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Abstract. A family of probability density functions (pdfs) is defined on the unit hyper-
sphere Sn. The parameter space for the pdfs is G(d, n + 1)× R≥0, for 1 ≤ d ≤ n, where
G(d, n + 1) is the Grassmannian of d dimensional linear subspaces in Rn+1 and R≥0 is
the range of values for a concentration parameter. This family of pdfs generalizes the
Watson distribution on the sphere S2. It is shown that the pdfs are tractable, in that
i) a given pdf can be sampled efficiently, ii) the parameters of a pdf can be estimated
using maximum likelihood, and iii) the Kullback-Leibler divergence and the Fisher-Rao
metric on G(d, n + 1) × R≥0 have simple forms. A wide range of shapes of the pdfs can
be obtained by varying d and the concentration parameter.

The pdfs are used to model clusters of feature vectors on the hypersphere. The clusters
are compared using the Kullback-Leibler divergences of the associated pdfs. Experiments
with the mnist, Human Activity Recognition and Gas Sensor Array Drift datasets show
that good results can be obtained from clustering algorithms based on the Kullback-
Leibler divergence, even if the dimension n of the hypersphere is high.

Keywords: classification; Fisher-Rao metric; generalised Watson distribution; Grassman-
nian; hypergeometric function; hypersphere; Kullback-Leibler divergence.

1 Introduction

The modelling of clusters of vectors is a fundamental task in data analysis. In many cases
the vectors in a cluster have a common source which can form a basis for classification.
In the probabilistic approach to clustering the models are probability density functions
(pdfs) chosen from a family of pdfs which is parameterised by the points in a manifold.
Each point θ in the manifold defines a unique pdf in the family of pdfs. Each cluster of
vectors has an associated pdf θ that summarises the essential properties of the cluster.
The pdfs are used to compare the different clusters. For example, if two clusters are
modeled by similar pdfs θ1 and θ2, then this suggests that the clusters should be merged.
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If a new data vector is obtained, then it can be assigned to the cluster with a pdf that
has the highest value of the likelihood, given the vector.

In applications, it is essential that the time complexity for estimating the parameter
for a cluster and the time complexity for the calculation of the similarity between two pa-
rameter values should both be low. In addition, the measure of the similarity between two
parameter values should be meaningful. In particular, the measure should be independent
of the choice of parameterisation of the manifold. If ψ is an alternative parameterisation,
then the similarity calculated using the parameters θ1 and θ2 should be the same as the
similarity calculated using the parameters ψ(θ1) and ψ(θ2).

The natural candidate for measuring the similarity between θ1 and θ2 is the Kullback-
Leibler divergence D(θ1‖θ2) (Amari 1985; Cover & Thomas 2006). The abbreviation
KL divergence is used consistently from this point onwards. It is straightforward to
show that D(θ1‖θ2) = D(ψ(θ1)‖ψ(θ2)). However, there are relatively few parameterised
families of pdfs for which the Kullback-Leibler divergence can be calculated with a low
time complexity.

Many datasets consist of vectors in a high dimensional Euclidean space such that the
directions of the vectors are more important than their lengths. Examples of such data
include text (Dhillon & Modha 2001; Banerjee et al. 2005a; Hamsici & Martinez 2007),
gene expression (Banerjee et al. 2005a; Hamsici & Martinez 2007) and face verification
(Wang et al. 2017).The non-zero vectors in the Euclidean space Rn+1 can be scaled
to obtain vectors in the unit hypersphere Sn centred at the origin of Rn+1. Pewsey &
Garcia-Portugués (2021) provide a detailed review of the different types of data on the
unit hypersphere, with a wide range of applications, including preshapes and gait analysis.

A new family of pdfs for modelling clusters of vectors on the unit hypersphere is defined
in Section 3.2 below. The pdfs are generalisations of the Watson distribution (GWD) on
S2. In applications to classification the vectors in a cluster are assumed to be in or near
to the intersection of Sn with a linear subspace L in Rn+1. The components of the vectors
normal to L have a Gaussian penalty. The GWD has a low time complexity, suitable
for practical applications. The parameters defining L are estimated by using the singular
value decomposition to find the maximum likelihood. The GWD has an additional scalar
parameter, the concentration, which is estimated using a single implicit equation. The
similarity of two given pdfs is measured using the KL divergence, which has a simple form
depending on n, the dimension d of the two subspaces L1 and L2, the two concentration
parameters and a single scalar parameter, tr(A) in (20), which is calculated from L1 and
L2.

The dimension d of the linear subspace L is chosen to fit the application. If d is too
small, then the concentration is likely to be low. Conversely, if d is too large, then the
concentration is likely to be large.

1.1 Overview

Related work on the clustering of vectors in high dimensional hyperspheres is described in
Section 2. The pdfs for the GWD are defined in Section 3 and an algorithm for parameter
estimation based on maximum likelihood is defined. An efficient method for sampling
from a pdf for the GWD is described. The KL divergence is defined in Section 4. The
expression for the KL divergence is simplified, a symmetrised version of the Kullback-
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Leibler divergence is defined and an expression for the Fisher-Rao metric is obtained.
Seven clustering algorithms are defined in Section 5. The algorithms include Kmeans

(MacKay 2005) and Spkmeans (Dhillon & Modha 2001). Three of the remaining five
algorithms use a symmetrised version of the KL divergence to measure the similarity of
the model pdfs for any two given clusters. If the symmetrized KL divergence is small then
the relevant clusters may be merged. The sixth algorithm uses maximum likelihood to fit
pdfs to clusters. The final algorithm uses a mixture of von Mises-Fisher distributions to
cluster data.

In Section 6 the clustering algorithms are tested on three databases, namely mnist1

(LeCun et al. 1998), Human Activity Recognition2 (Anguita et al. 2013) and Gas Sensor
Array Drift3 (Vergara et al. 2012). The accuracy of the results is discussed using the
normalised mutual information (NMI). The best results are obtained from an algorithm
(LSC-KL III) that uses the symmetrised KL divergence together with multiple initialisa-
tions to prevent the vectors forming unchangeable but erroneous clusters.

1.2 Appendices

There are four appendices. Appendix A contains the calculations necessary for the simpli-
fication of the KL divergence in Section 4. Appendix B contains additional calculations
that are required to simplify the KL divergence still further and to obtain expressions
for relevant quantities such as the scale factor for the GWD pdfs. Appendix C contains
estimates of certain terms. The estimates are accurate if the concentration parameter is
large. Appendix D reports experiments that use the Accuracy Rate or the Rand Index
for classification in place of the NMI.

1.3 Supplement

The database mnist contains images of hand drawn digits in the range 0 to 9. A pdf is
estimated for each digit i. The estimated pdf is then sampled. The supplement contains
30 sampled images, with three images for each value of i. It can be seen that the ith
sampled image contains some of the features of the ith digit.

2 Related Work

Detailed surveys of probabilistic models for data on the hypersphere can be found in
Chikuse (2003), Ley & Verdebout (2017), Ley & Verdebout (2018), Mardia & Jupp (1999),
Mardia (1975) and Pewsey & Garcia-Portugués (2021). The last named survey is up to
date and thorough. It includes a survey of the relevant publicly available software.

Section 2.1 describes related work on pdfs defined on the hypersphere. Section 2.2
describes related work on clustering.

1yann.lecun.com/exdb/mnist
2http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
3http://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset
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2.1 Pdfs on the hypersphere

This subsection briefly reviews related work on families of pdfs defined on the hypersphere
Sn for arbitary values of n ≥ 2. In the definitions of the pdfs it is assumed that the measure
for integration, dωn, is induced on Sn by the Lebesgue measure on the Euclidean space
Rn+1. The terms cvmf , crs, ctmf , etc. in the expressions for the pdfs are scale factors
chosen such that the integral of the pdf in question over Sn is unity.

2.1.1 Von Mises-Fisher distribution.

Let µ be a vector in Sn and let κ be a non-negative real number. The von Mises-Fisher
distribution is defined by

p(x|µ, κ) dωn = cvmf exp
(
κµ>x

)
dωn, x ∈ Sn,

in which cvmf is the scale factor and κ is a concentration parameter. Banerjee et al.
(2005a) define an expectation maximisation (EM) algorithm for clustering vectors on Sn

using a mixture of von Mises-Fisher distributions. Experiments on computer generated
data, text data and gene expressions are reported.

2.1.2 Rotationally symmetric distributions

Let µ be a vector in Sn and let g be a function from [−1, 1] to [0,∞). The pdf

p(x|µ, g) dωn = crsg(µ>x) dωn, x ∈ Sn

is said to be rotationally symmetric (Garcia-Portugués et al. 2020). For example, the
von Mises-Fisher distribution is rotationally symmetric, with g(t) = exp(κt), κ ≥ 0.
Garcia-Portugués et al. (2020) define two tests for rotational symmetry, given the value
of µ.

2.1.3 Tangent distributions

Garcia-Portugués et al. (2020) define two extensions of the rotationally symmetric dis-
tributions, namely the tangent von Mises-Fisher distribution and the tangent elliptical
distribution. Let µ be a vector in Sn and let Γµ be an (n + 1) × n matrix such that
the columns are an orthonormal basis of the orthogonal complement of µ. Let uµ(x) be
defined by

uµ(x) = ‖Γ>µx‖−1Γ>µx, x ∈ Sn,
where ‖.‖ is the Euclidean norm. Let κ be a non-negative real number and let ν be
a vector in Sn−1. The tangent von Mises-Fisher distribution has the pdf obtained by
Garcia-Portugués et al. (2020) in their Theorem 2,

p(x|µ, g) dωn = ctmfg(µ>x) exp
(
κν>uµ(x)

)
dωn, x ∈ Sn.

Let Λ be an n×n symmetric positive definite matrix such that the trace tr(Λ) of Λ equals
n. The tangent elliptical distribution has the pdf obtained by Garcia-Portugués et al.
(2020) in their Theorem 1,

p(µ, g,Λ) dωn = cteg(µ>x)
(
u>µ (x)Λ−1uµ(x)

)−n/2
dωn, x ∈ Sn.
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These two tangent distributions are alternatives in tests for rotational symmetry, given
that µ is unknown (Garcia-Portugués et al. 2020).

2.1.4 Spherical homoscedastic distributions

Two distributions on Sn are said to be spherically homoscedastic if their Bayes decision
boundary is given by one or more hyperplanes. Hansici & Martinez (2007) show that
the decision boundary for two spherically homoscedastic distributions coincides with the
decision boundary for the Gaussian approximations to the two distributions.

Two von Mises-Fisher distributions with parameters µ1, κ1 and µ2, κ2 are spherically
homoscedastic if κ1 = κ2 and µ2 = R>µ1, where R is in SO(n+ 1).

Let A be a symmetric (n + 1) × (n + 1) matrix. The Bingham distribution on Sn

(Bingham 1974) is defined by

p(x|A) dωn = cb exp(x>Ax) dωn, x ∈ Sn. (1)

Two Bingham distributions with parameters A1 and A2 are spherically homoscedastic if
A2 = R>A1R, where R is the rotation of a plane spanned by any two of the eigenvectors
of A1. Full details are given by Hamsici & Martinez (2007).

2.1.5 Scaled von Mises-Fisher distribution

Let a ∈ Rn+1 be a vector with components ai such that ai > 0, 1 ≤ i ≤ n + 1 and such
that the product of the ai is unity. Let h(x, a) be the function defined by

h(x, a) =
n+1∑
j=1

(xj/aj)
2, x ∈ Sn,

and let Ta : Sn → Sn be the transformation defined by

Ta(x) = h(x, a)−1/2(a−11 x1, . . . , a
−1
n+1xn+1)

>, x ∈ Sn.

The transformation Ta is continuous and invertible. Let Tax have the von Mises-Fisher
distribution with concentration parameter κ. Then the pdf for x is

p(x|Ta, κ) dωn = csh(x, a)−n/2 exp
(
h(a, x)−1/2κx1/a1

)
dωn, x ∈ Sn.

The pdf p(x|Ta, κ) is discussed in detail by Scealy & Wood (2019).

2.1.6 Elliptically symmetric angular Gaussian distribution

Let Φ(x|µ,C) be the probability density function for the Gaussian distribution in Rn+1

with expected value µ and covariance C, such that Cµ = µ and det(C) = 1. The
elliptically symmetric angular Gaussian distribution (ESAG) is defined by

p(x|µ,C) dωn =

(∫ ∞
0

Φ(rx, µ, C)rndr

)
dωn, x ∈ Sn.

Paine et al. (2017) show that the ESAG is tractable, in that the distributions can be
simulated and the likelihood function can be computed, in both cases with a low time
complexity.
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2.2 Clustering on the hypersphere

Banerjee et al. (2005b) note that the cosine similarity measure of pairs of vectors yields
good results for the classification of text documents. The cosine similarity depends on
the directions of the two vectors but is independent of their lengths. In effect, the vec-
tors are scaled to unit length. Banerjee et al. (2005a) describe a method for clustering
vectors on the unit hypersphere based on von Mises-Fisher distributions. An expectation
maximisation algorithm is used to find the clusters.

Dhillon & Modha (2001) describe the spherical Kmeans algorithm (Spkmeans) for
clustering vectors on a hypersphere and apply it to the clustering of text documents. The
dimension of the feature vectors may exceed 1000. Each cluster has a central concept
vector. The linear subspace spanned by the concept vectors is found and the feature
vectors are projected into it.

Hamsici & Martinez (2007) show that in some special cases the Bayes decision bound-
ary for two clusters on a hypersphere Sn is also the Bayes decision boundary when the
same clusters are modelled by Gaussian distributions defined on Rn+1, as noted in Section
2.1.4. The hypersphere model for the data and the Gaussian model in Rn+1 for the same
data yield the same results for the classification of test vectors.

Zhao & Song (2018) use a heat kernel to measure the similarity between pairs of
vectors on a hypersphere. The vectors are clustered using the heat kernel and a support
vector machine. Yang et al. (2019) use the KL divergence in a hierarchical clustering
method applied to geological data.

3 Generalised Watson Distribution

The parameter space for the pdfs in the generalised Watson distribution (GWD) is
G(d, n + 1) × R≥0, where G(d, n + 1) is the Grassmann manifold for d-dimensional sub-
spaces in Rn+1 and R≥0 is the set of non-negative real numbers. The relevant properties
of the Grassmann manifold are briefly reviewed in Section 3.1. The family of pdfs of the
GWD is defined in Section 3.2. The action of the group of orthogonal matrices on the
family of pdfs is described in Section 3.3. A maximum likelihood method for parameter
estimation is described in Section 3.4. An efficient algorithm for sampling from the pdfs
is summarised in Section 3.5.

3.1 Grassmann manifold

Information about the Grassmann manifold (Grassmannian) can be found in Chikuse
(2003) and in Zhang et al. (2018). The Grassmann manifold G(d, n+ 1) of d dimensional
linear spaces in Rn+1 is smooth and has dimension d(n − d + 1). Each d-dimensional
subspace L of Rn+1 is uniquely determined by the orthogonal projection matrix P with
range L. Conversely, L uniquely determines P . The elements of G(d, n+1) will be referred
to as projection matrices or as d-dimensional subspaces, depending on the context.

An (n + 1) × (n + 1) matrix P is an orthogonal projection of Rn+1 onto a subspace
of dimension d if and only if P is symmetric, P 2 = P and P has rank d. Let U be an
(n + 1) × (n + 1) orthogonal matrix. The function P 7→ U>PU is a diffeomorphism of
G(d, n+ 1).

6



3.2 Definition of the GWD

The unit hypersphere Sn is given the measure dωn induced on it by the Lebesgue measure
in Rn+1. Let I be the (n+ 1)× (n+ 1) identity matrix and let P be a projection matrix
in G(d, n + 1). The pdf p(x|P, κ) for the GWD, conditional on P and the concentration
parameter κ, is defined for x in Sn by

p(x|P, κ) dωn = Cn(P, κ) exp(−(κ/2)‖(I − P )x‖2) dωn, x ∈ Sn, κ ∈ R≥0, (2)

where ‖.‖ is the Euclidean norm. The term Cn(P, κ) is a normalising factor to ensure
that the integral of p(x|P, κ) over Sn is unity. The parameter θ discussed in Section 1
is in this case the pair (P, κ). Let L be the d dimensional subspace corresponding to P .
The pdf (2) is constant for x in L ∩ Sn and this constant value is the maximum value of
the pdf on Sn. If the concentration parameter κ is large, then p(x|P, κ) is concentrated
near to L ∩ Sn. If κ is small, then p(x|P, κ) approaches a uniform density on Sn.

The pdfs of the GWD are contained in the family of Bingham pdfs (1). If κ 6= 0 and
if A = −(κ/2)(I −P ) +λI in (1) for any given value of λ, then the pdf (2) is obtained. If
P has rank 1 or rank n, then (2) reduces to a Watson distribution (Sra 2018; Sra & Karp
2013). If n = 2 and the projection P has rank 2 then the pdf (2) is similar to the girdle
distribution defined by Selby (1964) in that the pdf is constant and a maximum on the
great circle formed by the intersection of S2 with the plane formed by the image of P .

The advantages of the generalised Watson distribution are i) the pdfs are much more
computationally tractable than the pdfs for a general Bingham distribution; ii) a wide
range of different forms of the pdfs are available as d, n and κ vary, iii) the KL divergence
can be calculated in closed form, iv) if κ is large then the maximum likelihood values of
the parameters P and κ can be estimated accurately using the well known singular value
decomposition and some elementary arithmetic.

3.3 Action of the orthogonal group

Let U be an (n+ 1)× (n+ 1) orthogonal matrix. It follows from (2) that

p(x|U>PU, κ) = Cn(U>PU, κ)Cn(P, κ)−1p(Ux|P, κ). (3)

The integral of p(Ux|P, κ) over Sn is equal to 1 because the measure dωn is invariant under
the action of the orthogonal matrix U . On integrating (3) over Sn using the measure dωn,
it follows that

1 =

∫
Sn

p(x|U>PU, κ) dωn,

= Cn(U>PU, κ)Cn(P, κ)−1
∫
Sn

p(Ux|P, κ) dωn,

= Cn(U>PU, κ)Cn(P, κ)−1. (4)

If P is fixed, then any projection matrix in G(d, n+1) can be expressed in the form U>PU
for an appropriate choice of U , thus it follows from (4) that Cn(P, κ) is independent of P .
Equation (3) then yields

p(x|U>PU, κ) = p(Ux|P, κ), x ∈ Sn. (5)
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The notation Cn(P, κ) is replaced by Cn(κ).
If κ1 < κ2, then

exp(−(κ1/2)‖(I − P )x‖2) ≥ exp(−(κ2/2)‖(I − P )x‖2).

It follows that Cn(κ1) ≤ Cn(κ2), thus

∂Cn
∂κ
≥ 0, κ > 0. (6)

3.4 Parameter estimation

Let x(i) for 1 ≤ i ≤ N , be a set of N samples on Sn. A maximum likelihood algorithm
for estimating the parameters of the GWD pdf p(x|P, κ) is described. Similar calculations
for the von Mises-Fisher distribution are described by Banerjee et al. (2005a), Hamsici &
Martinez (2007) and Sra (2018).

Let X be an (n+ 1)×N data matrix with column vectors x(i). It is assumed that the
x(i) are sampled independently from the pdf (2) with P and κ fixed. The log likelihood
function for X is given by

L(X,P, κ) = N ln(Cn(κ))− 1

2
κ

N∑
i=1

‖(I − P )x(i)‖2.

The log likelihood is maximised by first finding a projection matrix P̂ that minimises

N∑
i=1

‖(I − P )x(i)‖2

and then finding the solution κ̂ to the equation

N
∂

∂κ
ln(Cn(κ)) =

1

2

N∑
i=1

‖(I − P̂ )x(i)‖2, κ ∈ R≥0. (7)

The pair P̂ , κ̂ are maximum likelihood estimates of the parameters P , κ in (2).
The projection matrix P̂ can be obtained from the singular value decomposition of X.

In detail, let the SVD of X be X = UΣV >, where U is an (n + 1) × (n + 1) orthogonal
matrix, Σ is a diagonal (n+ 1)×N matrix such that Σ11 ≥ Σ22 ≥ . . . and V is an N ×N
orthogonal matrix. It follows that

N∑
i=1

‖(I − P )x(i)‖2 = ‖(I − P )UΣV >‖2,

= ‖(I − U>PU)Σ‖2,

thus I − U>P̂U = D, where D is the (n+ 1)× (n+ 1) projection matrix defined by

Dij =

{
1 d+ 1 ≤ i ≤ n+ 1 and j = i
0 otherwise.
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It follows that P̂ = U(I −D)U>.
If the concentration parameter κ is not too large, then the implicit equation (7) can

be solved for κ using standard numerical methods. If κ is large, let R(κ) be the function

R(κ) = 2
∂

∂κ
ln(Cn(κ)), κ ≥ 0. (8)

It is shown in Appendix C that R(κ) is approximated by

R(κ) = κ−1(n− d+ 1)(1 +O(κ−1)), κ� 0. (9)

It follows from (7), (8) and (9) that if the maximum likelihood value of κ is sufficiently
large, then it is closely approximated by

κ̂ = (n− d+ 1)

(
N−1

N∑
i=1

‖(I − P̂ )x(i)‖2
)−1

.

The function κ 7→ R(κ) is investigated numerically in Fig. 1. The left-most column
in Fig. 1 shows graphs of the function κ 7→ κ−1(n − d + 1) together with sample points
obtained from (8). The sample points are near to the relevant graph for κ ≥ 1000. The
middle column shows graphs of the function

κ 7→ ln(abs
(
R(κ)− κ−1(n− d+ 1))

)
The graphs decrease rapidly for κ ≥ 500.

Let R̃(κ) = κ−1(n − d + 1). Let ∆κ be a perturbation of κ such that R̃(κ + ∆κ) is
equal to the true value R(κ). A first order approximation to R̃(κ) yields

∆κ = abs
(

(R(κ)− R̃(κ))(dR̃(κ)/dκ)−1
)
. (10)

The right-most column in Fig. 1 shows graphs of the function κ 7→ ∆κ, as defined by
(10). The graphs tend to flatten for κ ≥ 2000. This suggests that the fractional error,
∆κ/κ tends to zero as κ becomes large.

3.5 Sampling

Kent et al. (2018) describe an acceptance rejection method for sampling from any Bing-
ham distribution, including the distributions defined by (2). However, a simpler method
based on Saw (1978) is available for the generalised Watson distributions. It is shown in
this subsection that a sample from (2) can be obtained by combining three samples from
tractable distributions, namely two samples from hyperspheres with uniform densities and
a sample from a distribution defined numerically on [0, π/2].

In view of (5) it suffices to sample from the pdf p(x|Q, κ) where the (n+ 1)× (n+ 1)
projection matrix Q is defined by

Qij =

{
1 1 ≤ i ≤ d and j = i
0 otherwise.

(11)
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Figure 1: Numerical investigation of the function κ 7→ R(κ). The parameters are n = 783,
and d = 10, 20, 50. First column: samples from (8) are compared with κ 7→ κ−1(n−d+1).
Second column: the log difference gap between R(κ) and the function κ 7→ κ−1(n−d+1).

Third column: graphs of κ 7→ abs
(

(R(κ)− R̃(κ))(dR̃(κ)/dκ)−1
)

.
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Following Saw (1978), Section 1, let q(x̃|Q, κ) be the pdf on Rn+1 defined by

q(x̃|Q, κ) dx̃ =(
2(n−1)/2Γ((n+ 1)/2)

)−1
p(‖x̃‖−1x̃|Q, κ) exp

(
−‖x̃‖2/2

)
dx̃, x̃ ∈ Rn+1. (12)

The notation x̃ is used in (12) to indicate a vector in Rn+1. The notation x is reserved
for vectors in Sn. On expressing q(x̃|Q, κ) in polar coordinates, it is apparent that if s in
Rn+1 is a sample from q(x̃|Q, κ), then ‖s‖ and ‖s‖−1s are independent and ‖s‖−1s is a
sample from p(x|Q, κ).

It is shown that sampling from q(x̃|Q, κ) is tractable. Let y in Rd and z in Rn−d+1 be
vectors such that x̃ = (y>, z>)>. Let r1, r2 be defined by r1 = ‖y‖, r2 = ‖z‖ and let dω1

and dω2 be the Lebesgue measures in Rd and Rn−d+1 respectively. It is noted that

dx̃ = dydz = rd−11 rn−d2 dr1dr2dω1dω2.

It follows that

q(x̃|Q, κ)dx̃ = q(y, z, |Q, κ)rd−11 rn−d2 dr1dr2dωd−1dωn−d, x̃ ∈ Rn+1.

In order to sample from q(x̃|Q, κ) it is sufficient to sample points wd−1 from the hyper-
sphere Sd−1 and wn−d from Sn−d, and to sample r1, r2 from the pdf

c exp
(
−κr22(2(r21 + r22))

−1 − (r21 + r22)/2
)
rd−11 rn−d2 dr1dr2, (13)

where c is a scale factor. The pdf (13) is simplified by setting r1 =
√
u cos(φ), r2 =√

u sin(φ), to yield

2−1c exp

(
−1

2
κ sin2(φ)

)
exp

(
−1

2
u

)
cosd−1(φ) sinn−d(φ)u(n−1)/2dudφ. (14)

It is apparent from (14) that u and φ are independent. The random variable u has a
gamma distribution and φ has a distribution on [0, π/2] which can be sampled numerically.
In fact, the sample u is not required, because p(x|P, κ) is defined only for unit vectors x.

4 Kullback-Leibler Divergence

The Kullback-Leibler divergence is a special case of the Bregman divergence (Banerjee et
al. 2005b). It is the only divergence that has a minimisation property based on a mean
value and that satisfies the data processing inequality (Painsky & Wornell 2019). The
KL divergence for a given pair of pdfs is the expected value of the log likelihood ratio
for the two pdfs (Amari 1985; Cover & Thomas 2006; MacKay 2005). It gives a way of
comparing two pdfs that does not depend on the choice of parameterization. Kurz et
al. (2016) establish a link between the KL divergence and moment matching for the von
Mises and the Watson distributions.

An expression for the KL divergence from p(x|P2, κ2) to p(x|P1, κ1) is obtained in
Section 4.1 and simplified in Section 4.2. Section 4.3 describes a symmetrical version
of the KL divergence which is used in the clustering algorithms described in Sections
5. The Fisher-Rao metric associated with the KL divergence is obtained in Section 4.4.
Background values for the KL divergence are discussed in Section 4.5.
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4.1 Definition of the KL divergence

Let P be an orthogonal projection matrix in G(d, n+ 1) and let E be an (n+ 1)× (n+ 1)
symmetric matrix such that P+E is in G(d, n+1). The KL divergence D(P, κ1‖P+E, κ2)
from p(x|P + E, κ2) to p(x|P, κ1) is defined by

D(P, κ1‖P + E, κ2) =

∫
Sn

p(x|P, κ1) ln(p(x|P, κ1)/p(x|P + E, κ2)) dωn. (15)

Let U be an (n + 1) × (n + 1) orthogonal matrix. It follows from (5) and (15) that the
KL divergence is invariant under the action of U on G(d, n+ 1), in that

D(U>PU, κ1‖U>(P + E)U, κ2) =

=

∫
Sn

p(x|U>PU, κ1) ln(p(x|U>PU, κ1)/p(x|U>(P + E)U, κ2)) dωn,

=

∫
Sn

p(Ux|P, κ1) ln(p(Ux|P, κ1)/p(Ux|P + E, κ2)) dωn,

= D(P, κ1‖P + E, κ2). (16)

4.2 Expression for the KL divergence

An expression for the KL divergence D(Q, κ1‖Q + E, κ2) is obtained, where Q is the
matrix defined by (11) and where E is an (n+ 1)× (n+ 1) matrix of the form

E =

(
−A C
C> B

)
(17)

such that Q+E is in G(d, n+1). The matrix A is of size d×d, B is (n−d+1)×(n−d+1)
and C is d × (n − d + 1). The matrices E, A, B are symmetric. The KL divergence
D(P1, κ1‖P2, κ2) for any two projection matrices P1 and P2 can be obtained from a KL
divergence of the form D(Q, κ1‖Q+E, κ2) by choosing an orthogonal matrix U such that
U>P1U = Q, noting that

D(P1, κ1‖P2, κ2) = D(U>P1U, κ1‖U>P2U, κ2) = D(Q, κ1‖Q+ (U>P2U −Q), κ2),

and setting E = U>P2U −Q.
Let x be a point on the hypersphere Sn and let y in Rd and z in Rn−d+1 be points

such that x = (y>, z>)>. Let 〈.〉1 indicate integration over Sn with weight p(x|Q, κ1). It
follows from (15) that

D(Q, κ1‖Q+ E, κ2) =

〈
ln

(
Cn(κ1) exp(−κ1‖z‖2/2)

Cn(κ2) exp(−κ2‖(I −Q− E)x‖2/2)

)〉
1

,

= ln

(
Cn(κ1)

Cn(κ2)

)
− 1

2
κ1〈‖z‖2〉1 +

1

2
κ2(〈‖z‖2〉1 − 2〈x>E(I −Q)x〉1 + 〈‖Ex‖2〉1). (18)

It is convenient to define the function g(d, n, κ1) by

g(d, n, κ1) = d−1〈‖y‖2〉1 − (n− d+ 1)−1〈‖z‖2〉1. (19)
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Expressions for 〈x>E(I −Q)x〉1 and 〈‖Ex‖2〉1 are obtained in Appendix A. It follows
from (33) and (35) in Appendix A, and from (18) and (19) that

D(Q, κ1‖Q+E, κ2) = ln (Cn(κ1)/Cn(κ2))+
1

2
(κ2−κ1)〈‖z‖2〉1+

1

2
tr(A)κ2g(d, n, κ1), (20)

where tr(A) is the trace of the matrix A. It is apparent from (20) that the KL divergence
depends on E only through the single scalar parameter tr(A). Expressions for 〈‖z‖2〉1
and 〈‖y‖2〉1 are given by the equations (48) and (49) respectively in Appendix B.

4.3 Symmetry

The KL divergence (15) is in general not symmetric, in that the value of the KL divergence
may change if P , κ1 and P +E, κ2 in (15) are interchanged. However, the KL divergence
is symmetric if the two pdfs have the same concentration parameter, κ1 = κ2. This
symmetry is a consequence of the following result: let P1 and P2 be projections and let
κ1 and κ2 be the corresponding concentrations. Then it follows that

D(P1, κ1‖P2, κ2) = D(P2, κ1||P1, κ2). (21)

It suffices to consider the case P1 = Q, P2 = Q+E, where Q is defined by (11) and E
is defined by (17). Let U be an orthogonal matrix such that U>(Q+E)U = Q. It follows
from (16) that

D(Q+ E, κ1‖Q, κ2) = D(Q, κ1‖U>QU, κ2) = D(Q, κ1‖Q+ (U>QU −Q), κ2).

It follows from the definition of U that E = UQU> −Q. Let Ẽ be the matrix defined by

Ẽ = U>QU −Q.

It suffices to prove that

D(Q, κ1‖Q+ Ẽ, κ2) = D(Q, κ1‖Q+ E, κ2).

Let Ẽ have the same block structure as E, with blocks Ã, B̃, C̃. It follows from (20)

that it suffices to prove that tr(A) = tr
(
Ã
)

. Let the orthogonal matrix U have the block

structure

U =

(
U(1) U(2)
U(3) U(4)

)
,

in which the U(i) have the respective dimensions d× d, d× (n− d + 1), (n− d + 1)× d
and (n− d+ 1)× (n− d+ 1). It follows from the definitions of E and Ẽ that

tr(A) = tr(U(1)U(1)>)− d,

tr
(
Ã
)

= tr(U(1)>U(1))− d,

thus tr(A) = tr
(
Ã
)

as required.

It follows from (21) that the KL divergence is symmetric if κ1 = κ2.
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4.4 Symmetrisation and the Fisher-Rao metric

In many applications it is convenient to use a symmetrised version of the KL divergence.
The symmetrisation DS(Q, κ1, Q+ E, κ2) is defined by

DS(Q, κ1, Q+ E, κ2) =
1

2
D(Q, κ1‖Q+ E, κ2) +

1

2
D(Q+ E, κ2‖Q, κ1).

Let 〈.〉i indicate integration over Sn with weight p(x|Q, κi) for i = 1, 2. It follows from
(20) and (21) that

DS(Q, κ1, Q+ E, κ2) =

1

4
(κ2 − κ1)

(
〈‖z‖2〉1 − 〈‖z‖2〉2

)
+

1

4
tr(A)(κ2g(d, n, κ1) + κ1g(d, n, κ2)). (22)

The first term on the right-hand side of (22) is approximated. Let f(κ) be the function
defined by

f(κ) ≡ − ∂2

∂κ2
ln(Cn(κ)) =

(
C ′n(κ)

Cn(κ)

)2

− C ′′n(κ)

Cn(κ)
, (23)

where ′ indicates the partial derivative with respect to κ. A Taylor expansion of 〈‖z‖2〉2
about κ1 yields

〈‖z‖2〉2 = 〈‖z‖2〉1 + (κ2 − κ1)
(
∂

∂κ
〈‖z‖2〉

)
κ=κ1

+O((κ2 − κ1)2). (24)

It follows from (24) and (50) in Appendix B that

〈‖z‖2〉1 − 〈‖z‖2〉2 = −2(κ2 − κ1)
(
∂2

∂κ2
〈‖z‖2〉

)
κ=κ1

+O((κ2 − κ1)2)

= 2(κ2 − κ1)f(κ1) +O((κ2 − κ1)2). (25)

It follows from (22) and (25) that

DS(Q, κ1, Q+ E, κ2) =

2−1(κ2 − κ1)2f(κ1) + 4−1tr(A)(κ2g(d, n, κ1) + κ1g(d, n, κ2)) +O((κ2 − κ1)2). (26)

Let θ be a parameter vector for G(d, n + 1) and let κ be a parameter for R≥. The
Fisher-Rao metric is given by a matrix J(θ, κ) such that

D(θ, κ‖θ + ∆θ, κ+ ∆κ) = 2−1(∆θ,∆κ)>J(θ, κ)(∆θ,∆κ) +O3, (27)

where O3 consists of terms of third or higher order in ∆θ and ∆κ (Amari 1985). Alter-
natively, the same Fisher-Rao metric can be obtained from

D(θ + ∆θ, κ+ ∆κ‖θ, κ) = 2−1(∆θ,∆κ)>J(θ, κ)(∆θ,∆κ) +O3. (28)

It follows from (27)) and (28) that the Fisher-Rao metric can be obtained from the
symmetrised version of the KL divergence in (22),

DS(θ, κ, θ + ∆θ, κ+ ∆κ) = 2−1(∆θ,∆κ)>J(θ, κ)(∆θ,∆κ) +O3.
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Let E be given by (17). The matrix Q + E is a projection, thus (Q + E)(Q + E) =
(Q+ E), from which it follows that

A = CC> +O4(E),

B = C>C +O4(E),

E =

(
−CC> C
C> C>C

)
+O4(E), (29)

where the terms O4(E) are fourth order in the entries of E. See (34) in Appendix A.
Let θ(Q) be the value of θ at the point Q in G(d, n+ 1). It follows from (26) and (29)

that

DS(θ(Q), κ, θ(Q) + ∆θ, κ+ ∆κ) = 2−1f(κ)∆κ2 + 2−1κg(d, n, κ)‖C‖2 +O3,

where ‖.‖ is the Euclidean norm. The matrix C is flattened to give a d(n − d + 1)
dimensional vector c. Set ∆θi = ci, 1 ≤ i ≤ d(n − d + 1). The vector θ(Q) + ∆θ is an
approximation to θ(Q + E) with an error of order four in the entries of E. The matrix
J(θ(Q), κ) is given by

Jii(θ(Q), κ) = κg(d, n, κ), 1 ≤ i ≤ d(n− d+ 1),

Jii(θ(Q), κ) = f(κ), i = d(n− d+ 1) + 1,

Jij(θ(Q), κ) = 0, 1 ≤ i, j ≤ d(n− d+ 1) + 1, i 6= j.

The Fisher-Rao metric defines a distribution on G(d, n + 1) × R≥ suitable for Bayesian
parameter estimation.

4.5 Background KL divergence

A background value of the KL divergence is obtained by sampling Q + E in (20) from
the uniform density on G(d, n + 1). If an experimental value, D(Q, κ1‖Q + E, κ2), of
the KL divergence is less than the background value, then this indicates that the two
clusters modelled by (Q, κ1) and (Q + E, κ2) are connected in some way and could be
candidates for merging. The uniform distribution on G(d, n + 1) is obtained by scaling
the Fisher-Rao measure on G(d, n + 1) such that the resulting volume of G(d, n + 1) is
unity (James 1954).

If d and n are sufficiently large, then the background value of tr(A) in (20) can be
approximated by a function of d and n with only a small error. In detail, let Z be a random
(n+ 1)× d matrix such that the entries of Z are sampled independently from a Gaussian
distribution with expected value 0 and variance 1. Let M be the (n+ 1)× d matrix given
by M = Z(Z>Z)−1/2. It is shown in Chikuse (2003) that P ≡MM> is a sample from the
uniform distribution on G(d, n+ 1). The KL divergence, D(Q, κ1‖Q+E, κ2), depends on
the projection P only through the term tr(A) in (20), where A is the d×d matrix defined
in (17).

It follows from (17) and the condition P = Q + E that Aij = Qij − Pij, 1 ≤ i, j ≤ d,
thus

tr(A) = d−
d∑

i,j=1

M2
ij.
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If n is large, then (Z>Z)−1/2 is approximated by a d × d diagonal matrix with entries
(n + 1)−1/2 on the diagonal. It follows that M is approximated by (n + 1)−1/2Z. If in
addition, d is large, then

tr(A) ≈ d−
d∑

i,j=1

(n+ 1)−1 = d− d2/(n+ 1). (30)

If κ1 = κ2 = κ, then it follows from (20) and (30) that

D(Q, κ‖Q+ E, κ) ≈ 2−1(d− d2(n+ 1)−1)κg(d, n, κ).

Any two clusters with a KL divergence significantly less that the background KL diver-
gence are candidates for merging.

Experiments with computer generated data confirm that the approximation (30) to
tr(A) is accurate if d and n are large. For example, if d = 10 and n = 100, then
d− d2(n+ 1)−1 = 9.010. A set of ten random samples of P yields sample values for tr(A)
with an expected value of 9.000 and a standard deviation of 0.127. Experiments also
show that values of the KL divergence are similar for different samples of P = Q + E.
For example, if n = 100, d = 10 and κ = 50, then the values of D(Q, κ‖Q+E, κ) for 100
random samples of P have a mean of 1.664 and a standard deviation of 0.023.

5 Clustering

In this section and the next the effectiveness of the generalised Watson distribution for
clustering vectors on a hypersphere is assessed experimentally. Four of the clustering
algorithms are based on linear subspaces in Rn+1. The first algorithm is probability-
based (Algorithm 1). The remaining three algorithms are parameter-based (Algorithms
2, 3 and 4). In the description of the algorithms given below the feature vectors x(i),
1 ≤ i ≤ N , form the columns of an (n+ 1)×N matrix X. The vectors in a given cluster
i form the columns of a matrix Xi. The required number of clusters is c and the subspace
associated with each cluster has dimension d.

The four linear subspace based algorithms are described in Sections 5.1 to 5.4 re-
spectively. The experimental results obtained for these four algorithms are described in
Section 6.

5.1 Linear subspace clustering based on probability

Algorithm 1 (LSC-HS(d,K)) finds an initial estimate of the clusters using Kmeans (MacKay
2005) or Spkmeans (Dhillon & Modha 2001). This initialisation is followed by alternating
the steps maximization and expectation. Let c be a specified number of clusters. The
maximization step yields the estimates of the parameters θ̂h,

θ̂h =
{
P̂h, κ̂h

}
, 1 ≤ h ≤ c.

The estimate P̂h of the projection matrix is obtained using the singular value decompo-
sition, as described in Section 3.4. The estimate κ̂h of the concentration is obtained by
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Algorithm 1 LSC-HS (d, c)

Require: the matrix X with columns x(i) for 1 ≤ i ≤ N , the number c of clusters and
the dimension d of the subspaces. Initialise a c-partition {Xh}ch=1 using the Spkmeans
or the Kmeans algorithms

1: for t=1 to T do
2: Maximization Step
3: for h=1 to c do
4: Compute the SVD Xh = UhΣhV

>
h

5: Compute the projection matrix P̂h = UhQU
>
h

6: Estimate the concentration parameter κ̂h.
7: end for
8: Expectation Step
9: Set Xh = ∅ for 1 ≤ h ≤ c.
10: for i=1 to N do
11: Normalize the sample to unit hypersphere, x(i) = x(i)/ ‖x(i)‖,
12: Calculate the values of the probability density functions

ph(x(i)|P̂h, κ̂h) = Cn (κ̂h) e
−κ̂h‖(I−P̂h)x(i)‖2/2, 1 ≤ h ≤ c.

13: Include x(i) as a column of Xh, where h = argmaxh′ p
(
x(i)|P̂h′ , κ̂h′

)
.

14: end for
15: Delete any sets Xh that are empty, 1 ≤ h ≤ c
16: c = |{Xh, Xh 6= ∅, 1 ≤ h ≤ c}|
17: end for

solving (7) numerically, given P̂h. In the expectation step each sample vector is assigned
to the cluster with the highest value of the pdf for the vector. The maximization step
and the expectation step are computed iteratively until the estimates P̂h and κ̂h converge.
The pseudo-code is given in the table for Algorithm 1.

5.2 Linear subspace clustering based on the KL divergence I

Algorithm 2 (LSC-KL I(d, c, c0)) carries out linear subspace clustering based on the
symmetrisation (22) of the KL divergence. The feature vectors x(i) are first divided into
c0 disjoint clusters, where c0 > c. Then, the symmetrized KL divergence is used to merge
pairs of clusters until c clusters are obtained. The pseudo-code is given in the table for
Algorithm 2.

5.3 Linear subspace clustering based on the KL divergence II

The vectors in cluster i form the columns of a matrix Xi as noted in the first paragraph
of Section 5. The mean value of the vectors contributing to Xi is

x̄(i) =
1

|Xi|
∑

x(k)∈Xi

x(k),
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Algorithm 2 LSC-KL I (d, c, c0)

Require: the matrix X with columns x(i) for 1 ≤ i ≤ N , the number c of clusters, the
dimension d of the subspaces and an integer c0 > c

1: Initialize the set A = {h, 1 ≤ h ≤ c0}
2: Initialize the c0-partition {Xh}c0h=1 using LSC-HS(d, c0) and estimate the parameters

θ̂h =
{
P̂h, κ̂h

}
, 1 ≤ h ≤ c0

3: repeat
4: Find (i′, j′) = argmini,j∈A,i<jDS(θ̂i‖θ̂j)
5: Merge Xi′ , Xj′ . Label the new cluster with i′. Delete j′ from A.

6: Compute the parameters θ̂i′ of the new cluster Xi′ .
7: c0 = c0 − 1
8: until c0 = c

where |Xi| is the number of columns in Xi. The distance dist(i, j) is defined by

dist(i, j) = ‖x̄(i)− x̄(j)‖ ,

where ‖.‖ is the Euclidean norm. Algorithm 3 (LSC-KL II(d, c, c0)) first divides the
feature vectors x(i) into c0 distinct clusters, where c0 > c. The algorithm then finds the
set B of pairs (i, j) of clusters for which i < j and dist(i, j) is less than a given threshold
δ. The symmetrised KL divergence is then minimized over B. The pair of clusters (i′, j′)
in B at which the symmetrised KL divergence has a minimum are merged. The merging
of clusters is iterated until c clusters are obtained. The pseudo code is given in the table
for Algorithm 3.

Algorithm 3 LSC-KL II (d, c, c0)

Require: the matrix X with columns x(i) for 1 ≤ i ≤ N , the number c of clusters, the
dimension d of the subspaces, an integer c0 > c and a threshold δ.

1: Initialize the set A = {i, 1 ≤ i ≤ c0}.
2: Initialize the c0-partition {Xh}c0h=1 using LSC-HS(d, c0) and estimate the parameters

θ̂h =
{
P̂h, κ̂h

}
, 1 ≤ h ≤ c0

3: repeat
4: δ0 = δ
5: repeat
6: Set B = {(i, j), 1 ≤ i < j ≤ c0, dist(i, j) ≤ δ}
7: δ = 1.1 ∗ δ
8: until B ! = NULL
9: δ = δ0
10: (i′, j′) = argmin(i,j)∈BDS(θ̂i‖θ̂j)
11: Merge Xi′ and Xj′ . Label the new cluster with i′. Delete j′ from A
12: Compute the parameters θ̂i′ of the new cluster Xi′

13: c0 = c0 − 1
14: until c0 = c
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5.4 Linear subspace clustering based on the KL divergence III

In the algorithm LSC-HS the parameters are changed at each maximization step. How-
ever, if one cluster is well separated from the other clusters, then the parameters for that
cluster do not change. This observation motivates LSC-KL III(d, c, c0) in which the
initialization is repeated for each iteration. The pseudo code is given in the table for
Algorithm 4.

Algorithm 4 LSC-KL III (d, c, c0)

Require: the matrix X with columns x(i) for 1 ≤ i ≤ N , the number c of clusters, the
dimension d of the subspaces, an integer c0 > c and a threshold δ.

1: Initialize the set A = {i, 1 ≤ i ≤ c0}
2: T = c0 − c
3: for t = 1 to T do
4: Initialize the c0-partition {X t−1

h }
c0
h=1 using LSC-HS(d, c0)

5: δ0 = δ
6: repeat
7: Set B = {(i, j), 1 ≤ i < j ≤ c0, dist(i, j) ≤ δ}
8: δ = 1.1 ∗ δ
9: until B ! = NULL
10: δ = δ0
11: (i′, j′) = argmin(i,j)∈B{DS(θ̂i‖θ̂j)}
12: Merge X t−1

i′ and X t−1
j′ . Label the new cluster with i′. Delete j′ from A

13: c0 = c0 − 1
14: end for

6 Experiments

Seven clustering algorithms are tested experimentally on the mnist (LeCun et al. 1998),
Human Activity Recognition (HAR) (Anguita et al. 2013), and Gas Sensor Array Drift
(GSAD) (Vergara et al. 2012) datasets. The seven algorithms comprise the four al-
gorithms described in Section 5 and three algorithms taken from the literature. The
algorithms are listed in Section 6.1. The data for the testing is described in Section 6.2
and the results are described in Section 6.3.

6.1 Algorithms

The following seven algorithms are compared to assess the quality of clustering: 1)
Kmeans; 2) Spkmeans; 3) Mixture of von Mises-Fisher distributions (moVMF); 4) Al-
gorithm 1: Linear subspace clustering using a hypersphere (LSC-HS); 5) Algorithm 2:
Linear subspace clustering using the symmetrized KL divergence (LSC-KL I); 6) Algo-
rithm 3: Linear subspace clustering using the symmetrized KL divergence and dist(i, j)
(LSC-KL II); 7) Algorithm 4: Linear subspace clustering using the symmetrized KL di-
vergence, dist(i, j) and LSC-HS for reinitialization at each stage (LSC-KL III).
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The Kmeans algorithm is described by MacKay (2005) and the Spkmeans algorithm
is described by Dhillon & Modha (2001). The mixture of von-Mises-Fisher distributions
is described by Banerjee et al. (2005a), Banerjee et al. (2005b), and Sra (2016). The
concentration parameters are estimated using the algorithm described in Section 3.4.

6.2 Datasets and methodology

In all cases, the feature vectors are normalized to obtain vectors on the unit hypersphere.
Mnist The mnist dataset consists of images of the digits 0 to 9. There are ten clusters

in mnist, namely {Ci}9i=0. The total number of images is 10,000. Each cluster Ci contains
N = 1, 000 images of the digit i for 0 ≤ i ≤ 9. Four subsets of the data are chosen,
namely, D1 = {C1, C3}, D2 = {C4, C5, C6}, D3 = {C0, C2, C4, C6, C8}, D4 = {Ci}9i=0. The
following parameter settings are employed.

• Dimension of the hypersphere: n = 783.

• d-dimensional subspaces: d = 10, 20, 50, 100.

• The initial number of clusters for Algorithms 2, 3, and 4: c0 = 2c, where c is the
number of clusters.

• Threshold values for Algorithms 3 and Algorithms 4: δ = 0.1, 0.3, 0.5.

Human Activity Recognition The Human Activity Recognition (HAR) video dataset
contains six types of human actions, namely WALKING, WALKING-UPSTAIRS, WALKING-
DOWNSTAIRS, SITTING, STANDING and LAYING. Each person performed all six
actions while wearing a Samsung Galaxy S II smartphone on the waist. There are 6
clusters, one for each activity. The total number of images is 7,415. There are approx-
imately N ≈ 1, 100 samples in each class. The parameters’ setting are the same as for
mnist, except that the dimension of the hypersphere is n = 560 and the values of d are
d = 5, 10, 20, 40, 50. For further information, see Anguita et al. (2013).

Gas Sensor Array Drift The Gas Sensor Array Drift (GSAD) dataset covers six
distinct pure gaseous substances, namely Ammonia, Acetaldehyde, Acetone, Ethylene,
Ethanol, and Toluene. The dataset was gathered during the period of January 2008 to
February 2011 (36 months) in a gas delivery platform facility situated at the ChemoSignals
Laboratory in the BioCircuits Institute (Vergara et al. 2012). There are 6 clusters, one for
each gas. Each feature vector contains 8 components extracted from each of 16 sensors,
resulting in a 128-dimensional feature vector (8 features × 16 sensors). The total number
of samples is 6,000. There are approximately N ≈ 1, 000 images in each class. The
parameters’ setting is the same as the dataset mnist, except that the dimension of the
hypersphere is n = 127 and the values of d are d = 2, 4, 6, 8, 10, 15. Each feature vector is
centered to have 0 mean before scaling to obtain a vector on the hypersphere.

The performance of the algorithms is assessed using normalized mutual information
(NMI) as a measure of the statistical similarity between a cluster and the ground truth
(Strehl & Ghosh 2002; Vinh & Epps 2009; Vinh et al. 2010; Vinh et al. 2009). Let pJ
be the joint probability for the ground truth cluster and the empirical cluster, let pM and
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Table 1: Comparison of NMI results for the datasets: D1, D2, D3, and D4, d-dimension
subspace: d = 10, 20, 50, 100, and the dimension of the hypersphere is n = 783.
Data dim kmeans Spkmeans moVMF LSC-HS LSC-KL I LSC-KL II LSC-KL III

D1

10

0.7807 0.7716 0.6902

0.9231 0.3736 0.8546 0.9333
20 0.9248 0.3805 0.9237 0.9402
50 0.9245 0.3302 0.7904 0.9086
100 0.8168 0.2805 0.7169 0.8439

D2

10

0.4785 0.4793 0.4853

0.5975 0.6104 0.5973 0.6197
20 0.6077 0.5226 0.6174 0.5868
50 0.5405 0.4346 0.5512 0.5608
100 0.4901 0.3394 0.4942 0.5391

D3

10

0.4744 0.4852 0.4988

0.5588 0.5503 0.4911 0.6120
20 0.5236 0.4660 0.5225 0.5925
50 0.4923 0.3888 0.4638 0.4598
100 0.4812 0.3979 0.4349 0.4159

D4

10

0.5076 0.5109 0.1486

0.5914 0.4997 0.4999 0.5677
20 0.5838 0.4731 0.4922 0.6121
50 0.5386 0.4273 0.4725 0.5270
100 0.5146 0.4300 0.4644 0.4731

Table 2: Comparison of NMI results for the datasets: Human Activity Recognition (HAR)
dataset, d-dimension subspace: d = 5, 10, 20, 50, 100, and the dimension of the hyper-
sphere is n = 560.
Data dim kmeans Spkmeans moVMF LSC-HS LSC-KL I LSC-KL II LSC-KL III

HAR

5

0.6001 0.5478 0.5579

0.5945 0.5645 0.6236 0.5994
10 0.5970 0.6062 0.6147 0.5897
20 0.5569 0.6175 0.6076 0.5849
50 0.6049 0.5318 0.5726 0.5774
100 0.5875 0.5278 0.5052 0.4849

p̂M be the two marginal probability distributions. Let I(pJ) be the mutual information
and let H be entropy (Cover & Thomas 2006; MacKay 2005). The NMI is defined by

NMI(pJ) = I(pJ)/(H(pM)H(p̂M))1/2.

The values of the NMI are reported in Table 1, Table 2, and Table 3. Each value is an
average over 10 runs. The entries highlighted in red are the best results for each dataset.
Note that the Kmeans algorithm is used to initialize LSC-HS, and LSC-KL I, LSC-KL II,
LSC-KL III are all initialized by LSC-HS.

In Appendix D the results obtained using the NMI are compared with the results using
the Accuracy Rate and the Rand Index.

6.3 Experimental results

The NMI results of LSC-HS are consistently better than the results obtained from Kmeans
and Spkmeans on different d-dimensional subspaces. Note that moVMF is a special case
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Table 3: Comparison of NMI results for the datasets: Gas Sensor Array Drift (GSAD)
datasets, d-dimension subspace: d = 2, 4, 6, 8, 10, 15, and the dimension of the hypersphere
is n = 127.

Data dim kmeans Spkmeans moVMF LSC-HS LSC-KL I LSC-KL II LSC-KL III

GSAD

2

0.3311 0.3404 0.1346

0.3908 0.3101 0.3887 0.3967
4 0.4050 0.3228 0.4396 0.4658
6 0.4539 0.3693 0.4560 0.4952
8 0.4727 0.3246 0.4583 0.5259
10 0.4282 0.3003 0.4273 0.5358
15 0.4572 0.2665 0.3944 0.4902

of LSC-HS: when d = 1, LSC-HS is equal to moVMF. The proposed LSC-HS is more
flexible than moVMF as different d-dimension subspaces can be applied to the cluster
problem.

Our proposed algorithms can be applied to different d-dimensional subspaces. The
performance with higher values of d is no better than the performance with relatively low
values. These phenomenons are illustrated in Table 1-Table 3, i.e., the best performance
is obtained in the case of d = 10 for D2 and D3; d = 20 for subsets D1 and D4 in the
mnist dataset; d = 5 in the HAR dataset; d = 10 in the GSAD dataset.

The performance of LSC-HS is better than that of LSC-KL in Table 1 and Table
3. The mnist data and the GSAD data yield better results for LSC-HS, compared with
LSC-KL I. However, for the HAR dataset, the performance of LSC-KL I is usually better
than that of LSC-HS as shown in Table 2.

The NMI results of LSC-KL II are better than those for LCS-KL I in Tables 1-3. This
is due to the influence of the distance information on the KL divergence. If the distance
between two clusters is larger than a threshold, then it is not necessary to obtain the KL
divergence for the two clusters. However, a disadvantage of LSC-KL I and LSC-KL II is
that once two clusters are merged it is not possible to separate them, if the merge turns
out to be incorrect.

LSC-KL II and LSC-KL III each use LSC-HS for initialization. The key difference
between LSC-KL II and LSC-KL III is that in LSC-KL III the initialization is carried
out in each iteration. It is apparent from Table 1 and Table 3 that the NMI results of
LSC-KL III are for the most part better than the results obtained for all other methods.
However, for HAR, the NMI results of LSC-KL II are better than the results obtained for
LSC-KL III as shown in Table 2.

6.4 Numerical examples

Some numerical results obtained by fitting pdfs in (2) to C0 and to C2 are shown in Fig.
2. Fig. 2a shows the concentration parameters κ0 for C0 and κ2 for C2 as functions of
d/(n + 1). Fig. 2b shows the KL divergence from the pdf for C2 to the pdf for C0 as a
function of d/(n+ 1). The values of the KL divergence are high, which indicates that the
two fitted pdfs are well separated.
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Figure 2: a) graphs of κ as a function of d/(n+ 1) for pdfs fitted to C0 and C2; b) graph
of the KL divergence of the pdf fitted to C2 from the pdf fitted to C0, as a function of
d/(n+ 1).

7 Conclusion

A new family of probability density functions for modelling clusters of vectors on a hy-
persphere is defined. Each pdf p(x|P, κ), for x in the hypersphere, is conditional on an
orthogonal projection P and a concentration parameter κ. The pdf takes its maximum
value on all the points in the intersection of the range L of P with the hypersphere Sn.
If κ is large, then p(x|P, κ) is concentrated near to L ∩ Sn. If κ is small, then p(x|P, κ)
approximates a uniform pdf on the hypersphere. The family of pdfs is parameterised by
G(d, n + 1) × R≥0, where G(d, n + 1) is the Grassmann manifold for linear subspaces of
dimension d in Rn+1.

The pdfs provide a wide range of models for clusters, while at the same time the pdfs
are tractable in that i) a given pdf can be sampled efficiently; ii) the parameters of a pdf
can be estimated using maximum likelihood and iii) the Kullback-Leibler divergence and
the Fisher-Rao metric can be evaluated with a low time complexity. The KL divergence
is used to compare clusters of vectors. If the KL divergence is small then the two clusters
in question are similar, and thus candidates for merging. The values of the KL divergence
are independent of the choice of parameterisation of the manifold G(d, n+1)×R≥0. Thus
the KL divergence is not affected by accidental properties of the parameterisation that
have nothing to do with clustering.

If d and n are large, then numerical experiments indicate that there is a background
value for the KL divergence. If the concentration κ is fixed and if P1, P2 are projections
sampled independently from the uniform distribution on G(d, n+1) defined by the Fisher-
Rao metric, then the KL divergence of (P2, κ) from (P1, κ) is closely approximated by an
explicit function of d, n, and κ. This observation relies on the fact that G(d, n + 1) is
compact. There is no corresponding result for Gaussian distributions on Rn+1. In this
context, a value of the KL divergence is small if it is significantly less than the background
value.

The dimension d of the range of a projection P in G(d, n+1) can be varied in order to
obtain the best fit pdf to a cluster. In high dimensions, the best fit value of d is unlikely
to be small. This is because any two random vectors u, v in Sn for n large are likely to
be near orthogonal in that the scalar product u.v is small (Gorban & Tyukin 2018).
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Four algorithms that use the family of pdfs for clustering vectors on a hypersphere
are described. Three of the algorithms use a symmetrized version of the Kullback-Leibler
divergence to compare the different clusters. The algorithms are tested on three datasets,
namely mnist, Human Activity Recognition and Gas Sensor Array Drift with good results.
The best performing algorithm, LSC-KL III, uses the KL divergence iteratively to merge
pairs of clusters, in order to reduce the number of clusters from a starting value of c0 to
a required value c, c ≤ c0.

The accuracy of the clustering is assessed in Section 6 using the Normalised Mutual
Information (NMI). In Appendix D the NMI is replaced by the Accuracy Rate (AR) and
the Rand Index (RI). The two algorithms, LSC-HS and LSC-KL III, that perform well
using NMI also perform well using AR and RI.
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A Integration over Sn

The terms 〈x>E(I − Q)x〉 and 〈‖Ex‖2〉 on the right hand side of (18) are simplified.
The subscript 1 in (18) is omitted here. Recall from Section 4.2 that x, y, z are vectors
such that y is in Rd, z is in Rn−d+1 and x = (y>, z>)>. Let Q be the (n + 1) × (n + 1)
projection matrix defined by (11). It follows that ‖(I − Q)x‖2 = ‖z‖2, thus the pdf (2)
for the generalised Watson distribution reduces to

p(x|Q, κ) = Cn(κ) exp
(
−κ‖z‖2/2

)
, x ∈ Sn. (31)

It is convenient to use 〈.〉 for integration over Sn with the weight p(x|Q, κ). The
invariance of p(x|Q, κ) under the action of the (n + 1) × (n + 1) orthogonal matrices on
G(d, n+ 1) ensures that

〈yi〉 = 0, 1 ≤ i ≤ d,

〈yiyj〉 = 0, 1 ≤ i, j ≤ d, i 6= j.〈
y2i
〉

=
〈
y2j
〉
, 1 ≤ i, j ≤ d.

Similar results hold for 〈zi〉 and 〈zizj〉. In addition, 〈yizj〉 = 0 for 1 ≤ i ≤ d and
1 ≤ j ≤ n− d+ 1. See Folland (2001).

Let the (n + 1) × (n + 1) symmetric matrix E in the expression (18) for the KL
divergence have the block structure shown in (17). The matrix E is chosen such that
Q + E is a projection matrix. Let tr be the trace function for matrices. It is noted
that the projection matrices corresponding to points in G(d, n + 1) all have trace d. In
particular,

d = tr(Q) = tr(Q+ E), (32)

which yields tr(E) = 0. It follows from (17) that tr(A) = tr(B). A short calculation
yields 〈

(y>, z>)E(I −Q)

(
y
z

)〉
=

〈
(y>, z>)E

(
0
z

)〉
,

= 〈z>Bz〉,
= tr(B)(n− d+ 1)−1〈‖z‖2〉,
= tr(A)(n− d+ 1)−1〈‖z‖2〉. (33)

Next, the expression 〈‖Ex‖2〉 is simplified. The matrix Q+E is a projection matrix,
thus

(Q+ E)(Q+ E) = Q+ E,

which reduces to (
−A 0
0 0

)
+ EE =

(
0 0
0 B

)
. (34)
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It follows from (34) that〈∥∥∥∥E ( yz
)∥∥∥∥2

〉
=

〈
(y>, z>)EE

(
y
z

)〉
,

= 〈y>Ay〉+ 〈z>Bz〉,
= tr(A)d−1〈‖y‖2〉+ tr(B)(n− d+ 1)−1〈‖z‖2〉,
= tr(A)(d−1〈‖y‖2〉+ (n− d+ 1)−1〈‖z‖2〉). (35)

B Evaluation of Integrals

As in Section 4.2, let x, y, z be vectors such that x is in Sn, y is in Rd, z is in Rn−d+1

and x = (y>, z>)>. In this Appendix expressions are obtained for Cn(κ) (Sections 3.2
and 3.3), 〈‖y‖2〉 (Section 4.2) and 〈‖z‖2〉 (Section 4.2). The expressions involve confluent
hypergeometric functions (Abramowitz & Stegun 1965).

Let i be a non-negative integer, and let Ki be the integral

Ki =

∫
Sn

‖z‖2i exp(−(κ/2)‖z‖2) dωn, (36)

where dωn is the measure induced on Sn by the Lebesgue measure in Rn+1. It follows
that

Cn(κ)−1 = K0,

〈‖y‖2〉 = 1− 〈‖z‖2〉,
〈‖z‖2〉 = K1/K0. (37)

Expressions for the Ki are obtained. Let γi be the volume of the i-dimensional hyper-
sphere with unit radius,

γi = 2π(i+1)/2/Γ((i+ 1)/2),

where Γ is the Gamma function (Abramowitz & Stegun 1965). It is noted that∫ ∞
0

rs exp(−r2) dr = 2−1Γ((s+ 1)/2).

Let i be a non-negative integer and let Hi be defined by

Hi =

∫
Sn

‖z‖2i dωn. (38)

An alternative expression for Hi is obtained. With this in mind, let Fi be defined by

Fi =

∫
Rn+1

‖z‖2i exp
(
−‖y‖2 − ‖z‖2

)
dydz. (39)

The integral over Rn+1 on the right hand side of (39) is evaluated in two different ways.
In the first way, the integral is split into two independent integrals and each of these
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integrals is reduced to a one dimensional integral using polar coordinates,

Fi =

(∫
Rd

exp(−‖y‖2) dy
)(∫

Rn−d+1

‖z‖2i exp(−‖z‖2) dz
)
,

=

(
γd−1

∫ ∞
0

rd−1 exp(−r2) dr
)(

γn−d

∫ ∞
0

r2i+n−d exp(−r2) dr
)
,

= 4−1γd−1γn−dΓ(d/2)Γ(i+ (n− d+ 1)/2). (40)

In the second way, the integral in (39) is reduced to a one dimensional integral by
taking polar coordinates in Rn+1,

Fi =

∫
Sn

∫ ∞
0

‖z‖2irn exp(−r2) drdωn,

=

∫
Sn

∫ ∞
0

‖r−1z‖2irn+2i exp(−r2) drdωn,

=

(∫
Sn

‖z‖2i dωn
)

2−1Γ(i+ (n+ 1)/2),

= Hi2
−1Γ(i+ (n+ 1)/2). (41)

It follows from (40) and (41) that

Hi = 2−1γd−1γn−dΓ(i+ (n+ 1)/2)−1Γ(d/2)Γ(i+ (n− d+ 1)/2). (42)

The result (42) is used to obtain an alternative expression for Ki. The exponential
function in (36) is expanded to yield

Ki =

∫
Sn

‖z‖2i
(
∞∑
k=0

‖z‖2k(−κ/2)k

k!

)
dωn,

=
∞∑
j=0

Hi+j
(−κ/2)j

j!
,

= 2−1γd−1γn−dΓ(d/2)
∞∑
j=0

Γ(i+ j + (n− d+ 1)/2)(−κ/2)j

j!Γ(i+ j + (n+ 1)/2)
. (43)

Let (q)k be the Pochhammer symbol defined by

(q)0 = 1,

(q)k = q(q + 1) . . . (q + k − 1), k = 1, 2, 3, . . . ,

= Γ(q)−1Γ(q + k).

The confluent hypergeometric function 1F1(a, b, z) is defined in Section 13.1.2 of Abramowitz
& Stegun (1965) by

1F1(a, b, z) =
∞∑
k=0

(a)kz
k

k!(b)k
, (44)
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Abramowitz & Stegun (1965) use the notation M(a, b, z) instead of 1F1(a, b, z), and refer
to M(a, b, z) as Kummer’s function. The regularized confluent hypergeometric function

1F̃1(a, b, z) is defined by

1F̃1(a, b, z) = 1F1(a, b, z)/Γ(b). (45)

It follows from (43),(44) and (45) that

Ki =

2−1γd−1γn−dΓ(d/2)Γ(i+ (n− d+ 1)/2)1F̃1(i+ (n− d+ 1)/2, i+ (n+ 1)/2,−κ/2). (46)

The scale factor Cn(κ) in Section 3.3 is given by

Cn(κ)−1 = K0,

= 2−1γd−1γn−dΓ(d/2)Γ((n− d+ 1)/2) 1F̃1((n− d+ 1)/2, (n+ 1)/2,−κ/2),

= 2π(n+1)/2
1F̃1((n− d+ 1)/2, (n+ 1)/2,−κ/2). (47)

It follows from (37) that

〈‖z‖2〉 =
(n− d+ 1) 1F̃1((n− d+ 3)/2, (n+ 3)/2,−κ/2)

2 1F̃1((n− d+ 1)/2, (n+ 1)/2,−κ/2)
. (48)

The value of 〈‖y‖2〉 is obtained by observing that

〈‖y‖2〉 = 1− 〈‖z‖2〉 = 1−K1/K0. (49)

It follows from (36) that
∂K0

∂κ
= −2−1K0〈‖z‖2〉,

thus

〈‖z‖2〉 = 2
∂

∂κ
ln(Cn(κ)). (50)

C Approximations

The terms 〈‖z‖2〉 (Section 4.2), g (Section 4.2) and f (Section 4.4) are approximated for
large values of the concentration parameter κ.

The expression (48) for 〈‖z‖2〉 contains a ratio of regularised confluent hypergeometric
functions 1F̃1, as defined by (45). Let ι be the square root of -1. The following approxima-
tion to 1F̃1 is obtained from Section 13.5.1 of Abramowitz & Stegun (1965), with minor
changes in notation,

1F̃1(a, b,−κ/2) =

= Γ(b− a)−1 exp(±ιπa)(−κ/2)−a

(
R−1∑
n=0

2n(a)n(1 + a− b)n
n!κn

+O(κ−R)

)

+ Γ(a)−1 exp(−κ/2)(−κ/2)a−b

(
S−1∑
n=0

(b− a)n(1− a)n(−2)n

n!κn
+O(κ−S)

)
, (51)

30



where (.)n is the Pochhammer symbol defined in Appendix B. The upper sign is taken in
(51) if −π/2 < arg(−κ/2) < 3π/2 and the lower sign is taken if −3π/2 < arg(−κ/2) <
−π/2. It is convenient to set the value of arg(−κ/2) equal to π. It follows that

exp(ιπa)(−κ/2)−a = exp(ιπa)(κ/2)−a exp(−ιπa) = (κ/2)−a.

The second summation in (51) has a factor exp(−κ/2) which is negligible if κ is large.
The index R is set equal to 2 in the first summation. It follows that

1F̃1(a, b,−κ/2) = Γ(b− a)−1(κ/2)−a
(
1 + 2a(1 + a− b)κ−1 +O(κ−2)

)
. (52)

It follows from (48) and (52) that

〈‖z‖2〉 = κ−1(n− d+ 1)
(
1 + (2− d)κ−1 +O(κ−2)

)
(53)

An approximation is obtained for the KL divergence (20) with κ = κ1 = κ2. It follows
from (20) that

D(Q, κ‖Q+ E, κ) = 2−1tr(A)κg(d, n, κ) (54)

where

g(d, n, κ) ≡ d−1〈‖y‖2〉 − (n− d+ 1)−1〈‖z‖2〉,
= d−1 − d−1〈‖z‖2〉 − (n− d+ 1)−1〈‖z‖2〉,
= d−1(1− κ−1(n+ 1)) +O(κ−2). (55)

It follows from (54) and (55) that

D(Q, κ‖Q+ E, κ) = 2−1tr(A)d−1(κ− n− 1) +O(κ−1).

The normalising factor in the generalised Watson distribution (2) is given by

Cn(κ)−1 = K0,

= 2π(n+1)/2
1F̃1((n− d+ 1)/2, (n+ 1)/2,−κ/2),

= 2(n−d+3)/2π(n+1)/2(Γ(d/2)κ(n−d+1)/2)−1
(
1 + (n− d+ 1)(1− d/2)κ−1 +O(κ−2)

)
.

The expression (27) for the Fisher-Rao metric includes the function f defined by (23).
It follows from (50), (53) and the definition of f that

f(κ) = −2−1
∂

∂κ
〈‖z‖2〉,

= 2−1κ−2(n− d+ 1) +O(κ−3). (56)

D Clustering Evaluation

In this appendix two methods, namely accuracy rate (AR) and rand index (RI), are used
to measure the statistical similarity between a cluster and the ground truth. The two
methods are tested on the three datasets mnist, Human Activity Recognition, and Gas
Sensor Array Drift. The results are compared with those obtained in Section 6 using the
Normalised Mutual Information. The parameter settings are the same as for the NMI in
Section 6.

31



D.1 Accuracy rate

Given N samples in a dataset, let yi be the class label for the i-th sample and let ŷi be
the predicted class label. The accuracy rate (AR) between y and ŷ is defined by finding
the best match between the class labels and the cluster labels:

AR(y, ŷ) = max
perm∈P

1

N

N−1∑
i=0

I(perm(ŷi) = yi), (57)

where P is the set of all permutations in {1, ..., K}, K is the number of clusters, and I(·)
is the indicator function (i.e., I(ŷi = yi) = 1 if ŷi = yi and 0 otherwise).

Table 4, Table 5, and Table 6 show the values of AR for the algorithms. It can be
seen that 1) The AR results of LSC-HS are better than those of Kmeans, Spkmeans and
moVMF on the different d-dimensional subspaces. This is consistent with the performance
of the algorithms as measured by NMI. 2) For the datasets GSAD, and D2-D4, the AR
performance of LSC-HS is better than that of LSC-KL III. For the datasets HAR, and D1,
the AR performance of LSC-KL III is better than that of LSC-HS. 3) The performances
using the low-dimensional subspace are better than those for the high-dimensional sub-
spaces, i.e., the best performance is obtained under d = 5 for HAR dataset, d = 6 for
GSAD, d = 10 for D3, and d = 20 for D1, D2, D4.

Table 4: Comparison of Accuracy Rate (%) results for the datasets: D1, D2, D3, and
D4. The dimension of the hypersphere is n = 783 and the subspace dimension d =
10, 20, 50, 100.
Data dim kmeans Spkmeans moVMF LSC-HS LSC-KL I LSC-KL II LSC-KL III

D1

10

96.68 96.33 96.07

99.06 76.31 96.01 99.20
20 99.01 76.81 98.95 99.25
50 99.06 74.91 94.73 98.54
100 97.20 71.55 92.67 97.63

D2

10

75.47 75.49 74.83

79.55 58.40 65.12 58.16
20 80.13 53.17 71.60 61.06
50 78.18 51.18 70.76 67.14
100 76.00 52.58 65.25 66.10

D3

10

57.87 57.04 52.36

60.91 47.66 45.04 54.60
20 57.28 42.92 47.04 50.44
50 56.71 36.08 45.86 41.66
100 58.28 39.21 45.17 39.59

D4

10

53.98 54.91 20.11

58.63 30.68 32.27 44.96
20 59.37 32.52 34.20 45.71
50 58.23 29.57 32.35 36.41
100 56.35 28.66 34.45 35.35
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Table 5: Comparison of Accuracy Rate (%) results for the Human Activity Recognition
(HAR) datasets. The dimension of the hypersphere is n = 560, and the subspace dimen-
sion d = 5, 10, 20, 50, 100.
Data dim kmeans Spkmeans moVMF LSC-HS LSC-KL I LSC-KL II LSC-KL III

HAR

5

58.07 51.86 58.38

57.39 45.64 53.92 58.41
10 56.16 47.74 50.11 55.44
20 53.21 48.76 51.55 55.60
50 58.12 45.33 51.28 54.94
100 57.29 44.62 41.85 41.55

Table 6: Comparison of Accuracy Rate (%) results for the Gas Sensor Array Drift (GSAD)
datasets. The dimension of the hypersphere is n = 127 and the subspace dimension
d = 2, 4, 6, 8, 10, 15.

Data dim kmeans Spkmeans moVMF LSC-HS LSC-KL I LSC-KL II LSC-KL III

GSAD

2

43.26 43.70 31.90

52.00 41.21 45.26 53.55
4 50.32 41.16 46.34 52.53
6 55.96 43.39 48.30 59.09
8 54.37 39.01 47.74 55.32
10 52.45 37.42 46.56 54.16
15 57.68 34.54 42.06 50.72

D.2 Rand index

The rand index (RI) is a way of comparing the results obtained by two different clustering
methods. The formula for RI is

RI =

(
N
2

)−1
(N11 +N00),

where N11 is the number of times a pair of elements belongs to the same cluster across
two clustering methods, N00 is the number of times a pair of elements belong to different

clusters across two clustering methods, and

(
N
2

)
is the number of unordered pairs in a

set of N elements.
Table 7, Table 8, and Table 9 show the RI performance of the algorithms. It can be

seen that 1) For the mnist dataset, the AR results of LSC-HS are better than those of
Kmeans, Spkmeans, moVMF for the different d-dimensional subspaces. This is consistent
with the performance of NMI and AR. On the subset D1, the RI performance of LSC-
KL III is better than that of LSC-HS. For other subsets D2-D4, LSC has the best RI
results. 2) For the HAR dataset, LSC-KL III has the best RI results compared with the
other algorithms. 3) For the GSAD dataset, LSC has the best RI results for the different
d-dimensional subspaces.
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Table 7: Comparison of Rand Index (%) results for the datasets: D1, D2, D3, and D4.
The dimension of the hypersphere is n = 783 and the subspaces have dimensions d =
10, 20, 50, 100.
Data dim kmeans Spkmeans moVMF LSC-HS LSC-KL I LSC-KL II LSC-KL III

D1

10

93.58 92.92 92.45

98.13 64.87 93.90 98.41
20 98.03 65.37 97.92 98.52
50 98.13 63.74 91.70 97.19
100 94.56 61.12 88.36 95.38

D2

10

76.45 76.49 76.79

80.67 73.03 74.11 73.42
20 80.92 67.39 77.51 73.22
50 78.97 63.72 76.05 74.84
100 76.90 58.39 71.85 74.26

D3

10

79.75 79.58 72.80

81.05 72.90 68.87 80.23
20 79.94 66.04 73.46 79.41
50 79.58 57.76 69.51 67.04
100 79.84 60.28 67.50 62.99

D4

10

88.26 88.51 53.18

89.47 63.74 66.79 86.01
20 89.54 63.47 68.61 83.39
50 89.07 62.36 70.93 78.31
100 88.69 62.55 70.41 71.67

Table 8: Comparison of Rand Index (%) results for the Human Activity Recognition
(HAR) dataset. The dimension of the hypersphere is n = 560, and the subspaces have
dimensions d = 5, 10, 20, 50, 100.
Data dim kmeans Spkmeans moVMF LSC-HS LSC-KL I LSC-KL II LSC-KL III

HAR

5

82.84 76.97 83.59

82.85 76.50 81.01 83.99
10 83.04 79.28 78.92 83.49
20 80.22 78.91 77.96 81.94
50 83.00 73.14 76.60 80.76
100 82.81 73.43 71.47 72.70

Table 9: Comparison of Rand index (%) results for the Gas Sensor Array Drift (GSAD)
datasets. The dimension of the hypersphere is n = 127 and the subspaces have dimensions
d = 2, 4, 6, 8, 10, 15.

Data dim kmeans Spkmeans moVMF LSC-HS LSC-KL I LSC-KL II LSC-KL III

GSAD

2

68.40 64.73 64.7315

78.31 61.73 69.75 76.87
4 79.28 62.01 72.13 77.39
6 80.51 66.18 75.50 80.07
8 79.85 63.50 70.11 79.42
10 79.07 62.40 68.83 78.80
15 79.45 59.93 64.79 73.73
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