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Abstract Tensor representation is helpful to reduce the small sample size prob-
lem in discriminative subspace selection. As pointed by this paper, this is mainly
because the structure information of objects in computer vision research is a rea-
sonable constraint to reduce the number of unknown parameters used to represent
a learning model. Therefore, we apply this information to the vector-based learn-
ing and generalize the vector-based learning to the tensor-based learning as the
supervised tensor learning (STL) framework, which accepts tensors as input. To
obtain the solution of STL, the alternating projection optimization procedure is
developed. The STL framework is a combination of the convex optimization and
the operations in multilinear algebra. The tensor representation helps reduce the
overfitting problem in vector-based learning. Based on STL and its alternating pro-
jection optimization procedure, we generalize support vector machines, minimax
probability machine, Fisher discriminant analysis, and distance metric learning,
to support tensor machines, tensor minimax probability machine, tensor Fisher
discriminant analysis, and the multiple distance metrics learning, respectively. We
also study the iterative procedure for feature extraction within STL. To examine
the effectiveness of STL, we implement the tensor minimax probability machine
for image classification. By comparing with minimax probability machine, the
tensor version reduces the overfitting problem.
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1 Introduction

In computer vision research, many objects are naturally represented by multidi-
mensional arrays, i.e., tensors [17], such as the gray face image shown in Fig. 1 in
face recognition [7, 48], the color image shown in Fig. 2 in scene image classifica-
tion [40, 41], and the video shot shown in Fig. 3 in motion categorization [11, 26].
However, in current research, the original tensors (images and videos) are always
scanned into vectors, thus discarding a great deal of useful structural information
[36, 38, 52, 53], which is helpful to reduce the small sample-size (SSS) problem
in subspace selection methods, e.g., linear discriminant analysis (LDA).

To utilize this structure information, many dimension reduction algorithms
[17, 29, 38, 46, 51, 52] based on the multilinear subspace method (MLSM)
have been developed for data representation [17, 29, 46, 51], pattern classifica-
tion [38, 36, 52], and network abnormal detection [33]. This structure informa-
tion of objects in computer vision research is a reasonable constraint to reduce
the number of unknown parameters used to represent a learning model. MLSM
finds a sequence of linear transformation matrices Ui ∈ RLi ×L ′

i (L ′
i < Li ,

1 ≤ i ≤ M) to transform a big-size tensor X ∈ RL1×L2×···×L M to a small-size
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Fig. 1 A gray face image is a second-order tensor, which is also a matrix. Two indices
are required for pixel locations. The face image comes from http://www.merl.com/projects/
images/face-rec.gif
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Fig. 2 A color image is a third-order tensor, which is also a data cuboid, because three indices
are required to locate elements. Two indices are used for pixel locations and one index is used
to local the color information (e.g., R, G, and B)
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Fig. 3 A color video shot is a fourth-order tensor. Four indices are used to locate elements.
Two indices are used for pixel locations; one index is used to local the color information; and
the other index is used to represent the time varying. The video shot comes from http://www-
nlpir.nist.gov/projects/trecvid/

tensor Y ∈ RL ′
1×L ′

2×···×L ′
M , i.e., Y = X×1 U T

1 ×2 U T
2 ×· · ·×M U T

M . For example,
if we have a big second order tensor (i.e., a big matrix) X ∈ RL1×L2 , in MLSM
we need to find two linear transformation matrices U1 ∈ RL1×L ′

1 (L ′
1 < L1 ) and

U2 ∈ RL2×L ′
2 (L ′

2 < L2) to transform the big matrix to a small matrix according
to Y = X ×1 U T

1 ×2 U T
2 , i.e., Y = U T

1 XU2. After the transformation, the original

datum dimension is reduced from L1 × L2 to L ′
1 × L ′

2 , i.e., Y ∈ RL ′
1×L ′

2 .
The structure information can also be utilized to vector-based learning to re-

duce the overfitting problem when measurements are limited. In vector-based
learning [6, 9], a projection vector �w ∈ RL and a bias b ∈ R are learnt to de-
termine the class label of a measurement �x ∈ RL according to a linear decision
function y (�x) = sign[ �wT �x + b]. The �w and b are obtained based on a learning
model, e.g., minimax probability machine (MPM) [16, 31], based on N training
measurements associated with labels {�xi ∈ RL , yi }, where yi is the class label,
yi ∈ {+1, −1}, and 1 ≤ i ≤ N .

The supervised tensor learning (STL) [36] is developed to extend the vector-
based learning algorithms to accept tensors as input. That is, we learn a series
of projection vectors �wk |M

k=1 ∈ RLk and a bias b ∈ R to determine the class
label {+1,−1} of a measurement X ∈ RL1×L2×···×L M according to a multilin-
ear decision function y (X) = sign[X∏M

k=1 ×k �wk + b]. The projection vectors
�wk |M

k=1 and the bias b are obtained from a learning model, e.g., tensor minimax
probability machine (TMPM), based on N training measurements associated with
labels {Xi ∈ RL1×L2×···×L M , yi }, where yi is the class label, yi ∈ {+1,−1}, and
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1 ≤ i ≤ N . To obtain the solution of the algorithms under STL framework,
we develop the alternating projection optimization procedure. Based on STL and
its alternating projection optimization procedure, we illustrate several examples,
which are support tensor machines (STMs), tensor minimax probability machine
(TMPM), tensor Fisher discriminant analysis (TFDA), multiple distance metrics
learning (MDML).

This paper is organized as follows. Section 2 introduces tensor algebra.
Section 3 gives the relatiobship between LSM and MLSM. In Section 4, the con-
vex optimization is briefly reviewed and a framework-level formula of the con-
vex optimization-based learning is introduced. In Section 5, we develop the su-
pervised tensor learning (STL) framewok, which is an extension of the convex
optimization-based learning. The alternating projection method is also developed
to obtain the solution to an STL-based learning algorithm. In Section 6, we de-
velop a number of tensor extensions of many popular learning machines, such as
the support vector machines (SVM) [5, 27, 28, 34, 35, 45], the minimax prob-
ability machine (MPM) [16, 31], the Fisher discriminant analysis (FDA) [6, 8,
14], and the distance metric learning (DML) [49]. In Section 7, an iterative fea-
ture extraction model is given as an extension of the STL framework. Experi-
ments in Section 8 based on TMPM show that tensor representation is helpful
to reduce the overfitting problem in vector-based learning. Section 9 provides
conclusions.

2 Tensor algebra

This section contains the fundamental materials on tensor algebra [17], which
are relevant to this paper. Tensors are arrays of numbers that transform in cer-
tain ways under different coordinate transformations. The order of a tensor X ∈
RL1×L2×···×L M , represented by a multidimensional array of real numbers, is M .
An element of X is denoted as Xl1,l2,...,lM , where 1 ≤ li ≤ Li and 1 ≤ i ≤ M .
The i th dimension (or mode) of X is of size Li . A scalar is a zeroth-order tensor;
a vector is a first-order tensor; and a matrix is a second-order tensor. A third-order
tensor as an example is shown in Fig. 4. In the tensor terminology, we have the
following definitions.

1 2 3L L LR × ×∈X
1L

2L
3L

Fig. 4 A third-order tensor X ∈ RL1×L2×L3
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Definition 2.1 (Tensor Product or Outer Product) The tensor product X ⊗ Y of a
tensor X ∈ RL1×L2×···×L M and another tensor Y ∈ RL ′

1×L ′
2×···×L ′

M ′ is defined by

(X ⊗ Y)l1×l2×···×lM×l ′1×l ′2×···×l ′
M ′ = Xl1×l2×···×lM Yl ′1×l ′2×···×l ′

M ′ (1)

for all index values.
For example, the tensor product of two vectors �x1 ∈ RL1 and �x2 ∈ RL2 is a

matrix X ∈ RL1×L2 , i.e., X = �x1 ⊗ �x2 = �x1 �xT
2 .

Definition 2.2 (Mode-d Matricizing or Matrix Unfolding) The mode-d matriciz-
ing or matrix unfolding of an M th-order tensor X ∈ RL1×L2×···×L M is the set
of vectors in RLd obtained by keeping the index id fixed and varying the other
indices. Therefore, the mode-d matricizing or matrix unfolding of an Mth-order
tensor is a matrix X(d) ∈ RLd×L̄d , where L̄d = (

∏
i �=d Li ). We denote the mode-d

matricizing of X as matd(X) or briefly X(d).

Definition 2.3 (Tensor Contraction) The contraction of a tensor is obtained by
equating two indices and summing over all values of the repeated indices. Con-
traction reduces the tensor order by 2. A notation is the Einstein’s summation con-
vention.1 For example, the tensor product of two vectors �x, �y ∈ RN is Z = �x ⊗ �y;
and the contraction of Z is Zii = �x · �y = �xT �y, where the repeated indices imply
summation. The value of Zii is the inner product of �x and �y. In general, for tensors
X ∈ RL1×···×L M×L ′

1×···×L ′
M ′ and Y ∈ RL1×···×L M×L ′′

1×···×L ′′
M ′′ , the contraction on

the tensor product X ⊗ Y is

[[X ⊗ Y; (1 : M) (1 : M)]]

=
L1∑

l1=1

· · ·
L M∑

lM=1

(X)l1×···×lM×l ′1×···×l ′
M ′ (Y)l1×···×lM×l ′′1 ×···×l ′′

M ′′ . (2)

In this paper, when the convention is conducted on all indices but the index i on
the tensor product of X and Y in RL1×L2×···×L M , we denote this procedure as

[[X ⊗ Y; (ī) (ī)]] = [[X ⊗ Y; (1 : i − 1, i + 1 : M) (1 : i − 1, i + 1 : M)]]

=
L1∑

l1=1

· · ·
Li−1∑

li−1=1

Li+1∑

li+1=1

· · ·
L M∑

lM=1

×(X)l1×···×li−1×li ×li+1×···×lM
(Y)l1×···×li−1×li ×li+1×···×lM

= mati (X) matTi (Y) = X(i)Y
T
(i), (3)

and [[X ⊗ Y; (ī) (ī)]] ∈ RLi ×Li .

1 When any two subscripts in a tensor expression are given the same symbol, it is implied that
the convention is formed.–A. Einstein, Die Grundlage der Allgemeinen Relativitatstheorie, Ann.
Phys., 49:769, 1916.
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Definition 2.4 (Mode-d product) The mode-d product X ×d U of a tensor X ∈
RL1×L2×···×L M and a matrix U ∈ RL ′

d×Ld is an L1×L2×· · ·×Ld−1×L ′
d×Ld+1×

· · · × L M tensor defined by

(X×dU )l1×l2×···×ld−1×l ′d×ld+1×···×lM
=
∑

l ′d

(
Xl1×l2×···×ld−1×ld×ld+1×···×lM Ul ′d×ld

)
,

(4)
for all index values. The mode-d product is a type of contraction.

Based on the definition of Mode-d product, we have

(X ×d U ) ×t V = (X ×t V ) ×d U, (5)

where X ∈ RL1×L2×···×L M , U ∈ RL ′
d×Ld , and V ∈ RL ′

t ×Lt . Therefore,
(X ×d U ) ×t V can be simplified as X ×d U ×t V .

Furthermore,
(X ×d U ) ×t V = X ×d (V U ) , (6)

where X ∈ RL1×L2×···×L M , U ∈ RL ′
d×Ld , V ∈ RL ′′

d×L ′
d , and V U is the standard

matrix product between V and U.
To simplify the notation in this paper, we denote

X ×1 U1 ×2 U2 × · · · ×M UM
�= X

M∏

k=1

×k Uk, (7)

and

X ×1 U1×· · ·×i−1 Ui−1 ×i+1 Ui+1 × · · · ×M UM = X
M∏

d=1;d �=i

×d Ud
�= X×̄iUi .

(8)

Definition 2.5 (Frobenius Norm) The Frobenius norm of a tensor X ∈
RL1×L2×···×L M is given by

‖X‖Fro = √
[[X ⊗ X; (1 : M) (1 : M)]] =

√
√
√
√
√

L1∑

l1=1

· · ·
L M∑

lM=1

X2
l1×···×lM

. (9)

The Frobenius norm of a tensor X measures the size of the tensor and its
square is the energy of the tensor.

Definition 2.6 (Rank-1 tensor) An M th-order tensor X has rank one if it is the
tensor product of M vectors �ui ∈ RLi , where 1 ≤ i ≤ M

X = �u1 ⊗ �u2 ⊗ · · · ⊗ �uM =
M∏

k=1

⊗�uk . (10)

The rank of an arbitrary M th-order tensorX, denoted by R = rank (X) , is the
minimum number of rank-1 tensors that yield X in a linear combination.
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3 The relationship between LSM and MLSM

Suppose: 1) we have a dimension reduction algorithm A1 , which finds a se-
quence of linear transformation matrices Ui ∈ RLi ×L ′

i (L ′
i < Li , 1 ≤ i ≤ M)

to transform a big-size tensor X ∈ RL1×L2×···×L M to a small-size tensor Y1 ∈
RL ′

1×L ′
2×···×L ′

M , i.e., Y1 = X ×1 U T
1 ×2 U T

2 × · · · ×M U T
M ; and 2) we have an-

other dimension reduction algorithm A2 , which finds a linear transformation ma-
trix U ∈ RL×L ′

(L = L1×L2×· · ·×L M and L ′ = L ′
1×L ′

2×· · ·×L ′
M ; L ′

i < Li )
to transform a high-dimensional vector �x = vect (X) to a low-dimensional vec-
tor �y2 = vect (Y2), i.e., �y2 = U T �x , where vect (·) is the vectorization operator;
�x ∈ RL and �y2 ∈ RL ′

. According to [55], we know

�y1 = vect (Y1)

= vect
(

X ×1 U T
1 ×2 U T

2 × · · · ×M U T
M

)

= (U1 ⊗ U2 ⊗ · · · ⊗ UM )T vect (X) . (11)

Therefore, if U = U1 ⊗ U2 ⊗ · · · ⊗ UM , �y2 = �y1. That is, the algorithm A1

equals algorithm A2, if the linear transformation matrix U ∈ RL×L ′
in A2 equals

to U1 ⊗ U2 ⊗ · · · ⊗ UM .2

The tensor representation helps to reduce the number of parameters needed to
model the data. In A1, there are N1 = ∑M

i=1 Li L ′
i independent parameters. While

in A2, there are N2 = ∏M
i=1 Li

∏M
i=1 L ′

i independent parameters. In statistical
learning, we usually require the number of the training measurements is larger
than that of the parameters to model these training measurements for linear algo-
rithms. In the training stage of the MLSM-based learning algorithms, we usually
use the alternating projection method to obtain a solution, i.e., the linear projection
matrices are obtained independently, so we only need about N0 = maxi {Li L ′

i }
training measurements to obtain a solution for MLSM-based learning algorithms.
However, we need about N2 training measurements to obtain a solution for LSM-
based learning algorithms. That is, the MLSM-based learning algorithms requires
much smaller training measurements than LSM-based learning algorithms, be-
cause N0 	 N2. Therefore, the tensor representation helps to redeuce the small
sample-size (SSS) problem.

It has a long history to reduce the number of parameters to model the data by
adding constraints. Take the strategies in Gaussian distribution estimation as an
example3: when the data consist of only a few training measurements embedded
in a high-dimensional space, we always add some constraints to the covariance
matrix, for example by requiring the covariance matrix to be a diagonal matrix.
Therefore, to better characterize or classify natural data, a scheme should preserve
as many as possible of the original constraints. When the training measurements

2 In (11), we conduct the reshape operation on U = U1 ⊗ U2 ⊗ · · · ⊗ UM . That is, originally
U lies in RL1×L ′

1×L2×L ′
2×···×L M ×L ′

M and after the reshape operation U is transformed to V in
R(L1×L2×···×L M )×(L ′

1×L ′
2×···×L ′

M). Then, we can apply the transpose operation on V .
3 Constraints in MLSM/STL are justified by the form of the data. However, constraints in the

example are ad hoc.
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Fig. 5 Tensor-based learning machine versus the vector-based learning machine

are limited, these constraints help to give reasonable solutions to classification
problems.

Based on the discussions above, we have the following results:

1) when the number of the training measurements is limited, the vectorization
operation always leads to the SSS problem. That is, for small-size training set,
we need to use the MLSM-based learning algorithms, because the LSM-based
learning algorithms will overfit the data. The vectorization of a tensor into a
vector makes it hard to keep track of the information in spatial constraints.
For example, two 4-neighbor connected pixels in an image may be hugely
separated from each other after a vectorization;

2) when the number of the training measurements is large, the MLSM-based
learning algorithms will underfit the data. In this case, the vectorization op-
eration for the data is helpful because it increases the number of parameters to
model the data.

Similarly, if we choose to use the vector-based learning algorithms, the vec-
torization operation vect (·) is applied to a general tensor X and forms a vector
�x = vect (X) ∈ RL , where L = L1 × L2 × · · · × L M . The vectorization elim-
inates the structure information of a measurement in its original format. How-
ever, the information is helpful to reduce the number of parameters in a learning
model and results in alleviating the overfitting problem. Usually, the testing er-
ror decreases with respect to the increasing number of the training measurements.
When the number of the training measurements is limited, the tensor-based learn-
ing machine performs better than the vector-based learning machine. Otherwise,
the vector-based learning machine outperforms the tensor-based learning machine,
as shown in Fig. 5.

4 Convex optimization-based learning

Learning models are always formulated as optimization problems [50, 54]. There-
fore, mathematical programming [50, 54] is the heart of the machine learning



Supervised tensor learning

research [28]. Recently, mathematical programming has been applied for semisu-
pervised learning [1, 18]. In this section, we first introduce the fundamentals
of convex optimization and then give out a general formulation for convex
optimization-based learning.

A mathematical programming problem [3, 50, 54] has the form or it can be
transformed to this form

⎡

⎢
⎣

min
�w

f0 ( �w)

s.t.
fi ( �w) ≤ 0, 1 ≤ i ≤ m

hi ( �w) = 0, 1 ≤ i ≤ p

⎤

⎥
⎦ (12)

where �w = [w1, w2, . . . , wn]T ∈ Rn is the optimization variable in Eq. (12); the
function f0 : Rn → R is the objective function; the functions fi : Rn → R
are inequality constraint functions; and the functions hi : Rn → R are equality
constraint functions. A vector �w∗ is a solution to the problem if f0 achieves its
minimum among all possible vectors, i.e., vectors satisfy all constraint functions
( fi |mi=1 and hi |p

i=1).
When the objective function f0 ( �w) and the inequality constraint functions

fi ( �w) |mi=1 satisfy

fi (α �w1 + β �w2) ≤ α fi ( �w1) + β fi ( �w2)
α, β ∈ R+ · · · and · · · α + β = 1
w1, �w2 ∈ Rn

(13)

(i.e., fi ( �w) |mi=0 are convex functions) and the equality constraint functions
hi ( �w) |p

i=1 are affine (i.e., hi ( �w) = 0 can be simplified as �aT
i �w = bi ), the mathe-

matical programming problem defined in Eq. (12) is named the convex optimiza-
tion problem. Therefore, a convex optimization problem [3] is defined by

⎡

⎢
⎣

min
�w

f0 ( �w)

s.t.
fi ( �w) ≤ 0, 1 ≤ i ≤ m

�aT
i �w = bi , 1 ≤ i ≤ p

⎤

⎥
⎦ (14)

where fi ( �w) |mi=0 are convex functions. The domain D of the problem in Eq. (14)
is the intersection of the domains of fi ( �w) |mi=0 , i.e., D = ∩m

i=0 dom fi . The point
�w∗ in D is the optimal solution of Eq. (14) if and only if

∇T f0( �w∗
)( �w − �w∗

) ≥ 0, ∀ �w ∈ D (15)

The convex optimization problem defined in Eq. (14) consists of a large num-
ber of popular special cases, such as the linear programming (LP) [44], the lin-
ear fractional programming (LFP) [3], the quadratic programming (QP) [21], the
quadratically constrained quadratic programming (QCQP) [19], the second-order
cone programming (SOCP) [19], the semidefinite programming (SDP) [43], and
the geometric programming (GP) [4]. All of these special cases have been widely
applied in different areas, such as computer networks, machine learning, computer
vision, psychology, the health research, the automation research, and economics.
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The significance of a convex optimization problem is that the solution is
unique (i.e., the locally optimal solution is also the globally optimal solution),
so the convex optimization has been widely applied to machine learning for many
years, such as LP [44] in the linear programming machine (LPM) [22, 30], QP
[21] in the support vector machines (SVM) [5, 10, 27, 28, 34, 35, 45], SDP [43] in
the distance metric learning (DML) [49] and the kernel matrix learning [15], and
SOCP [19] in minimax probability machine (MPM) [16, 31]. This section reviews
some basic concepts for supervised learning based on convex optimization, such
as SVM, MPM, Fisher discriminant analysis (FDA) [6, 8, 14], and DML.

Now, we introduce LP, QP, QCQP, SOCP, and SDP, which have been widely
used to model learning problems.

The LP is defined by ⎡

⎢
⎣

min
�w

�cT �w

s.t.
G �w ≤ �h
A �w = �b

⎤

⎥
⎦, (16)

where G ∈ Rm×n and A ∈ R p×n . That is, the convex optimization problem
degenerates to LP when the objective and constraint functions in the convex opti-
mization problem defined in Eq. (14) are all affine.

The QP is defined by
⎡

⎢
⎢
⎢
⎣

min
�w

1

2
�wT P �w + �qT �w + r

s.t.
G �w ≤ �h
A �w = �b

⎤

⎥
⎥
⎥
⎦

(17)

where P ∈ Sn+, G ∈ Rm×n and A ∈ R p×n . Therefore, the convex optimiza-
tion problem degenerates to QP when the objective function in Eq. (14) is convex
quadratic and the constraint functions in Eq. (14) are all affine.

If the inequality constraints are not affine but quadratic, Eq. (17) transfroms to
QCQP, i.e.,

⎡

⎢
⎢
⎢
⎢
⎣

min
�w

1

2
�wT P0 �w + �qT

0 �w + r0

s.t.

1

2
�wT Pi �w + �qT

i �w + ri , 1 ≤ i ≤ m

A �w = �b

⎤

⎥
⎥
⎥
⎥
⎦

(18)

where Pi ∈ Sn+ for 0 ≤ i ≤ m.
SOCP has the form

⎡

⎢
⎢
⎢
⎣

min
�w

�f T �w

s.t.
‖Ai �w + bi‖Fro ≤ �cT

i �w + di , 1 ≤ i ≤ m

F �w = �g

⎤

⎥
⎥
⎥
⎦

(19)

where Ai ∈ Rni ×n , F ∈ R p×n , �ci ∈ Rn , �g ∈ R p, bi ∈ Rni , and di ∈ R. The
constraint with the form ‖A �w + b‖ ≤ �cT �w + d is called the second-order cone
constraint. When �ci = 0 for all 1 ≤ i ≤ m, SOCP transforms to QCQP.
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Recently, SDP has become an important technique in machine learning and
many SDP-based learning machines have been developed. SDP minimizes a linear
function subject to a matrix semidefinite constraint

⎡

⎢
⎢
⎣

min
�w

EcT �w

s.t. F ( �w) = F0 +
n∑

i=1

wi Fi ≥ 0

⎤

⎥
⎥
⎦ (20)

where Fi ∈ Sm for all 0 ≤ i ≤ n and �c ∈ Rn .

As the end of this section, we provide a general formula for convex
optimization-based learning as

[
min
�w,b,�ξ

f ( �w, b, �ξ)

s.t. yi ci
( �wT �xi + b

) ≥ ξi , 1 ≤ i ≤ N

]

(21)

where f : RL+N+1 → R is a criterion (convex function) for classification; ci :
RL+N+1 → R for all 1 ≤ i ≤ N are convex constraint functions; �xi ∈ RL

(1 ≤ i ≤ N ) are training measurements and their class labels are given by yi ∈
{+1,−1} ; �ξ = [ξ1, ξ2, . . . , ξN ]T ∈ RN are slack variables; and �w ∈ RL and
b ∈ R determine the classification hyperplane, i.e., y (�x) = sign[ �wT �x + b]. By
defining different classification criteria f and convex constraint functions ci |N

i=1 ,
we can obtain a large number of learning machines, such as SVM, MPM, FDA,
and DML. We detail this in the next section.

5 Supervised tensor learning: a framework

STL extends the vector-based learning algorithms to accept general tensors as
input. In STL, we have N training measurements Xi ∈ RL1×L2×···×L M represented
by tensors associated with class label information yi ∈ {+1,−1}. We want to
separate the positive measurements (yi = +1) from the negative measurements
(yi = −1) based on a criterion. This extension is obtained by replacing �xi ∈ RL

(1 ≤ i ≤ N ) and �w ∈ RL with Xi ∈ RL1×L2×···×L M (1 ≤ i ≤ N ) and �wk ∈ RLk

(1 ≤ k ≤ M) in (21), respectively. Therefore, STL is defined by
⎡

⎢
⎢
⎢
⎣

min
�wk |M

k=1,b,�ξ
f
(

�wk
∣
∣M
k=1, b, �ξ

)

s.t. yi ci

(

Xi

M∏

k=1

×k �wk + b

)

≥ ξi , 1 ≤ i ≤ N

⎤

⎥
⎥
⎥
⎦

(22)

There are two different points between the vector-based learning and the
tensor-based learning: 1) the training measurements are represented by vectors
in vector-based learning, while they are represented by tensors in tensor-based
learning; and 2) the classification decision function is defined by �w ∈ RL and
b ∈ R in vector-based learning (y (�x) = sign[ �wT �x + b]), while the classification
decision function is defined by �wk ∈ RLk (1 ≤ k ≤ M) and b ∈ R in tensor-based
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learning, i.e., y (X) = sign[X∏M
k=1 ×k �wk + b]. In vector-based learning, we have

the classification hyperplane, i.e., �wT �x + b = 0. While in tensor-based learning,
we define the classification tensorplane, i.e., X

∏M
k=1 ×k �wk + b = 0.

The Lagrangian for STL defined in Eq. (22) is

L
(

�wk
∣
∣M
k=1, b, �ξ, �α

)

= f
(

�wk
∣
∣M
k=1, b, �ξ

)
−

N∑

i=1

αi

(

yi ci

(

Xi

M∏

k=1

×k �wk + b

)

− ξi

)

= f
(

�wk
∣
∣M
k=1, b, �ξ

)
−

N∑

i=1

αi yi ci

(

Xi

M∏

k=1

×k �wk + b

)

+ �αT�ξ (23)

with Lagrangian multipliers �α = [α1, α2, . . . , αN ]T ≥ 0.
The solution is determined by the saddle point of the Lagrangian

max
�α

min
�wk |M

k=1,b,�ξ
L
(

�wk
∣
∣M
k=1, b, �ξ, �α

)
(24)

The derivative of L( �wk |M
k=1, b, �ξ, �α) with respect to �w j is

∂ �w j L = ∂ �w j f −
N∑

i=1

αi yi∂ �w j ci

(

Xi

M∏

k=1

×k �wk + b

)

= ∂ �w j f −
N∑

i=1

αi yi
dci

dz
∂ �w j

(

Xi

M∏

k=1

×k �wk + b

)

= ∂ �w j f −
N∑

i=1

αi yi
dci

dz

(
Xi ×̄ j �w j

)
, (25)

where z = Xi
∏M

k=1 ×k �wk + b. The derivative of L( �wk |M
k=1, b, �ξ, �α) with respect

to b is

∂b L = ∂b f −
N∑

i=1

αi yi∂bci

(

Xi

M∏

k=1

×k �wk + b

)

= ∂b f −
N∑

i=1

αi yi
dci

dz
∂b

(

Xi

M∏

k=1

×k �wk + b

)

= ∂b f −
N∑

i=1

αi yi
dci

dz
, (26)

where z = Xi
∏M

k=1 ×k �wk + b.

To obtain a solution to STL, we need to set ∂ �w j L = 0 and ∂b L = 0.
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Table 1 Alternating projection for the supervised tensor learning

Input: The training measurements Xi |N
i=1 ∈ RL1×L2×···×L M , and the associated class lable

yi = {+1, −1}.
Output: The parameters in classification tensorplane �wk |M

k=1 ∈ RLk and b ∈ R, such that
the STL objective function f ( �wk |M

k=1, b, �ξ) defined in Eq. (22) is minimized.

Step 1: Set �wk |M
k=1 equal to random unit vectors in RLk ;

Step 2: Carry out steps 3–5 iteratively until convergence;

Step 3: For j = 1 to M :

Step 4: Obtain �w j ∈ RL j by optimizting
⎡

⎢
⎣

min
�w j ,b,�ξ

f ( �w j , b, �ξ)

s.t. yi ci
[ �wT

j

(
Xi ×̄ j �w j

)+ b
] ≥ ξi , 1 ≤ i ≤ N

⎤

⎥
⎦;

Step 5: End;

Step 6: Convergence checking:

if
∑M

k=1

[∣
∣ �wT

k,t �wk,t−1
∣
∣
(∥
∥ �wk,t

∥
∥−2

Fro

)− 1
] ≤ ε,

the calculated �wk |M
k=1 have converged. Here �wk,t is the current projection vector

and �wk,t−1 is the previous projection vector. ;

Step 7: End.

According to Eq. (25), we have

∂ �w j L = 0 ⇒ ∂ �w j f =
N∑

i=1

αi yi
dci

dz

(
Xi ×̄ j �w j

)
(27)

According to Eq. (26), we have

∂b L = 0 ⇒ ∂b f =
N∑

i=1

αi yi
dci

dz
(28)

Based on Eq. (27), we find the solution to �w j depends on �wk (1 ≤ k ≤ M ,
k �= j). That is, we cannot obtain the solution to STL directly. The alternating
projection provides a cue to have a solution to STL. The key idea in the alternating
projection optimization for STL is to obtain the �w j with the given �wk (1 ≤ k ≤ M ,
k �= j) in an iterative way. The algorithm is given in Table 1. The convergence
issue is proved in Theorem 1.

The alternating projection procedure to obtain a solution in STL is illustrated
in Fig. 6. In this figure, the training measurements are represented by third-order
tensors. The following three steps are conducted iteratively to obtain the solution
for STL:
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Fig. 6 The third-order tensor example for the alternating projection in STL

1) Generate the second projection vector �w2 and third projection vectors �w3 ran-
domly according to the Step 1 in Table 1; project the original training measure-
ments (third-order tensors) Xi ∈ RL1×L2×L3 (1 ≤ i ≤ N ) through �w2 and �w3
as (Xi ×̄1 �w1) ∈ RL1 ; and calculate the first projection vector �w1 according to
the Step 4 in Table 1 based on the projected training measurements (Xi ×̄1 �w1);

2) Project the original training measurements Xi |N
i=1 to the calculated first pro-

jection vector �w1 and the original third projection vector �w3 ; and calculate the
second projection vector �w2 according to the Step 4 in Table 1 based on the
projected training measurements (Xi ×̄2 �w2);

3) Project the original training measurements Xi |N
i=1 by the previous �w1 and �w2 ;

and calculate �w3 through the Step 4 in Table 1 based on the projected training
measurements (Xi ×̄3 �w3).

Theorem 1 The alternating projection optimization procedure for STL converges.

Proof Formally, the alternating projection method never increases the function
value f ( �wk |M

k=1, b, �ξ) of STL between two successive iterations, because it can
be interpreted as a type of a monotonic algorithm. We can define a continuous
function:

f : ū1 × ū2 × · · · × ūM × R × RN = M×
k=1

ūk × R × RN → R

where �wd ∈ ūd and ūd is the set, which includes all possible �wd . The bias b ∈ R
and the slack variables �ξ ∈ RN .
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With the definition, f has M different mappings:

g( �w∗
d , b∗

d , �ξ∗
d )

�= arg min
�ud∈ūd ,b,�ξ

f
(

�wd
∣
∣M
d=1, b, �ξ

)

= arg min
�ud∈ūd ,b,�ξ

f
(

�wd , b, �ξ ; �wl
∣
∣d−1
l=1 , �wl

∣
∣M
l=d+1

)
,

The mapping can be calculated with the given �wl |d−1
l=1 in the t th iteration and

�wl |M
l=d+1 in the (t − 1)th iteration of the for-loop in Step 4 in Table 1.

If each ūd for all d ∈ {1, 2, . . . M} is closed, each g( �w∗
d , b∗

d , �ξ∗
d ) for all d ∈

{1, 2, . . . M} is closed.
Given an initial �wd ∈ ūd (1 ≤ d ≤ M ), the alternating projection generates a

sequence of items { �w∗
d,t , b∗

d,t ,
�ξ∗

d,t ; 1 ≤ d ≤ M} via

g
(

�w∗
d,t , b∗

d,t ,
�ξ∗

d,t

)
= arg min

�ud∈ūd ,b,�ξ
f
(

�wd , b, �ξ ; �wl,t
∣
∣d−1
l=1 , �wl,t−1

∣
∣M
l=d+1

)

with each d ∈ {1, 2, · · · M}. The sequence has the following relationship:

a1 = f ( �w∗
1,1, b∗

1,1,
�ξ∗

1,1) ≥ f ( �w∗
2,1, b∗

2,1,
�ξ∗

2,1)

≥ · · · ≥ f ( �w∗
M,1, b∗

M,1,
�ξ∗

M,1) ≥ f ( �w∗
1,2, b∗

1,2,
�ξ∗

1,2)

≥ · · · ≥ f ( �w∗
1,t , b∗

1,t ,
�ξ∗

1,t ) ≥ f ( �w∗
2,t , b∗

2,t ,
�ξ∗

2,t )

≥ · · · ≥ f ( �w∗
1,T , b∗

1,T , �ξ∗
1,T ) ≥ f ( �w∗

2,T , b∗
2,T , �ξ∗

2,T )

≥ · · · ≥ f ( �w∗
M,T , b∗

M,T , �ξ∗
M,T ) = a2.

where T → +∞. Here, both a1 and a2 are limited values in the R space. The alter-
nating projection in STL can be illustrated by a composition of M subalgorithms
defined as

�d :
(

�wd
∣
∣M
d=1, b, �ξ

)
�→

d−1∏

l=1

×l �wl × Map( �wd , b, �ξ)

M∏

l=d+1

×l �wl .

It follows that �
.= �1 ◦�2 ◦· · ·◦�M = ◦M

d=1 �d is a closed algorithm when-
ever all ūd are compact. All subalgorithms g( �w∗

d , b∗
d , �ξ∗

d ) decrease the value of
f , so it should be clear that � is monotonic with respect to f . Consequently,
we can say that the alternating projection method to optimize STL defined in
Eq. (22) converges. ��

6 Supervised tensor learning: Examples

Based on the proposed STL and its alternating projection training algorithm, a
large number of tensor-based learning algorithms can be obtained by combining
STL with different learning criteria, such as SVM, MPM, FDA, and DML.
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Fig. 7 SVM maximizes the margin between the positive and negative training measurements

6.1 Support vector machine versus support tensor machine

SVM [5, 10, 27, 28, 34, 35, 45] finds a classification hyperplane, which maximizes
the margin between the positive measurements and the negative measurements, as
shown in Fig. 7.

Suppose there are N training measurements �xi ∈ RL (1 ≤ i ≤ N ) associated
with the class lables yi ∈ {+1,−1}. The traditional SVM [5, 45], i.e., soft-margin
SVM, finds a projection vector �w ∈ RL and a bias b ∈ R through

⎡

⎢
⎢
⎢
⎣

min
�w,b,�ξ

JC−SVM( �w, b, �ξ) = 1

2
‖ �w‖2

Fro + c
N∑

i=1

ξi

s.t.
yi [ �wT �xi + b] ≥ 1 − ξi , 1 ≤ i ≤ N
�ξ ≥ 0

⎤

⎥
⎥
⎥
⎦

(29)

where �ξ = [ξ1, ξ2, . . . , ξN ]T ∈ RN is the vector of all slack variables to deal
with the linearly nonseparable problem. The ξi (1 ≤ i ≤ N ) is also called the
marginal error for the i th training measurement, as shown in Fig. 7. The margin
is 2

/‖ �w‖Fro. When the classification problem is linearly separable, we can set
�ξ = 0. The decision function for classification is y (�x) = sign[ �wT �x + b].

The Lagrangian of Eq. (29) is

L( �w, b, �ξ, �α, �κ)

= 1

2
‖ �w‖2

Fro + c
N∑

i=1

ξi −
N∑

i=1

αi (yi [ �wT �xi + b] − 1 + ξi ) −
N∑

i=1

κiξi

= 1

2
�wT �w + c

N∑

i=1

ξi −
N∑

i=1

αi yi �wT �xi − b�αT �y +
N∑

i=1

αi − �αT�ξ − �κT�ξ

(30)
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with Lagrangian multipliers αi ≥ 0, κi ≥ 0 for 1 ≤ i ≤ N . The solution is
determined by the saddle point of the Lagrangian

max
�α,�κ

min
�w,b,�ξ

L( �w, b, �ξ, �α, �κ) (31)

This can be achieved by

∂ �w L = 0 ⇒ �w =
N∑

i=1

αi yi �xi

∂b L = 0 ⇒ �αT �y = 0 (32)

∂�ξ L = 0 ⇒ c − �α − �κ = 0.

Based on Eq. (32), we can have the dual problem of Eq. (29),
⎡

⎢
⎢
⎢
⎢
⎣

max
�α

JD (�α) = −1

2

N∑

i=1

N∑

j=1

yi y j �xT
i �x jαiα j +

N∑

i=1

αi

s.t.
�αT �y = 0

0 ≤ �α ≤ c

⎤

⎥
⎥
⎥
⎥
⎦

(33)

Set P = [yi y j �xT
i �x j ]1≤i, j≤N , �q = �1N×1, A = �y, �b = 0, G =

[IN×N , −IN×N ]T, and �h = [c�1T
N×1,

�0T
N×1]T in Eq. (17), we can see that the dual

problem of Eq. (29) in SVM is a QP.
In the soft-margin SVM defined in Eq. (29), the constant c determines the

tradeoff between 1) maximizing the margin between the positive and negative
measurements and 2) minimizing the training error. The constant c is not intuitive.
Therefore, [28, 27] developed the ν-SVM by replacing the unintuitive parameter
c with an intuitive parameter ν as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

min
�w,b,�ξ,ρ

Jν−SVM( �w, b, �ξ, ρ) = 1

2
‖ �w‖2

Fro + 1

N

N∑

i=1

ξi − νρ

s.t.

yi [ �wT �xi + b] ≥ ρ − ξi , 1 ≤ i ≤ N

�ξ ≥ 0,

ρ ≥ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(34)

The significance of ν in ν-SVM defined in Eq. (34) is that it controls the num-
ber of support vectors and the marginal errors.

Suykens and Vandewalle [33, 34] simplified the soft-margin SVM as the least
squares SVM,

⎡

⎣ min
�w,b,�ε

JLS−SVM ( �w, b, �ε) = 1

2
‖ �w‖2

Fro + γ

2
�εT�ε

s.t. yi [ �wT �xi + b] = 1 − εi , 1 ≤ i ≤ N

⎤

⎦ (35)

Here, the penalty γ > 0. There are two different points between the soft-
margin SVM defined in Eq. (29) and the least squares SVM defined in Eq. (35): 1)
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inequality constraints are replaced by equality constraints; and 2) the loss
∑N

i=1 ξi
(ξi ≥ 0) is replaced by square loss. The two modifications enable the solution of
the least-square SVM to be conveniently obtained compared to the soft-margin
SVM.

According to the statistical learning theory, we know a learning machine per-
forms well when the number of the training measurements is larger than the com-
plexity of the model. Moreover, the complexity of the model and the number of
the parameters to describe the model are always in direct proportion. In com-
puter vision research, the objects are usually represented by general tensors and
the number of the training measurements is limited. Therefore, it is reasonable to
have the tensor extension of SVM, i.e., the support tensor machine (STM). Based
on Eq. (29) and STL defined in Eq. (22), it is not difficult to obtain the tensor
extension of the soft-margin SVM, i.e., the soft-margin STM.

Suppose we have training measurements Xi ∈ RL1×L2×···×L M (1 ≤ i ≤ N )
and their corresponding class labels yi ∈ {+1,−1}. The decision function is a
multilinear function y (X) = sign[X∏M

k=1 ×k �wk + b], where the projection vec-
tors �wk ∈ RLk (1 ≤ k ≤ M) and the bias b in soft-margin STM are obtained from

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

min
�wk |M

k=1,b,�ξ
JC−STM

(
�wk
∣
∣M
k=1, b, �ξ

)
= 1

2

∥
∥
∥
∥

M⊗
k=1

�wk

∥
∥
∥
∥

2

Fro
+ c

N∑

i=1

ξi

s.t.
yi

[

Xi

M∏

k=1

×k �wk + b

]

≥ 1 − ξi , 1 ≤ i ≤ N

�ξ ≥ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(36)

Here, �ξ = [ξ1, ξ2, . . . , ξN ]T ∈ RN is the vector of all slack variables to deal
with the linearly nonseparable problem.

The Lagrangian for this problem is

L
(

�wk
∣
∣M
k=1, b, �ξ, �α, �κ

)

= 1

2

∥
∥
∥
∥

M⊗
k=1

�wk

∥
∥
∥
∥

2

Fro
+ c

N∑

i=1

ξi

−
N∑

i=1

αi

(

yi

[

Xi

M∏

k=1

×k �wk + b

]

− 1 + ξi

)

−
N∑

i=1

κiξi

= 1

2

M∏

k=1

�wT
k �wk + c

N∑

i=1

ξi −
N∑

i=1

αi yi

(

Xi

M∏

k=1

×k �wk

)

− b�αT �y +
N∑

i=1

αi − �αT�ξ − �κT�ξ (37)
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with Lagrangian multipliers αi ≥ 0, κi ≥ 0 for 1 ≤ i ≤ N . The solution is
determined by the saddle point of the Lagrangian

max
�α,�κ

min
�wk |M

k=1,b,�ξ
L
(

�wk
∣
∣M
k=1, b, �ξ, �α, �κ

)
(38)

This can be achieved by

∂ �w j L = 0 ⇒ �w j = 1
k �= j∏

k=1
�wT

k �wk

N∑

i=1

αi yi
(
Xi ×̄ j �w j

)

∂b L = 0 ⇒ �αT �y = 0 (39)

∂�ξ L = 0 ⇒ c − �α − �κ = 0

The first equation in Eq. (39) shows that the solution of �w j depends on �wk(1 ≤
k ≤ M , k �= j). That is, we cannot obtain the solution for soft-margin STM
directly. This point has been emphasized in the STL framework. Therefore, we
use the proposed alternating projection method in STL to obtain the solution of
soft-margin STM. To have the alternating projection method for soft-margin STM,
we need to replace the Step 4 in Table 1 by the following optimization problem,

⎡

⎢
⎢
⎢
⎢
⎣

min
�w j ,b,�ξ

JC−STM( �w j , b, �ξ) = η
2

∥
∥ �w j

∥
∥2

Fro + c
N∑

i=1
ξi

s.t.
yi [ �wT

j

(
Xi ×̄ j �w j

)+ b] ≥ 1 − ξi , 1 ≤ i ≤ N

�ξ ≥ 0

⎤

⎥
⎥
⎥
⎥
⎦

(40)

where η = ∏k �= j
1≤k≤M ‖ �wk‖2

Fro.
The problem defined in Eq. (40) is the standard soft-margin SVM defined in

Eq. (29).
Based on ν-SVM defined in Eq. (34) and STL defined in Eq. (22), we can also

have the tensor extension of the ν-SVM, i.e., ν-STM,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

min
�wk |M

k=1,b,�ξ,ρ

Jν−STM

(
�wk
∣
∣M
k=1, b, �ξ, ρ

)
= 1

2

∥
∥
∥
∥

M⊗
k=1

�wk

∥
∥
∥
∥

2

Fro
+ 1

N

N∑

i=1

ξi − νρ

s.t.

yi
[
Xi

M∏

k=1

×k �wk + b
] ≥ ρ − ξi , 1 ≤ i ≤ N

�ξ ≥ 0, 1 ≤ i ≤ N

ρ ≥ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(41)
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Here, ν ≥ 0 is a constant. The Lagrangian for this problem is

L
(

�wk
∣
∣M
k=1, b, �ξ, ρ, �α, �κ, τ

)

= 1

2

∥
∥
∥
∥

M⊗
k=1

�wk

∥
∥
∥
∥

2

Fro
+ 1

N

N∑

i=1

ξi − νρ − τρ

−
N∑

i=1

αi

(

yi

[

Xi

M∏

k=1

×k �wk + b

]

− ρ + ξi

)

− �κT�ξ

= 1

2

M∏

k=1

�wT
k �wk + 1

N

N∑

i=1

ξi −
N∑

i=1

αi yi

(

Xi

M∏

k=1

×k �wk

)

− b�αT �y + ρ

N∑

i=1

αi − �αT�ξ − �κT�ξ − νρ − τρ, (42)

with Lagrangian multipliers τ ≥ 0 and αi ≥ 0, κi ≥ 0 for 1 ≤ i ≤ N . The
solution is determined by the saddle point of the Lagrangian

max
�α,�κ,τ

min
�wk |M

k=1,b,�ξ,ρ

L
(

�wk
∣
∣M
k=1, b, �ξ, ρ, �α, �κ, τ

)
(43)

Similar to the soft-margin STM, the solution of �w j depends on �wk (1 ≤ k ≤
M , k �= j), because

∂ �w j L = 0 ⇒ �w j = 1
k �= j∏

k=1
�wT

k �wk

N∑

i=1

αi yi
(
Xi ×̄ j �w j

)
(44)

Therefore, we use the proposed alternating projection method in STL to obtain
the solution of ν-STM. To have the alternating projection method for ν-STM, we
need to replace the Step 4 in Table 1 by the following optimization problem,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

min
�w j ,b,�ξ,ρ

Jν−STM
( �w j , b, �ξ, ρ

) = η

2

∥
∥ �w j

∥
∥2

Fro + 1

N

N∑

i=1

ξi − νρ

s.t.

yi

[
�wT

j

(
Xi ×̄ j �w j

)+ b
]

≥ ρ − ξi , 1 ≤ i ≤ N

�ξ ≥ 0

ρ ≥ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(45)

where η = ∏k �= j
1≤k≤M ‖ �wk‖2

Fro.
The problem defined in Eq. (45) is the standard ν-SVM defined in Eq. (34).
Based on the least squares SVM defined in Eq. (35) and the STL defined in

Eq. (22), we can also have the tensor extension of the least-square SVM, i.e.,
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least-square STM,
⎡

⎢
⎢
⎢
⎢
⎣

min
�wk |M

k=1,b,�ε
JL S−ST M

(
�wk
∣
∣M
k=1, b, �ε

)
= 1

2

∥
∥
∥
∥

M⊗
k=1

�wk

∥
∥
∥
∥

2

Fro
+ γ

2
�εT�ε

s.t. yi

[

Xi

M∏

k=1

×k �wk + b

]

= 1 − εi , 1 ≤ i ≤ N

⎤

⎥
⎥
⎥
⎥
⎦

(46)

where γ > 0 is a constant. Similar to the soft-margin STM and ν-STM, there is
no closed-form solution for least squares STM. We use the alternating projection
method in STL to obtain the solution of the least squares STM. To have the alter-
nating projection method for the least squares STM, we need to replace the Step
4 in Table 1 by the following optimization problem,

⎡

⎣
min
�w j ,b,�ε

JL S−ST M

(
�wk
∣
∣M
k=1, b, �ε

)
= η

2

∥
∥ �w j

∥
∥2

Fro + γ

2
�εT�ε

s.t. yi
[ �wT

j

(
Xi ×̄ j �w j

)+ b
] = 1 − εi , 1 ≤ i ≤ N

⎤

⎦ (47)

where η = ∏k �= j
1≤k≤M ‖ �wk‖2

Fro.

Theorem 2 In STM, the decision function is defined by a multilinear function

y (X) = sign[X∏M
k=1 ×k �wk + b] with ‖ M⊗

k=1
�wk‖2

Fro ≤ �2and ‖X‖2
Fro ≤ R2. Let

ρ > 0 and ν is the fraction of training measurements with margin smaller than
ρ
/|�|. When STM is obtained from N training measurements ‖Xi‖2

Fro ≤ R2

(1 ≤ i ≤ N), sampled from a distribution P with probability at least 1 − δ
(0 < δ < 1), the misclassification probability of a test measurement sampled from
P is bounded by

ν +
√

λ

N

(
R2�2

ρ2
ln2 N + ln

1

δ

)

(48)

where λ is a universal constant.

Proof This is a direct conclusion from the theorem on the margin error bound
introduced in [28]. More information about other error bounds in SVM can be
found in [2]. ��

6.2 Minimax probability machine versus tensor minimax probability machine

The minimax probability machine (MPM) [16, 31] has become popular. It is re-
ported to outperform the conventional SVM consistently and, therefore, has at-
tracted attention as a promising supervised learning algorithm. MPM focuses on
finding a decision hyperplane, which is H ( �w, b) = {�x | �wT �x + b = 0}, to separate
the positive measurements from the negative measurements (a binary classification
problem) with maximal probability with respect to all distributions modeled by
given means and covarainces, as shown in Fig. 8. MPM maximizes the probability
of correct classification rate (classification accuracy) on the future measurements.
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Fig. 8 MPM separates the positive measurements from the negative measurements by maxi-
mizing the probability of the correct classification for the future measurements. The intersection
point minimizes the maximum of the Mahalanobis distances of the positive and negative mea-
surements, i.e., it has the same Mahalanobis distances to the mean of the positive measurements
and the mean of the negative measurements

For Gaussian-distributed measurements, it minimizes the maximum of the Maha-
lanobis distances of the positive measurements and the negative measurements.
With the given positive measurements �xi (yi = +1) and negative measurements
�xi (yi = −1), MPM is defined as,

⎡

⎢
⎢
⎢
⎣

max
�w,b,δ

JMPM ( �w, b, δ) = δ

s.t.
inf

�xi (yi =+1)∼( �m+,�+)
Pr
{ �wT �xi + b ≥ 0

} ≥ δ

inf
�xi (yi =−1)∼( �m−,�−)

Pr
{ �wT �xi + b ≤ 0

} ≥ δ

⎤

⎥
⎥
⎥
⎦

(49)

Here, the notation �xi (yi = +1) ∼ ( �m+, �+) means the class distribution of
the positive measurements has the mean �m+ and covariance �+. So does the no-
tation �xi (yi = −1) ∼ ( �m−, �−). The classification decision function is given by
y (�x) = sign[ �wT �x + b].

Recently, based on the powerful Marshall and Olkin’s theorem [20], Popescu
and Bertsimas [23] proved a probability bound,

sup
�x∼( �m,�)

Pr {�x ∈ S} = 1

1 + d2
with d2 = inf

�x∈S
(�x − �m)T �−1 (�x − �m) (50)

where �x stands for a random vector, S is a given convex set, and the supremum
is taken over all distributions for �x with the mean value as �m and the covariance
matrix �. Based on this result, Lanckriet et al. [16] reformulated Eq. (49) as:

⎡

⎢
⎢
⎢
⎣

max
�w,b,κ

JMPM ( �w, b, κ) = κ

s.t.
�wT �m+ + b ≥ +κ

√ �wT�+ �w, yi = +1

�wT �m− + b ≤ −κ
√ �wT�− �w, yi = −1

⎤

⎥
⎥
⎥
⎦

(51)
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where the constraint functions in Eq. (51) are second-order cone functions. There
MPM is an SOCP. This problem can be further simplified as

[
min

�w
JMPM ( �w) = √ �wT�+ �w +√ �wT�− �w

s.t. �wT ( �m+ − �m−) = 1

]

(52)

where b is determined by

b∗ = ( �w∗)T �m+ −
√

( �w∗)T �+ ( �w∗)
√

( �w∗)T �+ ( �w∗) +
√

( �w∗)T �− ( �w∗)

(53)

In computer vision research, many objects are represented by tensors. To
match the input requirments in MPM, we need to vectorize the tensors to vectors.
When the training measurements are limited, the vectorization will be a disaster.
This is because MPM meets the matrix singular problem seriously (the ranks of
�+ and �− are deficient). To reduce this problem, we propose the tensor exten-
sion of MPM, i.e., tensor MPM (TMPM). TMPM is a combination of MPM and
STL.

Suppose we have the training measurements Xi ∈ RL1×L2×···×L M (1 ≤ i ≤
N ) and their corresponding class labels yi ∈ {+1,−1}. The decision function
is a multilinear function y (X) = sign[X∏M

k=1 ×k �wk + b], where the projection
vectors �wk ∈ RLk (1 ≤ k ≤ M) and the bias b in TMPM are obtained from

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

max
�wk |M

k=1,b,κ

JMPM

(
�wk
∣
∣M
k=1, b, κ

)
= κ

s.t.

1
N+

(
N∑

i=1

[

I(yi = +1)Xi

M∏

k=1

×k �wk

])

+b ≥ +κ sup
1≤l≤M

√
�wT

l �+;l �wl

1
N−

(
N∑

i=1

[

I(yi = −1)Xi

M∏

k=1

×k �wk

])

+b ≤ −κ sup
1≤l≤M

√
�wT

l �−;l �wl

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(54)
where �+;l is the covariance matrix of the projected measurements (Xi ×̄−l �wl)
for all yi = +1 and �−;l is the covariance matrix of the projected measurements
(Xi ×̄−l �wl) for all yi = −1. The function I(yi = +1) is 1 if yi is +1, otherwise
0. The function I(yi = −1) is 1 if yi is −1, otherwise 0. This problem can be
simplified as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

max
�wk |M

k=1,b,κ

JMPM

(
�wk
∣
∣M
k=1, b, κ

)
= κ

s.t.

M+
M∏

k=1

×k �wk + b ≥ +κ sup
1≤l≤M

√
�wT

l �+;l �wl

M−
M∏

k=1

×k �wk + b ≤ −κ sup
1≤l≤M

√
�wT

l �−;l �wl

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(55)
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where M+ = (
1
/

N+
)∑N

i=1 [I(yi = +1)Xi ], M− = (
1
/

N−
)∑N

i=1
[I(yi = −1)Xi ], N+ (N−) is the number of the positive (negative) measurements.

The Lagrangian for this problem is

L
(

�wk |M
k=1, b, κ, �α

)

= − κ − α1

(

M+
M∏

k=1

×k �wk + b − κ sup
1≤l≤M

√
�wT

l �+;l �wl

)

+ α2

(

M−
M∏

k=1

×k �wk + b + κ sup
1≤l≤M

√
�wT

l �−;l �wl

)

= − κ − α1b

N+
+ α2b

N−
− α1M+

M∏

k=1

×k �wk + α2M−
M∏

k=1

×k �wk

+ α1κ

N+
sup

1≤l≤M

√
�wT

l �+;l �wl + α2κ

N−
sup

1≤l≤M

√
�wT

l �−;l �wl (56)

with Lagrangian multipliers αi ≥ 0 (i = 1, 2). The solution is determined by the
saddle point of the Lagrangian

max
�α

min
�wk

∣
∣M

k=1
,b,κ

L
(

�wk |M
k=1, b, κ, �α

)
(57)

This can be achieved by setting ∂ �w j L = 0, ∂b L = 0, and ∂κ L = 0. It is
not difficult to find that the solution of �w j depends on �wk (1 ≤ k ≤ M , k �=
j). Therefore, there is no closed-form solution for TMPM. We use the proposed
alternating projection method in STL to obtain the solution of TMPM. To have the
alternating projection method for TMPM, we need to replace the Step 4 in Table
1 by the following optimization problem,

⎡

⎢
⎢
⎢
⎣

max
�w j ,b,κ

JMPM( �w j , b, κ) = κ

s.t.
�wT

j (M+×̄ j �w j ) + b ≥ +κ
√

�wT
j �+; j �w j

�wT
j (M−×̄ j �w j ) + b ≤ −κ

√
�wT

j �−; j �w j

⎤

⎥
⎥
⎥
⎦

(58)

This problem is the standard MPM defined in Eq. (51).

6.3 Fisher discriminant analysis versus tensor fisher discriminant analysis

Fisher discriminant analysis (FDA) [6, 8, 14] as shown in Fig. 9 has been widely
applied for classification. Suppose there are N training measurements �xi ∈ RL

(1 ≤ i ≤ N ) associated with the class lables yi ∈ {+1,−1}. There are N+ positive
training measurements and their mean is �m+ = (1/N+)

∑N
i=1 [I(yi = +1)�xi ];

there are N− negative training measurements and their mean can be calculated
from �m− = (1/N−)

∑N
i=1

[
I(yi = −1)�xi

]
; the mean of all training measurements
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Fig. 9 FDA separates the positive measurements from the negative measurements by maximiz-
ing the symmetric Kullback–Leibler divergence between the two classes under the assumption
that the two classes share the same covariance matrix

is �m = (1/N )
∑N

i=1 �xi ; and the covariance matrix of all training measurements
is �. FDA finds a direction to separate the class means well while minimizing
the variance of the total training measurements. Therefore, two quantities need to
be defined, which are: 1) the between-class scatter Sb = ( �m2 − �m1) ( �m2 − �m1)

T:
measuring the difference between the two classes; and 2) the within-class scatter
Sw = ∑N

i=1 (�xi − �m) (�xi − �m)2 = N�: the variance of the total training mea-
surements. The projection direction �w maximizes

[

max
�w

JF D A ( �w) = �wTSb �w
�wTSw �w

]

(59)

This problem is simplified as
[

max
�w

JF D A ( �w) =
∥
∥ �wT ( �m+ − �m−)

∥
∥

√ �wT� �w

]

(60)

According to [37], we know this procedure is equivalent to maximizing the
symmetric Kullback–Leibler divergence (KLD) between the positive and the neg-
ative measurements with identical covariances, so that the positive measurements
are separated from the negative measurements. Based on the definition of FDA,
we know FDA is a special case of the linear discriminant analysis (LDA).

The linear decision function in FDA is y (�x) = sign[ �wT �x + b], where �w is the
eigenvector of �−1 ( �m+ − �m−) ( �m+ − �m−)T associated with the largest eigen-
value and the bias b is calculated by

b = N− − N+ − (N+ �m+ + N− �m−)T �w
N− + N+

(61)

The significance [6, 9] of FDA is: FDA is Bayes optimal when the two classes
are Gaussian distributed with identical covariances.

When objects are represented by tensors, we need to vectorize the tensors to
vectors to match the input requirments in FDA. When the training measurements
are limited, the vectorization will be a disaster for FDA. This is because Sw and
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Sb are both singular. To reduce this problem, we propose the tensor extension of
FDA, i.e., tensor FDA (TFDA). TFDA is a combination of FDA and STL. More-
over, TFDA is a special case of the previous proposed general tensor discriminant
analysis (GTDA) [38].

Suppose we have the training measurements Xi ∈ RL1×L2×···×L M (1 ≤ i ≤
N ) and their corresponding class labels yi ∈ {+1,−1}. The mean of the training
positive meansurements is M+ = (1/N+)

∑N
i=1 [I(yi = +1)Xi ] ; the mean of the

training negative measurements is given by M− = (1/N−)
∑N

i=1 [I(yi = −1)Xi ]
; the mean of all training measurements is M = (1/N )

∑N
i=1 Xi ; and N+(N−)

is the number of the positive (negative) measurements. The decision function is a
multilinear function y (X) = sign[X∏M

k=1 ×k �wk + b], where the projection vec-
tors �wk ∈ RLk (1 ≤ k ≤ M) and the bias b in TFDA are obtained from

⎡

⎢
⎣ max

�wk |M
k=1

JTFDA

(
�wk
∣
∣M
k=1

)
=

∥
∥
∥(M+ − M−)

∏M
k=1 ×k �wk

∥
∥
∥

2

∑N
i=1

∥
∥
∥(Xi − M)

∏M
k=1 ×k �wk

∥
∥
∥

2

⎤

⎥
⎦ (62)

There is no closed-form solution for TFDA. The alternating projection is ap-
plied to obtain the solution for TFDA and we need to replace the Step 4 in Table
1 by the following optimization problem,

⎡

⎢
⎣max

�w j

JTFDA( �w j ) =
∥
∥
∥ �wT

j

[(
M+ − M−

)×̄ j �w j
]∥∥
∥

2

∑N
i=1

∥
∥
∥ �wT

j [(Xi − M) ×̄ j �w j ]
∥
∥
∥

2

⎤

⎥
⎦ (63)

This problem is the standard FDA. When we have the projection vectors
�wk |M

k=1, we can obtain the bias b from

b = N− − N+ − (N+M+ + N−M−)
∏M

k=1 ×k �wk

N− + N+
(64)

6.4 Distance metric learning versus multiple distance metrics learning

Weinberger et al. [49] proposed the distance metric learning (DML) to learn a
metric for k-nearest-neighbor (kNN) classification (see Fig. 10). The motivation
of DML is simple because the performance of kNN is only related to the metric
used for dissimilarity measure. In traditional kNN, this measure is the Euclidean
metric, which fails to capture the statistical charateristics of the training measure-
ments. In DML, the metric is obtained to guarantee: 1) k-nearest neighbors of a
measurement have the identical label with the measurement; and 2) measurements
with different lables are separated from the measurement according to margin
maximization.
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Fig. 10 DML obtains a metric to guarantee: 1) k-nearest neighbors of a measurement have the
identical label with the measurement; and 2) measurements with different lables are separated
from the measurement according to margin maximization

DML is defined by

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

min
�,ξi jl
1≤i, j,l≤N

JDML(�, ξi jl) =
N∑

i=1

N∑

j=1

ηi j (�xi − �x j )
T�(�xi − �x j )

+ c
N∑

i=1

N∑

j=1

ηi j (1 − yil) ξi jl

s.t.

(�xi − �xl)
T � (�xi − �xl) − (�xi − �x j )

T�(�xi − �x j )

≥ 1 − ξi jl , 1 ≤ i, j, l ≤ N

ξi jl ≥ 0, 1 ≤ i, j, l ≤ N

� ≥ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(65)

where ηi j = 1 and yi j = 1 mean that �xi and �x j have the same class label, oth-
erwise 0. The constraint function � ≥ 0 indicates that the maxtrix � is required
to be positive semidefinite, so the problem is an SDP. From the learnt distance
metric �, it is direct to have the linear transformation matrix by decomposing
� = W TW .
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The optimization problem defined in Eq. (65) is equivalent to

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

min
�,ξi jl
1≤i, j,l≤N

JDML(�, ξi jl) = tr(AT� A) + c
N∑

i=1

N∑

j=1

ηi j (1 − yil) ξi jl

s.t.

BT
i jl�Bi jl ≥ 1 − ξi jl , 1 ≤ i, j, l ≤ N

ξi jl ≥ 0, 1 ≤ i, j, l ≤ N

� ≥ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(66)

where A = [√ηi j (�xi − �x j )]L×N 2 (1 ≤ i, j ≤ N ) and Bi jl =
[�xi − �xl , �x j − �xi ]L×2

Suppose we have the training measurements Xi ∈ RL1×L2×···×L M (1 ≤ i ≤
N ) and their corresponding class labels yi ∈ {1, 2, . . . , n}. The multiple distance
metrics learning (MDML) learns M metrics �k = W T

k Wk (1 ≤ k ≤ M) for
Xi |N

i=1 to make the measurements, which have the same (different) labels, and are
as close (far) as possible. The MDML is defined as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

min
Wk |M

k=1,ξi jl
1≤i, j,l≤N

JMDML

(
Wk
∣
∣M
k=1, ξi jl |1≤i, j,l≤N

)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

N∑

i=1

N∑

j=1

ηi j

∥
∥
∥
∥
∥
(Xi − X j )

M∏

k=1

×k Wk

∥
∥
∥
∥
∥

2

Fro

+c
N∑

i=1

N∑

j=1

ηi j (1 − yil) ξi jl

⎤

⎥
⎥
⎥
⎥
⎥
⎦

s.t.

∥
∥
∥
∥
∥
(Xi − Xl)

M∏

k=1

×k Wk

∥
∥
∥
∥
∥

2

Fro

−
∥
∥
∥
∥
∥
(Xi − X j )

M∏

k=1

×k Wk

∥
∥
∥
∥
∥

2

Fro

≥ 1 − ξi jl

ξi jl ≥ 0, 1 ≤ i, j, l ≤ N

W T
k Wk ≥ 0, 1 ≤ k ≤ M

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(67)
As described in STL framework, there is also no closed-form solution for

MDML. The alternating projection method is applied to obtain the solution for
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MDML and we need to replace Step 4 in Table 1 by the following optimization
problem,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

min
Wp,ξi jl
1≤i, j,l≤N

JMDML(Wp, ξi jl |1≤i, j,l≤N )

= tr
(

AT
p�p Ap

)
+ c

N∑

i=1

N∑

j=1

ηi j (1 − yil) ξi jl

s.t.

∥
∥
∥
∥
∥
(Xi − Xl)

M∏

k=1

×k Wk

∥
∥
∥
∥
∥

2

Fro

−
∥
∥
∥
∥
∥

(
Xi − X j

) M∏

k=1

×k Wk

∥
∥
∥
∥
∥

2

Fro

≥ 1 − ξi jl

ξi jl ≥ 0, 1 ≤ i, j, l ≤ N

W T
k Wk ≥ 0, 1 ≤ k ≤ M

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(68)
Here,

Ap =
N∑

i=1

N∑

j=1

√
ηi j matp((Xi − X j )×̄pWp) (69)

and

Bi jl;p = matp((X j − Xl)×̄pWp) (70)

This is because ‖(Xi − Xl)
∏M

k=1 ×k Wk‖2
Fro = tr(matTj ((Xi − Xl)×̄ j W j )� j

mat j ((Xi − Xl)×̄ j W j ))

Derivation

∥
∥
∥
∥
∥
(Xi − Xl)

M∏

k=1

×k Wk

∥
∥
∥
∥
∥

2

Fro

=
[[(

(Xi − Xl)

M∏

k=1

×k Wk

)

⊗
(

(Xi − Xl)

M∏

k=1

×k Wk

)

; (1 : M) (1 : M)

]]

= tr[[([(Xi − Xl)×̄ j W j ] × j W j ) ⊗ ([(Xi − Xl)×̄ j W j ]
× j W j ); (1 : M) (1 : M)]]

= tr(W j [[[(Xi − Xl)×̄ j W j ] ⊗ [(Xi − Xl)×̄ j W j ]; ( j̄)( j̄)]]W T
j )

= tr(W j mat j ((Xi − Xl)×̄ j W j )matTj ((Xi − Xl)×̄ j W j )W T
j )

= tr(matTj ((Xi − Xl)×̄ j W j )W T
j W j mat j ((Xi − Xl)×̄ j W j ))

= tr(matTj ((Xi − Xl)×̄ j W j )� j mat j ((Xi − Xl)×̄ j W j )).

This problem defined in Eq. (68) is the standard DML.
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Fig. 11 Iterative feature extraction model for third-order tensors

7 Iterative feature extraction model based on supervised tensor learning

The iterative feature extraction model (IFEM) based on STL is an extension of
the STL framework for feature extraction and its procedure is similar to the recur-
sive rank-one tensor approximation developed by Shashua and Levin in [29]. An
example of IFEM is given in [39].

Suppose we have the training measurements Xi ∈ RL1×L2×···×L M (1 ≤ i ≤
N ) and their corresponding class labels yi ∈ {+1, −1}. IFEM is defined by

Xi,r = Xi,r−1 − λi,r−1

M∏

k=1

×k �wk,r−1 (71)

λi,r−1 = Xi,r−1

M∏

k=1

×k ( �wk,r−1)
T (72)

⎡

⎢
⎢
⎢
⎣

min
�wk,r |M

k=1,b,�ξ
f
(

�wk,r
∣
∣M
k=1, b, �ξ

)

s.t. yi ci

(

Xi,r

M∏

k=1

×k �wk,r + b

)

≥ ξi , 1 ≤ i ≤ N

⎤

⎥
⎥
⎥
⎦

(73)

where Xi,1 = Xi and λi,0 = 0. The λi,r |R
r=1 (R is the number of the extracted

features in IFEM) is used to represent the original tensor Xi .
From the definition of IFEM, which is defined by Eqs. (71)–(73), we know

that IFEM can be calculated by a greedy approach. The calculation of Xi,r |N
i=1
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Fig. 12 Attention model for image representation

is based on the given Xi,r−1|N
i=1 and �wk,r−1|M

k=1. With the given Xi,r−1|N
i=1 and

�wk,r−1|M
k=1, we can calculate λi,r−1 via Eq. (72). The projection vectors �wk,r |M

k=1
can be obtained by optimizing Eq. (73) through the alternating projection method
in Table 1. The flowchart of the algorithm for feature extraction for third-order
tensors is illustrated in Fig. 11.

With IFEM, we can obtain �wk,r |1≤r≤R
1≤k≤M iteratively. The coordinate values

λi,r |R
r=1 can represent the original tensor Xi . For example, in nearest neighbor-

based recognition, the prototype tensor Xp for each individual class in the database
and the testing tensor Xt to be classified are projected onto the bases to get the pro-
totype vector λp,r |R

r=1 and the testing vector λt,r |R
r=1. The testing tensor class is

found by minimizing the Euclidean distance ε =
√∑R

r=1 (λt,r − λp,r )
2 over p.

8 Experiment

In this section, we provide experiments for image classification with TMPM and
MPM. The experiments demonstrate that tensor representation can reduce the
overfitting problem, i.e., STL is a powerful tool for classification in computer
vision research.

8.1 TMPM for image classification

To categorize images into groups based on their semantic contents is very impor-
tant and challenging. Its fundamental task is the binary classification and thus a
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hierarchical structure can be built according to a series of binary classifiers. As a
result, this semantic image classification can make the growing image repositories
easy to search and browse [24, 25]. The image semantic classification is also of
great help for many applications.

In this STL-based classification experiment, two groups of images are sepa-
rated from each other by a trained TMPM, which plays the role of an example of
the generalized learning machines within the STL framework. The input (repre-
senting features) of TMPM is the region of interest (ROI) within an image, which
is exacted by the attention model in [12, 13, 32] and represented as a third-order
tensor.

The attention model [12, 13] is capable of reproducing human performances
for a number of pop-out tasks [42]. In other words, when a target is different from
its surroundings by its unique orientation, color, intensity, or size, it is always the
first attended location and easy to be noticed by the observer. Therefore, utilizing
the attention model-based ROI to describe an image’s semantic information is
reasonable.

As shown in Fig. 12, representing an attention region from an image consists
of several steps: 1) extracting the salient map as introduced by Itti et al. [12, 13];
2) finding the most attentive region, whose center has the largest value in the
salient map; 3) extracting the attention region by a square, i.e., ROI, in size of
64 × 64; and 4) finally, representing this ROI in the hue, saturation, and value
(HSV) perceptual color space. Consequently, we have a third-order tensor for the
image representation.

Note that although we only select a small region from the image, the size of
the extracted third-order tensor is already as large as 64 × 64 × 3. If we vectorize
this tensor, the dimensionality of the vector will be 12,288. From the following
paragraphs, we will be aware that the sizes of the training/testing sets are only
of hundreds, which are clearly much smaller than 12,288. Therefore, it always
meets the matrix singular problem when a third-order tensor is reformed to comply
with the input requirements (vectors) of conventional learning machines. On the
contrary, our proposed tensor-oriented supervised learning scheme can avoid this
problem directly and meanwhile represent the ROIs much more naturally.

The training set and the testing set for the following experiments are built
upon the Corel photo gallery [47], from which 100 images are selected for each
of the two categories of measurements as shown in Figs. 13 and 14. These 200
images are then processed to extract the third tensor attention features for TMPM
as shown in Figs. 15 and 16.

We choose the Tiger category shown in in Fig. 13 and the Leopard category
shown in Fig. 14 for this binary classification experiment since it is a very difficult
task for a machine to distinguish them although a human being can differentiate a
tiger from a leopard or vice versa easily. Basically, the characteristics of a classi-
fier cannot be examined adequately when facing a simple problem, for example,
classifying grassland pictures from blood pictures. The Tiger and Leopard clas-
sification is carried out in this Section. We choose the top N images as training
sets according to the image IDs, while all remaining images are used to form the
corresponding testing set.

In our experiments, the introduced third tensor attention ROIs can mostly
be found correctly from the images. Some successful results, respectively, being
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Fig. 13 Example images from the Tiger category

extracted from the Tiger category and the Leopard category, are shown in Figs. 15
and 16. By this means, the underlying data structures are kept well for the next
classification step. However, we should note that the attention model sometimes
cannot depict the semantic information of an image. This is mainly because the
attention model always locates the region that is different from its surroundings
and thus might be cheated when some complex or bright background exists. Some
unsuccessful ROIs can also be found from Figs. 15 and 16. It should be empha-
sized that to keep the following comparative experiments fair and automatic, these
wrongly extracted ROIs are not excluded from the training sets. Therefore, it is an-
other challenge for both the conventional learning machine (MPM) and our newly
proposed one (TMPM).
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Fig. 14 Example images from the leopard category

We carried out the binary classification (Tiger and Leopard) experiments upon
the above training and testing sets. The proposed TMPM is compared with the
MPM. The experimental results are shown in Table 2. Error rates for both training
and testing are reported according to the increasing size of the training set (STS)
from 5 to 30 with a step 5.

From the training error rates in Table 2, it can be seen that the traditional
method (MPM) cannot learn a satisfying model for classification when the size
of the measurement set is much smaller than the features’ dimensionality in the
learning state. However, the machine learning algorithm under the proposed STL
framework (TMPM) has a good characteristic on the volume control according to
the computational learning theory and its real performances.
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Fig. 15 One hundred ROIs in the Tiger category

Also from Table 2, based on the testing error rates of the comparative ex-
periments, the proposed TMPM algorithm is demonstrated to be more effective
to represent the intrinsic discriminative information (in the form of the third-
order ROIs). TMPM learns a better classification model for future data classifi-
cation than MPM and thus has a satisfactory performance on the testing set. It is

Table 2 TMPM versus MPM

Training error rate Testing error rate

STS TMPM MPM TMPM MPM

5 0.0000 0.4000 0.4600 0.5050
10 0.0000 0.5000 0.4250 0.4900
15 0.0667 0.4667 0.3250 0.4150
20 0.0500 0.5000 0.2350 0.4800
25 0.0600 0.4800 0.2400 0.4650
30 0.1167 0.5000 0.2550 0.4600
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Fig. 16 One hundred ROIs in the Leopard category

observed that the TMPM error rate is a decreasing function of the size of the train-
ing set. This is actually consistent with the statistical learning theory.

We also evaluate TMPM as a sample algorithm of the proposed STL frame-
work. Two important issues in machine learning are studied, namely, the conver-
gence property and the insensitiveness to the initial values.

Fig. 17 shows that as a sample algorithm of the STL framework, TMPM con-
verges efficiently by the alternating projection method. Usually, 20 iterations are
enough to achieve the convergence.

Three subfigures in the left column of Fig. 17 show tensor-projected position
values of the original general tensors with an increasing number of learning it-
erations using 10, 20, and 30 training measurements for each class, respectively,
from top to bottom. We find that the projected values converge at stable values.
Three subfigures in the right column of Fig. 17 show the training error rates and
the testing error rates according to the increasing number of learning iterations
by 10, 20, and 30 training measurements for each class, respectively, from top to
bottom.
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Fig. 17 TMPM converges effectively

Based on all subfigures in Fig. 17, it can be found that the training error and
the testing error are converged at some stable values. Therefore, upon these obser-
vations, we also empirically justified the convergence of the alternating projection
method for TMPM. The theoretical proof is given in Theorem 1.

Many learning algorithms converge at different destinations with different
initial parameter values. This is the so-called local minimal problem. However,
the developed TMPM does not slump into this local minimal problem, which is
demonstrated by a set of experiments (with 100 different initial parameters, 10
learning iterations, and 20 training measurements). From the theoretical view, the
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Fig. 18 TMPM is stable with different initial values

TMPM is also a convex optimization problem, so the solution to TMPM is unique.
Figure 18 shows this point. The training error rates and the testing error rates are
always 0.05 and 0.235, respectively.

9 Conclusion

In this paper, the vector-based learning is extended to accept tensors as input. The
result is the supervised tensor learning (STL) framework, which is the multilinear
extension of the convex optimization-based learning. To obtain the solution of an
STL-based learning algorithm, the alternating projection method is designed.

Based on STL and its alternating projection optimization algorithm, we il-
lustrate several examples. That is, we extend the soft-margin support vector ma-
chines (SVM), the ν-SVM, the least squares SVM, the minimax probability ma-
chine (MPM), the Fisher discriminant analysis (FDA), the distance metric learning
(DML) to their tensor versions, which are the soft-margin support tensor machine
(STM), the ν-STM, the least squares STM, the tensor MPM (TMPM), the tensor
FDA (TFDA), and the multiple distance metrices learning (MDML). Based on
STL, we also introduce a method for feature extraction through an iterative way,
i.e., we develop the iterative feature extraction model (IFEM). Finally, we imple-
ment TMPM for image classification. By comparing TMPM with MPM, we know
TMPM reduces the overfitting problem in MPM.
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