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Abstract 
The problem of classifying human activities occurring in depth image sequences is addressed. The 3D 

joint positions of a human skeleton and the local depth image pattern around these joint positions 

define the features. A two level hierarchical Hidden Markov Model (H-HMM), with independent 

Markov chains for the joint positions and depth image pattern, is used to model the features. The 

states corresponding to the H-HMM bottom level characterize the granular poses while the top level 

characterizes the coarser actions associated with the activities. Further, the H-HMM is based on a 

Hierarchical Dirichlet Process (HDP), and is fully non-parametric with the number of pose and action 

states inferred automatically from data. This is a significant advantage over classical HMM and its 

extensions. In order to perform classification, the relationships between the actions and the activity 

labels are captured using multinomial logistic regression. The proposed inference procedure ensures 

alignment of actions from activities with similar labels. Our construction enables information sharing, 

allows incorporation of unlabelled examples and provides a flexible factorized representation to 

include multiple data channels.  Experiments with multiple real world datasets show the efficacy of 

our classification approach. 

Keywords: activity classification; depth image sequences; hierarchical HMM; HDP; inference; 

multinomial logistic regression;  

1 Introduction 
Activity recognition involves automatic identification of interesting events that occur in a video. It has 

applications in diverse areas such as video synthesis, smart surveillance and human computer 

interaction. The recent advent of depth sensing technology that produces depth images in addition to 

the RGB images has offered opportunities to solve the challenging activity recognition problem. The 

depth images facilitate robust extraction of the human silhouette and the estimation of a human 

skeleton’s 3D joint positions [1]. High level actions and activities can be inferred from these joint 

positions.    

An activity is typically composed of a set of actions that occur over time. An action in turn is composed 

of a sequence of skeleton and object poses. The skeleton pose is a particular arrangement of the joint 

positions and the object pose is a specific representation of an object associated with the action. For 

example, a rinse-mouth activity may be composed of drink and spit actions. The drink action may 

involve skeleton poses corresponding to lifting an arm and the object pose may be a representation 

of a mug. The same pose may be present in different actions and the same action may be present in 

multiple activities. This composition allows the sharing of data across the activities and the learning of 

poses and actions from a limited set of examples. Furthermore the activities can now be classified just 

from the action representations without explicitly taking into account the pose representations. Thus, 

decomposing an activity into a set of actions and in turn an action into a set of poses enables 

information sharing and model simplification. The precise definition of the time scale for the actions 

                                                           
1 nraman01@dcs.bbk.ac.uk  Corresponding author Birkbeck, Malet St, London WC1E7HX, UK. T:  +442076316700 
2 sjmaybank@dcs.bbk.ac.uk  

mailto:nraman01@dcs.bbk.ac.ukC
mailto:sjmaybank@dcs.bbk.ac.uk


2 
 

and activities may depend on the task. In this work, evaluations are performed on fairly simple 

activities that span less than a minute. The joint positions extracted from a depth image are used for 

representing the skeleton poses. The object poses are represented using the information in the depth 

image patches around the joint positions.    

A natural way to model a sequence of observations is to use a state-space model such as a Hidden 

Markov Model (HMM). In an HMM, discrete state variables are linked in a Markov chain by a state 

transition matrix and observations are drawn independently from a distribution conditioned on the 

state [2]. A simple HMM is not sufficient in our case, because there are two sequences at different 

levels – a top level for the coarse action sequence and a bottom level for the granular pose sequence. 

Intuitively, for a given action state at the top level, we have a sub-HMM conditioned on this state that 

emits a pose sequence. The hierarchical HMM (H-HMM) captures such a multi-level structure by 

making each hidden state an autonomous probabilistic model of its own [3]. It generates sequences 

by recursively activating the sub-states of a state. In this context, when an action state is activated, it 

will use its own probabilistic model to emit a sequence of pose states with a pose state emitting an 

observation. We can flatten the H-HMM to a standard HMM by introducing a large number of states, 

however the inference of the activities would become intractable. 

In the above H-HMM, the number of action states and pose states must be specified in advance. This 

is a problem in general with all variants of the classical parametric HMMs where the number of hidden 

states are fixed a-priori, even though for many applications this number is not known in advance. The 

usual technique for circumventing this problem is to carry out training using different choices for the 

number of states and then to apply a model selection criterion. A better approach than this ad hoc 

procedure is to estimate the correct number of states automatically from the data.  

The Dirichlet Process (DP) is a non-parametric Bayesian method used for mixture modelling. It 

estimates the number of mixture components automatically from data. Its extension, the Hierarchical 

Dirichlet Process (HDP), is used for modelling groups of data. A mixture model is produced for each 

group but all the groups share the same mixture components [4]. By drawing parallels from a HMM 

state to a group in grouped data, the HDP-HMM [5] can be viewed as a non-parametric variant of the 

classical HMM in which the number of hidden states is inferred from data. This paper uses a non-

parametric extension to the H-HMM for modelling activities. The number of action states and the 

number of pose states are not bounded a priori. During inference these numbers are automatically 

estimated. The pose states use a factorized representation for the skeleton and object poses. 

The above non-parametric H-HMM that models activities cannot be used for classification. A separate 

H-HMM can be trained for each activity class, but this would prohibit the sharing of actions and poses 

across the activity classes. In this work, a single H-HMM is trained for all the activities together. In 

order to perform classification, multinomial logistic regression is used to capture the relationship 

between the activity labels and the actions. More specifically, the activity labels are regressed on the 

action states with the regression coefficients learned using a sparsity promoting Laplacian prior [6]. 

When sampling the action states during inference, the conditional likelihood of actions for a given 

activity label is incorporated. This ensures that the learnt actions not only explain the observations 

but also can predict the activity labels.  

Our main contribution is the definition of a new factorized non-parametric H-HMM model integrated 

with multinomial logistic regression. We also propose a tractable inference procedure that is suitable 

for sequential data and conduct experiments on multiple real world datasets. This proposed model 

offers the following advantages – (a) The hierarchical composition of actions and poses enables 

information sharing and model simplification, (b) The non-parametric extension precludes the need 
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for specifying a priori bounds on the number of states, (c) The factorized state representation allows 

incorporation of multiple data channels, (d) Unlabelled examples can be used thus promoting semi-

supervised learning. Although our model is generic and can be applied to other hierarchical sequence 

classification problems, our experiments focus on the activity classification problem. Figure 1 provides 

an overview of our approach.   

 

Figure 1: Activity Recognition Overview – Poses are learnt from observations and actions are learnt 

from poses. S1 to S4 represent the skeleton pose states, O1 to O3 the object pose states and A1 to A3 

the action states. The skeleton poses are based on the 3D joint positions and the object poses are 

based on the depth image patch around the joint positions. The same pose can be present in multiple 

actions and different activities can contain the same action. The activities are classified only based on 

the action states. 

The paper is organized as follows. Section 2 briefly reviews the related work, section 3 provides 

relevant background, section 4 explains the model and section 5 contains the inference procedure. 

Experiments conducted on the activity datasets are produced in section 6 and section 7 is a conclusion. 

2 Related Research 
Human activity analysis is a very broad research area. The various techniques are reviewed in [7]. We 

focus specifically on approaches used for activity recognition in depth images. An overview of such 

approaches can be found in [8, 9 and 10].  

Several activity classification methods rely on computing sophisticated features from the 3D joint 

positions. In [11], a conjunction of the features for a subset of joints, called an actionlet, is used to 

represent the interactions between joints.  The temporal dynamics are captured using a Fourier 

temporal pyramid and a multiple kernel learning approach is used for classification. In [12], 

heterogeneous features are constructed from the skeleton, colour and depth patterns of an RGB-D 

image with the Fourier temporal pyramid used here as well for representing the temporal dynamics. 

A set of subspaces are then mined from these features in order to perform classification. In [13], a 

histogram based representation of the joint positions, called HOJ3D, is employed to describe human 

poses. A discrete HMM is then used to model a low dimensional projection of these features. A similar 

histogram based representation, but using 2D projections of 3D trajectories for describing 

displacements, called HOD, is used in [14].  In [15], a spatio-temporal representation, called atomic 

action template, is composed from key poses that are fed into classification models such as Support 

Vector Machine (SVM) and Random Forest. The key poses are identified based on changes in the 

kinetic energy of the joints. In [16], various interest point detectors such as Harris3D, cuboid, Hessian 
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etc. are combined with local feature descriptors such as SURF, HOG to create STIP features. A bag of 

words representation of these spatio-temporal descriptors are then used with an SVM to classify 

actions. In [17], the 3D point clouds in depth image sequences are directly processed in order to ensure 

viewpoint invariance. A descriptor called Histogram of Oriented Principal Components (HOPC) is 

encoded at each point. Using this descriptor, the spatio-temporal key points in the 3D point clouds 

are detected and an SVM is used for classification.  

In contrast to the above methods, the method proposed in this paper could potentially benefit other 

sequences with a hierarchical structure. The model proposed here is agnostic to the features and in 

our experiments good results are obtained even with very simple features. Also, unlike some of the 

methods above, the sequential nature of the observations is an integral part of the model with the 

Markovian dynamics ensuring that noisy inputs are tolerated. Further, the factorized structure in the 

model provides flexibility to include other data channels. 

The explicitly engineered features listed in the above methods are seldom applicable universally.  

Learning complex features automatically from data is an attractive alternative to hand-crafted 

features. Convolutional Neural Networks (CNN) [18], inspired by biological processes, use multiple 

layers of small neurons that overlap in order to represent an image. A hierarchy of trainable filters 

exploit the strong local spatial correlations present in the images and when combined with feature 

pooling operations, CNNs can automatically construct complex features from the raw inputs. Stellar 

results for static image recognition problems are reported [19] with CNN.  

An additional temporal dimension must be incorporated into the CNN for action classification. This is 

to ensure that the motion information encoded across video frames is captured. In [20], multiple 

distinct convolutional operations are applied at the same location of the input in order to recognize 

human actions. Their 3D CNN architecture performs convolution on multiple channels of information 

generated from adjacent video frames and finally combines all this information. In [21], the CNN 

temporal connectivity pattern that takes best advantage of local motion information in videos is 

explored. Three patterns, namely Early Fusion that combines information on the pixel level across a 

time window, Late Fusion that uses two separate single frame networks and Slow Fusion that is a 

hybrid between the above two, are evaluated in a multi-resolution framework on the Sports-1M 

dataset for action classification. A different CNN architecture that uses two separate recognition 

streams, one for spatial data and another for temporal data, in order to classify actions, is investigated 

in [22]. The spatial stream CNN performs action recognition on the still images and the temporal 

stream CNN recognizes action from motion in the form of dense optical flow. This avoids the need to 

implicitly learn spatio-temporal features in the first layer of the CNN, which is often a difficult task. In 

[23], a Recurrent Neural Network (RNN) that uses internal states to exhibit dynamic temporal 

behaviour is combined with a CNN to model temporal information in videos. A visual CNN layer is 

connected to a long range temporal recursion layer that produces the output predictions for activity 

classification. This method allows sequential data of varying lengths for the input and output. A similar 

approach is employed in [24] with the output of a CNN fed into a RNN that uses Long Short-Term 

Memory (LSTM) cells. The actions in the videos here are explicitly modelled as ordered sequences of 

frames. By utilizing special gating procedures, the LSTM cells can learn representations from long input 

sequences.  

The Markovian model used in this paper is fundamentally different to the above approaches based on 

neural networks. Although RNNs and CNNs offer the advantage of learning the features automatically 

from data, training them is often complex and computationally expensive. It is unclear if the CNN and 

RNN based models can produce good results with relatively low numbers of training examples. Further 

the H-HMM, being a generative model, allows the use of unlabelled examples.  
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Some approaches recast the action recognition problem as a statistical analysis on the shape space 

manifold. In [25], the trajectories described by the 3D joint positions are interpreted in a Riemannian 

manifold and an elastic metric is used to measure the similarity between trajectories. The intuition 

behind this approach is that the feature descriptors used in vision applications typically lie on a curved 

space due to the geometric nature of their definitions.  The shape analysis of curves is now extended 

to the trajectories. A similar approach is followed in [26] where a low-dimensional embedding of the 

actions is learnt from the high dimensional trajectories using a manifold functional variant of Principal 

Component Analysis (PCA). A warp invariant representation of the action sequences is provided using 

a representation called transport square root velocity function.  The extension of manifold learning to 

dynamic points is non-trivial and a relatively new area. In contrast, it is well known that the HMM 

based models used here can capture temporal structure and handle noise effectively. It is also unclear 

whether hierarchical structures can be modelled and captured effectively in a manifold learning 

framework.  

Instead of focusing on the accuracy of action recognition, some approaches focus on the recognition 

speed in order to scale up to large size problems.  In [27], semantic texton forests, which act directly 

on pixels without using expensive descriptors, are applied to local space-time volumes to generate 

visual code words. A kernel k-means forest classifier is used for classification. In [28], a real-time action 

recognition system which integrates a fast random sampling method with local spatio-temporal 

features is presented. The local features are extracted from a computationally efficient local part 

model that includes both structure and order information. Motion information from compressed 

videos is used in [29] in order to determine local descriptors. In order to generate the visual code 

book, kd-forest approximate nearest neighbour search is employed. Unlike the above techniques, the 

focus of this paper is on recognition accuracy.  

Undirected graphical models have also been used for activity recognition tasks.  In [30], the spatio-

temporal relations between human poses and objects are modelled using a Conditional Random Field 

(CRF) in order to detect past activities and predict future activities. Since there is an inherent ambiguity 

in the temporal segmentation of the sub-activities that constitute an activity in the past and future, 

multiple possible graph structures are investigated based on dynamic programming techniques.  In 

[31], group activities that involve both individual persons and the interactions between them are 

explored in a latent variable framework similar to Hidden CRF (HCRF). The structure of the hidden 

layer is implicitly inferred during learning.  In [32], collective activities involving groups of people are 

recognized using a Hierarchical Random Field (HiRF). The higher order temporal structures in the 

videos are captured by using hierarchical dependencies between the variables and learning is specified 

in a max-margin framework.  In contrast to above models that are based on Markov Random Fields, a 

directed graphical model is used in this paper. 

Non-parametric Bayesian models is a vast area. We are interested in methods that are based on HDP 

[5, 33, 34 and 35] applied to vision problems [36]. In particular, we briefly review those HDP based 

works that target action and activity recognition in videos to illustrate the new aspects of our 

approach.   

In [37], a HDP prior is used for a Markov switching model in order to perform online segmentation. An 

initial bootstrap phase is followed by an adaptive online phase in order to continuously segment and 

classify the videos. This is completely different to our model in which classification is achieved through 

logistic regression and the structure is hierarchical. The HDP priors have been used for detecting 

abnormalities in robotic assembly tasks [35] and activities [38]. In [38], abnormal activities are 

identified by applying the standard HDP-HMM, followed by a one-class SVM to filter out unlikely 

activities. This method combines the generative HDP with the discriminative SVM technique but in 
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separate phases. In contrast, we include logistic regression as an integral part of the model with the 

regression coefficients inducing the states during inference. A mixture of switching linear dynamic 

systems is used to discover actions and behaviours in [39]. Unlike our work, in which the objective is 

classification, the objective here is unsupervised learning based on hierarchical clustering. In [40], an 

additional level is added to the canonical HDP and parameter transformations that are learnt in a 

discriminative manner are used to classify actions. The use of a generative hierarchical HMM and 

logistic regression, both involving a different model structure and a different inference procedure, 

distinguishes our work from this. 

Using a generative process and a linear model to capture the relationship between a group of 

observations and its associated label has been explored before. Relevant examples are the supervised 

Latent Dirichlet Allocation [41] and its non-parametric extension, supervised HDP [42]. These 

techniques were mainly used in topic models for document labelling. The use of an H-HMM and the 

application to a vision problem involving sequence classification makes our paper very different from 

[41] and [42]. In particular, the inference procedure in our model takes into consideration the 

factorized, hierarchical nature of the observations and the standard collapsed sampling used in 

document labelling cannot be used for sequential data. 

The inference procedure described in this paper uses variants of the standard forward-backward 

algorithm [2] when sampling the state sequences. In particular Viterbi decoding is used when 

determining the state trajectory for test sequences. In [43] it is argued that the state sequence paths 

computed as the maximum of state probabilities in the Viterbi algorithm may not comprise valid paths 

and that the maximum probabilities may not be truly representative. Further the authors argue that 

such paths constitute an overly specific inference. They propose an alternative inference procedure 

called state sequence analysis that prunes the search space and uses a recursive relation to evaluate 

state sequence probabilities.  Although this approach is interesting, their algorithm identifies only 

duration-free sequence of states. Since the forward-backward procedure is well-established, mature 

and computationally efficient we use it here.  

To summarize, the literature contains work related to activity recognition, hierarchical structures, HDP 

based Markovian models and supervised non-parametric Bayesian methods, considered separately. 

In our approach, we bring together a hierarchical, factorized Markov model, multinomial logistic 

regression and non-parametric Bayesian techniques and derive inference procedures that can be 

applied to sequential data. Experiments conducted on both depth based and motion capture based 

datasets highlight the generic applicability of our approach. 

3 Preliminaries 
Background information on the classical HMM, hierarchical HMM, their Bayesian extensions and the 

non-parametric variant of H-HMM is provided. 

3.1 Classical HMM 
Let 𝑥𝑡 be an observation at time 𝑡 and let 𝑧𝑡 be its corresponding hidden state. In a classical HMM, the 

hidden state sequence follows a first order Markov chain 𝑧𝑡  ⊥ 𝑧1:𝑡−2 | 𝑧𝑡−1 and the observations are 

conditionally independent given the current state i.e. 𝑥𝑡  ⊥ 𝑧1:𝑡−1, 𝑥1:𝑡−1| 𝑧𝑡. There is a finite number 

𝐾 of hidden states and 𝑧𝑡  ∈ { 1,2 … 𝐾}.  

The model is parameterized using distributions for state transitions and observation emissions. 

Specifically, the probability of transitioning to state 𝑘 from 𝑗 is given by 𝜋𝑗,𝑘 =  𝑃(𝑧𝑡 = 𝑘|𝑧𝑡−1 = 𝑗) 

and 𝜋0,𝑘 = 𝑃(𝑧1 = 𝑘) is the initial probability of being in state 𝑘. Let 𝒩(𝜇, Σ) be the normal 
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distribution with mean 𝜇 and covariance Σ.  If the state at time 𝑡 is 𝑘, then the observation 𝑥𝑡 is drawn 

from a distribution 𝒩(𝜇𝑘 , Σ𝑘) . Figure 2 provides an overview. 

 

Figure 2: Graphical representation of the classical HMM. The states 𝑧1:𝑇 evolve based on the transition 

parameters 𝜋 and the state at the previous time instant. Observations 𝑥1:𝑇 are generated from the 

emission distribution parameters (𝜇, Σ) of a given state.  

3.2 Hierarchical HMM 
In the hierarchical extension of the HMM [44], there are multiple levels 1. . . 𝑙 … 𝐿 and there is a hidden 

state 𝑧𝑡
𝑙 corresponding to each level 𝑙 at time 𝑡. A state at level 𝑙 emits a sequence of states for level 

𝑙 + 1 and when it enters the end state, it activates the level above it to emit 𝑙 − 1 level’s subsequence. 

Intuitively, each level has a sub-HMM conditioned on its state. In order to indicate whether a level has 

completed emitting its subsequence, let us use a binary variable 𝑓𝑡
𝑙. When 𝑓𝑡

𝑙 = 1, the state one level 

above the current level is activated and when 𝑓𝑡
𝑙 = 0 the state at the current level and all levels above 

it remains unchanged. 

The state transition probabilities of the H-HMM need additional conditioning on the states in the level 

above them. The probability of transitioning to state 𝑘 from 𝑗 for level 𝑙 is now given by 𝜋𝑗,𝑘
𝑙 =

 𝑃(𝑧𝑡
𝑙 = 𝑘|𝑧𝑡−1

𝑙 = 𝑗, 𝑓𝑡−1
𝑙 = 𝑓′, 𝑧𝑡

1..𝑙−1 = 𝑖) where 𝑖 is the current state for all parent levels and 𝑓′ ∈

{0,1}. Assuming that the states that emit observations are at the bottom level, the emission 

distribution remains identical to that of an HMM. Figure 3 provides an overview. 

3.3 Bayesian extensions  
For the Bayesian model of a classical HMM, it is necessary to introduce priors. Let the state transitions 

of a HMM have a Dirichlet prior 𝛽 ~ 𝐷𝑖𝑟(
𝛾

𝐾
…

𝛾

𝐾
)  and 𝜋𝑗 ~ 𝐷𝑖𝑟(𝛼𝛽1 … 𝛼𝛽𝐾). Here 𝐷𝑖𝑟 is the Dirichlet 

[4] distribution, 𝛾, 𝛼 ∈  ℝ+ are hyper parameters and the intermediate 𝛽 ensures that the transitions 

out of different states are coupled. Similarly, let the mixture means have a normal prior 𝜇 ~ 𝒩(𝜇0, Σ0) 

and let the covariance have an Inverse-Wishart prior [5, 39] Σ ~ 𝐼𝑊(𝜈0, Δ0). 

For the H-HMM, the Dirichlet priors for transitions are now extended to multiple levels with 

𝛽𝑙  ~ 𝐷𝑖𝑟(
𝛾

𝐾
…

𝛾

𝐾
)  and 𝜋𝑗

𝑙  ~ 𝐷𝑖𝑟(𝛼𝛽1
𝑙 … 𝛼𝛽𝐾

𝑙 ). The conditional probability of the binary variables when 

the level below has completed is 𝑃(𝑓𝑡
𝑙 = 1 |𝑓𝑡

𝑙+1 = 1, 𝑧𝑡
𝑙 , 𝑧𝑡

𝑙−1) =  𝜓𝑙,𝑧𝑡
𝑙,𝑧𝑡

𝑙−1
. Here each 𝜓 is a 

parameter that controls the chance of state transition at a particular level and can be assigned a beta 

prior  𝐵𝑒𝑡𝑎(𝑎, 𝑏) where 𝑎, 𝑏 ∈  ℝ+.  The emission distribution prior remains identical to the prior of 

an HMM. 

𝑧1 𝑧2 𝑧𝑇 

𝑥1 𝑥2 𝑥𝑇 

... 

𝜋𝑗 

𝐾 

 
𝜇

𝑘
, Σ𝑘 

𝐾 
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Figure 3: Graphical representation of a Hierarchical HMM [44] showing the states at various levels, 

the observations and the parameters. Each dotted rectangle groups the variables at a time instant. If 

the current level 𝑙 has not finished (𝑓𝑡−1
𝑙 = 0), then the state 𝑧𝑡

𝑙 is the same state 𝑧𝑡−1
𝑙  at the previous 

time 𝑡 − 1. Otherwise, its new value is determined from the state at previous levels 𝑧𝑡
1:𝑙−1. The 

transition parameters 𝜋1..𝐿 and emission distribution parameters (𝜇, Σ) are shown on the left. 

3.4 Non parametric H-HMM 
The Dirichlet Process (DP) is a useful nonparametric prior for mixture models. There is no upper bound 

on the number of components in the mixture. The Dirichlet process is denoted by 𝐷𝑃(𝛾, 𝐻) where 𝐻 

is a base measure and 𝛾 ∈  ℝ+ is a concentration parameter that controls variability around 𝐻. A 

draw 𝐺0 from a DP provides a probability distribution with infinitely many members. The almost sure 

discreteness of the drawn measures can be made explicit through a stick breaking process [4]. The 

distribution 𝐺0 can be written in the following form. 

𝐺0 =  ∑ 𝛽𝑘𝛿𝜃𝑘

∞

𝑘=1

  

 

𝛽𝑘 =  𝛽𝑘
′ ∏(1 − 𝛽𝑙

′)

𝑙<𝑘

            𝛽𝑘
′  | 𝛾 𝑖𝑖𝑑~  𝐵𝑒𝑡𝑎(1, 𝛾)             𝜃𝑘 | 𝐻 𝑖𝑖𝑑~  𝐻 

(1) 

 

Here 𝜃𝑘 are the atoms drawn independently from the base distribution and 𝛽𝑘 are the probabilities 

that define the mass on the atoms such that ∑ 𝛽𝑘
∞
𝑘=1 = 1. It is common to write the probability 

measure 𝛽 =  {𝛽𝑘}𝑘=1
∞   obtained from (1) as 𝛽 ~ 𝐺𝐸𝑀(𝛾). 

The HDP is the hierarchical extension of the DP and is used to model groups of data. Each group has a 

separate DP prior but all these DPs are linked through a global DP. This provides a mechanism for the 

groups to have different mixture proportions but share the same mixture components. Specifically, 

𝑧1
1 
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the set {𝐺𝑗}𝑗=1
𝐽  of random distributions corresponding to 𝐽 pre-specified groups are conditionally 

independent given a base global distribution 𝐺0. 

𝐺0 | 𝛾, 𝐻 ~ 𝐷𝑃(𝛾, 𝐻) 𝐺𝑗| 𝛼, 𝐺0 ~ 𝐷𝑃(𝛼, 𝐺0) (2) 

 

Here 𝐺𝑗 contains values drawn from 𝐺0 that vary by an amount controlled by a concentration 

parameter 𝛼. Similar to (1) we can write the HDP using a stick breaking process as below with 

𝜋𝑗 =  {𝜋𝑗𝑘}𝑘=1
∞  and ∑ 𝜋𝑗𝑘

∞
𝑘=1 = 1. 

𝐺𝑗 =  ∑ 𝜋𝑗𝑘𝛿𝜃𝑘

∞

𝑘=1

  

𝜋𝑗𝑘 =  𝜋𝑗𝑘
′ ∏(1 − 𝜋𝑗𝑙

′ )

𝑙<𝑘

            𝜋𝑗𝑘
′  | 𝛼, 𝛽 𝑖𝑖𝑑~  𝐵𝑒𝑡𝑎 (𝛼𝛽𝑘 , 𝛼(1 − ∑ 𝛽𝑙

𝑙<𝑘

))  

(3) 

 

The HDP can be used as a non-parametric prior for a set of mixture models with 𝜋𝑗𝑘 being interpreted 

as the probability that defines the mass on the atoms for the group 𝑗. An observation 𝑥𝑗𝑛 belonging to 

the 𝑗𝑡ℎ group is generated using a HDP as below. 

      𝛽 | 𝛾 ~ 𝐺𝐸𝑀(𝛾)    𝜋𝑗 | 𝛼, 𝛽 ~ 𝐷𝑃(𝛼, 𝛽)                          𝜃𝑘 | 𝐻 ~ 𝐻 
(4) 

     𝑧𝑗𝑛 | 𝜋𝑗 ~ 𝜋𝑗      𝑥𝑗𝑛  | 𝑧𝑗𝑛, {𝜃𝑘}𝑘=1
∞  ~ 𝐹(𝜃𝑧𝑗𝑛

) 

 

Here 𝑧𝑗𝑛 is a latent variable that indicates the mixture component, 𝐺𝐸𝑀(𝛾) is the stick breaking 

process and 𝐹 denotes a family of distributions parameterized by 𝜃. 

The generation process for the HDP is remarkably similar to the generation of a Bayesian HMM. The 

𝜋𝑗 in (4) are the transition probabilities for a HMM state 𝑗 and 𝐹 is a family of Gaussian distributions 

with 𝜃𝑘 = (𝜇𝑘 , Σ𝑘).  Thus a non-parametric HMM can be represented using a HDP with an unbounded 

number of hidden states. 

In the non-parametric H-HMM, each level has a separate HDP prior corresponding to the states of its 

parent level. Thus the number of states in each H-HMM level is unbounded. Note that we do not 

consider an alternate definition [33] in which the number of levels in the H-HMM is unbounded.  

4 Activity Model  
We are given training examples 𝑋 =  {𝑥𝑛}𝑛=1

𝑁 , 𝑌 =  {𝑦𝑛}𝑛=1
𝑁 , where 𝑥𝑛 =  𝑥1

𝑛 … 𝑥𝑇
𝑛 is an activity 

observation sequence and 𝑦𝑛  ∈ { 1 … 𝐶} its corresponding activity label. An activity observation 𝑥𝑡 

contains skeleton based features 𝑥𝑠𝑡 ∈  ℝ𝑑𝑠 and object based features 𝑥𝑜𝑡 ∈  ℝ𝑑𝑜 with 𝑥𝑡 =

(𝑥𝑠𝑡, 𝑥𝑜𝑡). Discussion of the features is deferred to section 6. The objective is classification: given a 

new test activity sequence 𝑥, the corresponding activity label �̂� is predicted using the learned model 

parameters. 

In the H-HMM model proposed here, we restrict the number of levels to two i.e. 𝐿 = 2. The top level 

contains the action states that emit the pose state sequence. Let 𝑎𝑡 be the hidden action state at time 

𝑡. The bottom level contains the pose states that produce the observations. A pose state at time 𝑡 is 

factored into skeleton and object pose states 𝑧𝑠𝑡 and 𝑧𝑜𝑡 respectively. This factorization provides 
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flexibility to add new data channels if necessary. The action, skeleton pose and object pose have 

separate HDP priors and there is no a priori upper bound on the number of states.  

A single binary variable 𝑓𝑡 is used to indicate whether an action state has completed or not. If the 

binary variable has a zero value, then the action states remain unchanged and a new pose state is 

determined based on the pose state at previous time instant. Otherwise, there is a transition to a new 

action state.  The single indicator variable controls the transition of the bottom level states and the 

action states. This simplified model with only two levels ensures tractable inference, while retaining 

the benefits of a compact hierarchical structure. 

The pose states always emit a single observation. Each observation consists of two samples from 

independent Gaussian distributions - one for the skeletion pose and the other for the object pose. 

Given a skeleton pose state 𝑘, the skeleton observations are drawn from  𝒩(𝜇𝑠𝑘, Σs𝑘). Similarly, the 

object observations are drawn from 𝒩(𝜇𝑜𝑘 , Σo𝑘) for an object pose state 𝑘. The observations do not 

directly depend upon the action states. 

In order to perform classification, an activity label is modelled by multinomial logistic regression 

conditioned on the assignment of action states. Let 𝑎 be the normalized empirical frequencies of the 

action states in a sequence of actions associated with an unknown activity.  Let the set of all regression 

coefficients be 𝜼 = [𝜂1 … 𝜂𝐶] where 𝜂𝑐 are the coefficients corresponding to the activity class 𝑐.   The 

linear predictor for a label is then computed as  𝜂𝑐⊺
𝑎.  Intuitively, the parameter space is now extended 

to include the linear predictor and during inference the regression coefficients influence the action 

states and vice-versa. This ensures that the activities can be discriminated from one another based on 

the assignment of action states. The labels do not depend directly on the skeleton and object pose 

states.     

 

Figure 4: Graphical representation of the activity Model. The top level contains action states 𝑎1:𝑇 that 

emit the bottom level skeleton pose 𝑧𝑠1:𝑇 and object pose 𝑧𝑜1:𝑇 states which in turn emit the 

observations 𝑥1:𝑇. The binary variable 𝑓𝑡  determines whether the action state remains unchanged or 

not. The action states determine the activity label 𝑦. The parameters and their priors are in the left 

side. Best viewed in colour.    
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Following the above model, the generation process for an observation is summarized as follows.  First 

the priors are drawn from their hyper priors in steps 1 to 5 and then the observations are drawn 

according to steps 6 to 12. A summary of the notation is given in Table 1 and Figure 4 provides an 

overview. 

1) Draw the HDP priors for the top level action states from the hyper parameters. Let 𝛽 be the 

overall distribution for the action states, and let 𝜋𝑗 be the set of transition probabilities. 

𝛽 | 𝛾 ~ 𝐺𝐸𝑀(𝛾) 

                    𝜋𝑗 | 𝛼, 𝛽  ~ 𝐷𝑃(𝛼, 𝛽)       𝑗 = 1,2, … 
(5) 

2) Draw the HDP priors for the bottom level states from the hyper parameters. This includes both 

the skeleton pose states and object pose states. Note that for each action state, there is a set 

of skeleton states and a set of object states. Given an action state 𝑎, let 𝜌𝑠𝑎 be the overall 

distribution of skeleton states and let 𝜑𝑠𝑗
𝑎 be the distribution for the 𝑗𝑡ℎ skeleton state. 

Similarly, let  𝜌𝑜𝑎 be the overall distribution of object states and let 𝜑𝑜𝑗
𝑎 be the distribution 

for the 𝑗𝑡ℎ object state. 

𝜌𝑠𝑎| 𝜚 ~ 𝐺𝐸𝑀(𝜚)                       𝑎 = 1,2, … 

𝜌𝑜𝑎| 𝜚 ~ 𝐺𝐸𝑀(𝜚)                        𝑎 = 1,2, …  

𝜑𝑠𝑗
𝑎| 𝜏, 𝑎, 𝜌𝑠𝑎  ~ 𝐷𝑃(𝜏, 𝜌𝑠𝑎)     𝑗 = 1,2, … 

𝜑𝑜𝑗
𝑎| 𝜏, 𝑎, 𝜌𝑜𝑎   ~ 𝐷𝑃(𝜏, 𝜌𝑜𝑎)    𝑗 = 1,2, … 

(6) 

3) Draw the normal distribution mean and covariance parameters from the hyper parameters. 

The skeleton pose parameters are 𝜇𝑠, Σs and object pose parameters are 𝜇𝑜, Σo respectively. 

𝜇𝑠𝑘 | 𝜇0
𝑠 , Σ0

𝑠 ~ 𝒩(𝜇0
𝑠 , Σ0

𝑠)           𝑘 = 1,2, … 

 Σs𝑘 | 𝜈0
𝑠, Δ0

𝑠   ~ 𝐼𝑊(𝜈0
𝑠, Δ0

𝑠 )        𝑘 = 1,2, … 

𝜇𝑜𝑘  | 𝜇0
𝑜, Σ0

𝑜 ~ 𝒩(𝜇0
𝑜, Σ0

𝑜)           𝑘 = 1,2, … 

 Σo𝑘  | 𝜈0
𝑜, Δ0

𝑜   ~ 𝐼𝑊(𝜈0
𝑜, Δ0

𝑜)        𝑘 = 1,2, … 

(7) 

 

4) Draw the Bernoulli priors from which the completion indicator variables are drawn.  

𝜓𝑎,𝑘𝑠,𝑘𝑜 | 𝜅𝑎, 𝜅𝑏 ~ 𝐵𝑒𝑡𝑎(𝜅𝑎, 𝜅𝑏)           𝑎, 𝑘𝑠, 𝑘𝑜 = 1,2, …  (8) 

 

5) Draw the regression coefficients for all the classes from a sparsity promoting Laplacian prior. 

Let ||𝜼||1 denote the 𝑙1 norm. The Laplacian prior is given as follows. 

𝜼 | 𝜆  ~ exp(−𝜆||𝜼||1)               (9) 

 

6) Repeat steps 7 to 12 for each observation 𝑛 and steps 7 to 11 for each time instant 𝑡 of the 

observation. 

7) Draw the action state from 𝜋 if the binary variable at previous time instant is on. Otherwise, 

the action states remain unchanged.  
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                                       𝑎𝑡
𝑛 | 𝑎𝑡−1

𝑛 , 𝑓𝑡−1
𝑛 , 𝜋 {

~  𝜋𝑎𝑡−1
𝑛                       𝑖𝑓 𝑓𝑡−1

𝑛 = 1

=  𝛿(𝑎𝑡
𝑛, 𝑎𝑡−1

𝑛 )     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (10) 

 

8) Draw the skeleton pose state from 𝜑𝑠. If the binary variable at the previous time instant is on, 

which indicates that a new action state has begun, then the pose state is drawn from an initial 

distribution indicated with subscript 0.  

                                       𝑧𝑠𝑡
𝑛 | 𝑎𝑡

𝑛, 𝑓𝑡−1
𝑛 , 𝜑𝑠 ~ {

𝜑𝑠0
𝑎𝑡

𝑛

                     𝑖𝑓 𝑓𝑡−1
𝑛 = 1

𝜑𝑠
𝑧𝑠𝑡−1

𝑛
𝑎𝑡

𝑛

                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (11) 

 

9) Draw the object pose state similarly from 𝜑𝑜. As above, if the binary variable at the previous 

time instant is on, then the pose state is drawn from an initial distribution. 

                                       𝑧𝑜𝑡
𝑛 | 𝑎𝑡

𝑛, 𝑓𝑡−1
𝑛 , 𝜑𝑜 ~ {

𝜑𝑜0
𝑎𝑡

𝑛

                     𝑖𝑓 𝑓𝑡−1
𝑛 = 1

𝜑𝑜
𝑧𝑜𝑡−1

𝑛
𝑎𝑡

𝑛

                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (12) 

 

10) Draw the binary variable from its prior shown in step 4.  

𝑓𝑡
𝑛  | 𝑎𝑡

𝑛, 𝑧𝑠𝑡
𝑛, 𝑧𝑜𝑡

𝑛 𝜓 ~ 𝐵𝑒𝑟(𝜓𝑎𝑡
𝑛,𝑧𝑠𝑡

𝑛,𝑧𝑜𝑡
𝑛

)                (13) 

 

11) Draw the skeleton and object observations from the normal distribution using the mean and 

covariance parameters drawn according to (7).  

𝑥𝑠𝑡
𝑛 | 𝑧𝑠𝑡

𝑛, 𝜇𝑠, Σs ~ 𝒩(𝜇𝑠𝑧𝑠𝑡
𝑛 , Σs𝑧𝑠𝑡

𝑛) 

𝑥𝑜𝑡
𝑛 | 𝑧𝑜𝑡

𝑛, 𝜇𝑜, Σo ~ 𝒩(𝜇𝑜𝑧𝑜𝑡
𝑛 , Σo𝑧𝑜𝑡

𝑛)  
(14) 

 

12) Finally draw the activity label from a multinomial distribution based on the linear predictor. 

The linear predictor is computed from the action states drawn according to (10) and the 

regression coefficients are drawn according to (9). 

𝑦𝑛 |  𝑎1..𝑇
𝑛 , 𝜼 ~ 𝑀𝑢𝑙𝑡 (

exp (𝜂1⊺
𝑎)

∑ exp (𝜂𝑐′⊺
𝑎)𝐶

𝑐′=1

…
exp (𝜂𝐶 ⊺

𝑎)

∑ exp (𝜂𝑐′⊺
𝑎)𝐶

𝑐′=1

) (15) 

 

Due to the clustering nature of HDP, some observations, across activity labels, may be assigned the 

same pose states. For example, two different observations that involve push and pull actions may 

contain very similar alignment of skeletal joints during the course of the action. As a result, the set of 

pose states for these actions could be identical. This reduces the overall number of pose states 

necessary for describing all observations and promotes parameter sharing across the labels. By 

extension, two different activity labels may also share the same action states if they involve a similar 

sequence of pose states.  Thus the model enables a reduction in the numbers of action and pose 
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states. The sequence of action states assigned to the observations is sufficient for distinguishing the 

activities. The structure of the model is simplified by removing the direct dependency of the activities 

on the observations. 

General 

𝑥𝑛 The 𝑛𝑡ℎ training example sequence 

𝑦𝑛 The class of the 𝑛𝑡ℎ training example  

𝑥𝑡 An observation at time instant 𝑡 

Action (Top Level) 

𝑎𝑡 Action state at time instant 𝑡 

𝑎 Empirical frequencies of the action states  

𝛽𝑘 Probability of transitioning to action state 𝑘 

𝜋𝑗𝑘 Probability of transitioning to action state 𝑘 given state 𝑗 

Skeleton Pose (Bottom Level) 

𝑥𝑠𝑡 Skeleton pose observation at time instant 𝑡 

𝑧𝑠𝑡 Hidden skeleton pose state at time instant 𝑡 

𝜌𝑠𝑘
𝑎 Probability of transitioning to skeleton pose state 𝑘 given action 𝑎 

𝜑𝑠𝑗𝑘
𝑎  Probability of transitioning to skeleton pose state 𝑘 given state 𝑗, action 𝑎 

𝜇𝑠𝑘 Mean of Gaussian distribution corresponding to skeleton pose component 𝑘 

Σs𝑘 Covariance of Gaussian distribution corresponding to skeleton pose component 𝑘 

Object Pose (Bottom Level) 

𝑥𝑜𝑡 Object pose observation at time instant 𝑡 

𝑧𝑜𝑡 Hidden object pose state at time instant 𝑡 

𝜌𝑜𝑘
𝑎 Probability of transitioning to object pose state 𝑘 given action 𝑎 

𝜑𝑜𝑗𝑘
𝑎  Probability of transitioning to object pose state 𝑘 given state 𝑗, action 𝑎 

𝜇𝑜𝑘 Mean of Gaussian distribution corresponding to object pose component 𝑘 

Σo𝑘 Covariance of Gaussian distribution corresponding to object pose component 𝑘 

Finish Variable 

𝑓𝑡 Binary variable indicating whether a sequence of actions is complete 

𝜓𝑎,𝑘𝑠,𝑘𝑜 Probability that an action 𝑎 with skeleton state 𝑘𝑠 and object state 𝑘𝑜  is completed 

Hyper Parameters 

𝛾 Concentration parameter, Hyper-prior for  𝛽 

𝛼 Concentration parameter, Hyper-prior for 𝜋 

𝜚 Concentration parameter, Hyper-prior for 𝜌𝑠, 𝜌𝑜 

𝜏 Concentration parameter, Hyper-prior for 𝜑𝑠, 𝜑𝑜 

𝜇0
𝑠 , Σ0

𝑠, 𝜇0
𝑜, Σ0

𝑜 Hyper-prior for 𝜇𝑠, 𝜇𝑜 

𝜈0
𝑠, Δ0

𝑠 , 𝜈0
𝑜, Δ0

𝑜 Hyper-prior for Σs, Σo 

𝜅𝑎, 𝜅𝑏 Hyper-prior for 𝜓 

𝜆 Hyper-prior for the regression coefficients 

Posterior Inference 

𝜂 Regression coefficients 

𝐾𝑎 Upper bound on the number of action states  

𝐾𝑠 Upper bound on the number of skeleton states 

𝐾𝑜 Upper bound on the number of object states 

𝒂 Action state sequence from a sampling iteration 

𝑉(. ) Forward message value 

𝑚(. ) Backward message value 

Table 1: Summary of Notations 
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5 Posterior Inference 
Exact posterior inference is intractable in DP based models. Markov Chain Monte Carlo (MCMC) 

techniques, particularly Gibbs sampling, allow approximate inference by drawing posterior samples 

for all the variables. Gibbs sampling proceeds by sampling the hidden state sequence variables 

assuming that the parameter variables are given and then sampling the parameter variables assuming 

the hidden state sequences are available. This process is repeated for a number of iterations until 

convergence. The parameter variables are 𝜋, 𝜑𝑠, 𝜑𝑜 (the transition parameters for action, skeleton 

and object states), 𝜇𝑠, Σs, 𝜇𝑜, Σo (the normal distribution parameters for skeleton and object), 𝜓 (the 

Bernoulli parameter for finish variable) and 𝜼 (the regression coefficients). The state sequences are 

𝑎1:𝑇 (action), 𝑧𝑠1:𝑇 (skeleton pose), 𝑧𝑜1:𝑇 (object pose) and 𝑓1:𝑇 (action completion indicators). Table 

2 lists the inference steps. 

5.1 Sampling Hidden state sequence 
Many DP based models sample one state at a time, given all other state assignments. This method, 

based on a Rao-Blackwellized Gibbs sampler [4], marginalizes over the unbounded number of state 

transitions. The observations are temporally coupled in sequential data and using the above 

procedure often exhibit slow mixing rates. Instead of this collapsed sampling procedure, it is better to 

explicitly instantiate all the parameters and block sample the state sequence based on the standard 

belief propagation techniques used in Bayesian networks.  

In order to block sample the hidden state sequence, a weak limit approximation to DP is used [45]. 

Specifically, in (1), 𝐷𝑖𝑟(
𝛾

𝐾
…

𝛾

𝐾
)  is used to sample the stick breaking weights. Here 𝐾 is an upper bound 

on the number of components. As 𝐾 →  ∞, the model’s marginal distribution approaches the DP. The 

bound  𝐾 is set to a large number. The HDP prior ensures that only a small subset of the 𝐾 values is 

used. This truncated approximation is computationally efficient and allows using existing well-studied 

Bayesian message passing techniques. Consequent to this approximation, equations (5) and (6) 

become the following. 

𝛽 | 𝛾 ~ 𝐷𝑖𝑟(
𝛾

𝐾𝑎
…

𝛾

𝐾𝑎
) 𝜋𝑗 | 𝛼, 𝛽  ~ 𝐷𝑖𝑟(𝛼𝛽1, … , 𝛼𝛽𝐾𝑎  )                    𝑗 = 1, … , 𝐾𝑎 

(16) 𝜌𝑠𝑎| 𝜚 ~ 𝐷𝑖𝑟(
𝜚

𝐾𝑠
…

𝜚

𝐾𝑠
) 𝜑𝑠𝑗

𝑎| 𝜏, 𝑎, 𝜌𝑠𝑎    ~ 𝐷𝑖𝑟(𝜏𝜌𝑠1
𝑎 , … , 𝜏𝜌𝑠𝐾𝑠

𝑎  )      𝑗 = 1, … , 𝐾𝑠 

𝜌𝑜𝑎| 𝜚 ~ 𝐷𝑖𝑟(
𝜚

𝐾𝑜
…

𝜚

𝐾𝑜
) 𝜑𝑜𝑗

𝑎| 𝜏, 𝑎, 𝜌𝑜𝑎   ~ 𝐷𝑖𝑟(𝜏𝜌𝑜1
𝑎 , … , 𝜏𝜌𝑜𝐾𝑜

𝑎  )      𝑗 = 1, … , 𝐾𝑜 

 

Here 𝐾𝑎, 𝐾𝑠 and 𝐾𝑜 are the maximum number of states corresponding to action, skeleton and object 

respectively. Typically the maximum number of action states is set smaller than that of skeleton and 

object states. The joint distribution of an observation, its label and the state sequence, given the 

parameter variables is provided as follows. 

𝑝(𝑥𝑠1:𝑇 , 𝑥𝑜1:𝑇 , 𝑦, 𝑎1:𝑇, 𝑧𝑠1:𝑇 , 𝑧𝑜1:𝑇 , 𝑓1:𝑇| 𝜋, 𝜑𝑠, 𝜑𝑜, 𝜇𝑠, Σs, 𝜇𝑜, Σo, 𝜓, 𝜼)  

=   𝑝(𝑦|𝑎1:𝑇) ∏ 𝑝(𝑎𝑡|𝑎𝑡−1, 𝑓𝑡−1)

𝑇

𝑡=1

 𝑝(𝑧𝑠𝑡|𝑧𝑠𝑡−1, 𝑎𝑡 , 𝑓𝑡−1) 𝑝(𝑧𝑜𝑡|𝑧𝑜𝑡−1, 𝑎𝑡 , 𝑓𝑡−1)    

                                 𝑝(𝑓𝑡|𝑎𝑡 , 𝑧𝑠𝑡, 𝑧𝑜𝑡) 𝑝(𝑥𝑠𝑡|𝑧𝑠𝑡) 𝑝(𝑥𝑜𝑡|𝑧𝑜𝑡) 
 

(17) 

A key challenge is to ensure that when sampling at time 𝑡, the action state 𝑎𝑡, skeleton state 𝑧𝑠𝑡, 

object state 𝑧𝑜𝑡 and the binary variable 𝑓𝑡 are block sampled together. It is essential to perform 

efficient message passing inference similar to the dynamic programming algorithm [2] used in HMMs 

for convergence. In order to achieve this efficiency, the H-HMM is flattened and all possible 
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combinations of these variables are considered. This flattening might not be practical if there are too 

many states at the various levels of the hierarchy. However, the number of possible states are 

bounded here by the use of a truncated DP. The flattening and the weak limit approximation in (16), 

allows the use of variations of the forward-backward algorithm [2, 5] to sample the state sequence.  

There is no straight forward mechanism available to include the conditional likelihood term 𝑝(𝑦|𝑎1:𝑇) 

while block sampling the posterior states using the forward-backward algorithm. This likelihood is 

approximated by using the action state sequence sampled from a previous iteration. The validity of 

this approximation is observed empirically in the experiments.  Let 𝒂 be a sampled action state 

sequence corresponding to an observation sequence in a previous sampling iteration. Let 𝑉(. ) define 

the forward message value for being in a specific combination of states (action: 𝑘𝑎, skeleton: 𝑘𝑠, 

object: 𝑘𝑜  and finish:𝑓′) given the previous states as 𝑘𝑎′
, 𝑘𝑠′

, 𝑘𝑜′
, 𝑓′′

. Then, this message value can 

be derived by substituting terms from equations (10) to (15) into (17). 

𝑉(𝑘𝑎′
, 𝑘𝑠′

, 𝑘𝑜′
, 𝑓′′

, 𝑘𝑎, 𝑘𝑠, 𝑘𝑜, 𝑓′ | 𝑥𝑠𝑡, 𝑥𝑜𝑡, 𝑦, 𝜼, 𝒂) =      

         [[𝛿(𝑓′′
, 1) 𝜋

𝑘𝑎′
,𝑘𝑎   𝜑𝑠0,𝑘𝑠

𝑘𝑎
  𝜑𝑜0,𝑘𝑜

𝑘𝑎
] + [𝛿(𝑓′′

, 0) 𝛿(𝑘𝑎, 𝑘𝑎′
) 𝜑𝑠

𝑘𝑠′
,𝑘𝑠

𝑘𝑎
 𝜑𝑜

𝑘𝑜′
,𝑘𝑜

𝑘𝑎
]]    

         𝐵𝑒𝑟(𝑓′; 𝜓𝑘𝑎,𝑘𝑠,𝑘𝑜
) 𝒩(𝑥𝑠𝑡;  𝜇𝑠𝑘𝑠 , Σs𝑘𝑠)  𝒩(𝑥𝑜𝑡; 𝜇𝑜𝑘𝑜 , Σo𝑘𝑜) 

exp(𝜂𝑦⊺
𝑎)

∑ exp(𝜂𝑐′⊺
𝑎)𝐶

𝑐′=1

  

(18) 

 

In the above, 𝛿 is the Kronecker Delta function with 𝛿(𝑚, 𝑛) = 1, if 𝑚 = 𝑛 . The second line represents 

the probability of transitioning from 𝑘𝑎′
 to 𝑘𝑎, 𝑘𝑠′

 to 𝑘𝑠 and 𝑘𝑜′
 to 𝑘𝑜, all together, for a binary 

variable with value 𝑓′′
. The third line represents the 𝑓′ probability, observations probability and the 

label probability for a particular state sequence. The term 𝑎 is computed from 𝒂.  Let  𝒂−𝑡 denote the 

terms excluding the 𝑡𝑡ℎ term with 𝒂 = 𝒂−𝑡 + (𝑎𝑡 = 𝑘𝑎) for some action state 𝑘𝑎.  Using the forward 

message value, the hidden state at time 𝑡 can then be sampled from the conditional distribution 

below. 

𝑝(𝑎𝑡 = 𝑘𝑎, 𝑧𝑠𝑡 = 𝑘𝑠, 𝑧𝑜𝑡 = 𝑘𝑜, 𝑓𝑡 = 𝑓′ |𝑥𝑠𝑡, 𝑥𝑜𝑡 , 𝑦, 𝜼, 𝒂) ∝     

          𝑚𝑡+1,𝑡(𝑘𝑎, 𝑘𝑠, 𝑘𝑜, 𝑓′) 𝑉(𝑎𝑡−1, 𝑧𝑠𝑡−1, 𝑧𝑜𝑡−1, 𝑓𝑡−1, 𝑘𝑎, 𝑘𝑠, 𝑘𝑜, 𝑓′|𝑥𝑠𝑡, 𝑥𝑜𝑡 , 𝑦, 𝜼, 𝒂−𝑡 + 𝑘𝑎)  
(19) 

Here 𝑚𝑡,𝑡−1 is the backward message that is passed from time 𝑡 to 𝑡 − 1 with 𝑚𝑇+1,𝑇 = 1. It 

represents the probability of observing states in the future from a current state and is determined 

recursively over all possible states as follows. 

𝑚𝑡,𝑡−1(𝑘𝑎, 𝑘𝑠, 𝑘𝑜, 𝑓′) =      

∑ ∑ ∑ ∑ 𝑚𝑡+1,𝑡(𝑘𝑎′
, 𝑘𝑠′

, 𝑘𝑜′
, 𝑓′′

) 𝑉(𝑘𝑎, 𝑘𝑠, 𝑘𝑜, 𝑓′, 𝑘𝑎′
, 𝑘𝑠′

, 𝑘𝑜′
, 𝑓′′

)

𝑓′′
∈{0,1}𝑘𝑜′

∈ 𝐾𝑜𝑘𝑠′
∈ 𝐾𝑠𝑘𝑎′

∈ 𝐾𝑎

 

 

(20) 

5.2 Sampling parameters 
The sampled state sequences are used to compute count matrices. Each element in the matrix records 

the number of transitions from one state to another. Let 𝐴 ∈ ℤ(𝐾𝑎+1)×𝐾𝑎
 be a matrix of counts 

computed from the sampled action state sequences with 𝐴𝑗𝑘 being the number of transitions from 
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action state 𝑗 to 𝑘 across the training set. The number of transitions for an initial action state 𝐴0𝑘is 

maintained in the 𝐾𝑎 + 1 row.   Similarly, let 𝑆𝑎 ∈ ℤ(𝐾𝑠+1)×𝐾𝑠
 and 𝑂𝑎 ∈ ℤ(𝐾𝑜+1)×𝐾𝑜

 be the count 

matrices corresponding to the skeleton and object states for an action 𝑎. The HDP transition 

parameters 𝛽, 𝜌𝑠, 𝜑𝑠, 𝜌𝑜, 𝜑𝑜 and their hyper parameters can be sampled from their posteriors, one at 

a time, through standard inference methods [4] using these count matrices. The notable exception is 

for action state transition parameter 𝜋 for which it is preferable to disable self-transitions 𝜋𝑗𝑗 since 

𝑓𝑡 = 0 already implies that 𝑎𝑡 = 𝑎𝑡+1. The data augmentation procedure in [34] is followed to 

resample 𝜋. 

Let 𝐹𝑘𝑎,𝑘𝑠,𝑘𝑜
∈ ℤ be the number of times an action, skeleton and object state combination is in a 

completed state. This value can be computed from the sampled 𝑓1:𝑇 values. The Bernoulli variable 𝜓 

has a conjugate Beta prior and the posterior updates can be performed analytically using the 

computed 𝐹𝑘𝑎,𝑘𝑠,𝑘𝑜
 values. 

In order to sample the Normal distribution parameters, the sampled state sequences are used again. 

Let the set of skeleton observations assigned to hidden state 𝑘𝑠 be 𝒳𝑆𝑘𝑠 = {𝑥𝑠𝑡
𝑛  ∈ 𝑋 ∶  𝑧𝑠𝑡

𝑛 = 𝑘𝑠}. 

The mean and covariance parameters have conjugate priors and hence a closed form posterior update 

for 𝜇𝑠𝑘𝑠 , Σs𝑘𝑠 can be directly computed based on the set 𝒳𝑆𝑘𝑠. A similar procedure is followed for the 

object pose mean and covariance parameters. The term 𝑎 can be computed from the action state 

sequence 𝒂 (for (18)) or from any 𝑎1:𝑇 in general. For example, if 𝑎𝑡 is represented as a 𝐾 length vector, 

with an element 𝑘 being 1 when  𝑎𝑡 = 𝑘 and 0 otherwise, then  𝑎 =
1

𝑇
∑ 𝑎𝑡𝑡 . Alternatively, 𝑎 can 

represent the number of transitions from one action state to another. 

This leaves only the estimation of regression coefficients 𝜼. Because of the normalization condition 

∑ exp(𝜂𝑐⊺
𝑎) = 1𝑐 , the parameters need to be learnt only for 𝑐 − 1 classes. Using a Laplacian prior for 

𝜼 rather than a normal prior on the coefficients encourages coefficient values which are relatively 

large or near to zero.  The sparseness of this prior leads to structural simplification and often results 

in generalization and better classification results [46]. The sparse multinomial logistic regression [6] 

provides a fast exact algorithm that scales favourably as the dimension of the features increases. The 

algorithm can be applied to large data sets in high dimensional feature spaces. We use this procedure 

here for estimating the regression weights .  

Given a test activity sequence during prediction, the action state sequence is inferred using Viterbi 

decoding from a posterior sample’s parameters. The conditional likelihood term in (17) is not used in 

this process. The linear predictor is determined from the regression coefficients 𝜂 and 𝑎, with  𝑎 

computed from the inferred action state sequence. The label corresponding to the posterior sample 

is predicted using (21) and the final label is selected based on the mode.  

�̂� =  argmax
𝑐

exp (𝜂𝑐⊺𝑎)

∑ exp (𝜂𝑐′ ⊺
𝑎)𝐶

𝑐′=1

 (21) 

 

Input:     Training examples of activity sequences with their corresponding labels, Hyper parameters 

Output:  Samples of posterior parameters  

1. Sample initial values of 𝛽, 𝜋, 𝜌𝑠, 𝜑𝑠, 𝜌𝑜, 𝜑𝑜, 𝜓, 𝜇𝑠, Σs, 𝜇𝑜, Σo from their respective distributions. 

2. For each training example, sample hidden state sequences 𝑎𝑡 , 𝑧𝑠𝑡, 𝑧𝑜𝑡 , 𝑓𝑡 using forward and 

backward messages as per (17) to (20). 

3. Compute the count matrices from the sampled hidden state sequences as in section 5.2. 
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4. Sample HDP parameters 𝛽, 𝜋 for action states from the count matrix 𝐴. 

5. Sample HDP parameters 𝜌𝑠, 𝜑𝑠 for skeleton states from the count matrix 𝑆𝑎 for all the actions. 

6. Sample HDP parameters 𝜌𝑜, 𝜑𝑜 for object states from the count matrix 𝑂𝑎 for all the actions. 

7. Sample Bernoulli parameter 𝜓 from 𝐹𝑘𝑎,𝑘𝑠,𝑘𝑜
 for all the action, skeleton and object states. 

8. Sample normal distribution parameter 𝜇𝑠, Σs for all skeleton states using 𝒳𝑆. 

9. Sample normal distribution parameter 𝜇𝑜, Σo for all object states using 𝒳𝑂. 

10. Compute 𝑎 from the sampled action state sequence.  

11. Estimate 𝜼 using Sparse multinomial logistic regression 

12. Sample the hyper parameters. 

13. Repeat from step (2) to collect more samples. 

Table 2: Posterior Inference Algorithm 

6 Experiments 
The activity model is evaluated against the Cornell Activity dataset [47] and the UTKinect-Action 

dataset [13]. These datasets based on depth images, contain various activities performed by different 

subjects. However the activities involve only one individual. The depth image sequences were 

recorded using a single Microsoft Kinect sensor. The datasets also contain annotated 3D joint positions 

of the human skeleton that were estimated from the depth images as explained in [1]. The estimated 

joint positions may have errors and we work with these noisy inputs. In addition, the model is also 

evaluated against a motion capture based dataset [48]. The experiments here focus on offline activity 

recognition. Hence in all the evaluations below, the observation sequence is treated as a whole unit 

for both training and testing. Further, the datasets used here pre-segment the activities into their 

corresponding classes.  

6.1 Cornell Activity Dataset 
This dataset contains 12 activities – rinsing mouth, brushing teeth, wearing contact lens, talking on 

phone, drinking water, opening pill container, cooking (chopping), cooking (stirring), talking on couch, 

relaxing on couch, writing on whiteboard and working on computer. The activities were performed by 

four different subjects. They were recorded in different locations viz. office, kitchen, bedroom, 

bathroom and living room of a regular household. Some examples are shown in Figure 5.  

Each frame contains 15 3D joint positions with coordinates (𝑥, 𝑦, 𝑧) in a world coordinate frame. 

Pairwise relative joint positions within a frame are used for skeleton based features. This ensures 

invariance to uniform translation of the body. All 105 joint pairs are considered, resulting in a 315 

dimensional vector for the skeleton features.  This high dimensional feature vector is projected to a 

lower dimensional vector space using Principal Component Analysis (PCA). The projected vector is 

used as the skeleton features. 

The local image patterns around the joint positions in a depth image frame are used as object based 

features. Note that no specific object detection algorithm is used. Specifically, features are extracted 

from a bounding box that is constructed around each joint position. The image inside this bounding 

box is treated as a greyscale image and a Histogram of Oriented Gradient (HOG) [49] descriptor is 

computed. Further, the bounding box 3D space is divided into cells and the scatter-ness, linear-ness 

and surface-ness of the point distribution inside each cell is used to compute a point cloud feature 

descriptor [50]. The descriptors obtained in this way from all the joints are concatenated and the 

resultant 2400 dimensional vector is projected using PCA to obtain the object based features.  
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Figure 5: Sample activity images from Cornell Activity dataset [47] 

To evaluate against this dataset, an experimental setup similar to [47] is followed. The activities are 

grouped based on their locations and classification is performed in each location group. This is done 

both for the setting where an instance of the subject has been seen (S-Seen) and when the subject is 

new (S-New). For the S-New setting, the model was trained on three of the four subjects and tested 

on the fourth while for S-Seen setting the training included sequences from all the subjects. Each 

activity sequence spans about 45 seconds and on average the dataset provides 1400 frames of data 

per activity. In total, we work with 96 different sequences during the evaluation process. The sensor 

produces a depth image with a range of 1.2m to 3.5m and the image resolution in the dataset is 

320x240. 

Following Bayesian hierarchical modelling, the hyper parameters have weakly informative hyper 

priors. The concentration parameters 𝛾, 𝛼, 𝜚, 𝜏 were all given a vague gamma prior similar to [4], 

namely 𝐺𝑎𝑚𝑚𝑎(1,0.01). The use of a gamma prior ensures that the initial choice of the concentration 

parameter is not important and it is the data that drives the sampled concentration parameter. 𝐾𝑎, 

the maximum number of action states was set a value less than both 𝐾𝑠 the maximum number of 

skeleton states and 𝐾𝑜 the maximum number of object states. The exact value for these parameters 

is immaterial since even with a very large value, the sparse nature of Dirichlet Process ensures that 

only a subset of these states are activated. However the number of action states should at least exceed 

the number of activities that are classified. Although we tried large values for 𝐾𝑎 , 𝐾𝑠 and 𝐾𝑜, we found 

that the value of 𝐾𝑎 = 20 and 𝐾𝑠, 𝐾𝑜 = 30 were sufficiently large. The hyper parameters 𝜇0
𝑠 , Σ0

𝑠 that 

define the Gaussian prior for the mean value for the skeleton observations were set equal to the 

empirical mean and 0.8 times the empirical covariance respectively of the skeleton features. The hyper 

parameter 𝜈0
𝑠 was given a large value (1000), which concentrates the mass of the prior in regions 

based on the data [5]. The scale matrix Δ0
𝑠  was set to the empirical covariance. A similar procedure 

was followed for the hyper parameters corresponding to object observations.  The values of both 

𝜅𝑎, 𝜅𝑏 were set to 0.5 to ensure a wide range of initial values. PCA is applied to reduce dimensions for 

both the 315 dimensional skeleton feature vector and the 2400 dimensional object feature vector 

described above. The feature vectors are collected across the observation sequences for each of the 

skeleton and object features before applying PCA. The first 𝑑𝑠 components of the skeleton features 

that capture at least 90% of the total variance are used and the first 𝑑𝑜 components of the object 

features that capture at least 85% of the total variance are used. This amounted to 13 components 

for the skeleton features and 227 components for the object features. Increasing these thresholds did 

not improve the classification accuracy and reducing them by more than 10% resulted in a number of 

misclassifications. 

In the first iteration of the posterior inference, all the hyper parameters are initialized as described 

above. All the other parameters are sampled from their respective prior distribution based on the 

hyper parameter values. When sampling the hidden state sequence, the conditional likelihood term 

is not used for the first few iterations. In all subsequent iterations, the regression coefficients are 
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computed based on the sampled action state sequence and the conditional likelihood term computed 

from the regression coefficients is used during state sequence sampling. The sparse multinomial 

logistic regression algorithm was set a convergence tolerance of 0.001 and a maximum of 10000 

iterations. Following standard practice [4], the hyper parameters are re-sampled after each sampling 

iteration. The first 300 samples are discarded and then every 3rd sample is recorded to collect a total 

of 100 samples. Further, a burn-in period of 50 iterations is used every time the posterior for the 

Gaussian distribution parameters and the Dirichlet process concentration parameters are sampled. In 

order to verify that an adequate number of sampling iterations are used, we checked the change in 

the number of activated states and the difference in Gaussian distribution parameter values between 

iterations. Further, an increase in the number of sampling iterations did not affect the classification 

results which appeared to indicate convergence. As expected, unlike a collapsed sampler that takes 

many iterations to converge, the use of block sampling resulted in fewer iterations for convergence. 

Each posterior sample contains the hyper parameter values, the parameter values and the regression 

coefficients. During prediction, the PCA out-of-sample embedding is computed for a test sequence’s 

skeleton and object features based on the components extracted from training examples. For each 

sample collected during training, based on the sample parameters, Viterbi decoding is used to 

determine the action state sequence and in conjunction with the regression coefficients, the activity 

label is predicted. The mode of all these predicted labels is used to determine the test sequence’s final 

label.  To account for the randomness with MCMC sampling, the experiments were run more than 20 

times and the mean performance is reported.  

The block sampling procedure discussed in section 5.1 flattens the H-HMM and considers all possible 

states when applying the forward-backward algorithm. Hence the computational cost is 𝑂(𝑇𝐾2) 

where 𝑇 is the length of the sequence and 𝐾 is the total number of states with 𝐾 = 𝐾𝑎 ∗ 𝐾𝑠 ∗ 𝐾𝑜. 

The block sampler used here offers some advantages such as faster mixing rate [5]. The block sampling 

procedure needs 𝑂(𝑇𝐾) space in order to store the messages.  On a 2.6GHz Intel Core i5 CPU machine, 

the average time taken to label a new test sequence with an appropriate class label from the 

information learnt during training, including the time for feature processing, was around 79 seconds 

giving an approximate frame rate of 17 fps for the sequences in this dataset. The test procedure can 

be extended by using a sliding window of frames to support online recognition. However, the focus of 

our work here has been on offline recognition and these settings were not evaluated. 

Hierarchical Structure: The hierarchical nature of the model is examined.  Figure 6 shows the sampled 

state sequences for the rinsing mouth activity from one of the samples collected during training 

activities in the bathroom location for the full model. The major motion sequence in this activity 

involves the subject bending down to the sink and drinking with raised arms. The subject is also in a 

stationary position (perhaps gargling).  The subject performs these motions multiple times. The 

sampled bottom level sequence has 6 unique skeleton states and 15 unique object states with a total 

of 90 possible states. The number of action states sampled is 4 with three predominant states. This is 

much less than the number of possible states in the bottom level. As a consequence of the fewer 

number of states, the state segmentation in the top level is smoother than that of the bottom level. 

This behaviour is desirable as it ensures that a small number of states are sufficient to determine the 

activity, thereby simplifying the model.  Note that the action states need not accurately define the 

actions that make up an activity since the objective is merely to distinguish the activities.  

The distribution of the sampled action states when training activities in the kitchen location is shown 

in Figure 7. The action state sequences were collected during a sampling iteration and correspond to 

the training observation sequences from four different activities. There are some action states that 

are shared between activities. For example, both the drinking water and opening pill container 
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activities involve sequences where the subject holds an object and these frames are assigned the same 

action state. There are also some action states that are unique to an activity. It is preferable that the 

activities contain unique action states in order to distinguish them between the activities more 

effectively.  If a subject performs an action differently from the other subjects in the training example, 

it may lead to multiple unique action states that correspond to the same underlying action. 

During our evaluation, we observed that the total number of instantiated action states, involving 

multiple activities in a location group, was always less than 15 and had a mean value of 11. The average 

number of skeleton states and object states in a location group were 17 and 21 respectively. In 

general, the number of states depends on the complexity of the activities in the dataset. The HDP prior 

used here offers the advantage of estimating the state cardinality automatically based on the data. 

 

Figure 6: Learned hierarchical structure for the rinsing mouth activity. Top:  The sampled skeleton, 

object and action states corresponding to an observation sequence are shown in a color coded format.  

The number of top level action states is fewer than the number of skeleton and object state 

combinations. The state segmentation for actions is smoother than that of skeleton and object. This 

validates the hierarchical nature of the model with coarser actions and granular poses. Bottom: The 
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skeleton and depth frame corresponding to the three pre-dominant action states. The left frame 

corresponds to the action state in light blue, the middle frame corresponds to the action state in red 

and the right frame corresponds to the action state in pink.  

 

 

Figure 7: Action states for the activities involved in the kitchen location (top). There are 10 instantiated 

action states (2, 3, 4, 5, 6, 7, 8, 10, 11 and 12) for four activities in this sampled action state sequence. 

The stacked bars indicate the percentage of observations that were assigned to a particular state. For 

example, in the drinking water activity, action state 3 was assigned to 54% of the observations across 

all the training sequences belonging to this activity. There are some action states shared across 

activities (e.g. state 2 is shared between the two cooking activities) and some states unique to an 

activity (e.g. state 6 and 11). Frames that correspond to the shared action state for drinking water and 

opening pill container activity (bottom left). Frames that correspond to the unique action state for the 

same activities (bottom right).    

In order to verify the efficacy of the model, additional experiments are conducted with the standard 

parametric version of HMM and Hierarchical HMM.  The model with regression excluded is then 

evaluated and finally the results for full model are presented. 

Parametric HMM: The skeleton and object features at a time instant are concatenated to create a 

single observation vector. The Gaussian distribution mean and covariance parameters are assigned 
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Normal and Inverse-Wishart priors respectively, as before. The state transitions are given an 

independent symmetrical Dirichlet distribution prior 𝐷𝑖𝑟(1, . .1).  Multiple HMMs are then trained, 

one corresponding to each activity label. When training an HMM, the standard forward-filtering 

backward-sampling procedure is used to sample the state sequences. We collected 100 posterior 

samples for each HMM. During prediction, a test sequence’s observation likelihood is computed 

against all the posterior samples and the mean likelihood is used. This is repeated for all the HMMs 

and the activity label is then selected based on the class conditional likelihood. Note that in a 

parametric HMM, the number of states must be specified in advance. Hence we try different numbers 

of states for each class. The results are averaged over all the location groups and shown in Table 3. 

The observed classification accuracy for the S-Seen setting was 62.5% and for S-New setting was 

47.7%. 

Number of States S-Seen Accuracy (%) S-New Accuracy (%) 

5 46.1 31.6 

10 57.2 34.4 

25 59.8 46.5 

40 62.5 47.7 

60 58.4 44.1 

Table 3: Cornell activity dataset - Classical Parametric HMM classification accuracy  

Parametric H-HMM: A classifier based on a two level parametric Hierarchical HMM [44] is trained. 

Similar to the parametric HMM, the skeleton and object features are concatenated to create a single 

observation vector and a separate classifier is trained for each activity label. The priors for the 

Gaussian distribution parameters and the transition matrices in both the levels are same as in the 

parametric HMM. The finish indicator variables are assigned a beta prior of 𝐵𝑒𝑡𝑎(0.5,0.5). Here as 

well, different numbers of states are tried, but this time there are additional combinations 

corresponding to the top and bottom levels. The predicted class is selected by evaluating the class 

conditional likelihood of a test example similar to the parametric HMM. As before, the results are 

averaged over all location groups and are shown in Table 4. The observed classification accuracy for 

the S-Seen setting was 68.9% and for S-New setting was 56.4%. 

Number of top level states Number of bottom level States S-Seen Accuracy (%) S-New Accuracy (%) 

5 5 42.1 31.4 

5 10 53.6 34.7 

5 30 68.9 56.4 

5 60 57.5 43.9 

10 15 63.3 49.2 

10 20 57.8 47.0 

Table 4: Cornell activity dataset - Parametric H-HMM classification accuracy  

Unshared Parameters: The non-parametric H-HMM model in Section 4 excluding the regression 

aspect of the model is then evaluated. Unlike the full model, the examples and parameters are not 

shared across the activity labels, because a separate classifier needs to be trained for each activity 

label. However, the skeleton and object features remain factorized and the HDP prior is used to 

automatically infer the number of states. The predicted class is selected in the same way as for the 

parametric HMM. The classification accuracy is shown for each location group in Table 5 and an 

average of 82.1% (±0.8%) and 69.56% (±1.3%) was observed for the S-Seen and S-New setting 

respectively. 
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Location Activities S-Seen S-New 

bathroom rinsing mouth. brushing teeth, wearing contact lens 91.7 83.3 

bedroom talking on phone, drinking water, opening pill container 75.0 58.3 

kitchen drinking water, opening pill container, cooking (chopping), cooking 
(stirring) 

75.0 62.5 

living room talking on phone, drinking water, talking on couch, relaxing on couch 81.2 75.0 

office talking on phone, drinking water, writing on whiteboard, working on 
computer 

87.5 68.7 

Table 5: Cornell activity dataset - Classification accuracy (in %) for the model with regression excluded 

Full Model: Finally, the results are evaluated against the full non-parametric H-HMM model integrated 

with multinomial logistic regression. The examples and parameters are shared across the activity 

labels with the regression coefficients influencing the transition parameters. The classification 

accuracy for the setting where an instance of the subject has been seen is consistently 100%. For the 

more challenging new subject settings, an accuracy of 85.4% with a standard deviation of 2.14% was 

observed. The results for the new subject setting is provided in Table 6. 

Location Activities S-Seen S-New 

bathroom rinsing mouth. brushing teeth, wearing contact lens 100.0 100.0 

bedroom talking on phone, drinking water, opening pill container 100.0 83.3 

kitchen drinking water, opening pill container, cooking (chopping), cooking 
(stirring) 

100.0 75.0 

living room talking on phone, drinking water, talking on couch, relaxing on couch 100.0 87.5 

office talking on phone, drinking water, writing on whiteboard, working on 
computer 

100.0 81.2 

Table 6: Cornell activity dataset - Classification accuracy (in %) for the full model. 

 

Figure 8: Cornell activity dataset - Confusion matrix for the full model with the S-New setting 
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 Method S-Seen Accuracy (%) S-New Accuracy (%) 

Previous Works 

STIP [16] N/A 62.5 

MEMM [47] 84.3 64.2 

Actionlet [11] 94.1 74.7 

Heterogeneous Features [12] N/A 84.1 

Action Templates [15] 100 91.9 

Our Results 

Parametric HMM  62.5 47.7 

Parametric H-HMM 68.9 56.4 

Unshared Parameters 82.1 69.5 

Full Model 100 85.4 

Table 7: Cornell activity dataset - Comparisons. 

Discussion: The confusion matrix in Figure 8 provides an overview of the classification performance 

for each activity label. The classifier labels are accurate for most of the classes. The mislabelling occurs 

for activities that involve very similar movements. For example, the two cooking activities are 

mislabelled in some instances. A comparison of all the results is provided in Table 7. The under-

performance of the simple parametric HMM and H-HMM is expected. The usefulness of the non-

parametric prior and the factorized structure is evident from the significantly improved accuracy when 

compared with the outcomes of its parametric counter-part. The full model evaluation that includes 

regression for classification with parameter sharing, outperforms the rest. When compared with 

previous works in the literature, our approach is equivalent to the state-of-the-art for the setting 

where a subject has been seen. For the new subject setting, our approach outperforms all the other 

existing approaches except the action templates [15].  The work in [15] involves segmenting the 

actions and identifying key poses in advance before performing learning. There is a dependency on 

the data set being used for such an approach. Instead, our focus is largely on a data/feature agnostic 

model. It is worth noting that without any explicit manual processing, results comparable to state-of-

the-art are obtained. 

6.2 UTKinect-Action Dataset 
This dataset contains 10 actions - walk, sit-down, stand-up, pick-up, carry, throw, push, pull, wave and 

clap-hands. Each action was performed indoors by ten different subjects 9 males and 1 female, and 

were repeated twice.  The actions have significant intra-class variations and were recorded from 

different views.  

There are 20 3D joint positions with coordinates (𝑥, 𝑦, 𝑧) in a world coordinate frame. All 190 

combinations of the joint pairs are used to compute a 570 dimensional vector which is projected using 

PCA as described in section 6.1. Only skeleton based features are used for this dataset and this 

indirectly evaluates a variation in the model.  

The experiments are conducted for the case in which the subject has been seen before and for subjects 

seen for the first time. For the former, a similar experimental setup to [13] is followed with a leave-

one-out cross validation scheme. For the latter, 60% of subjects were used for training and the rest 

for testing. The dataset contains 200 action sequences and a total of 6220 frames with an average 

frame length of 32 per sequence. The depth image resolution is 320x240 and the depth range is 4 to 

11 feet. The model parameters are initialized as discussed in section 6.1 and as before 100 samples 

are collected.  The object related parameters are dropped and we used 𝐾𝑎 = 25 and  𝐾𝑠 = 25. The 

average time taken to label a test sequence was 550ms in this dataset. 

As for the Cornell dataset, the results are evaluated for the classical HMM, parametric hierarchical 

HMM, unshared parameters and the full model. The classification accuracy for the setting where an 

instance of the subject has been seen is 87.9% with a standard deviation of 1.01%. For the more 
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challenging new subject setting, an accuracy of 84.0% with a standard deviation of 2.42% was 

observed. 

 Method S-Seen Accuracy (%) S-New Accuracy (%) 

Previous Works 

HOJ3D [13] 90.9 N/A 

Shape Analysis [25] 91.5 N/A 

STIP [16] N/A 81.0 

Discriminative HDP-HMM [40] 86.8 83.1 

Our Results 

Parametric HMM  69.7 60.5 

Parametric H-HMM 71.6 64.2 

Unshared Parameters 79.8 77.3 

Full Model 87.9 84.0 

Table 8: UTKinect-Action dataset - Comparisons. 

 

 

Figure 9: UTKinect-Action dataset - Confusion matrix for the full model with the S-Seen setting 

 

Unlabelled Examples: In order to evaluate the semi-supervised learning setting, 20% of the subjects 

from all the actions were treated as unlabelled examples. The model was trained with only 40% of the 

subjects and prediction was done for the S-New setting with the rest of the subjects as before. The 

observed mean classification accuracy was 80.1%. The unlabelled examples were then used as part of 

the training set. When sampling the action state sequence for the unlabelled examples, the 

conditional likelihood term in (17) is not used since these examples do not have a corresponding label. 

The rest of the sampling procedure was similar as before. During prediction, the mean classification 

accuracy improved to 80.9%. Following a similar procedure for the S-Seen setting, 20% of the subjects 

were treated as unlabelled examples. In this case, including the unlabelled examples improved the 

mean accuracy from 82.5% to 85.6%. The standard deviations in the above results were all under 2.5%.  

To summarize, the inclusion of unlabelled examples improves the accuracy in both cases with a 
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marginal increase for the S-New setting and an increase of about 3% for the S-Seen setting. The 

classifier typically performs better when a subject’s actions have been seen during training. Hence 

including the unlabelled examples, which would have otherwise been excluded in a fully supervised 

model, offers a distinctive advantage particularly in the S-Seen setting. The semi-supervised learning 

scheme is especially useful in real world scenarios where there may only be a few labelled examples, 

but many unlabelled examples available for training.  

Discussion: The confusion matrix in Figure 9 provides an overview of the classification performance 

for each action label. As with Cornell dataset, the classifier labels are accurate for most of the classes 

and incorrect for some actions that involve very similar movements. For example, the walk action is 

incorrectly classified as carry since the body motions are very similar for these two actions. A 

comparison of all the results is provided in Table 8. As in the Cornell dataset, the non-parametric prior 

evidently outperforms the parametric variants and the full model evaluation that includes regression 

and parameter sharing, outperforms the rest. For the setting where the subject has been seen 

previously, our classification accuracy is marginally less than the results reported in [13] and [25]. Both 

these approaches use highly processed representations of the 3D joint positions while we focus on a 

generic approach. For the challenging setting where the subject has not been seen before, our method 

is better than the others. This shows that the classifier adapts to new observations much better than 

the competing classifiers.  

6.3 Motion Capture Dataset 

 

Figure 10: Samples poses from the workout activity in HDM05 dataset [48] 

Method Accuracy (%) 

Parametric HMM  70.9 

Parametric H-HMM 74.2 

Unshared Parameters 85.0 

Full Model 92.5 

Table 9: HDM05 dataset - Results. 

Finally, in order to verify the applicability of our generic approach, experiments are conducted on a 

motion capture dataset that does not involve depth images. The HDM05 [48] dataset contains joint 

trajectories captured by an optical marker based Vicon system. It contains different subjects 

performing a number of motion sequences that can be grouped into logical activities. The activities 

badminton, dancing, grabbing/depositing and workout are used to evaluate our model. Each activity 

contains sub-sequences of actions. For example, the workout activity involves jumping jacks, skiing 

exercise, elbow to knee exercise and squats. Figure 10 shows some example poses. We evaluated 

against 48 different activity sequences with each sequence containing an average of 4700 frames and 

lasting typically for 30 seconds. The unformatted C3D format data in which bone lengths are not 
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normalized is used rather than the AMC format data. The object features are excluded and only the 

skeleton features are used. The model parameters are initialized as discussed in section 6.1, with 𝐾𝑎 =

25 and  𝐾𝑠 = 25.  It took an average of 57.4 seconds to label a test sequence with an appropriate 

class label using the information learnt during training.  A high classification accuracy of 92.5%  (± 

2.6%) is obtained with the full model. Table 9 provides the results.   

The above experiments demonstrate the merits of using the proposed activity model. They show that 

the integration of a hierarchical Markov structure with regression is an effective mechanism for 

classifying activities. The model does misclassify some examples that have very similar motion 

patterns. A relevant example is the sit down and pick up actions in UTKinect-Action dataset. Our model 

may benefit if we detect the objects that a subject interacts with and include this contextual 

information. The model does not explicitly handle cases such as an activity varying significantly from 

one subject to another, occlusions of poses or poses out of view. These cases can be addressed by 

improving the feature extraction procedure and introducing new variables at the cost of increased 

complexity. 

7 Conclusion 
This paper has proposed a non-parametric hierarchical HMM structure to model activities with actions 

at the top level and factorized skeleton and object poses at the bottom level. The non-parametric 

extension enables the automatic inference of the number of states from data and the hierarchical 

structure facilitates information sharing and semi-supervised learning. The activity labels are 

regressed on the action states in order to perform classification. This results in model simplification. 

Experimental results comparable to the state-of-the-art on multiple datasets are produced thus 

highlighting the efficacy of this approach. In future, we intend to extend the model for classifying long 

running activities involving multiple subjects. 
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