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Abstract.

The information in a mass of data is summarised by fitting to the
data a probability density function (pdf) chosen from a
parameterised family of pdfs. Distances between pairs of pdfs are
calculated using the Fisher-Rao metric, which provides a measure
of the accuracy with which parameter values can be estimated from
the data. Applications of the Fisher-Rao metric include the calcula-
tion of Bayesian priors, machine learning and image processing.

Introduction

One of the tasks of the statistician is to summarise the infor-
mation in a mass of data by calculating the values of a rel-
atively small number of parameters. In many cases these

parameters specify a probability density function (pdf) which is
said to be a model for the data. A fundamental problem arises
because the same pdf can be specified by many different sets of
parameters. For example, a Gaussian pdf can be specified by the
mean, µ, and the standard deviation, σ, or alternatively, it can be
specified by the scaled mean, ~µ µσ= −1 and the precision τ σ= −2.
If the parameters µ σ, are known to within a certain accuracy,
then to what accuracy are the parameters ~,µ τ known? More
generally, suppose that there are two candidate Gaussian pdfs for
modelling the data, one with parameters (µ σ1 1, ) and the other
with parameters (µ σ2 2, ). Are the two Gaussian pdfs so similar
that they are in effect the same model for the data, or do they
differ significantly? Should the answer to this question be based
on (µ σ1 1, ), (µ σ2 2, ) or on (~ ,µ τ1 1), (~ ,µ τ2 2)? A moment’s thought
shows that the underlying objects of interest are the pdfs, and
that the parameters serve only to specify particular pdfs. It
follows that any meaningful comparison of the two pdfs should
be independent of the choice of parameters. Does such a way of
comparing pdfs exist?

Two pioneers of statistics, Ronald Fisher and Calyampudi Rao,
found a way of calculating a distance between two pdfs. Fisher
regarded the data as a random sample from a hypothetical space
of possible data, noted that the parameter values calculated from
the sampled data differ from the true parameter values and
obtained an expression for the inverse covariance of these differ-
ences. The covariance measures the accuracy of the calculated
parameters. Rao showed that the inverse covariance, later known
as Fisher information, defines a Riemannian metric on the
parameter space. This Fisher-Rao metric gives the correct dis-
tance between pdfs. If the parameterisation is changed then the
description of the Fisher-Rao metric changes but the calculated
distance between any two given pdfs remains the same.

Maximum likelihood and Fisher information
In [3] Fisher divided the problems associated with the summari-
sation of data into three types. The first type of problem is to find
a parameterised family of pdfs which is likely to contain a model
for the data. To solve this problem, Fisher recommended the
prior knowledge of the practical statistician. The second type is
to calculate from the data the parameter values of the pdf that
best models the data. The third type is to obtain a pdf for the
parameter values, in order to assess how near the calculated

values are to the true but unknown values. The investigation of
problems of the second and third types led to the discovery of the
Fisher-Rao metric on the parameter space.

In order to solve the second type of problem, it is necessary to
find a general principle on which to base parameter estimation.
Fisher rejected the Bayesian approach to parameter estimation,
because there was no clear way of specifying a prior density on
the parameter space [3]. Instead, he removed parameter estima-
tion from out of the realm of probability theory by defining a
new fundamental quantity, the likelihood, and advocating the
maximum likelihood estimation of parameter values. Maximum
likelihood estimation is defined as follows. Suppose that the pdf
for data x k∈R is f x( | )θ , depending on a parameter vector
θ ∈Rm, and suppose that n independent samples x xn1, . . ., from
f x( | )θ are available. The joint pdf for the n samples is
Π i

n
if x=1 ( | )θ , and the maximum likelihood estimate θ1 of θ is

θ θ θ1
1

= →
=

arg max ( | ).Π
i

n

if x

It turned out that Bayesian parameter estimation was not so
easily dismissed. Maximum likelihood estimation led to the
Fisher-Rao metric, which in turn led to the definition of a prior
density suitable for Bayesian estimation.

One key advantage of the maximum likelihood estimate is that
it behaves correctly under reparameterisation of the parameter
space. If ψ is a new parameterisation andψ1 is the maximum like-
lihood estimate of ψ, then ψ ψ θ1 1= ( ). Another advantage is that
the problems of the third type can be tackled. Fisher showed that
if m = 1 and θ1 has a Gaussian distribution with expected value θ
and standard deviation σ θ( ), then
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The right hand side of (1) is the Fisher information. The defini-
tion of Fisher information is readily extended to the case m > 1,
resulting in the definition of the Fisher information matrix,
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The conditions under which Fisher obtained (1) can be relaxed if
n is large. As n → ∞, and under suitable conditions on the
parameterised family, θ θ→ f x( | ), of pdfs, the distribution of θ1
tends to a Gaussian distribution with expected value θ and
covariance I( )θ −1.

Distances in the parameter space
Suppose that θ,

~θ are two parameter values in R and θ1,
~θ1

are maximum likelihood estimates of θ,
~θ. Thus, θ1 is calculated

using samples drawn from f x( | )θ and
~θ1 is calculated using

samples from f x( |
~

)θ . The accuracy of the two estimates θ1,
~θ1 is

the same if
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This suggests that the correct measurement of the distance
between θ1 and θ is | |/ ( )θ θ σ θ1 − , rather than | |θ θ1 − . Similarly,
in the multi-parameter case, m ≥ 1, the correct measure of the
squared distance between θ1 and θ is

( ) ( )( ).θ θ θ θ θ1 1− −T I (3)

Equation (3) suggests that I( )θ can be used to define a metric on
the parameter space, but does I( )θ define a Riemannian metric?
A key property of a Riemannian metric is that the distance
between two points remains unchanged when the
parameterisation is changed. To make an analogy, one can use
the Mercator projection or the Albers projection for a map of the
UK, but the distance between London and Birmingham is 122
miles in both cases. In order to investigate the effects of changes
in the parameterisation, it is necessary to make a distinction
between points in the parameter space and the parameter vectors
used to describe them. Let a1, a2 be two nearby points in the
parameter space with corresponding parameter values θ θ1 2, .
The squared distance d a a( , )1 2

2 between a1 and a2 is given to
leading order by

d a a I( , ) ( ) ( )( ).1 2
2

2 1 1 2 1= − −θ θ θ θ θT (4)

Let ψ be a new choice of parameterisation. The information
matrix, I( )ψ , can be calculated using (2) withθ replaced byψ. Let
ψ ψ1 2, be the new parameter values for a1 and a2. The squared
distance between a1 and a2 is given to leading order by

( ) ( )( ).ψ ψ ψ ψ ψ2 1 1 2 1− −T I (5)

If I( )θ is to define a Riemannian metric then (5) must be equal to
d a a( , )1 2

2, at least to leading order, and for this to happen, it is
necessary that
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A short calculation shows that (6) follows from (2). The fact that
I( )θ defines a Riemannian metric on the parameter space was
first noted by Rao in [8].

New characterisations
The Fisher-Rao metric originated in the maximum likelihood
approach to parameter estimation, but is it more fundamental
than this origin suggests? Can the Fisher-Rao metric be derived
from the axioms of probability theory or from the basic require-
ments for logical reasoning? How many “reasonable” measures
of distance can there be on a parameter space for pdfs?

Let D a a( , )1 2 be a measure of the distance between points
a a1 2, corresponding to pdfs f x f x( | ), ( | )θ θ1 2 , respectively. Two
fundamental requirements for D are firstly that it should be
invariant under reparameterisations of the parameter space and
secondly that it should be invariant under reparameterisations of
the data space containing x. The reason for these requirements
is straightforward: the parameterisations can be varied at will by
the statistician. If D a a( , )1 2 were not invariant, then it could be
small in one context, and large in another context, even though
the data and the family of pdfs are the same in both contexts.
Arguments based on the value of D a a( , )1 2 would then not be
meaningful from the statistical point of view. Shun-ichi Amari
showed that for reasonable choices of D, these invariance
requirements ensure that

D a a c I( , ) ( ) ( )( ),1 2 2 1 1 2 1= − −θ θ θ θ θT to leading order.

where c is a constant [1]. Thus locally, D reduces to a scaled
version of the Fisher-Rao metric.

If the samples x xn1, . . ., are drawn from a finite discrete space
X mm = { , . . ., }0 , then a stronger result is possible. The parameter
space for the pdfs on X m is the m-simplex Sm of points
( , . . ., )p pm0 in Rm+1 which satisfy p i mi ≥ ≤ ≤0 1, , and

pii
m ==∑ 1

0
. A linear map T Sm

k: → +R 1 is said to be a

stochastic map if T S Sm k( ) ⊆ . A natural requirement for a sto-
chastic map is that it should not increase the distance between
any two points in S d Ta Ta d a an, ( , ) ( , )1 2 1 2≤ . Under this
requirement, the effect of the map is to remove information from
a a1 2, , or at best to leave the information in a a1 2, unchanged.
Nicholai Chentsov showed that the only metric on each Sn com-
patible with all the stochastic maps is a scaled version of the
Fisher-Rao metric [2].

Applications
Rao introduced the Fisher-Rao metric in order to cluster points
in the parameter space. Points close together under the metric can
be clustered together on the grounds that the corresponding pdfs
are similar. If the f x( | )θ are Gaussian pdfs with a common
covariance but differing expected values, then (4) coincides with
the widely used Mahanalobis distance.

In contrast with Fisher and Rao, Harold Jeffreys took a
Bayesian view of statistics, and saw in the Fisher-Rao metric a
way of defining a prior pdf on the parameter space [6]. The prior
pdf, p( )θ , is defined by

p d
I

S
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,
/

θ θ θ θ=
1 2

Vol
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where the volume, Vol(S), of the parameter space S under the
Fisher-Rao metric is

Vol( ) |det( ( ))|
/

S I d
S

= ∫ θ θ
1 2

.

The scale invariant prior, σ σ−1d , for the standard deviation is a
special case of (7). Once a suitable prior pdf is defined, Bayes rule
can be applied to obtain the pdf for θ, conditional on the mea-
surements. A key advantage of Jeffreys’ prior is that the
probability assigned by p( )θ to subsets of S is independent of
the choice of parameterisation of S.

A simple algorithm for parameter estimation can be defined by
sampling S at a finite number of points θ θ1, . . ., N and testing
each θ to see if it is compatible with the data. The volume,
Vol(S), is a measure of the complexity of the algorithm. If
Vol(S) is small, then N is small, and parameter estimation is
straightforward. The algorithm is particularly effective if the
data are a mixture, in which some points are drawn from a single
distribution f x( | )θ , and others are drawn from unrelated
distributions.

Recent applications of Jeffreys’ prior include machine learning
[5] and the detection of structures in digital images [7]. In the
minimum description length approach to machine learning, the
data are modelled by a pdf f x( | )θ and then compressed. The best
choice of θ is the one for which the length in bits of the com-
pressed data is a minimum. In order to measure fairly the length
of the compressed data, it is necessary to include the length of the
description of θ. This length depends on Vol(S) and on the
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resolution chosen in S. If there is a large amount of data, then
small differences inθ cause significant differences in the length of
the compressed data. It follows that a high resolution is required,
leading to an increase in the number of bits required to describeθ.

An application of Jeffreys’ prior to line detection in an image is
described [7]. The image is assumed to be a disc, scaled to have
unit radius. Cartesian coordinates are chosen with an origin at
the centre of the disc. The parameter vector for a line l is
( ( ), ( ))ρ φl l where (ρ( ) φl lcos( ( )), ρ( ) φl lsin( ( )))are the Cartesian
coordinates of the point on l closest to the origin. Each line, l, has
an associated pdf, f x l l( | ( ), ( ))ρ φ , for the measured point x in the
open unit disk. The parameter space for the pdfs f x l l( | ( ), ( ))ρ φ is
S = ×( , ) [ , )0 1 0 2 π . The parameterisation( ( ), ( ))ρ φl l fails for lines
through the origin, therefore these lines are omitted from S. The
Fisher-Rao metric on S is closely approximated by

1 1 0

0 1 32 2σ ρ( ) /−





, (8)

where σ is the standard deviation of the error in measuring a
coordinate of a point in the unit disk.

The set S = ×( , ) [ , )0 1 0 2 π is a part of the Euclidean plane, but
the Euclidean metric does not coincide with the metric defined on
S by (8). However, S can be embedded as a surface F in R3 such

that the metric defined on F by (8) coincides with the metric
defined on F by the Euclidean metric in R3. The surface F is
shown in Figure 1 for σ = −10 2. It is a surface of revolution
because (8) is independent of the angular coordinate φ. Lines
passing near to the origin are represented by points towards the
top of F and lines far from the origin are represented by points
towards the bottom of F.

In the line detection algorithm, S is sampled at points
( ( ), ( ))ρ φl li i ,1 ≤ ≤i N . A line li is detected if a significant number
of the measurements are within a distance O( )σ of li . The mea-
surements are points x i i n( ), 1 ≤ ≤ , in the image at which there is
a large change in the pixel values over a short distance in the
image.

Conclusion
The invariance of the Fisher-Rao metric under repara-
meterisations of the data space and the parameter space ensures
its importance in the theory and the applications of statistics. It
has a central role to play whenever it is necessary to estimate
parameters using measurements subject to unknown errors.
More ambitiously, Roy Frieden argues in [4] that the fundamen-
tal equations of physics can be derived from a variational
principle based on the Fisher information.❏

REFERENCES
1 Amari, S.-I. (1984) Differential-Geometrical Methods in Statistics. Lecture Notes

in Statistics, vol. 28. Springer-Verlag.
2 Chentsov, N. N. (1972) Statistical Decision Rules and Optimal Inference (in

Russian), Nauka, Moscow. English translation (1982), AMS.
3 Fisher, R.A. (1922) On the mathematical foundations of theoretical statistics.

Philos. Trans. Roy. Soc. London Series A, 222, 309-368.
4 Frieden, B.R. (2001) Physics from Fisher information. Mathematics Today, 37,

115-119.
5 P.D. Grünwald (2007 The Minimum Description Length Principle, MIT Press.
6 Jeffreys, H. (1946) An invariant form for the prior probability in estimation

problems. Proceedings of the Royal Society of London, Series A, 186, No. 1007,
pp. 453-461

7 Maybank, S.J. (2004) Detection of image structures using Fisher information
and the Rao metric. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26, 1579-1589.

8 Rao, C.R. (1945) Information and the accuracy attainable in the estimation of
statistical parameters. Bull. Calcutta Math. Soc., 37, 81-89.

Email: sjmaybank@dcs.bbk.ac.uk

Mathematics TODAY DECEMBER 2008 257

Figure 1: Parameter space for lines embedded as a surface F in R 3.
The flat shaded area is not part of F

Catch me if you can!
Steve Humble FIMA, National Centre for Excellence in the Teaching of Mathematics

Learning mathematics outside the classroom is not enrichment, it is
at the core of empowering an individuals understanding of the
subject.

The three activities described in this article can all be used
outside the classroom in a maths lesson. Teaching mathe-
matical concepts in this way engages and reinforces learn-

ing. It puts the ideas learnt into a setting and allows time for those
ideas to be developed without any of the maths hang-ups which
can occur in the classroom. By taking maths beyond the class-
room, we can more clearly illustrate the connections between the
real world and what they are studying in school. In so doing stu-
dents and teachers alike are enthused by the wealth of resources
they have all around them in their own environments.

From a very young age we all play “catch me if you can!”, Tag
being the most well known version, where one person chases

others. When the player catches another they say “Tag, caught
you, your on”. The pursuer then becomes the pursued. The 1968
classic car chase movie Bullitt, had Steve McQueen driving his
Mustang GT 390 at speed through the hilly streets of San Fran-
cisco[1]. This is a wonderful example of a movie car chase, but I
am sure you could name others. These movies show students real
life cases of pursuit. Another example is a fighter plane in battle
following on a pursuit curve to shoot down a bomber aircraft.
The fighter will continually point its guns and plane towards the
target bomber it is trying to shoot down. As the fighter moves in,
closing the gap between itself and its prey, the velocity vector will
always be pointing towards the bomber.

The first mathematician to work on the idea of pursuit analysis
was the French mathematician Pierre Bouguer in 1732. One way
in which his analysis may be illustrated is using the analogy of a




