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Abstract Horror content sharing on the Web is a growing phenomenon that can interfere with our 

daily life and affect the mental health of those involved. As an important form of expression, horror 

images have their own characteristics that can evoke extreme emotions. In this paper, we present a 

novel context-aware multi-instance learning (CMIL) algorithm for horror image recognition. The 

CMIL algorithm identifies horror images and picks out the regions that cause the sensation of horror 

in these horror images. It obtains contextual cues among adjacent regions in an image using a random 

walk on a contextual graph. Borrowing the strength of the Fuzzy Support Vector Machine (FSVM), 

we define a heuristic optimization procedure based on the FSVM to search for the optimal classifier 

for the CMIL. To improve the initialization of the CMIL, we propose a novel visual saliency model 

based on tensor analysis. The average saliency value of each segmented region is set as its initial 

fuzzy membership in the CMIL. The advantage of the tensor-based visual saliency model is that it not 

only adaptively selects features, but also dynamically determines fusion weights for saliency value 

combination from different feature subspaces. The effectiveness of the proposed CMIL model is 

demonstrated by its use in horror image recognition on two large scale image sets collected from the 

Internet.  
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1 Introduction 

In the past decades, the explosive growth of Web technologies and resources has allowed us to 

conveniently share texts, images, and videos via the Internet from geographically disparate locations. 

Meanwhile, the fact that Web content publishing on the Internet lacks clear security standards and 
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regularizations allows the distribution of many harmful documents dealing with pornography, 

violence, horror, racism, etc. To prevent people, especially children, from accessing the harmful 

content on the Internet, many content-based Web filtering systems have been developed [1, 2, 36].  

Automatic web filtering is most highly developed for documents with pornographic or violent 

content; some filtering systems have matured to a point where they are usefully deployed [1, 2, 36]. 

In comparison, the automatic recognition and filtering of horror content is still being explored [9, 10, 

11]. Many psychological and physiological researches have emphasized the severe effects of horror 

images [3, 4, 5]. Field and Lawson [3] point out that exposure to horror increases behavioral 

avoidance as well as fears. Ollendick and King [5] also describe an experiment in which 88.8% 

children ascribe their fear to negative information acquisition. Many governments have taken 

measures to prevent children from seeing horror films, or even passed laws to limit the public 

showing of horror films. In the USA, the Motion Picture Association of America (MPAA) categorizes 

most horror films as “NC-17” (No Children 17 and Under Admitted) [6, 27]. In 2008, the Chinese 

government banned horror films with violent ghosts, monsters, demons, and other inhuman 

portrayals [7]. In August 2009, the British Board of Film Censors banned the sale of a Japanese 

horror DVD because of its psychological harm to audiences [8]. The severity of the effects of horror 

films makes a horror content filtering system a necessity.  

1.1 Related Work 

Despite the importance of the horror content filtering, most existing work focuses on horror video 

recognition. There is, to the best of our knowledge, no specific technique designed for horror image 

recognition until now. An intuitive and direct solution is to view “horror” as a specific emotion, and 

to apply general affective image classification methods to recognize it.  

Normally, human affects can be represented by different emotional words, such as sadness, 

excitement, contentment, etc [17, 18]. The basic idea of affective image classification methods is to 

investigate the relationship between these high level emotional responses and low level image 

features [12]. The affective image classification methods can be divided into two categories: domain 

knowledge-based methods and machine learning-based methods [33]. Domain knowledge-based 

methods build up hierarchical inference models or rules. Most early methods on image emotion 

analysis belong to this category. Kuroda et al. [34] use the color/texture features of segmented image 

regions to extract sky/earth/water semantics which are in turn used to produce emotion from the 
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image. Wang and Yu [13] analyze the emotional meaning embedded in an image through 

accumulated knowledge and experience. Methods in the machine learning-based category involve the 

training of mapping functions between low-level features and high-level emotional semantics in a 

“black box” style. Wang et al. [30] extract image brightness, color temperature, saturation, and 

contrast features; and then train an emotion classifier using Support Vector Machines (SVM) [19]. 

Chen et al. [32] propose to recognize the emotion in an image using a Bayesian classifier based on 

color and texture features. Bianchi-Berthouze [14] extracts a set of features from homogeneous 

regions in an image and inputs them into neural networks to obtain the emotion information. Fuzzy 

neural networks are introduced by Guo and Gao [31] into image emotion recognition. Yanulevskaya 

et al. [15] classify images into 8 emotional categories using an SVM classifier with holistic Weibull 

and Gabor texture features. Solli and Lenz [16] propose a color-based bag-of-emotions model to 

retrieve images associated with particular emotions. Liu et al. [33] present a novel 

affective-probabilistic latent semantic analysis model based on feature’s tensor representation for 

image emotion classification. Machajdik and Hanbury [17] feed an SVM classifier with a set of 

effective features inspired by psychology and art theory for affective image classification. Li et al [18] 

recently propose a novel bilayer sparse representation model for affective image classification by 

combining global and local features.  

 
Figure 1. Images with different contextual cues evoke completely different emotions. The images are from the 
International Affective Picture System (IAPS) dataset [54].  

Although these methods work well in general affective image classification, their performance 

on horror image recognition is very limited. It is primarily because most existing affective image 

classification methods try to extract and analyze global features while ignoring the interplay among 

the regions in an image. However, our observations show that most horror images, in contrast to 

those positive emotional images including amusement or contentment, generally include two 
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essential parts: at least one horror region that stimulates a strong emotional response and a certain 

supporting background. The importance of the context between the two parts is demonstrated by 

Figure 1. Images including same man but with different objects in his hand create completely 

different emotions due to different contextual cues; the left image is pleasing while the right one is 

unsettling. Therefore, an effective classifier for horror image recognition should work on both local 

regions and their contextual relationships. 

1.2 Our Work 

To circumvent the problems of general affective image classification, we apply multi-instance 

learning (MIL) [22, 23] to the recognition of horror images. In MIL, an image is viewed as a bag and 

the regions within it are instances of the bag. Traditional MIL methods treat the instances 

independently and do not model the relations between different regions [22-24]. This paper proposes 

a novel context-aware multi-instance learning (CMIL) model for horror image recognition. The 

experimental results on two large image sets collected from the Internet show that our algorithm 

outperforms the other competing methods. Our algorithm is original in the following ways:  

 We propose a novel context-aware multi-instance learning model (CMIL) that classifies a 

bag by taking into account both individual instances’ labels and their contextual interplay.  

 We extend the Fuzzy Support Vector Machine (FSVM) [26] into an effective classifier for 

the CMIL, referred to as “CMIL-FSVM”, that uses a random walk procedure [41] to model the 

context among instances.  

 We present a novel tensor-based visual saliency model to integrate emotional cues adaptively. 

The resulting visual saliency maps of training images can be used to improve the initialization of the 

CMIL-FSVM.  

 We present a specialized horror image recognition system based on the proposed CMIL 

model. The system can identify the horror images and the underlying horror regions simultaneously 

with a set of discriminative visual and emotional features. 

The remainder of this paper is organized as follows: Section 2 gives an overview of our work. 

Section 3 introduces the details of horror image recognition based on CMIL. Section 4 presents an 

improved initialization of the CMIL-FSVM based on the tensor-based visual saliency model. Section 

5 demonstrates the experimental results. Section 6 concludes the paper. 
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2 System Overview 

Horror image recognition based on CMIL proceeds in four main stages: bag construction, initial 

setting, CMIL classifier training, and horror image recognition. Figure 2 gives an overview of our 

system.  

 
Figure 2. Overview of the proposed framework for horror image recognition. 

Step 1: Bag construction. We treat each image as a “bag” and all segmented regions in it as 

“instances”. In each bag, we use an undirected graph to define the contextual relationships between 

pairs of regions. The vertices of the graph represent the regions. Two vertices are connected by an 

edge if the corresponding regions are adjacent. 

Step 2: Initial Setting. In the CMIL-FSVM algorithm, the fuzzy membership of each region in 

the FSVM for any image is initialized in the training procedure. For the non-horror samples, the 

initial fuzzy membership of each region is always fixed to be 1. For the horror images, there are two 

possible strategies for determining the initial fuzzy membership: (1) the fuzzy membership of each 

region is simply fixed to be a lower value, such as 0.5; or (2) it is gained from the visual saliency map. 

In the latter strategy, we compute the visual saliency map of each horror image using the proposed 

tensor-based visual saliency model and set the average saliency value of each region as its initial 

fuzzy membership.  

Step 3: CMIL classifier training. We feed the bag and corresponding initial fuzzy membership 

values, as well as the label of each training image, into the CMIL and apply the proposed 

CMIL-FSVM algorithm to learn an optimal classifier.  
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Step 4: Horror image recognition. For any test image, we segment it into regions and construct 

its bag. Then, the CMIL classifier is used to predict whether it is a horror image. If it is predicted to 

be a horror image, then the classifier further points out the most likely horror region. 

3 Horror Image Recognition based on CMIL 

In the following, we first describe the context-aware multi-instance learning (CMIL) in detail, and 

then discuss its application to horror image recognition. 

3.1 Context-Aware Multi-Instance Learning  

3.1.1 Formulation of CMIL 

Borrowing the formulation of the traditional MIL [22, 23], we add a new matrix term, iM , into the 

CMIL definition. The formulation of CMIL is defined as follows: Let χ  denote the instance space. 

Given a data set 1 1 1{( , , ),..., ( , , ),...( , , )}i i i N N NX Y X Y X YM M M  where ,1 , ,{ ,..., ,..., }
ii i i j i nX x x x χ= ⊆  

is called a bag, ,i jx χ∈  is an instance, and iM  is an adjacency matrix that specifies a contextual 

graph to model the relations among the instances in the bag iX .  The label of the bag iX  is 

={-1, 1}iY ∈ +ψ . The underlying label of any instance is not explicitly given. Different from the 

traditional MIL [22-24], the underlying label of an instance ,i jx  in the CMIL is a fuzzy label, 

defined as , ,( , )i j i j iy s θ∈ , where ,i jy ∈ψ  is the class label of ,i jx , ,0 1i js< ≤  is the fuzzy 

membership associated with instance ,i jx , and iθ  is the label and fuzzy membership set of the bag 

iX . A hidden contextual score ,i jE  is defined for each instance ,i jx  in the bag iX  given the graph 

adjacency matrix iM  and fuzzy membership set iθ . It can be regarded as the tendency of the 

instance ,i jx  towards the positive class considering contextual cues among instances in the bag iX . 

The labels of bags in the CMIL model are determined by the contextual scores and can be interpreted 

as: If 1iY = + , then at least one instance ,i jx χ∈  has , 1i jy = +  and , 0.5i jE ≥ . If 1iY = − , then 

, 1i jy = −  and , 0.5i jE < for all the instances in bag iX . 



7 

(1) Contextual Graph  

The contextual graph in the CMIL is designed to represent contextual relationship between any 

two instances. An example of a contextual graph and its corresponding adjacency matrix iM  are 

shown in Figure 3. Each vertex of the graph corresponds to an instance in the bag iX . If there is a 

direct contextual link between two instances ,i jx  and ,i kx , the entry in the adjacency matrix, 

,[ ]i j kM  is set as 1; otherwise it is set as 0. The details of the graph construction for horror images 

will be given in Section 3.2.1. 

 

Figure 3. Contextual graph construction: (A) Contextual graph (B) Corresponding adjacency matrix iM  

(2) Contextual Score based on Random Walk 

An important step in the CMIL is to compute the hidden contextual score ,i jE , for each instance 

,i jx , given the contextual graph. The contextual score ,i jE  is determined by both the label of ,i jx  

and the labels of its neighbors. The larger the contextual score ,i jE  is, the more possibly positive the 

instance ,i jx  is. To model the contextual scores, we use a random walk on the contextual graph iM . 

Random walks on graphs [41] are widely used to define the contextual relevance in many practical 

applications, such as Web page ranking [37, 38], and multimedia retrieval [39, 40].  

We first transform the fuzzy membership ,i js  into a corresponding probability value ,i jp  that 

represents the conditional probability , ,( 1| )i j i jp y x=  as 

, ,
,

, ,

 1,
1  1.

i j i j
i j

i j i j

s if y
p

s if y
=

=  − = −
 (1) 
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Since the probability ,i jp  includes no contextual information in the bag iX , it can be viewed as 

the independent score of an instance ,i jx . We concatenate them together and get an independent 

score vector for the bag iX  as ,1 ,2 ,[ , ,...., ]
i

T
i i i i np p p=p . The transition probability matrix 

,[ ]i i j k=Q Q  in the random walk is defined as [37, 38] 

, ,
,

, ,

[ ]
[ ]

[ ]
i j k i k

i j k
i j m i mm

p
p

=
∑

M
Q

M
, (2) 

where ,[ ]i j kQ is the transition probability from vertex ,i jx  to vertex ,i kx . It actually normalizes the 

independent score value of ,i kx  according to all the adjacency vertices of ,i jx .  

Given the transition probability matrix iQ , the contextual score ( ) 1

,

t

i jE
+

 of the instance ,i jx  at 

time 1t +  is linearly fused by its neighboring vertices’ contextual scores at time t  and its own 

independent score ,i jp  [40, 41] :   

( ) ( )1

, , , ,[ ] (1 )
t t

i j i k j i k i jk
E E pα α

+
= + −∑ Q , (3) 

where α  is the combination weight, ( ), ,[ ]
t

i k j i kk
E∑ Q  is the sum score that ,i jx ’s neighbors 

contribute to ,i jx . If we set ,1 ,2 ,[ , ,..., ]
i

T
i i i i nE E E=E , Eq. (3) can be rewritten in the matrix form as 

1 (1 )t t
i i i i
+ = + −E Q E Pα α . (4) 

Eq. (4) defines a recursive updating of t
iE . It can be shown that the limit lim t

i it−>∞
=E E  exists [41].  

On taking the limit t− > ∞  in (4), it follows that 

1

(1 ) ,    

(1 )( ) .
i i i i

i i i

which reduces toα α

α α −

= + −

= − −

E Q E P
E I Q P

 (5) 

Given the contextual score ,i jE  of each instance ,i jx , the label of each bag in the CMIL can be 

described in the form of a constraint by  

( )( ),1
max 0.5 0

i
i i jj n

Y E
≤ ≤

× − ≥ . (6) 

3.1.2 CMIL Classifier Optimization via Fuzzy SVM  

The SVM has been extended as the mi-SVM and the MI-SVM to solve MIL problems [24], but the 
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labels of the instances are always binary. Lin et al. [26] propose the fuzzy SVM (FSVM) in which 

each input training sample has a fuzzy class membership. In this paper, we propose an extended 

FSVM, named as CMIL-FSVM, in which the contextual score is added as another constraint.       

(1) Maximum Pattern Margin via FSVM 

The basic idea of CMIL-FSVM is to learn a fuzzy classifier in instances space that can predict 

the label and fuzzy membership of each instance in a bag and then determine the bag’s label from 

these predictions. Let the classification hyperplane in the instance space be , ,( ) T
i j i jf x x b= +w  with 

the parameter ( , )bw  [24]. The optimization objective function of the proposed CMIL-FSVM is 

obtained by combining the contextual score constraint [26] and the objective function of the FSVM 

as 

( )( )

2
, ,, 1

, , , ,

,1

1min
2

subject to ( ) 1 , 0

                  max 0.5 0

i

i

n

i j i jb i j

T
i j i j i j i j

i i jj n

C s

y x b

Y E

ξ

ξ ξ
=

≤ ≤

+

+ ≥ − ≥

× − ≥

∑∑w
w

w

，

，

，

 (7) 

where C  is a constant and can be regarded as a regularization parameter. If ,i js  in Eq. (7) is small, 

the effect of the parameter ,i jξ  and the corresponding instance ,i jx  is of less importance to the 

classification hyperplane.  

(2) Optimization Heuristics 

The big difficulty to solve Eq. (7) is that, different from the standard classification of the FSVM 

in which the labels ,i jy  and fuzzy membership ,i js  are explicitly predefined in the training 

procedure, these two terms are not explicitly given out in the CMIL. Inspired by the optimization 

procedure of the mi-SVM [24], we present a heuristic procedure to minimize the objective function 

defined in Eq. (7). The optimization procedure includes two major steps: fuzzy classification and 

label update.  

Step 1: Fuzzy Classification. Given the hidden label ,i jy  and fuzzy membership ,i js  of each 

instance, the optimization of Eq. (7) is reduced to a quadratic programming problem that can be 

solved exactly through the FSVM.  
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Step 2: Label Update. Once the classification hyperplane has been learnt through FSVM, the 

hidden label ,i jy  and fuzzy membership ,i js  of each instance will be updated based on the 

hyperplane using Eq.(8).   

,

, ,

, | ( )|

sgn( ( )),
1 ,

1+ i j

i j i j

i j f x

y f x

s
e−

=

 =

 (8) 

Algorithm 1. Pseudo-code for the CMIL-FSVM optimization heuristics. 
Training Procedure 
 
INPUT:  All the training bags with corresponding labels as

1 1 1{( , , ),..., ( , , ),...( , , )}i i i N N NX Y X Y X YM M M . 
Initialize   

, ,,   for i j i i j iy Y x X= ∈ ; , , , ,1,  for  and  =-1; 0.5,  for  and  =+1i j i j i i i j i j i is x X Y s x X Y= ∈ = ∈ , 0.1s∆ = . 

REPEAT 
Compute the classification hyperplane 

,( )i jf x  via the FSVM using all the instances. 

Compute outputs , ,( ) T
i j i jf x x b= +w  for all ,i jx  in positive bags. 

Compute ,i jy  and ,i js for all ,i jx  in positive bags using Eq. (8). 

Set 0k = ; 
  

For (every positive bag iX ) 

      Compute 
,i jE  for each instance ,i jx  in 

iX  based on Eq. (5). 

Compute ( ),
1

* arg max
i

i j
j n

j E
≤ ≤

=  

  If ( , * 0.5i jE < ) 

   Set ( ), * , *min 1,i j i js s s= + ∆ .  

Set 1k k= + . 
  END 
 END 
WHILE ( 0k ==  or maximal iteration number is arrived) 
 
OUTPUT( ,bw ) 
Test Procedure 
 
INPUT: A test bag 

tX  and corresponding contextual graph tM . 

Compute outputs , ,( ) T
t j t jf x x b= +w  for all instances ,t jx  in 

tX .  

Compute ,t jy  and ,t js for all instances ,t jx  in 
tX . 

 
Compute 

,t jE  for each instance in tX  based on Eq. (5). 

Compute ( ),
1

* arg max
t

t j
j n

j E
≤ ≤

=  

IF (
, * 0.5t jE ≥ ) 

 set 1tY =  
ELSE 

 set 1tY = −  
END 
 

OUTPUT( tY ) 
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where the sigmoid function is widely used to obtain an output from the SVM in the form of 

probabilities.  

 After obtaining the classifier during the learning procedure, we can compute the label ,t jy  and 

membership ,t js  of each instance ,t jx  in the test bag 
tX  using , ,( ) T

t j t jf x x b= +w  and Eq. (8). And 

the label of tX  can be determined by the labels and memberships of all the instances in tX . The 

implementation details of the CMIL-FSVM are shown in Algorithm 1. 

It is worth noting that, during the initialization stage, we pair positive labels of those instances in 

positive bags with lower fuzzy memberships ( , 0.5i js = ), and negative labels of those instances in 

negative bags with higher fuzzy memberships ( , 1i js = ) so as to make sure that all initial contextual 

scores of negative bags are less than 0.5. Then, we iteratively adjust the hyperplane by improving the 

fuzzy memberships of positive instances to ensure that the positive bags satisfy the constraints in Eq. 

(7). 

3.1.3 Differences from Other MIL Methods  

Many MIL methods have been proposed in the literatures, in which mi-SVM and MI-SVM [24] are 

widely used. Different from the CMIL that considers contextual cues among instances, these two 

methods treat all instances from a bag as independently and identically distributed (i.i.d.). The 

methods that are closer in spirit to our CMIL are miGraph and MIGraph proposed by Zhou et al. [25]. 

The main difference lies in the definition of the relationship between instances. The miGraph and 

MIGraph algorithms [25] are essentially graph pattern classifiers. They only consider the global 

graph structures of a bag and predefine any two instances’ relationship based on a  -graph that uses 

the Euclidean distance in a feature space; whereas our CMIL considers contextual cues among 

instances using a random walk on a spatial adjacency graph. The relationship between any pairs of 

instances can be dynamically learnt from the training data. 

3.2 Horror Image Recognition based on CMIL 

In this section, we apply the proposed CMIL model to horror image recognition using some effective 

features.  

3.2.1 Bag Construction 
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The first step in the horror image recognition based on CMIL is to construct instances, bags and 

contextual graphs. The intuitive idea is to treat an image iI  as a bag and segmented regions 

,1 ,2 ,{ , ,..., }
ii i i nI I I  of the image iI  as instances. Among diverse image segmentation algorithms, the 

JSEG algorithm [28] is adopted because of its flexibility. After segmentation, we discard the regions 

whose areas are smaller than 1/40 of the image. Figure 4 gives an example of image segmentation by 

the JSEG. 

The next step is to construct the graph adjacency matrix M  using the segmented regions in an 

image. The vertices of the graph represent the image regions and an edge with weight of 1 is defined 

between any two adjacent regions. An example of a bag and the corresponding graph is shown in 

Figure 4. 

 
Figure 4. Bag construction: (A) Original image. (B) Segmentation result. (C) Contextual graph. The 5th 
region is discarded because it is too small. 

3.2.2  Feature Extraction 

For each region, three types of features, namely color, color emotion, and texture, are extracted, 

because they are validated by many affective image classification methods [15, 16, 17].  

Color Feature. Colors are often used by artists to induce emotional effects. Here we consider 

image color information in the CIELAB space because it describes color perception more accurately 

than RGB space [13]. Two feature sets are defined as 1 2 3[ , , ] [ , , ]k k k
k k kf f f L a b=  and 

4 5 6[ , , ] [ , , ]k k k
k k kf f f L L a a b b= − − − . The former set is the average of all the pixels’ CIELAB values in the thk  

region, and the latter set is defined as the difference between averaged pixel value in the thk  region 

and that of the whole image. 

Color Emotion Feature. Ou et al. [42] propose a quantitative color emotion model relating the 

stimulus colorimetry with the emotional response. In detail, they present a three-dimensional color 
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emotion space with axes representing color activity ( CA ), color weight ( CW ), and color heat ( CH ). 

The values of CA , CW  and CH are calculated as follows:  
1/22*

* 2 * 2

* *

* 1.07 *

172.1 0.06 ( 50) ( 3) ,
1.4

1.8 0.04(100 ) 0.45cos( 100 ),
0.5 0.02( ) cos( 50 ),

o

o

bCA L a

CW L h
CH C h

  −
= − + − + − +  

   
= − + − + −

= − + −

 
(9) 

where * * *( , , )L a b and * * *( , , )L C h  are the corresponding color values in the CIELAB and CIELCH 

color spaces for a given RGB color. The average color emotion of the pixels in each region yields a 

feature vector 7 8 9[ , , ] [ , , ]k k k
k k kf f f CA CW CH= , and the difference between it and the whole image 

yields a second feature vector 10 11 12[ , , ] [ , , ]k k k
k k kf f f CA CA CW CW CH CH= − − − . 

Texture Feature. Geusebroek et al. [43] describe a stochastic texture perception. They show 

that the distribution of edge responses can be modeled by a Weibull distribution ( )wb z as 

1

( )
zzwb z e

γγ
βγ

β β

−  
− 
  

=  
 

, (10) 

where z  is the edge responses in a single color channel to the Gaussian derivative filter, 0β >  is 

the scale parameter of the distribution and 0γ >  is the shape parameter. The parameters of the 

Weibull distribution completely characterize the spatial structure of the texture [43] and widely used 

in for texture description [14]. The contrast in an image is represented by β , and the grain size is 

given by γ . Thus, the β  and γ  values for the x -edges and y -edges in the RGB color channels 

for each region yield a 12 dimensional feature vector, as 13 14 15 16[ , , ] [ , , , ]k k k k k k k k
xR xR yR yRf f f f γ β γ β=， , 

17 18 19 20[ , , ] [ , , , ]k k k k k k k k
xG xG yG yGf f f f γ β γ β=， , and 21 22 23 24[ , , ] [ , , , ]k k k k k k k k

xB xB yB yBf f f f γ β γ β=， . In addition, the 

texture differences between the current region and the whole image are also used as texture features: 

25 26 27 28[ , , ] [ , , , ]k k k k k k k k
xR xR xR xR yR yR yR yRf f f f γ γ β β γ γ β β= − − − −， , 29 30 31 32[ , , ] [ , , , ]k k k k k k k k

xG xG xG xG yG yG yG yGf f f f γ γ β β γ γ β β= − − − −， , and 

33 34 35 36[ , , ] [ , , , ]k k k k k k k k
xB xB xB xB yB yB yB yBf f f f γ γ β β γ γ β β= − − − −， .The concatenation of all these features yields a feature 

vector in 36R  for each region.  

3.2.3 Horror Image Recognition Based on CMIL  
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Given the contextual graph of an image and feature vector of each region in it, we can construct a bag 

for each image in the CMIL. Now the bag iX  represents the whole image iI ; the instance 

36
, 1 2 36[ , ,..., ]j j j

i jx f f f R= ∈  is the feature vector of the thj  region in the image iI ; iM  is the 

spatial contextual graph matrix of the image; and the label iY  for each image is set to 1 if it is a 

horror image, and otherwise is set to -1. All the bags of the training images and their corresponding 

labels are input to the CMIL to learn a classifier using the CMIL-FSVM algorithm. Given a test 

image, the extracted feature vector of each region and the contextual graph of the image are obtained 

in the form of a bag. Then, the bag is fed into the CMIL classifier to identify whether it is a horror 

image. Furthermore, if the test image is judged as a horror image, we consider the region with the 

highest contextual score to be a horror region in the image. 

4 Improved CMIL-FSVM by Visual Saliency Map 

In Algorithm 1, the memberships of all the instances in the positive bags are simply set to be 0.5 

( , 0.5i js = ). This initialization may mislead the classifier, because there often exist instances with 

negative labels or much lower positive memberships in positive bags, such as the background of a 

horror image. If the CMIL-FSVM is initialized with weak labels and corresponding membership 

values based on some prior knowledge, the convergence of the classification optimization algorithm 

may be faster, and a more accurate classifier may be obtained.  

Because a horror image always contains one or more popped-out region(s) that is (are) very 

different from the background in their visual or emotional stimulus. The detection and separation of 

these salient regions can provide very valuable initialization information to the CMIL-FSVM. In this 

paper, we propose a simple and effective visual saliency model based on tensor reconstruction, and 

then discuss how to initialize the CMIL-FSVM using visual saliency maps. 

4.1 Emotional Attention Mechanism 

Much recent psychological research indicates that emotion is of another fundamental importance in 

the human vision system and produces specific contributions to selective attention [20]. Vuilleumier 

[21] argues that the amygdala plays a crucial role in providing both direct and indirect signals on 

sensory pathways, which can influence the representation of emotional events. These modulatory 
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effects implement specialized mechanisms of “emotional attention” that may supplement visual 

attention.  

In the past decades, many visual saliency computation models [46-52] have been proposed.  

Most of them follow Koch’s bottom-up saliency map framework [44, 45] that extracts low level 

visual features and combines the visual saliency values in different feature subspaces to produce the 

final saliency map [46-52]. Therefore, they have to address two essential questions: (1) find those 

features with good discriminating power; and (2) determine each feature’s weight in combination.  

Although these elaborate methods achieve good performance, they have the following limitations: 

(1) Most existing visual saliency methods predefine several low level features, such as gray intensity, 

color channel and local shape orientation, and apply them to all pixels of any input image. These 

widely-used features may be effective for general visual saliency models; but there is no evidence to 

show that they are effective for modeling the emotional attention. (2) Most existing methods treat 

color and texture features separately in visual saliency computation, but research has shown that 

using color and texture in combination (i.e. color texture) results in better discrimination [55, 56]. (3) 

Some existing methods fuse saliency maps obtained from different feature subspaces. They predefine 

a combination weight for the saliency map from each feature subspace. The predefined weights may 

yield good performance for some images or certain parts of an image; but they cannot always work 

for all images or for all parts of an image containing different types of scene.  

To avoid these limitations, we propose a novel visual saliency map model based on tensor 

reconstruction that can combine several emotion cues dynamically. In the proposed model, we 

represent an image in the color emotion space [42] and organize it as a color emotion tensor structure. 

The first few basis elements in the tensor decompositions of neighboring blocks for each pixel are 

chosen as features for saliency computation, since they can reveal the most significant information 

inherent in the surrounding environment. The reconstruction residual error of the pixel’s feature 

based on these basis elements, which shows whether the pixel includes the similar related features to 

its neighbors, is used as the visual saliency value. The hypothesis behind the proposed tensor-based 

saliency map model is that if a pixel is salient, its appearance (color, texture, etc.) and tensor structure 

will be very different from its neighbors’, so the tensor reconstruction residual using its neighbors 

will be large. Otherwise, the tensor structure of the pixel is similar to its neighbors’ and the tensor 

reconstruction residual will be small. 

Compared with other existing visual saliency map computation models, our proposed model has 
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the following advantages:  

 The tensor structure in color emotion space not only represents image’s color values into a 

unit, rather than 3 separate channels, but also takes into account the spatial interaction within each 

channel as well as the interaction between different channels.  

 We need not explicitly extract features for each pixel. Features used for each pixel’s saliency 

computation are adaptively determined and selected by tensor decomposition.  

 The combinational coefficient for each selected feature are not predefined, instead they are 

dynamically gained from tensor reconstruction.  

4.2 Visual Saliency Map Based on Tensor Reconstruction 

4.2.1 Tensor Representation 

Since the color emotion space is shown to contain more high-level emotional cues than other 

color spaces [42], we first represent an image in the color emotion space as in Eq. (9). Then, we 

divide the image into blocks with size of w w×  pixels and use a 3-order tensor to represent color 

values in color emotion channels of each block as w w cR × ×∈B , where w  is the row and column 

sizes of each block, and 3c =  is the dimension of the color emotion space. For any pixel with its 

location q , the block centered on it is called the “Center Block” (CB). The adjacent blocks with 

overlapped / 2w  pixels yield 16 “Neighboring Blocks” (NB). The CB and NB are 3-order tensors. 

All neighboring blocks are further assembled into a 4-order tensor, b w w cR × × ×∈M ( 16b = ). An 

example is shown in Figure 5. 

 
Figure 5. The center block (CB) of pixel q  has 16 overlapped neighboring blocks with / 2w  overlapping 
pixels: 

1 2 16, ,...NB NB NB . Each block is in size of w w×  pixels.  

4.2.2 Saliency Map from Tensor Reconstruction 

The Tucker decomposition [53] is applied to decompose the 4-order tensor: 
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1 2 3 4block row column color= × × × ×U U U UM Z , (11) 

where 1 2 3, ,× × ×  and 4×  are the n-mode product operations of the tensor Z  and matrices 

,row columnU U  and colorU  [53]. Here, the core tensor Z  reflects the interactions among 4 subspaces: 

the matrix blockU  spans the subspace of block parameter; the matrix rowU spans the subspace of each 

block row’s parameter, includes correlation between any two rows along all blocks, and represents 

different texture basis along vertical direction. Similarly, the matrix columnU spans the subspace of 

each block column’s parameter, includes correlation between any two columns along all blocks, and 

represents different texture basis along horizontal direction. The matrix colorU  spans the subspace of 

color emotion parameter and each eigenvector represents one kind of linear transformation of color 

emotion values.  

 
Figure 6. An example of a 4-order Tucker decomposition viewed from 1st Block. 

Since blockU  only represents the correlation among all neighboring blocks, the decomposition 

output along this order is not considered in the following analysis. So we keep its dimension to be 

16 16× . For the remaining three orders, we take first dr  eigenvectors of  rowU  and columnU  to 

form the basis matrices dr
rowU  and dr

columnU  that contain the most important texture energy along 

vertical and horizontal directions respectively. We also take the first dc  most important linear 

transformations of the colorU  eigenvectors dc
colorU  to emphasize color emotion feature variations. An 

example of this tensor decomposition is given in Figure 6. 

During projection and reconstruction, we represent the center block at location q  as a 3-order 

tensor w w cR × ×∈T , then project it using dr
rowU , dr

columnU and dc
colorU , the projected tensor is 

dr dr dcR × ×∈P : 



18 

( ) ( ) ( )1 2 3column color

T TTdr dr dc
row= × × ×U U UP T . (12) 

Then, we get the reconstruction tensor RT  of the center block tensor T by multiplying the 

projected P  with the basis matrices of dr
rowU , dr

columnU and dc
colorU , as 

( ) ( ) ( )
( )( ) ( )( ) ( )( )

1 2 3

1 2 3 1 2 3

1 2 3

      

      

column color

column color column color

column column color color

R dr dr dc
row

T TTdr dr dc dr dr dc
row row

T TTdr dr dr dr dc dc
row row

= × × ×

= × × × × × ×

= × × ×

U U U

U U U U U U

U U U U U U

T P

T

T

. (13) 

After reconstruction, the residual error ( )r q  at pixel q  is computed as 

( )2

, , , ,
1 1 1

( )    
w w c

R
i j k i j k

i j k
r

= = =

= −∑∑∑q T T . (14) 

The result ( )r q  is used as the saliency value of the processed pixel. In this way, we approximate the 

center block’s color emotion and texture pattern by the linear sum of the learned patterns of 

neighbors through tensor reconstruction. Obviously, if the central block has similar features with its 

neighbors in terms of color emotion and local textures, the principal tensor components gained from 

neighboring blocks may be similar to those gained from the center block so that the reconstruction 

error is small, otherwise the reconstruction error is higher and the pixel has a large saliency value. 

4.2.3 Pyramid Saliency Map Calculation 

The pyramid architecture, which is widely used in visual saliency methods, offers a framework 

for image saliency map calculation with increased resolution quality [52]. We use a pyramid with L  

different levels, denoted as 1 2, ,..., LI I I , for the saliency map calculation, where 1I  is the original 

image and LI  is the lowest resolution image. The value of L  is determined to be sure that the 

image’s width and height of LI  are not less than 64 pixels. The normalized saliency map at each 

level is then resized to match the size of the original image. The values of all the saliency maps at 

different levels are averaged to gain the final saliency map: 

1

1 ˆ( ) ( )
L

l
l

SM r
L =

= ∑q q , (15) 

where ( ) [0,1]SM ∈q  is the final saliency value of pixel q , ˆ ( )lr q  is the normalized saliency value 

of pixel q  in the resized version of the thl level saliency map. 
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4.3 Initialize of the CMIL with Weak Labels Based on Visual Saliency Map 

Using the proposed tensor-based visual saliency map model, we obtain a normalized visual saliency 

map of each horror image in the training set. As shown in Figure 7, the image regions with high 

saliency values in a horror image indicate high emotional stimulus. For each positive training image 

(bag) iX , we compute its visual saliency map iSM . The average saliency values of all the 

segmented region (instance) are also computed as ,1 ,2 ,, ,...,
ii i i nSM SM SM . The initial fuzzy 

membership ,i js  for the instance ,i jx  in the bag iX  is set as: , ,i j i js SM= , rather than the value of 

0.5 used in Algorithm 1. 

 
Figure 7. A horror image with the associated visual saliency map. 

5 Experiments 

To evaluate the performance of the proposed CMIL for horror image recognition, we compared it 

with other prevailing affective image classification methods as well as some MIL methods on two 

large scale image sets.  

5.1 Data Set and Error Measurement 

5.1.1 Data Set 

Due to a lack of publicly available image sets for horror image recognition, we collected two horror 

image sets from the Internet. One set includes 1000 horror and non-horror images (referred to as 

1000 Horror Image Set). The other one includes 10,000 horror and non-horror images (referred to as 

10000 Horror Image Set). 

(1) 1000 Horror Image Set 

This horror image set includes 500 horror images and 500 non-horror images. To collect the 

horror images, a large number of candidate horror images were first downloaded from three image 
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search engines (google.com, bing.com, baidu.com) with related query words, such as “horror”, “fear”, 

“bloody”, and corresponding Chinese words. We invited 7 students in our laboratory to label each 

image as one of three categories: Non-horror, A little horror, and Horror. Then, we selected 500 

images, each of which was labeled as “Horror” by at least 4 users. We also selected 500 non-horror 

images with different scenes, objects or emotions. These non-horror images include 50 indoor images, 

50 outdoor images, 50 human images, 50 animal images, 50 plant images, and 250 images with 

emotional associations (adorable, amusing, boring, exciting, irritating, pleasing, and surprising). The 

non-horror images were downloaded from the famous image retrieval system ALIPR, with website 

(http://alipr.com/) using a range of different emotional query words.  

In addition, in order to evaluate the performance of the proposed visual saliency map 

computation model, these 7 students were also required to draw a bounding box around the most 

salient horror region for each horror image in this set (according to their understanding). The 

bounding boxes in each image were averaged to get the ground truth of the visual saliency map, 

( )EM q  [48]: 

( ) { | [0,1]}EM m m= ∈q qq , where 
1

1 U
i

i
m a

U =

= ∑q q  (16) 

where 7U =  is the number of bounding boxes and {0,1}ia ∈q  is a binary label to indicate whether 

or not the pixel q  is inside the bounding box given by the thi  student.  

(2) 10000 Horror Image Set 

The second image set includes 10,000 images, in which there are 5000 horror images and 5000 

non-horror images. More than 8,000 candidate horror images were downloaded from a horror image 

sharing group in a famous image sharing website (flickr.com). The sharing group advises that the 

users who upload non-horror subject matter will be pulled out. As a result, all the images from this 

group are horrible. Using the same selection procedure as that in creating 1000 image set, we 

obtained 5000 horror images after removing duplicates. We also selected 5000 non-horror images 

from the COREL database [35] which contains a large number of various scenes and is widely used 

for image understanding research. 

5.1.2 Error Measurement 

For horror image recognition, given the ground truth of a horror image set, referred as HS , and the 

recognition results of an algorithm, referred as ES , the precision ( pre ), recall ( rec ), and 1F  
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measure defined in Eq. (17) were used to evaluate the recognition performance: 

1
2,   ,   .

HS ES HS ES prec recpre rec F
ES HS prec rec

× ×
= = =

+
 

 (17) 

5.2 Horror Image Recognition Based on CMIL without Visual Saliency 

In this section, we evaluated the performance of the CMIL in terms of horror image recognition 

without the initialization using the visual saliency map, as shown in Algorithm 1.  

We compared the CMIL with some general affective image classification methods: the 

emotional valence categorization (EVC) algorithm [15], the color based bag-of-emotions (BoE) 

model [16], the affective-pLSA based method (APLSA) [33] and the bilayer sparse 

representation-based method (BSR) [18]. Although these methods are not specially designed for 

horror image recognition, we still used them to classify images as: horror and non-horror. In addition, 

the leading MIL algorithms, mi-SVM, MI-SVM [24], miGraph, and MIGraph [25], were also applied 

to horror image recognition for comparison. To fairly compare all these MIL methods, the bag 

construction and instances’ features in MIL methods are the same as those used in our CMIL. 

Moreover, the Radial Basis Function (RBF) was adopted as kernel functions in the CMIL, mi-SVM, 

MI-SVM, miGraph, and MIGrpah. The parameter α  in Eq. (4) of the CMIL-FSVM was selected 

from {0.1,0.3,0.5,0.7,0.9}. The optimal parameters for each algorithm were determined through the 

3-cross-validation on the training set in each experiment.  

5.2.1 Results on 1000 Horror Image Set 

The first experiment is on the 1000 horror image set. For each method, we repeated the 3-fold cross 

validation 10 times and used the average performance of the 10 repeats as the final result.  

(1) CMIL vs Affective Image Classification Methods 

The performance comparisons between the CMIL and other affective image classification methods 

are shown in Table 1. The experiment results demonstrate that the CMIL outperforms the completing 

methods. The EVC, BoE and APLSA only use global features for affective image classification. The 

BSR achieves slightly better performance than the other three affective classification methods due to 

the fact that the BSR method combines local and global features for classification. However, the BSR 

is essentially a global method in which it does not consider the contextual cues among regions. These 

global affective image classification methods tend to misclassify some horror images with large 

background areas because these areas strongly affect the features on which the classification depends.  
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Table 1. Performance comparison with affective image classficiation methods on the 1000 horror image set. 

Method Pre Rec 1F  

EVC [15] 0.713 0.612 0.659 
BoE [16] 0.722 0.641 0.679 

APLSA [33] 0.712 0.636 0.672 
BSR [18] 0.713 0.697 0.705 

CMIL 0.771 0.763 0.767 

(2) CMIL vs MIL 

We compared the proposed CMIL with 4 leading MIL methods, mi-SVM, MI-SVM [24], miGraph, 

and MIGraph [25], in terms of horror image recognition on the 1000 horror image set. The mi-SVM 

and MI-SVM can be viewed as local methods because they work on image regions. The miGraph, 

MIGraph and CMIL are regarded as contextual methods because they take into account the 

contextual cues among regions. The experimental results for these methods are listed in Table 2. 

Table 2. Performance comparison with other MIL methods on the 1000 horror image set. 

Method Pre Rec 1F  

mi-SVM [24] 0.712 0.726 0.719 
MI-SVM [24] 0.693 0.707 0.700 
miGraph [25] 0.725 0.732 0.728 
MIGraph [25] 0.726 0.72 0.723 

CMIL 0.771 0.763 0.767 

According to Table 2, the proposed CMIL still outperforms other MIL methods. The local MIL 

methods have slightly higher performance than the global methods [15, 16, 33], but lower 

performance than the contextual methods. The miGraph and MIGraph algorithms achieve good 

performance in the image set, but still lower than CMIL. The results show that horror image 

recognition benefits from exploiting contextual information among the image regions. However, the 

miGraph and MIGraph methods prefix instances’ relationship using a  -graph in feature space and 

emphasize the global structural of the  -graph. This contextual strategy is not very suitable for 

horror image recognition. In comparison, our CMIL method dynamically learns the contextual cues 

among regions and focuses on those contextual regions that indicate a horror image.  

5.2.2 Results on 10000 Horror Image Set 

We then conducted experiments on the 10000 image set. Following the same setting in the previous 

experiment, we obtained performance of each method.  

Table 3. Performance comparison with affective image classficiation methods on the 10000 horror image set. 
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Method Pre Rec 1F  

EVC [15] 0.698 0.605 0.648 
BoE [16] 0.702 0.632 0.665 

APLSA [33] 0.682 0.616 0.647 
BSR [18] 0.702 0.653 0.677 

CMIL 0.732 0.726 0.729 

(1) CMIL vs Affective Image Classification Methods 

Experimental results for the CMIL and for other general affective image classification methods are 

shown in Table 3. Similar conclusions to those in the previous experiment were obtained. The 

proposed CMIL method still outperforms the competing affective image classification methods. 

Interestingly, we found that the precision values of these global methods are slightly higher than their 

recall values. It proves that some horror images are misclassified as a non-horror because of the 

background. 

Table 4. Performance comparison with other MIL methods on the 10000 horror image set. 

Method Pre Rec 1F  

mi-SVM [24] 0.657 0.695 0.675 
MI-SVM [24] 0.649 0.687 0.667 
miGraph [25] 0.682 0.691 0.686 
MIGraph [25] 0.684 0.701 0.692 

CMIL 0.732 0.726 0.729 

(2) CMIL vs MIL 

The experimental results of the CMIL and other MIL methods are listed in Table 4. The proposed 

CMIL still outperforms the MIL methods on this larger set. The miGraph and MIGraph methods still 

achieve slightly better performance than mi-SVM and MI-SVM. In addition, the precision values of 

the local methods mi-SVM and MI-SVM are slightly lower than their recall values. It implies that 

some non-horror images are misclassified as horror images because of their local similarity. The 

precision and recall values of each contextual algorithm are comparable. It again indicates that 

contextual cues are helpful for good horror image recognition scheme. When facing the larger scale 

complex Internet image set, our proposed CMIL still has stable performance. 

5.3 Horror Image Recognition Based on CMIL with Visual Saliency 

We evaluated the proposed CMIL with improved initialization using the tensor-based visual saliency 

map (denoted as CMIL+TVS). Before evaluating its performance on horror image recognition, we 

compared the proposed tensor-based visual saliency model with other visual saliency models, 
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including Itti’s method (Itti) [46], Hou’s method (Hou) [51], Graph-based visual saliency algorithm 

(GBVS) [50], and Frequency-tuned salient region detection algorithm (FS) [52], in the context of 

visual saliency map computation.  

5.3.1 Comparison of Visual Saliency Maps 

(1) Error Measurement for Visual Saliency Model 

Given the ground truth annotation ( )EM q  and the computed visual saliency ( )SM q  of an 

image, the precision ( Spr ), recall( Sre ), and 0.5F  measure, which are widely used for visual saliency 

map evaluation [48], were used for performance comparison:  

0.5

( ) ( ) ( ) ( ) (1 0.5), , .
( ) ( ) 0.5

SM EM SM EM Spr SreSpr Sre F
SM EM Spr Sre

+ × ×
= = =

× +
∑ ∑
∑ ∑

q q

q q

q q q q

q q
 (18) 

(2) Comparison of Visual Saliency Models 

There are 3 parameters in the tensor-based saliency map model. The block size, which has little 

effect because of the pyramid architecture, was set as 8w = . We set 3dr =  and 1dc = , meaning 

that matrices 3
rowU , 3

columnU , and 1
colorU  were used as basis for tensor reconstruction. The Precision 

( Spr ), Recall ( Sre ) and 0.5F  values of each method are listed in Table 5.  

Table 5 Comparison with existing visual saliency algorithms on the 1000 horror image set 

Method Precision ( Spr ) Recall ( Sre ) 0.5F  

Itti [46] 0.634 0.505 0.548 
Hou [51] 0.644 0.279 0.448 

GBVS [50] 0.717 0.512 0.633 
FS [52] 0.594 0.683 0.621 

Our 0.696 0.801 0.728 
Our(RGB) 0.651 0.726 0.674 

The performance of our tensor-based model is 0.696Spr = , 0.801Sre =  and 0.5 0.728F =  

respectively, showing that it outperforms the other visual saliency computation methods on this set. 

Because the other visual saliency methods are designed only from the visual viewpoint, they do not 

consider the higher emotional stimulus in horror images. In order to test the effectiveness of the color 

emotion space, we also show the tensor-based model’s results in RGB color space in Table 5 (denoted 

as Our(RGB)). The lower performance from RGB space indicates that the color emotion space does 

indeed identify colors with a strong emotional impact and is helpful for emotion-related salient 

region detection. In addition, the adaptive feature selection and dynamic fusion coefficient embedded 
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in the proposed tensor-based saliency map model also improve the accuracy of the saliency map. For 

the qualitative comparison, some saliency maps of the horror images generated by different 

algorithms are also given in Figure 8. Our proposed method correctly detects the horror regions in 

almost all of these images.  

 
Figure 8. Exemplar saliency maps on horror images produced by different algorithms. 

5.3.2 Performance Comparison of Horror Image Recognition on 1000 Horror Image Set 

In order to further evaluate the effect of the visual saliency map in the CMIL, we compared the CMIL 

without the visual saliency map (denoted as CMIL) to the CMIL+TVS, as well as the CMIL with the 

GBVS visual saliency map (denoted as CMIL+GBVS) in terms of horror image recognition. The 

results are listed in Table 6. The fact that both CMIL+TVS and CMIL+GBVS outperform the CMIL 

implies that the visual saliency maps do indeed give useful weak labels to the CMIL for improving its 

performance on horror image recognition. In addition, the CMIL+TVS can achieve a slightly higher 

1F  value than the CMIL+GBVS, it is because the GBVS has lower performance on visual salient 

region detection than the proposed tensor-based model in Table 5.  

Table 6. Performance comparison among different CMIL algorithms on the 1000 horror image set. 

Method Pre Rec 1F  

CMIL 0.771 0.763 0.767 
CMIL+GBVS 0.781 0.776 0.778 
CMIL+TVS 0.809 0.801 0.805 

 

5.3.3 Performance Comparison of Horror Image Recognition on 10000 Horror Image Set 

We also compared the CMIL, CMIL+TVS and CMIL+GBVS methods on this larger image set. 

According to the experimental results in Table 7, the CMIL+TVS still outperforms the CMIL+GBVS 
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and the CMIL.  

Table 7. Performance comparison among different CMIL algorithms on the 10,000 horror image set. 

Method Pre Rec 1F  

CMIL 0.732 0.726 0.729 
CMIL+GBVS 0.731 0.733 0.732 
CMIL+TVS 0.786 0.773 0.779 

  

 We gave examples of the horror region extraction results of the proposed CMIL+TVS algorithm. 

Because the instance with the largest contextual score in a bag in the CMIL is most likely to evoke 

horror emotion, we considered it to be a horror region in the image. Figure 9 gives some horror 

region extraction results from the CMIL+TVS method. It shows that the CMIL+TVS can correctly 

identify the underlying horror region of each horror image. Furthermore, the isolated horror regions 

shown in the second row of Figure 9 evoke almost no feeling of horror. This again indicates that the 

horror emotion expressed by an image is not evoked by an isolated region but its context. 

 
Figure 9. Examples of horror regions extraction from the CMIL+TVS. The first row contains original images; 
the images in the second row are segmentation results; the images in the third row are the horror regions 
extracted by our CMIL algorithm. 

6 Conclusions and Future Work 

Considering the challenges in horror image recognition from a contextual perspective, we have 

proposed a novel context-aware multi-instance learning model (CMIL). The CMIL model is based on 

the fact that the emotion of horror is not evoked by isolated image regions but by the interactions 

among them. In order to improve the overall performance, the CMIL classifier is initialized using the 
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visual saliency values that are generated by the proposed tensor-based visual saliency method. The 

effectiveness of our proposed CMIL framework has been validated on two large scale horror image 

sets collected from the Internet. Experimental results have showed that the proposed CMIL algorithm 

is superior to both general affective image classification methods and traditional MIL methods in 

horror image recognition. 

There is still much that has to be done in order to obtain more reliable and general horror image 

filtering systems. Our future work will focus on the following directions: (1) Exploring more 

effective emotion-related features for horror image recognition; (2) Integrating the image content 

analysis with surrounding text tags to filter the horror content on the Web; (3) Investigating online 

learning scheme so that we can dynamically adjust the classifier as more samples become available. 
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