrian association. As in [31], the hierarchical association strategy 

was utilized: first, based on the results of pedestrian detection, low-level detection associations were carried out 

to produce basic tracklets; then, high-level tracklet associations were found to produce object trajectories. 

We used the rank-1 tensor approximation to obtain the basic tracklets using (53) as the temporal affinity. For 
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the high-level tracklet associations, a longer time interval ensures that high-level motion contexts introduced in 

Section 6.2.2 are useful for tolerating the inaccuracy of object detection. Therefore, we used the proposed dual 

L1 normalized context-aware tensor power iteration to find the high-level association on the tracklet sets. 

Given two tracklets :{ ,..., }
j j

s et t
j j jT  and :{ ,..., }

l l
s et t

l l lT , their contextual affinity jlcc  was computed 

using (57). Let ( )j l
bbh h  be the value in the b-th bin of the average color histogram of the tracklet jT ( lT ). The 

appearance affinity jlcp  between jT  and lT  is defined as: 

min( , )j l
jl bb

b

cp h h= ,                                  (66) 

where b indexes the bin number of the histogram. Let l j
s et t t = −  be the time gap between jT  and lT , and let 

  be the temporal threshold for possible tracklet associations. It is not useful to consider the affinity between 

jT  and lT  when t  is large. So, the temporal distance affinity jlct  between jT  and lT  is defined as: 
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Let 
l j
s et t

jld = −p p  be the spatial displacement from the object 
j
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j  to 

l
st

l , and let ( )
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jlz z  be the velocity of 

lT ( jT ) at time ( )l j
s et t . The spatial distance affinity jlcd  is defined according to the differences between d  

and the predicted distances that the objects corresponding to  jT  and lT  may move during t : 
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The association affinity used in (34) is defined by ( )jl jl jl jl jlc cp cd cc ct= + + . 

The pedestrian detection results in [23, 24] were used as the association inputs. As there are no training 

samples for the PETS 2009 dataset and the TUD-Stadtmitte dataset, we randomly selected 10 consecutive frames 

from each of these two datasets to tune the parameters. The parameter α in (34) was set to 0.4 and 0.2 for the 

PETS 2009 and TUD-Stadtmitte datasets respectively, since the object motions are more regulated in the PETS 

2009 scenarios than in the TUD-Stadtmitte scenarios. The parameter   in (67) is independent of scenarios. It 

was set to 25 empirically for both datasets. Finally, two kinds of metrics were applied to evaluate the tracking 

performance. The first is the CLEAR MOT metric [3] including multi-object tracking accuracy (MOTA) and 
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multi-object tracking precision (MOTP). The second metric [23, 24] evaluates the numbers of mostly/partially 

tracked (MT/PT), numbers of fragments, and ID switches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Tracking results of our dual L1 normalized context-aware tensor power iteration method with both contexts shown in Fig. 2 

on the PETS 2009 dataset: the trajectory ID is shown in the top left corner of the bounding box of each object. The current state of 

each object and its historical trajectory in the most recent 50 frames are also shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Tracking results of our dual L1 normalized context-aware tensor power iteration method with both contexts shown in Fig. 

2 on the Stadtmitte dataset. 

 

Figs. 9 and 10 show the tracking results of our dual L1 normalized context-aware tensor power iteration 

method, with both contexts shown in Fig. 2, on the PETS 2009 and TUD-Stadtmitte datasets, respectively. It is 

shown that there is no ID switch. Tables 5 and 6 compared our multi-object tracking methods with state of the art 

methods in [17, 23, 24] on the PETS 2009 and TUD-Stadtmitte datasets respectively, where our methods include 
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the rank-1 tensor approximation method and the dual L1 normalized tensor power iteration methods with high-

level context shown in Fig. 2 (a) alone, context shown in Fig. 2 (b) alone, or both contexts shown in Figs. 2(a) 

and (b). The following points are noted: 

Table 5. Comparison results on the PETS 2009 dataset 

   Performance 

Method 
Rec.↑ Prec.↑ MOTA↑ MOTP↑ MT↑ PT↓ Frag↓ IDs↓ 

[23] 91.8 99.0 - - 89.5 10.5 9 0 

[17] 94.0 97.4 88.9 80.9 89.5 10.5 13 10 

Rank-1 tensor 

approximation  
96.0 98.2 92.7 81.8 94.7 5.3 11 7 

Ours with contexts 

shown in Fig. 2(a) 
97.4 98.5 94.7 81.4 94.7 5.3 8 6 

Ours with contexts 

shown in Fig. 2(b) 
96.6 98.8 94.9 81.6 94.7 5.3 8 5 

Ours with contexts in 

both Figs. 2(a) and 1(b) 
97.7 98.9 96.1 81.8 94.7 5.3 6 4 

 

Table 6. Comparison results on the TUD-Stadtmitte dataset 

   Performance 

Method 
Rec.↑ Prec.↑ MOTA↑ MOTP↑ MT↑ PT↓ Frag↓ IDs↓ 

[24] 87.0 96.7 - - 70.0 30.0 1 0 

[17] 83.8 96.5 75.9 82.6 80.0 20.0 10 8 

Rank-1 tensor 

approximation  
83.9 98.8 80.4 87.7 70.0 30.0 5 3 

Ours with contexts 

shown in Fig. 2(a) 
85.4 98.6 81.3 87.8 80.0 20.0 2 2 

Ours with contexts 

shown in Fig. 2(b) 
83.7 99.7 81.8 88.8 80.0 20.0 2 1 

Ours with contexts in 

both Figs. 2(a) and (b) 
84.0 99.9 82.5 89.3 80.0 20.0 1 0 

 

⚫ Our dual L1 normalized context-aware tensor power iteration methods, overall, yield more accurate 

results than the rank-1 tensor approximation method. There are fewer fragments and much fewer ID 

switches, as well as higher TA, TP, Prec., and Rec. The ID switch even reduces to 0. Both types of 

motion contexts shown in Fig. 2 improve the tracking results. This illustrates the effectiveness of the 

motion contexts on reducing association errors and on merging short tracklets into long tracks. A 

combination of these two types of high-level contexts improves the performance more significantly. 

This shows the mutual complementarity between the two types of contexts. 

⚫ Although our methods utilize the simple histogram appearance model, while the methods in [23, 24], 

which are pairwise association-based, utilize much more powerful learnt appearance model, our 

methods in general perform better than the methods in [23, 24]. On the PETS 2009 dataset, our methods 

have fewer fragments, and higher values for MT and Rec. On the TUD-Stadtmitte dataset, our methods 

have higher values for MT and Rec. The network flow-based algorithm [17] which is two-frame 
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association-based performs worse than our methods as well as the methods in [23, 24]. These partly 

indicate the effectiveness of high-order temporal affinities. 

8.1.3. MOT16 challenge benchmark 

On the MOT16 challenge benchmark dataset, we tested the performance of the dual L1-normalized hyper-

context aware tensor power iteration method for online multi-object tracking. The association affinity used in (49) 

was defined using the appearance affinity and motion consistency. The hyper-context in (49) was defined using 

the spatial structural potential. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The architecture of the siamese neural network for extracting appearance affinity based on identity masks. 

 

The appearance affinity was obtained using a siamese neural network with object patch tuples as the inputs. 

It is hard to distinguish objects that close to each other, as the bounding boxes overlap and share many common 

features. Thus, we extracted the appearance features just from the mask area using a siamese network framework 

based on the mask RCNN (regions with convolutional neural network features) with a ResNet-FPN (residual 

network-feature pyramid network) backbone [54] (shown in Fig. 11). Objects’ boxes and masks were produced 

by the mask RCNN, and the features were selected by masks from the final convolutional layer of the third stage 

of ResNet50. Then, triple samples were input to a shallow siamese neural network to extract the 128-dimensional 

appearance features. Let predr, posr, and negr be the feature vectors of the prediction, positive and negative 

samples for the r-th input tuple. The triplet loss is defined as: 

max(cos( , ) cos( , ) ,0)= − + r r r r

r

pred neg pred pos ,                        (69) 

where   denotes the threshold for the margin of separation between correct and incorrect pairs and cos(.,.) 
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denotes the cosine distance between two vectors. Let k
if   be the deep appearance feature vector of the 

observation of association i at frame k, extracted by the network. The energy produced by appearance affinity for 

the tuple of associations i, j, and l is calculated by 1 1 1cos( , )cos( , )cos( , )k k k k k k
i i j j l lf f f f f f+ + + . 

To estimate the motion consistency, the velocity of one object was assumed to be a constant in a short period. 

A simple linear model was used to predict the objects state. Let c

 
 be the predicted observation of association 

c and c  be of the observation of association c. The motion consistency between associations i, j, and l is 

characterized as: 
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where 1  is a weight parameter. 

The spatial structural potential is defined using the relative structural information of observations, as it is an 

affine-invariant potential. To model this affine-invariant property, we define the spatial potential of association 

tuple { , , }i j l  as: 

1 2 1 2

1 2
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where 2  is a weight parameter. We used the absolute difference of distances between observations rather than 

relative ratio, because the larger the distance the smaller the possibility of changing the relative position. 

The MOT16 challenge benchmark includes a training sample set and a test sample set. Each of these sets is 

composed of seven sequences, with frontal-view scenes taken by moving cameras or top-down surveillance 

setups. Evaluation was carried out according to the following metrics: multi-object tracking accuracy (MOTA), 

multi-object tracking precision (MOTP), ID F1 score (IDF1) [55], mostly tracked targets (MT), mostly lost targets 

(ML), false positives (FP), false negatives (FN), identity switches (IDs), and fragmentation (Frag). The samples 

in the training set are used for researchers to tune the parameters. The ground-truth of the samples in the test set 

is not supplied to researchers. The results on the test set must be sent to the MOT16 challenge benchmark dataset 

organizers who report the accuracy of the results. The parameters were tuned to yield an optimal multi-object 

tracking accuracy (MOTA). We found that when 1  and 2  are larger than 1.5, the values of MOTA are too 

low. Then, we sampled 1  and 2  from 15 values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 

1.4, and 1.5. The optimal combination of 1   and 2   is determined with the maximum of MOTA. For the 
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MOT16-14 sequence, parameter 1  was determined as 0.4, and 2  was determined as 1.1. For the all the other 

sequences, 1  was determined as 0.7 and 2  was determined as 0.3. Thus, two sets of parameter values were 

used. In order to set the correct benchmarking protocol, we also tested our method using one set of parameter 

values, i.e., 1  was set to 0.7 and 2  was set to 0.3 for all the sequences. 

Table 7. Comparison results on the MOT16 challenge dataset: We compared with other published methods with private detections 

Method Mode MOTA(%)↑  MOTP (%)↑ IDF1(%)↑ MT (%)↑ ML(%)↓ IDs↓ Frag↓ FP↓ FN↓ Hz(fps)↑ 

LMP_p [57] Batch 71.0 80.2 70.1 46.9 21.9 434 587 7880 44564 0.5 

KDNT [58] Batch 68.2 79.4 60.0 41.0 19.0 933 1093 11479 45605 0.7 

MCMOT HDM [59] Batch  62.4 78.3 51.6 31.5 22.2 1394 1318 9855 57257 34.9 

NOMTwSDP16 [60] Batch 62.2 79.6 62.6 32.5 31.1 406 642 5119 63352 3.1 

POI [58] Online 66.1 79.5 65.1 34.0 20.8 805 3093 5061 55914 9.9 

DeepSORT 2 [61] Online 61.4 79.1 62.2 32.8 18.2 781 2008 12852 56668 17.4 

SORTwHPD16 [62] Online 59.8 79.6 53.8 25.4 22.7 1423 1835 8698 63245 59.5 

IOU [63] Online 57.1 77.1 46.9 23.6 32.9 2167 3028 5702 70278 3004.6 

RAR16wVGG [64] Online 63.0 - 63.8 39.9 22.1 482 1251 13663 53248 1.6 

Ours-1 Online 64.8 78.6 73.5 40.6 22.0 794 1050 13470 49927 18.2 

Ours-2 Online 63.2 78.7 73.2 38.5 21.6 821 1103 12980 50635 17.7 

 

Table 7 compares our dual L1 normalized context-aware tensor power iteration method with the state-of the 

art methods on the MOT16 challenge benchmark dataset where “Ours-1” refers to the results of our method using 

two sets of parameter values and “Ours-2” refers to the results of our method using one set of parameter values 

for all the sequences. It is seen that our tracker is a strong competitor to the competing online trackers [58, 61, 

62, 63, 64] which are pairwise association-based. In particular, our method returns the highest identified detection 

score and MT, and fewer fragments among all the online pairwise association-based methods while maintaining 

competitive MOTA scores, ML, and identity switches. This shows the effectiveness of the high-order temporal 

affinities in our tracker. Furthermore, our method returns a higher number of false positives which impair the 

tracking accuracy. In general, applying a larger confidence threshold to the detections potentially increases the 

tracking performance. Most of the false positives in our model were generated from the sporadic detector 

responses at static scene geometry. Due to high-order spatial structural information and larger temporal distance 

(i.e., the number of the frames before the current frame, which are used to find the object associations for online 

tracking), these false positives usually are propagated to subsequent association results. As shown by the score 

of IDF1, which is more appropriate than MOTA to evaluate the robustness of the tracker, these mismatches do 

not lead to continual identity switches. It is noted that when one set of parameter values was used the accuracy 

of our method is only slight reduced. It is still comparable with the state of the art. In addition, our model even 
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yields more accurate results than some state of the art methods in batch mode, such as NOMT which is 

significantly more complex and uses frames in the near future. Some qualitative results are shown in Fig. 12. It 

is seen that objects are tracked correctly when even occlusions are encountered or the scene changes greatly due 

to camera movement. The runtime for object associations in our method is approximately 18 frames per second 

and it can be much faster with parallel operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Some qualitative results on the MOT16 benchmark: the same identity labeled by box with the same color. 

 

To evaluate the effectiveness of proposed high-order affinity containing motion consistency and spatial 

structural information, we checked the changes in MOTA under different tensor orders and different temporal 

distances on the MOT16-10 sequence which was recorded using a moving camera. As shown in Fig. 13, both the 

MOTA and IDF1 are improved along with the increase of the tensor order, as richer spatial information is 

extracted. This clearly shows the effectiveness of high-order temporal affinities. We observed that more samples 

from previous times benefit the performance of our tracker within a certain period. However, the performance is 

not improved and may even decrease when the temporal distance is too long. The reason is that the linear motion 

assumption is no longer valid and the appearance changes greatly after a long time interval. 
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Fig. 13. Performance of our method on the MOT16-10 sequence with different orders of the affinity tensor: The maximum 

temporal distance was set to 30 and the maximum order was set to 4.  

 

To evaluate the effectiveness of our feature extraction neural network based on the identity mask, we 

compared the proposed tracker with the DeepSORT tracker whose code is available and whose performance is 

better than other online trackers. As shown in Fig. 14, for either DeepSORT or our method, using the features 

with identity masks yields better results than using the features without identity masks. Whether using the features 

with or without identity masks, the proposed tracker outperforms the DeepSORT tracker. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Tacking results using features with/without identity masks. 

 

8.2. Multi-graph matching 

In real scenarios for multi-graph matching, the graphs often have noisy structures with outlier vertices. These 

vertices should not be mapped to any real vertex. By adding dummy vertices to graphs, we make the number of 

the vertices in each graph the same. The dummy vertices in a graph are allowed to match with non-dummy 
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vertices in other graphs. A small affinity is set for the dummy vertices to suppress erroneous matches. 

To test the performance of our multi-graph matching method, extensive experiments were conducted on the 

following public benchmark datasets: 

⚫ The CMU House/Hotel dataset [32]: The House and Hotel sequences contain 111 frames and 101 

frames respectively, and each frame has thirty landmarks. Following the setting in [35], we randomly 

selected 10 landmarks as the inliers, and randomly selected 3 landmarks from the rest as the outliers. 

⚫ The WILLOW-ObjectClass dataset [33]: The ObjectClass dataset consists of five real world image 

sequences. Four sequences were used in the experiments including Duck (50 images), Car (40 images), 

Motorbike (40 images), and Winebottle (66 images). There are 10 manually annotated landmarks in 

each image, but the annotations are not accurate. With the same settings as in [37], the 10 landmarks 

were used as the inliers and supplemented by 2 outliers detected from the background using the SIFT 

detector. 

⚫ The Repetitive Structure dataset [34]: This dataset consists of two sequences describing repetitive 

structures, which make image matching difficult due to the ambiguous features. The Building sequence 

(16 images) was selected as the test sequence. For each image, we retained 10 landmarks as the inliers 

and randomly sampled three landmarks from the rest as the outliers. 

Graph sets with various sizes were utilized to validate the performances of the multi-graph matching 

methods. Generally, the experiments were conducted on 4-graph, 6-graph, 8-graph, 10-graph, and 12-graph 

matching tasks. For the robustness evaluation, 10 random tests were performed for each matching task, and the 

result is the average of all the 10 tests. 

The impacts of the two basic components, the vertex affinity and the hyper-edge affinity, vary in different 

scenarios. So, the parameter α in the optimization (59) is dependent on the scenario. The more stable the graph 

structure, the more confident the component of the hyper-edge affinity. For the CMU-House/Hotel and Building 

sequences, the Motorbike and Winebottle sequences, and the Duck and Car sequences, we used the first 10 frames 

in each sequence to tune the parameter α. The parameter α was empirically set to 8 for the CMU-House/Hotel 

and Building sequences, 4 for the Motorbike and Winebottle sequences, and 2 for the Duck and Car sequences. 

The regularized factor σ2 in (64) only depends on the triangle features of hyperedges. It is independent of 

scenarios. It was empirically set to 2 throughout the experiments. The number of the dual L1 normalized tensor 

power iterations was set to 100 throughout all the experiments. 

There are two main measures of multi-graph matching: 1) accuracy: the number of correctly matched inliers 

divided by the total number of inliers, as popularly used in related work [38, 39, 40]; 2) consistency: the number 
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of consistent matches divided by the number of all possible matches (a detailed definition can be found in [35]. 

In our work, the accuracy metric was mainly applied, since our method naturally guarantees 100% of consistency, 

which is a merit of our method. 

The effectiveness of the proposed method was verified by comparing with the state of the art [34, 35, 36]. 

They are the permutation synchronization method (Match-Sync) [36], the alternative optimization method 

(Match-Opt) [36], and the graduated consistency-regularized optimization algorithm (Match-Grad) [35]. The 

results of the three competing methods on the CMU dataset and WILLOWObjectClass dataset are taken from the 

work in [35, 37]. 

The proposed optimization objective consists of two components: the unary vertex affinity and the hyper-

edge affinity. Each objective can be used alone in the optimization to solve the matching problem. The proposed 

method is flexible to accommodate different kinds of optimizations. When the unary vertex affinity is exploited 

only, the optimization degenerates into the multi-dimensional assignment, and the solution is termed as “Tensor-

MDA”. With the hyper-edge affinity used only, the problem degenerates into the hyper-graph matching (HGM), 

and the method is termed as “Tensor-HGM”. The method for multi-graph matching using both the vertex affinity 

and the hyper-edge affinity is termed as “Tensor-MGM”. All the three methods, Tensor-MAD, Tensor-HGM, and 

Tensor-MGM, were tested in the experiments. 

1) The CMU-House/Hotel dataset: The qualitative results on the Hotel and House sequences are shown in 

Fig. 15. It is seen that our Tensor-MGM method yields few mismatches and has an excellent performance. The 

results meet the full consistency, which is derived from the high-order matching naturally. The quantitative results 

on the CMU-House/Hotel sequences are presented in Table 8. It is seen that our multi-graph matching method, 

Tensor-MGM, which uses both the vertex affinity and the hyper-edge affinity performs the best in almost all the 

tests. Moreover, the tensor-MGM method has a remarkable improvement over the state of the art. The two 

variants, Tensor-MDA which uses the vertex affinity only and Tensor-HGM which uses the hyper-edge affinity 

only, also yield good results on this dataset. The pairwise graph matching (2-graph matching) using our tensor-

MGM method yields an accuracy of more than 99% on the House and Hotel sequences. However, for multi-

graph matching, there is the consistency measure besides the accuracy measure. Pairwise associations-based 

multi-graph matching methods cannot ensure 100% of consistency, while our tensor MGM-based multi-graph 

matching method naturally guarantees 100% of consistency. We compare the consistency for the following two 

methods: 

⚫ the 3-graph matching carried out by pairwise graph matching using our tensor-MGM (Pairwise) 

⚫ the 3-graph matching carried out directly using our tensor-MGM (D-Tensor). 
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The results are shown in Table 9. It is seen that the D-Tensor method keeps the accuracy of the Pairwise method 

and yields a consistency of 100%. However, the consistencies for the Pairwise method are 93.9% and 96.9% for 

the CMU-House sequence and the CMU-Hotel sequence, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

                (a)                                          (b) 

Fig. 15. Matching results of the proposed method across three graphs on the CMU-House/Hotel dataset: (a) The Hotel sequence; (b) 

The House sequence. The vertices and matches are color-coded, and correct matches appear in the same color as the vertices that 

they connect. White circles denote outliers. Best viewed in color. 

 

Table 8. Matching accuracy (%) on the CMU-House/Hotel dataset 

 
CMU-House CMU-Hotel 

Match- 

Sync [34] 
Match- 

Opt [36] 
Match- 

Grad [35] 
Tensor- 

MDA 
Tensor- 

HGM 
Tensor- 

MGM 
Match- 

Sync [34] 
Match- 

Opt [36] 
Match- 

Grad [35] 
Tensor- 

MDA 
Tensor- 

HGM 
Tensor- 

MGM 

2-graph 86.4 -- -- 74.9 94.1 99.3 87.4 -- -- 75.4 95.5 99.8 

4-graph 85.2 99.0 84.0 90.5 89.4 96.6 87.7 93.2 90.0 88.7 86.7 96.7 

6-graph 83.2 81.6 85.2 90.0 87.7 96.2 81.5 72.3 87.9 87.3 85.3 97.7 

8-graph 76.4 82.4 87.2 81.7 89.6 95.5 60.5 62.8 84.9 78.5 80.7 97.1 

10-graph 68.8 80.2 79.2 78.1 83.6 94.3 63.8 69.1 84.5 78.7 83.7 93.7 

12-graph 75.4 80.0 82.6 75.2 83.5 95.1 70.0 68.5 88.1 73.6 86.1 97.9 

 

Table 9. The results of comparison of consistency (%) between the 3-graph matching carried out by pairwise graph matching 

(Pairwise) and the 3-graph matching directly using tensor-MGM (D-Tensor). 

Method Measure CMU-House CMU-Hotel 

Pairwise 
Accuracy 98.7 98.6 

Consistency 93.9 96.9 

D-Tensor 
Accuracy 98.1 98.7 

Consistency 100.0 100.0 

 
To investigate the relevance of the affinity cost vs multi-graph matching, we compared the results of using 

different local appearance features, i.e., the features of color histogram, HoG (Histogram of Oriented Gradient), 

SIFT (Scale Invariant Feature Transform), SURF (Speeded Up Robust Features), deep learning on AlexNet, and 

shape context. Table 10 shows the accuracy results when different local appearance features of vertices are used 
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for our tensor-MGM method. It is seen that the results of the 2-graph matching and the 4-graph matching for 

different features are close to each other. The results of the 6-graph matching and the 8-graph matching for the 

HoG and shape context features are higher than those for other features. 

Table 10. The accuracies of our tensor-MGM method for different local appearance features on the CMU House sequence. 

Number of 
graphs 

Color 
histogram 

HoG SIFT SURF 
Deep 

learning 

Shape 

context 

2-graph 98.7 98.9 97.9 98.3 98.5 98.8 

4-graph 96.7 98.1 96.6 96.5 96.3 96.6 

6-grpah 91.7 96.6 95.4 90.1 90.1 96.2 

8-graph 85.7 92.3 90.6 83.3 83.0 95.5 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                          (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        (c)                                             (d) 

Fig. 16. Matching results of the proposed method across three graphs on the WILLOW-ObjectClass dataset: (a) Car; (b) Motorbike; 

(c) Wine bottle; (d) Duck. The vertices and matches are color-coded, and correct matches appear in the same color as the vertices 

that they connect. White circles denote outliers. Best viewed in color. 
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Table 11. Matching accuracy (%) on the WILLOW dataset 

 
WILLOW-Car WILLOW-Motorbike 

Match- 

Sync [34] 
Match- 

Opt [36] 
Match- 

Grad [35] 
Tensor- 

MDA 
Tensor- 

HGM 
Tensor- 

MGM 
Match- 

Sync [34] 
Match- 

Opt [36] 
Match- 

Grad [35] 
Tensor- 

MDA 
Tensor- 

HGM 
Tensor- 

MGM 

4-graph 54.2 57.1 63.3 62.2 68.7 79.5 75.9 78.7 78.4 78.3 69.7 87.5 

8-graph 61.5 69.6 74.3 62.6 49.6 75.7 84.6 82.5 86.3 76.5 65.7 85.6 

12-graph 55.8 66.0 80.5 55.4 40.3 67.1 81.3 84.3 87.1 70.5 58.7 80.3 

 
WILLOW-Winebottle WILLOW-Duck 

Match- 

Sync [34] 
Match- 

Opt [36] 
Match- 

Grad [35] 
Tensor- 

MDA 
Tensor- 

HGM 
Tensor- 

MGM 
Match- 

Sync [34] 
Match- 

Opt [36] 
Match- 

Grad [35] 
Tensor- 

MDA 
Tensor- 

HGM 
Tensor- 

MGM 

4-graph 49.8 71.2 64.2 81.2 82.7 97.0 35.3 42.3 40.0 60.2 58.2 65.8 

8-graph 37.5 91.2 82.9 78.9 76.4 94.3 40.8 45.8 50.6 60.6 48.2 61.3 

12-graph 69.0 92.7 93.1 71.3 63.2 93.7 45.9 56.6 72.7 49.4 33.8 58.3 

 

2) The WILLOW-ObjectClass dataset: The large pose and viewpoint variations, flexible landmark 

annotations, and noisy outliers make the matching on the ObjectClass sequences extremely difficult, in particular 

for the Duck and Car sequences. The qualitative results on the WILLOW dataset are shown in Fig. 16. The full 

matching consistency is clearly observed from the figure. The quantitative results on this dataset are presented in 

Table 11. It is seen that our dual L1-normalized hyper-context aware tensor power iteration algorithm (Tensor-

MGM) yields more accurate results than the two variants, Tensor-MDA and Tensor-HGM. Our Tensor-MGM 

method obtains the best results for the 4-graph and 8-graph matching tasks on all the sequences in the WILLOW 

dataset. For the 12-graph matching task, our method yields the most accurate result on the Winebottle sequence 

and the second accurate results on the Car and Duck sequences. Although the method in [35] yields higher 

accuracy than our Tensor-MGM method for the 12-graph matching task, as stated in [35], its consistency is about 

70% [35]. As stated above, our method naturally yields 100% consistency. The results show the effectiveness of 

our multi-graph matching method as well as the effectiveness of the combination of the vertex affinity and the 

hyper-edge affinity. 

3) The Repetitive Structure dataset: The qualitative matching is presented in Fig. 17 which shows the full 

matching consistency. The quantitative results on this dataset are presented in Table 12. The building sequence 

has many repetitive patterns and viewpoint changes, but the annotations are stable. In this case, our method 

achieves the favorable performance. 

We discuss the results on these benchmark datasets from the aspects of convergence, vertex affinity, affinity 

combination, and complexity: 
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Fig. 17. The matching results of the proposed method across three graphs on the Building sequence: The vertices and matches are 

color coded, and correct matches appear in the same color as the vertices that they connect. White circles denote outliers. Best 

viewed in color. 

 

Table 12. Matching accuracy (%) on the Building sequence 

 
Match- 

Sync [34] 
Tensor- 

MDA 
Tensor- 

HGM 
Tensor- 

MGM 
4-graph 76.5 82.8 87.3 92.8 

6-graph 82.8 75.3 58.7 93.0 

8-graph 77.9 75.0 53.2 88.3 

10-graph 87.3 73.5 66.3 90.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
\                           (a)                                                (b) 

Fig. 18. The curves of the united affinity, the vertex affinity, and the hyperedge affinity as functions of the number of iterations: 

(a) Curves for matching the house images; (b) Curves for matching the motorbike images. 

 

1) Convergence: To test the convergence of the proposed dual L1 normalized hyper context-aware tensor 

power iteration, the variation in affinity during the iteration process is shown in Fig. 18. There are two examples: 

one is the 4-graph matching on the CMU-House sequence and the other is the 4-graph matching on the WILLOW-
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Motorbike sequence. The united affinity and the individual affinities (i.e., the vertex and hyper-edge affinities) 

are included in the figure. It is clear that the affinity gradually increases during the iteration and the proposed 

method converges. 

2) Vertex affinity: The proposed method has the advantage that it allows the exploration of high-level vertex 

affinity which is not available in the state of the art methods. Although we utilize a simple affinity measure which 

is sensitive to the factors such as large deformations of graphs, the state of the art results are still obtained. 

3) Affinity combination: It was observed from the experiments that both the Tensor-MDA and Tensor-

HGM have good performances. By combining these two complementary affinities, the proposed method obtains 

a much better result. This indicates the necessity of incorporating high-order information across both multi-graphs 

and hyper-edges. In addition, the proposed method is adaptable to diverse edge or hyper-edge affinities, such as 

the pairwise edge similarity, the third or higher order hyper-edge affinity, and even the hybrid of different order 

hyper-edge affinities. 

4) Runtime: Table 13 shows, for the CMU-House/hotel dataset, the runtimes of our dual L1-normalized 

hyper-context aware tensor power iteration-based graph matching method for matching 2 graphs, 4 graphs, 8 

graphs and 12 graphs, where the runtimes include the times required to build the affinity tensors. It is seen that 

the runtimes for the CMU-House and CMU-Hotel sequences are similar. When the number of graphs increases, 

the runtime inevitably increases. 

Table 13. The runtimes for our multi-graph matching method on the CMU-House/Hotel dataset 

Number of graphs 2 graphs 4 graphs 8 graphs 12 graphs 

Runtime 
CMU-House 0.036 seconds 0.09 seconds 3.29 seconds 10.21 minutes 

CMU-Hotel 0.037 seconds 0.11 seconds 3.31 seconds 10.18 minutes 

 

8.3. Discussion on parameter tuning 

In our work, some parameters, such as the regularized factor α, are dependent on the scenarios. To yield 

state of the art results, we chose these parameters differently for different datasets and some different sequences, 

as in previous work, such as [58, 61]. The reason is that the scenarios for the datasets, for example aerial videos 

and ground surveillance videos, are quite different. The scenario-dependent parameters should be set different 

values in order to obtain more accurate results than the competing methods which also vary the parameter values 

for different sequences [58, 61]. 

On the CLIF dataset, the PSU dataset, the PETS 2009 dataset, and the TUD-Stadtmitte dataset, for our 

tracking method, the parameters for the sequences in the same dataset have the same values because the scenarios 
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in the dataset are similar. On the MOT16 challenge benchmark dataset, only the MOT16-13 and MOT16-14 

sequences have different values for the parameters, while all the other sequences have the same values of the 

parameters. Our methods yield the state of the art multi-object tracking results on the CLIF dataset, the PSU 

dataset, the PETS 2009 dataset, the TUD-Stadtmitte dataset, and the MOT16 challenge benchmark dataset, and 

yield the state of the art multi-graph matching results on the CMU-House/Hotel and Building sequences, the 

Motorbike and Winebottle sequences, and the Duck and Car sequences. These partly indicate the generalization 

capabilities of our methods. 

9. Conclusion 

In this paper, the multi-dimensional assignment task has been formulated as the row and column constrained 

tensor approximation problem. A dual L1-normalized context/hyper-context aware tensor power iteration 

optimization method has been proposed. In this method, temporal affinity and association contexts or hyper 

contexts are included in a combined optimization. Various types of pairwise contexts have been modeled. This 

optimization method has been applied to association-based multi-object tracking. Contextual cues and high-order 

motion information have been used simultaneously to alleviate the association ambiguity. The tensor power 

iteration method has also been applied to multi-graph matching. High-order vertex affinities and hyper-edge 

affinities have been explored to leverage graph matching accuracy and consistency. The experiments on diverse 

datasets have illustrated the effectiveness of the proposed methods. 
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