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In this paper, we present a new geometric-temporal representation for visual action recognition based on local spatio-temporal 

features. First, we propose a modified covariance descriptor under the log-Euclidean Riemannian metric to represent the spatio-
temporal cuboids detected in the video sequences. Compared with previously proposed covariance descriptor, our descriptor can be 
measured and clustered in the Euclidian space. Second, to capture the geometric-temporal contextual information, we construct a 
Directional Pyramid Co-occurrence Matrix (DPCM) to describe the spatio-temporal distribution of the vector-quantized local feature 
descriptors extracted from a video. DPCM characterizes the co-occurrence statistics of local features as well as the spatio-temporal 
positional relationships among the concurrent features. These statistics provide strong descriptive power for action recognition. To use 
DPCM for action recognition, we propose a Directional Pyramid Co-occurrence Matching Kernel (DPCMK) to measure the similarity of 
videos. The proposed method achieves the state-of-the-art performance and largely improves the recognition performance over the bag 
of visual words (BOVW) models on six public datasets. For example, on the KTH dataset, it achieves 98.78% accuracy while the 
BOVW approach only achieves 88.06%. On both Weizmann and UCF CIL datasets, the highest Tpossible accuracy of T100% is achieved. 
 

Index Terms—Covariance cuboid descriptor, log-Euclidean Riemannian metric, spatio-temporal directional pyramid co-occurrence 
matrix, kernel machine, action recognition  
 

I. INTRODUCTION 
ecognition of human actions in video sequences is an 
important yet challenging task in computer vision [1-3]. It 

has a wide range of applications, such as smart surveillance, 
video indexing and browsing, human-computer interaction, etc. 
A recent trend in action recognition has been the emergence of 
techniques based on volumetric video analysis, where a video 
is represented by a set of local features extracted from several 
spatio-temporal volumes of the video. Such local feature based 
descriptions are robust against noise, occlusion, and geometric 
variations. Many studies along this line [4-6, 16-17, 25] model 
spatio-temporal features using the bag of visual words 
(BOVW) framework, which is geometrically unconstrained 
and omits global spatial (or long-term temporal) information. 
Typically, these methods have two key components: i) 
extracting robust local spatio-temporal features, and ii) 
constructing effective representations of video sequences 
using these local features. Despite many previous studies, the 
spatio-temporal feature based representation in video analysis 
is still an open field of research.  

In this paper, we propose effective algorithms for improving 
both components of the BOVW framework for action 
recognition. For local S-T features, we propose using the 
covariance descriptor to describe each detected 3D S-T cuboid. 
The covariance descriptor, as proposed by Tuzel et al [7], is 
used to represent 2D image regions for object recognition and 
target tracking. In this paper, we extend the covariance 
descriptor to 3D S-T volume and demonstrate its effectiveness 
for representing a spatio-temporal cuboid. Compared with 
other cuboid descriptors such as 3D-SIFT, HOG and HOF, our 
3D covariance descriptor has several advantages: (1) it 
directly fuses different types of pixel-level features; (2) it is 
robust to noise in the pixel-level features and to changes in 

rotation and scale; and (3) it has low computation complexity.  
To measure the similarity between covariance descriptors, 

we use the log-Euclidean Riemannian metric. Compared with 
the affine invariant Riemannian metric used in [47], the log-
Euclidean Riemannian metric takes a much simpler form. 
With the log-Euclidean Riemannian metric, our covariance 
descriptors, after matrix logarithmic transformation, lie in the 
Euclidean space and can then be clustered by the k-means 
clustering method to generate the visual vocabulary.  

One limitation of the traditional BOVW model is that it 
discards the rich spatial-temporal context information in video 
sequences. From Fig.1, the distribution of local features in the 
3D space varies significantly for different action classes. This 
suggests that considering spatio-temporal geometrical 
information may improve the discriminative power of action 
representation.  

In our action representation, we consider each local spatio-
temporal feature and its neighborhood as a feature ensemble 
that is more discriminative than an individual feature. 
Moreover, we exploit the intrinsic spatio-temporal structural 
information in every feature ensemble by obtaining the 
directions from the feature to each of its neighboring features. 
The resulting spatio-temporal Directional Pyramid Co-
occurrence Matrix (DPCM) represents a video sequence by 
counting the number of the directional feature pairs in all the 
feature ensembles in the video sequence. The directions of 
feature pairs are quantized in a coarse-to-fine fashion to yield 
a hierarchical pyramid of the directions. The proposed DPCM 
captures not only the appearance information but also the 
geometric-temporal information in the video.  

To measure the similarity between the proposed DPCMs, 
we propose the Directional Pyramid Co-occurrence Matching 
Kernel (DPCMK), which is inspired by the pyramid matching 
kernel recently proposed by Grauman and Darrell [49]. The 
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basic idea is to map unordered feature sets extracted from each 
video to DPCMs and to compute a weighted similarity 
summation of the corresponding sub-matrices of DPCMs. Our 
kernel inherits the merits of the original pyramid matching 
kernel: it is robust to clutter or outlier features; it is a Mercer 
kernel; and it has linear computational complexity.  

In summary, the main contributions include the following: 
 We adapt the covariance descriptor to the 3D spatio-

temporal space in order to describe the S-T cuboids. By 
fusing various kinds of features extracted at the pixel 
level, the descriptor encodes rich information for 
describing local properties of human actions. 

 We introduce the log-Euclidean Riemannian metric to 
calculate the similarity between covariance descriptors. 
By applying the matrix logarithmic transformation to 
covariance features, we obtain matrices in a Euclidean 
space. They can be clustered by the k-means algorithm to 
generate the vocabulary of BOVW model.  

 We propose a spatio-temporal Directional Pyramid Co-
occurrence Matrix (DPCM) to represent the video 
sequence by modeling directed local feature pairs. The 
DPCM uses feature ensembles instead of individual 
features, and the feature pairs in the ensembles are 
accumulated in the co-occurrence matrix. The DPCM 
goes one step beyond the co-occurrence matrix since it 
explicitly captures the inner spatio-temporal configure-
tion of the ensemble by considering the relative 
positional relationships of pairs of features. 

 We present a Directional Pyramid Co-occurrence 
Matching Kernel (DPCMK) to measure the similarity of 
two DPCMs. The DPCMK effectively combines each 
level in the pyramid structure and can tolerate the intra-
class variations of actions. As a Mercer kernel, DPCMK 
can be readily combined with the SVM classifier.  

We evaluate our method on six publicly available datasets 
including the KTH dataset [5], Weizmann dataset [23], UCF 
sports dataset [8], UCF CIL action dataset [54], the Feature 
Films dataset [8],  and the facial expression dataset [6]. On all 
of the six datasets, the proposed method outperforms the 
traditional BOVW method by a large margin, and is superior 
to several state-of-the-art methods.  

The remainder of the paper is organized as follows. Section 

II reviews related work on action recognition. Then, Section 
III details the covariance descriptor of the cuboids and the 
proposed DPCM. After that, Section IV describes action 
recognition based on DPCMK. Experimental results are 
reported in Section V. Finally, Section VI concludes the paper. 

II. RELATED WORK 
Action recognition [1-3] has attracted a large amount of 

research attention in the computer vision and image 
processing community. Some early work uses holistic features 
extracted from each frame of the video, such as the shape of 
silhouettes and 3-D joint angles, for describing the action units. 
Then, a video sequence is mapped into a feature sequence, to 
which recognition approaches based on the following methods 
have been applied: probabilistic graphical models such as 
hidden Markov models [9-12] and dynamic Bayesian 
networks [13-15]. 

Recently, the success of local interest points in object 
recognition has inspired studies using local spatio-temporal 
features for motion analysis and action recognition. Various 
statistical approaches, especially the histogram-based analysis, 
are employed on the local feature set to obtain action 
representations. Action recognition is then carried out using 
different classification and clustering approaches, such as the 
Support Vector Machine (SVM) [5], the Nearest Neighbor 
Classifier (NNC) [6, 16], and latent topic models [17].  

In the next two subsections, we provide a literature review 
on human action recognition, focusing on local spatio-
temporal descriptors and the representation of video sequences.  

A. Local Interest Region Descriptors 
Extracting local features includes two relatively 

independent steps: detecting cuboids and describing the 
cuboids [18]. At each detected interest point, a cuboid is 
extracted which contains the spatio-temporally windowed 
pixel values. After obtaining cuboids, one can calculate low-
level features, such as gradient and optical flow, at each pixel 
in the cuboid. The task of the descriptor is to create a compact 
and discriminative middle-level feature from these low-level 
features. According to how the middle-level features are 
constructed, 3D spatio-temporal descriptors are classified into 
the following categories.   
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Fig. 1. Localization of interest points for six action videos in the KTH dataset. In the first row, one key frame for each video is shown and all interest points 
detected in that video are overlapped on the key frame, to show the spatial distribution of features. The second row shows the distribution of the features in 
spatio-temporal coordinates. 
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The simplest method is to concatenate all the pixel features 
in the cuboid [17, 24]. The resulting feature vector usually has 
a high dimension which is then reduced. An example is given 
by the PCA-SIFT descriptor proposed by Dollár et al. [6], and 
also called the cuboid descriptor in [22]. This type of 
descriptor is sensitive to small perturbations in the pixel values 
within the cuboid. 

Another type of descriptor measures the distribution of low 
level statistics inside a cuboid, for example the histogram of 
gradient values (HOG) and the histogram of optical flows 
(HOF). There are two main versions of the HOG. One is to 
allocate the gradient orientations to several bins and count the 
number of gradients falling into each bin [25]. In the other 
version, the count of the number of gradients in each bin is 
weighted by the gradient magnitudes [26]. These descriptors 
are robust to small perturbations, but their discriminative 
power is reduced because all spatial information is ignored. 

One way of capturing the spatial information is to divide 
each cuboid into several sub-cuboids and then create 
histograms for each sub-cuboid [19, 27]. These histograms are 
later concatenated to form a vector. Typical descriptors of this 
type include the spatial SIFT [21] for images, the 3D SIFT [20] 
for videos, and the HOG3D descriptor [28].  

The feature vectors of all points in the cuboid comprise a set 
that can be represented by its statistical properties such as the 
mean vector, and the covariance matrix. These statistics 
capture discriminative information for spatio-temporal cuboids. 
Motivated by this fact, we introduce the covariance descriptor 
to represent the cuboid, which is fundamentally different from 
the three kinds of methods mentioned above. The covariance 
descriptor has been successfully applied to 2D images [7].  

The idea of the above mentioned descriptors is to compute 
invariant feature from the spatio-temporal neighborhood 
regions of interest point. It is possible to design spatio-
temporal descriptors directly from the interest points. For 
example, Schuldt et al. [5] combine a set of image derivatives 
computed up to a given order to obtain the descriptors in the 
form of the so-called spatio-temporal jets. 

B.  Geometrical Modeling for Action Representation 
There are many algorithms for combining the geometrical 

information with BOVW. Fergus et al. [29] propose a model, 
translation and scale invariant pLSA (TSI-pLSA), which 
extends pLSA (as applied to visual words) to include spatial 
information of the interest points. They introduce into the 
classical pLSA model a second latent variable which 
represents the position of the centroid of the object within the 
image. Wong et al. [30] extend TSI-pLSA from 2D image 
analysis to 3D video analysis, and propose a pLSA with an 
implicit shape model (pLSA-ISM) to infer the location of 
motion in video sequences. Niebles et al. [31] define a 
constellation model for the geometrical arrangement of local 
features. In the above cases, many parameters and constraints 
are introduced leading to an increased computational 
complexity. 

Other approaches for combining geometric information 
include the “spatial pyramid” in image [32] and the “spatio-

temporal pyramid” in video [33]. In [32], an image is 
partitioned into increasingly fine sub-regions and histograms 
of local features are computed in each sub-region. The 
resulting “spatial pyramid” is an extension of the orderless 
bag-of-features image representation. Likewise, in [33], a 
video is uniformly divided into spatio-temporal grids and the 
histogram is computed in each grid. However, in action videos, 
the interest points are usually sparsely distributed in a small 
number of local regions. In [34] the positions of interest points 
are clustered in the spatio-temporal space. At each cluster 
center the histogram of local features is computed. 

The co-occurrence matrix [35-36] and the proximity 
distributions [37] of visual words are proposed as global 
image descriptors for capturing the geometric information 
useful for object recognition. In [37], the histogram 
intersection kernel is used as the proximity distribution kernel 
to measure the similarities of images. In [35] the stationary 
distribution derived from the normalized co-occurrence matrix 
forms the so-called Markov stationary features (MSF), and 
then the χP

2
P distance of the MSF is adopted for the kernel of an 

SVM classifier. In [36], the co-occurrence matrices are 
calculated for four selected directions yielding the so-called 
Directed Markov Stationary Features (DMSF).  

In [35-37], it is demonstrated that both the co-occurrence 
matrix and the proximity matrix are able to improve 
recognition performance in images. However, the above co-
occurrence matrices largely ignore the inner positional 
relationship between each concurrent feature pair. 

There are some approaches that build a video representation 
directly from the positions of interest points. In [38], the 
trajectories of interest points are extracted based on the pair-
wise SIFT matching over consecutive frames and then three 
types of features are obtained from the trajectory. In [39], 
Bregonzio et al. propose a different approach in which clouds 
of interest points are accumulated for different spatio-temporal 
windows and several features are extracted from the point 
clouds. These features include shapes, speeds, and the 
relationship between the clouds and the object areas. 
Computing these features involves some non-trivial steps such 
as reliable object detection and segmentation.  

In [51, 52], Junejo et al. explore the temporal self-
similarities within an action sequence and propose a Self-
Similarity Matrix (SSM) as the action descriptor. SSMs are 
approximately invariant under view changes of an action and 
their diagonals indicate periodicity of the motion. In [53], Sun 
et al. proposed a Joint Self-Similarity Volume (Joint SSV) 
based on SSM. They construct a Self-Similarity Matrix (SSM) 
for each frame of a video and then construct Joint SSMs from 
SSMs of this video. Shen et al. [54, 55] decompose each pose 
into a set of point-triplets to achieve robustness to noise and 
self-occlusions. They define a matching score based on the 
pose transition, rather than on the poses themselves. Pose 
transition captures the temporal information in human motion, 
while most fundamental matrix based methods only enforce 
pose-to-pose correspondences. Yan et al. [56] build a 4D 
action feature model by using multi-view action sequences. By 
elegantly encoding shape and motion of actors observed from 
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multiple views, the feature is demonstrated its salient 
properties to assist in action recognition.  

III.  VIDEO REPRESENTATION BASED ON 
DIRECTIONAL PYRAMID CO-OCCURRENCE 

MODELING 
Using local spatio-temporal features, we construct an 

effective video representation for action recognition. Fig. 2 
shows the flowchart of the proposed action recognition 
framework. Compared with previous studies, our framework is 
novel mainly in two aspects: (1) the construction of a modified 
covariance descriptor under the log-Euclidean Riemannian 
metric to represent the detected 3D cuboids; and (2) the 
modeling of the video sequence by constructing a directional 
pyramid co-occurrence matrix for the local covariance features. 
The resulting representation of a video sequence includes not 
only local features but also the geometrical-temporal 
distribution of these local features over 3D space-time.  

A. Covariance descriptor of the 3D cuboid 
We detect the spatio-temporal interest points for each video 

using the method proposed by Dollár et al. [6]. Subsequently, 
a cuboid is extracted around each detected interest point. Let fBiB 
be a d-dimensional feature vector associated with the iP

th
P pixel 

in the cuboid. The components of fBiB could include features, 
such as intensity, gradient, and optical flow. The feature 
vectors of all pixels in the cuboid form a feature vector set 

}…{= N , f, , ffF 21 , where N is the number of pixels. The 
covariance matrix associated with the cuboid is defined as: 

( ) ( )∑ −−
−

=
=

N

i

T
ii ufuf

N
C

11
1                       (1) 

where u is the mean of vectors in F and C is of size nn × . In 
practice, we use a combination of position, gradient and 
optical flow to represent the pixel in the cuboid, namely,  

( )|||| yxyxtyxtyxi v,v,v,,v||L,||L,||L,L,L,L,t,y,xf =    (2) 
where | | is the absolute value, (x, y, t) is the positional vector 
of the pixel in the cuboid, (LBx B, LBy B, LBtB) is the gradient, and (vBx B, vBy B) 
is the optical flow vector. The spatial gradients (LBx B, LBy B) and the 
temporal gradient LBtB are calculated by: 

( ) ( )
( ) ( )
( ) ( )11

11
11

x, y, t - - Lx, y, t + LL
, tx, y -- L, tx, y + LL

, y, tx- -L, y, tx + LL

t

y

x

=
=
=

                          (3) 

where L(x, y, t) is the intensity of the pixel at position (x, y, t). 
The optical flow is obtained using an implementation of the 
classical optical flow method by Horn and Schunck [42]. 

Covariance matrices do not lie in the Euclidean space [7] 
and cannot be compared directly by the Euclidean metric. 
Several approaches [7, 43, 44] using covariance descriptors 
for image regions employ the distance measure proposed in 
[45]: 

( )∑
=

=
n

1
21

2
21 ln

i
i C,Cλ)C,ρ(C                            (4) 

where ( ){ } ,n,ii C,Cλ
L121 =  are the generalized eigenvalues of CB1B 

and CB2B, computed from iii xCxCλ 21 =  and 0≠ix  are the 
generalized eigenvectors. The computational complexity to 
solve a generalized eigenvalue problem using the Arnoldi 
iteration is O(dnP

2
P+dP

2
Pn) [46], where d is the number of 

dominant eigenvalues and the matrices are of size n×n. 
Usually, hundreds of cuboids are obtained from each video 
and hundreds of thousands are obtained from a video dataset. 
It is apparent from Eq. (4) that each distance measurement for 
every pair of covariance matrices requires the solution of a 
generalized eigenvalue problem. Hence, the computational 
complexity of comparing all covariance matrices in a video 
dataset is very high. Besides, the traditional covariance feature 
in the form of matrix does not lie in a Euclidean space. 
Therefore, it is nontrivial to cluster this type of feature 
matrices into centriods that are used as the visual words in the 
BOVW framework.  

The covariance matrix is a symmetric nonnegative definite 
matrix and in our case it is usually symmetric positive definite 
(SPD). Arsigny et al. [3, 10] propose a novel log-Euclidean 
Riemannian metric for calculating the statistics of SPD 
matrices. Under this metric, distances and Riemannian means 
take a closed form. Therefore, we introduce the log-Euclidean 
Riemannian metric into the similarity measure of covariance 
matrices. Specifically, given an nn× covariance matrix C, the 
singular value decomposition (SVD) of C is denoted as 

TUU ∑ , where U is an orthogonal matrix, and 
( )n,λ,λ,λdiag L21=∑  is the diagonal matrix of the 

eigenvalues of C. The matrix logarithm ( )Clog  is defined as:  

( ) ( )
( ) ( ) ( )( ) T

n

k

k
n

k

Uλ,,λ,λdiagU
IC

k
(C)

⋅⋅=

−
−

= ∑
∞

=

+

logloglog

1log

21

1

1

L
  (5) 

where nI  is an nn ×  identity matrix. Under the log-Euclidean 
Riemannian metric, the distance between two covariance 
matrices A and B is F(B)(A) loglog − , where F• is the 

Frobenius norm. 
Fig. 3 shows the computation of the proposed covariance 

descriptor. After the pixel-level feature extraction, we use two 
steps to obtain the covariance descriptor of a cuboid. Let C be 
the covariance matrix defined by Eq. (1). In the first step, we 
compute the matrix logarithm ( )Clog  using Eq. (5). In the 
second step, we reduce ( )Clog  to an n(n+1)/2 dimensional 
vector by using its upper triangular matrix as follows: 

( )( ) ( )
]22222[

log
,,23,22,2,13,12,11,1 nnnn zzzzzzzz

ZvecCvec
LLL=

= (6) 

 
Fig. 2. Flowchart of the proposed action recognition framework. 
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where ( )CZ log=  and zBi,jB is an element of matrix Z. No 
information is lost because the matrix Z is symmetric. In this 
paper, the covariance matrix C is of size 13×13, namely n=13. 
Hence, the right-hand side of Eq. (6) is a 91-dimensional 
vector. Furthermore, by this vectorization, the following 
relation holds: 

( ) ( ) ( )( ) ( )( )
2F

loglogloglog BvecAvecBA −=−          (7) 
Therefore, we can obtain the dissimilarity by computing the 
Euclidean distance of two corresponding vectors instead of 
two logarithm matrices.  

The proposed covariance descriptor has the following 
advantages. (1) It combines multiple low-level features in a 
concise way. (2) It can be computed and compared quickly 
under the log-Euclidean Riemannian metric. The log-
Euclidean mean can be computed approximately 20 times 
faster than the affine-invariant Riemannian mean [40, 47]. 
Details of these two metrics can be found in [41, 48]. (3) It is 
robust to noise. Individual feature vectors corrupted by noise 
are largely filtered out with an average filter during covariance 
computation. (4) The covariance matrix does not include any 
information about the ordering or the number of the feature 
vectors used to calculate it. This brings a certain degree of 
invariance to scale, rotation and mis-alignment. In [7] it is 
proved that large rotations and illumination changes also have 
little effect on the covariance matrix.  

B. Vocabulary Learning 
In the BOVW framework, the local covariance features are 

quantized into a vocabulary. The vocabulary is constructed by 
clustering a large set of local features from the training videos 
using the k-means clustering method. As described in 
subsection A, our covariance feature is a 91-dimensional 
vector and distances between vectors are measured by the 
Euclidean metric. Therefore, our covariance feature can be 
input into the k-means clustering method. In comparison, the 
original covariance descriptor and its metric as defined in [7, 
43-45] cannot be directly used for k-means clustering.  

Let {νB1B,…,νBKB} be a vocabulary of K visual words. After 
building the vocabulary, each covariance feature is mapped to 
the nearest word in the vocabulary.  

C. Spatio-temporal Co-occurrence Matrix for Geometric 
Context  

In visual recognition tasks, constraints obtained from pairs 
of features have been imposed to improve the standard bag-of-

words algorithms. The co-occurrence matrix is an effective 
non-parameteric model for pair-wise feature distribution. We 
propose two methods to construct spatio-temporal co-
occurrence matrices in the 3D video space. One is based on 
the ranking according to distances, while the other utilizes 
directly the values of the distances.  

Each video V yields data in the form {(xBiB, αBiB)}B1 ≤ i ≤ MB , where 
xBi B= (x, y, t) is the spatio-temporal position vector of the iP

th
P 

local covariance feature (namely, the center of the iP

th
P cuboid), 

αBiB is the index of the corresponding visual word, and M is the 
total number of local features in the video. The distance 
between two cuboids xBi B, xBjB is measured by the Euclidean 
distance || xBi B- xBjB || between their centers. The spatio-temporal 
co-occurrence matrix is defined as P = (pBi j B)∈RP

K×K
P, with each 

element defined by 
( )

( ){ }Mmldxxji
pjiP

mlmlml

ji

≤≤≤−===
=

,1,,,,#
,

αααα (8) 

where αBlB and αBm B are indices associated with a pair of local 
features separated by a distance not larger than d, and #{·} 
means the number of feature pairs satisfying all the conditions 
listed in the brackets in Eq(8). In fact, d is the radius of the 
neighborhood of each local feature.  

An alternative way of defining a co-occurrence matrix is to 
use the ranks of neighboring features. We define such a spatio-
temporal co-occurrence matrix as Q=(qBi jB)∈RP

K×K
P. The element 

qBi jB is the number of the local features with the visual word 
belonging to the type νBiB that are among the r-nearest neighbors 
of a local feature with a visual word νBj.B, i.e., 
( )

( ) ( ){ }Mmlrxxdji
qjiQ

mlNNmlml

ji

≤≤≤===
=

,1,,,,|,#
,

αααα (9) 

where dBNN B(xBl B, xBm B) ≤ r indicates that xBm B is among the rP

th
P nearest 

neighbors of xBlB. Both kinds of spatio-temporal co-occurrence 
matrices are of size KK × , where K is the size of vocabulary. 

 The two spatio-temporal co-occurrence matrices differ only 
in the definition of the neighbor relationship for local features. 
The second one captures rank information about the relative 
positions of local features. The rank information is more 
reliable and robust than the distance information. The 
distances are affected by changes in scale, or viewpoint. 
However, the sorting method in the second matrix Q can 
overcome these problems. 

D. The directional Pyramid context modeling 
As described above, the spatio-temporal co-occurrence 

matrices effectively capture the geometric context by 
modeling undirected local feature pairs of the video sequence. 
However, the relative positional relationship of the feature pair 
is not considered. In this section, we present the so-called 
Directional Pyramid Co-occurrence Matrix (DPCM) for 
modeling the statistics of directed feature pairs. We calculate 
the directional relationships of feature pairs using a directional 
vector (θBsB, θBtB), respectively corresponding to spatial direction 
θBsB and temporal direction θBtB, defined by 

⎩
⎨
⎧

<−−
≥−

=
−
−

=
01
01

)(arctan
12

12

12

12

tt
tt

θ
xx
yy

θ ts     (10) 

 
Fig. 3. Computation of the covariance descriptor for the cuboid. 



 6

where (xB1B, yB1B, tB1 B) is the position vector of the first local feature 
and (xB2B, yB2 B, tB2B) is that of a local feature in the neighborhood of 
the first local feature. In order to reduce computational 
complexity and resist local disturbance, we quantify the 
directional vectors using increasingly finer angle scales and 
construct a directional pyramid structure. Specifically, level 0 
utilizes the undirected local feature pairs. At the finer level l, 
we define 2P

l+1
P bins for the directional parameter θBsB in the 

spatial domain, and two bins for the directional parameter θBtB in 
the temporal domain. The directional pyramid structure 
around each local feature in the spatial domain is as illustrated 
in Fig. 4. We take the first co-occurrence matrix for example. 
The central point is the local feature of interest, the circle of 
radius d defines its neighborhood, and all the local features in 
the circle are neighboring features of the central feature. 
Afterwards, the neighborhood of the central feature is 
partitioned into 2P

l+1
P sub-regions in the spatial domain as 

shown in Fig. 4. The two bins in the temporal domain are 
combined with the bins in the spatial domain to construct the 
directional pyramid at the level l (1≤ l ≤ L). In this way, a 
directional pyramid as shown in Fig. 4 is constructed for each 
local feature of the video sequence. 

After building the directional pyramid structure, we 
calculate a spatio-temporal co-occurrence matrix (STCM) for 
each direction at each level. The STCM of level 0 is the 
STCM of undirected cuboid pairs. Without loss of generality, 
we take the first kind of STCM as an example and introduce 
the construction of the STCM in other levels. It is the same as 
in the case of the second kind of STCM. At level 1, eight 
directional STCM are defined as:  
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where (xBlB, yBlB, tBlB) and (xBm B, yBm B, tBm B) are the position vectors of the 
local features αBlB and αBm B, and s and t respectively denote the bin 
index of quantified spatial and temporal directions. The 

directional bin index s ranges in {1, 2, 3, 4}, and t ranges in {-
1, 1}. Similarly, for level 2, we can calculate 16 directional 
STPM. In this way, the directional pyramid grows till the 
finest level L is reached. The number of quantified directions 
at each level is twice the number at the level below. Moreover, 
from the definition of the directional STPM in the directional 
pyramid, we get the following equation: 
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where PP

0
P denotes the STCM at level 0, and i

tsP ,  denotes the 
STCM of the sP

th
P spatial direction and the tP

th
P temporal direction 

at level i. In summary, this technique works by partitioning 
each neighborhood into increasingly finer sub-regions and 
computing the co-occurrence matrices of feature pairs falling 
inside each sub-region. The resulting “directional pyramid” is 
a simple and efficient extension of an undirected co-
occurrence matrix video representation. In Fig. 5 (a), we show 
the histogram, the co-occurrence matrix and the DPCM of 
three videos on the KTH dataset. Each row is a video and its 
various representations. The Fig. 5 (b) lists the similarities of 
these three videos under different video representation, which 
is analyzed in the next section in detail. 

IV. ACTION RECOGNITION BASED ON PYRAMID 
MATCHING KERNEL OF GEOMETRIC CONTEXT 

MODEL 
With the directional pyramid, each video can be represented 

as a multi-level directional STCM, namely DPCM. To 
effectively measure the similarity of two video sequences, we 
present a directional pyramid co-occurrence matching kernel 
(DPCMK), which serves as a kernel used in the SVM. 

Fig. 4. A toy example of a directional pyramid structure around each local
feature in the spatial domain. The first row is the directional pyramid
structure of the neighborhood of the central feature only in the spatial 
domain. Each point denotes a local feature and the three different symbols
denote three types of visual words associated with the local features. The
second row shows the histograms of visual words obtained for different
directions at different levels. 
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(1) video (2) histogram (3) CM (4) DPCM 

(a) 
 histogram CM DPCM 

Similarity (a , b) 0.5194 0.4987 0.3931 
Similarity (a , c) 0.5262 0.3505 0.1972 
S (a , b)-S (a , c) -0.0068 0.1482 0.1959 

(b) 
Fig. 5. (a) The detected interest points and three kinds of representation of 
three videos in the KTH dataset. The second column shows the histogram 
representation of the video. The third and fourth columns are the spatio-
temporal co-occurrence matrix (CM) and the 2-level Directional Pyramid 
Co-occurrence Matrix (DPCM) of the video. (b) The similarities of three 
videos under different representations. 
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A. Directional Pyramid Matching Kernel for DPCM  
Each video is represented by multi-resolution matrices as 

described above in Section III. We create a Directional 
Pyramid Co-occurrence Matching Kernel (DPCMK) to 
measure the similarity of two video. 

Denote a video as Y = [YB PB

0
PB B, … , YP

 l
P B B, … , YP

 L
P], where YP

 l
P is a 

list of the co-occurrence matrices at level l. At level l, we 
concatenate the obtained co-occurrence matrices at all 
directional ranges of level l to obtain ][ 2221

l
l

lll ,Y,,YYY += L , 

where i
dY  is the co-occurrence matrix for the directional index 

d at level l. The directional index d corresponds to a specific 
direction (s, t) and in fact the meaning of i

dY  is equal to that of 
the symbol “ i

ts,P ” described in the Section III. That is, we 
build a hierarchical structure for each video and represent the 
video as a concatenated matrix. 

Let X = [XB PB

0
PB B, … , XP

 L
P] and Y = [YB PB

0
PB B, … , YP

 L
P] be the DPCM 

representations of two videos. The DPCMK computes a 
weighted matrix intersection in the hierarchical structure of 
DPCM. First, we define a “matrix intersection” function S as 
the similarity for two basic matrices A and B, which measures 
the “overlap” between two matrices’ elements: 

( ) ( ) ( )( )∑=
i,j

ji,B,ji,ABA, minS                              (13). 

At each level l, the similarity of X P

l
P and Y P

l
P is defined as the 

sum of 2P

l+1
P*2 matrix intersections of corresponding directional 

co-occurrence matrices: 
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where the submatrix l
dX  of X P

l
P is the co-occurrence matrix of 

the video for directional index d at level l, and ),( jixl
d  is the 

element in the iP

th
P row and jP

th
P column of l

dX . From Eq. (14), it 

is seen that the similarity of X P

l
P and Y P

l
P is namely the sum of 

the minimal value at each corresponding element. In other 
words, I(X P

l
P, Y P

l
P) is the number of the matched pairs in the 

level l. As in PMK [49], the number of the newly matched 
pairs NP

 l
P induced at level l is the difference between successive 

levels’ matrix intersections:  
                  ),(),( 11 ++Ι−Ι= lllll YXYXN                  (15) 

Because level L is the finest level, we compute the number of 
matches NP

 l
P from level L to level 0. The resulting kernel ΔΚ  is 

obtained by the weighted sum over the number of matches NP

 l
P 

occurred at each level, and the weight with level l is set to 2P

l-L
P: 
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where XP

L+1
P= YP

L+1
P=0.   

Moreover, the number of local feature pairs is unstable in 
each video, because it relies heavily on video duration and 
resolution. Hence, we normalize the kernel ΔΚ  as follows: 

∑ ∑
Κ

=Κ Δ
Δ

ji ji
jiYjiX

YXYX
, ,

00
'

)),(),,(min(
),(),(                      (17) 

where ),(0 jiX  is the element of the STCM in level 0, and 
),(' YXΔΚ  is used as the final DPCMK. 

The DPCMK effectively combines similarities over 
different levels in the hierarchical structure. The newly 
matched pairs at coarser levels, which are not matched at the 
finer levels, are also considered in the DPCMK. This can 
occur in some cases in action recognition, for example when 
the same action is performed by different persons, or the same 
action is performed by the same person at different times. 
Even if these intra-class actions are not matched at fine levels, 
they can still be treated as matches at a coarser level. 
Therefore, according to the directional pyramid structure and 
DPCMK, our approach can overcome the intra-class variations 
of actions. 

In Fig.5 (b), we show the similarities of videos under the 
histogram based on the traditional BOVW, STCM and DPCM. 
We respectively use the histogram intersection, matrix 
intersection and the proposed DPCMK to compute the 
similarity. The first two videos belong to the “boxing” class 
and the third video is the “handclapping” class. Moreover, the 
second video ‘b’ has the highest similarity with the first video 
‘a’ in all the videos belonging to the action class ‘boxing’ on 
KTH dataset, and in all the “handclapping” videos, the video 
‘c’ is the most similar one with the video of ‘a’ under the 
histogram representation. From the table in Fig.5 (b), the 
similarity between ‘a’ and ‘b’ is smaller than that between ‘a’ 
and ‘c’, which is not consistent with actual request. Obviously, 
high performance requires that the similarity between two 
videos with the same action class should be larger than that 
between one video and another video with different class. 
However, STCM and DPCM perform well because they meet 
this actual request. It is likely that STCM and DPCM improve 
the discriminative power of the video representation by 
combining the geometric information. 

B. SVM classification 
We adopt the SVM classifier [50] and use the DPCMK as 

its kernel function for human action recognition. The DPCMK 
is directly combined with the SVM classifier by taking 
advantage of the fact that DPCMK is a Mercer kernel, i.e., a 
positive semi-definite kernel. This can be derived from the 
fact that min( , ) operation is a Mercer kernel and DPCMK is 
the summation of limited number of minimum operations. 

V. EXPERIMENTS 
We test our method on six datasets including KTH dataset 

[5], Weizmann dataset [23], UCF sports dataset [8], UCF CIL 
action dataset [54], the Feature Films dataset [8], and the 
facial expression dataset [6].  
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The KTH dataset contains 599 sequences and six types of 
actions (walking, jogging, running, boxing, hand waving and 
hand clapping) performed by 25 subjects in four different 
scenarios. We conduct three groups of comparison 
experiments on KTH dataset to investigate the following five 
aspects: i) the efficiency of using the log-Euclidean 
Riemannian metric for covariance descriptors with respect to 
distance measures taken from the literature [7, 43, 44]; ii) 
performance comparison with several state-of-the-art cuboid 
descriptors, such as PCA-SIFT [7, 14], histogram of oriented 
gradients (HOG3D) [3], HOF[22], HOG3D–HOF; iii) 
performance gain of the DPCM and CM based methods with 
respect to the traditional BOVW approach (based on the 
histogram of video words); iv) the influence of vocabulary 
sizes; v) performance dependency on the neighborhood size in 
DPCM and CM based methods. 

A. Distance measure experiments of Covariance descriptor  
According to the discussion in section III, each cuboid is 

represented by a 91-D vector and the distance between these 
vectors is measured by the Euclidean distance. We employ the 
k-means clustering method to construct the vocabulary. 

To validate the efficiency of the log-Euclidean Riemannian 
metric for covariance descriptors, we compare it with the 
distance measure used in [7, 43, 44] on the KTH dataset. 
Under the distance measure of [7, 43, 44], the inputs of the k-
means clustering method are in the form of the covariance 
matrices. Therefore, we modify the traditional k-means 

clustering method and compute distances of the matrices by 
Eq. (4) instead of the Euclidean distance. In each iteration of 
the k-means clustering, the generalized eigenvalues of every 
matrix pair need to be computed, which costs much 
computation time. Obviously, the construction of the 
vocabulary based on our descriptor is easier than that based on 
[7, 43, 44].  

The other experimental configurations are all the same. In 
order to reduce computation time, we represent each video as 
a histogram of visual words and employ the SVM classifier. 
We use the histogram intersection kernel for SVM 
classification, namely, the ‘minimum’ kernel: 

( ) ( ) ( )( )∑ =
=

k

i
ihihh,h

1 2121 ,minK              (18) 

where hB1B and hB2B are respectively the histogram representations 
of two video sequences. 

Fig. 6 shows the recognition accuracy curves of these two 
metrics for the covariance descriptors vs. the vocabulary size 
K on the KTH dataset. For K={150, 200, …, 1000}, the 
average recognition accuracy of our covariance descriptor is 
86.19% which is 0.24% higher than the latter. Although the 
recognition performances of the covariance descriptors under 
these two metrics are similar, our covariance descriptor has 
low computational cost.  

B. Descriptors comparison experiments on the KTH dataset 
We compared our descriptors with six other popular 

descriptors: PCA-SIFT [7, 14], histogram of 3D oriented 
gradients (HOG3D) [3], HOF[22], HOG3D -HOF, 3D SIFT 
[20] and Laptev’s spatio-temporal jets [5]. Specifically, PCA-
SIFT descriptor applies Principal Components Analysis (PCA) 
to the normalized gradient vector which is formed by 
flattening the horizontal and vertical gradients of all the points 
in the cuboid. HOG3D uses the histogram of normalized 
gradients and HOF uses the histogram of optical flows where 
the gradients and optical flows are obtained at all the points in 
the cuboid. HOG3D -HOF is the combination of HOG3D and 
HOF, namely a concatenation of the normalized gradient 
histogram and the normalized optical flow histogram. 3D 
SIFT is an extension of 2D SIFT for images. Laptev’s spatio-
temporal jets are 34-D vectors )( ttttxxtyx ,L,,L,L,LLl L=  using 

derivatives, where L is the convolution of the original image 
with an anisotropic Gaussian kernel with independent spatial 
variance and temporal variance. Except for descriptors, other 
experimental configurations are all the same. We use the 
histogram of visual words to represent each video and employ 
the histogram intersection as the kernel of the SVM classifier.  

Fig. 7 shows the recognition accuracy curves of the seven 
descriptors vs. the vocabulary size K on the KTH dataset. For 
K ={150, 200,…,1000}, the 3D SIFT descriptor achieves the 
best results and the HOF descriptor achieves the worst results. 
The average accuracy of our covariance descriptor is 86.19% 
which is 22.02% higher than HOF descriptor and 4.51% lower 
than the 3D SIFT descriptor. The recognition results of the 
other five descriptors are similar to each other, and the average 
accuracy of our covariance descriptor is respectively 2.78%, 
1.28%, 4.49% higher than HOG3D descriptor, HOG3D–HOF 
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Fig. 6. Comparison of two metrics for covariance descriptors vs. vocabulary 
size K on the KTH dataset. 
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Fig. 7. Recognition accuracy obtained by the seven descriptors vs.
vocabulary size K on the KTH dataset. 
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descriptor, Laptev’s spatio-temporal jets and 0.31% lower than 
PCA-SIFT descriptor.  

Compared with other descriptors, 3D SIFT descriptor has 
higher code complexity and computational time, which can be 
major disadvantages in application to large scale video data. 
Therefore, although 3D SIFT descriptor achieves higher 
performance, it is not often employed for action recognition 
while HOF, HOG3D–HOF, PCA-SIFT descriptors are popular 
choices. Our covariance descriptor, with low computational 
complexity, performs better than or comparable to the HOF, 
HOG3D–HOF and PCA-SIFT descriptors. Therefore, our 
covariance descriptor can serve as an alternative to action 
recognition compared with other descriptors.  

C. Geometrical modeling comparison experiments on the 
KTH dataset 

It is also shown in Fig.7 that the best of the seven 
descriptors under the histogram representation of video 
sequence just achieves a recognition accuracy of 92.36% and 
still needs further improvement. In this subsection, we conduct 
experiments using the geometrical modeling based video 
representation, and evaluate whether the geometrical 
information improves the action recognition accuracy. 

We use the KTH dataset to evaluate the proposed video 
representation based on DPCM. The three-level pyramid 
structure is used to model the directed interest point pairs. 
First, we assess the performances with respect to different size 
of nearest neighbors in two kinds of DPCM and CM under a 
vocabulary size K=500, as illustrated in Fig. 8. The absolute 
values of positional distance based DPCM and CM are 
denoted as “DPCM1” and “CM1” in Fig.8 (a), while the rank 
of positional distance based DPCM and CM are denoted as 
“DPCM2” and “CM2” in Fig.8 (b). The graphs in Fig.8 (a) 
show the accuracy for DPCM1 and CM1 as functions of the 
distance d. The graphs in Fig.8 (b) show the accuracy for 
DPCM2 and CM2 as functions of r. The recognition 
accuracies of DPCM based method and that of CM based 
method respectively range from 92.36% to 94.27% and from 
86.81% to 88.19% when d >0.1 in Fig.8 (a), and they 
respectively range from 93.58% to 97.40% and from 88.54% 
to 94.97% in Fig.8 (b). The dependency of the recognition 
accuracy on the vocabulary size is not very significant. Thus, 
we set d to 0.4 and r to 60 in the remaining experiments. 

Furthermore, we compare our DPCM based approach with 
two other approaches: the traditional BOVW approach and the 
approach based on co-occurrence matrix. Specifically, the 
traditional BOVW approach employs a histogram of visual 
words to represent each video, and it uses the histogram 
intersection to measure the similarity of histograms for an 
SVM classifier. This is the method used in subsection V (A) 
(see Eq. (18)). For the approach based on the co-occurrence 
matrix, we adopt the same experimental configurations with 
our DPCM based approach except that a co-occurrence matrix 
is used instead of the directional pyramid co-occurrence 
matrix. Fig. 9 displays the accuracy curves of the five 
approaches vs. the vocabulary size K. It is shown that the 
second kind of DPCM approach, namely DPCM based on the 
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Fig. 8. Recognition accuracy with respect to nearest neighbor sizes in two
kinds of DPCM (CM) under vocabulary size K=500 on the KTH dataset. 
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ranking of positional distance, has the highest accuracy in all 
cases. For K={150, 200, 250,…, 900}, the performances of 
five methods are in the order “DPCM2” > “DPCM1” > 
“CM2” > “CM1” > “hist” in most cases, where “hist” denotes 
the traditional BOVW approach. “DPCM2” achieves 95.44% 
average recognition accuracy, which is respectively 3.80%, 
3.98%, 9.31%, and 10.25% higher than the averages for 
“DPCM1”, “CM2”, “CM1”, and “hist”. These experiments 
validate our claims that the geometrical modeling based 
approaches improve the recognition accuracy of the BOVW 
approach by considering the geometrical relationship of local 
features, and that the DPCM is better than the CM for using 
the information in directed local features.  

Besides, “DPCM2” achieves the best recognition accuracy 
(i.e. 98.78%), “DPCM1” achieves 96.88%, while the BOVW 
approach reaches only 88.06%. Fig. 10 shows the confusion 
matrices of the BOVW approach and our DPCM based 
approaches on the KTH dataset. Each row of the confusion 
matrix corresponds to the ground truth class, and each column 
corresponds to the assigned class. The confusion matrix of 
DPCM2 approach shows that the “hand” related actions and 
the “foot” related actions are a little confused within each of 
these two big action classes, but the two big action classes are 
always well separated from each other. It is likely that this 
separation is achieved because the DPCM effectively captures 
the geometric information. 

Table I compares the performances of our method with 
other recently developed methods. Schuldt et al. [5] use the 
original validation procedure, and Tdivide all sequences with 
respect to the subjects into a training set (8 persons), a 
validation set (8 persons) and a test set (9 persons). Other 
methods in Table I all employ the leave-one-out Tcross 
validation (l-o-o). TMoreover, we test the method proposed by 
Schuldt et al. [5] under the leave-one-out cross validation for 
impartial comparison. Schuldt et al. [5] and Dollár et al. [6] 
employ local spatio-temporal features and the BOVW model 
with SVM classification schemes for recognition, but they use 
different spatio-temporal features. These two methods achieve 
equivalent accuracyT Tunder the leave-one-out cross validation. 
Our Tapproach achieves the best results by using the DPCM to 
encode both the appearance and geometric information. 

The above reported results for a set of experiments on the 
KTH dataset show that: i) the proposed approaches based on 
DPCM outperform the BOVW approach largely; ii) the 
DPCM based approaches outperform approaches based on the 

CM; iii) the ranking of positional distance based DPCM 
approach outperforms DPCM approach based on the absolute 
values of positional distance; iv) performance varies with the 
size of the vocabulary, but the approach based on DPCM 
achieves the best results; v) the DPCM and CM approaches 
are not very sensitive to the size of neighborhood. 

D. Experimental results on the Weizmann dataset 
The Weizmann human action dataset contains 93 samples 

and 10 different actions including Walking, Running, Jumping, 
Galloping sideways, Bending, One-hand waving, Two-hands 
waving, Jumping in place, HJumping JackH and Skipping, all 
performed by 9 subjects. In each run, 8 of the subjects’ videos 
are used as the training set and the remaining one subject’s 
videos form the test set. The results are averaged over 9 runs. 

TABLE I 
COMPARISON OF STATE-OF-THE-ART METHODS ON 

THE KTH DATASET. 
Methods validation Rate  

Schuldt et al. [5] original 71.72 
Schuldt et al. [5] l-o-o 81.70 
Dollár et al.[6] l-o-o 81.17 
Niebles et al. [31] l-o-o 81.50 
Bregonzio et al.[39] l-o-o 93.17 
Kim et al. [30] l-o-o 95.33 
Our “DPCM1” l-o-o 96.88 
Our “DPCM2” l-o-o 98.78 
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Fig. 13. The confusion matrices of the ordinary BOVW approach and the proposed two kinds of DPCM 
based approaches on the Weizmann dataset. 
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Fig. 11. Cuboid descriptor related comparison experiments on the Weizmann 
dataset. The figure (a) shows the recognition accuracy curves obtained by
two metrics for covariance descriptors vs. vocabulary size K. The figure (b) 
shows the recognition accuracy curves obtained by the seven descriptors vs.
vocabulary size K. 
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We perform experiments similar to those on the KTH 
dataset. These experiments are divided into two groups: 
cuboid descriptors related experiments and DPCM based 
geometrical modeling experiments. Fig. 11 shows cuboid 
descriptors related experimental results on the Weizmann 
dataset, including recognition accuracy curves of the 
covariance descriptors based on two metrics and the seven 
descriptors vs. the vocabulary size K={150,200,…,1000}. In 
Fig. 11(a), the red line shows the recognition results obtained 
by our covariance descriptor under the log-Euclidean Riemann 
metric. The red line is in general higher than the blue line 
representing the covariance descriptor under metric used in [7, 
43, 44]. Moreover, we compare the computational complexity 
of these two metrics by testing the cost time of computing the 
distances of all the detected cuboid covariance features under 
these two metrics. That is because that the distance measure is 
iteratively required in the clustering method for vocabulary 
construction. For all the videos in the Weizmann dataset, 8112 
cuboids are detected and 8112 covariance features are 
obtained. We measure the time taken to compute the 
8112×8112 distance matrices of all covariance features. As 
illustrated in Table II, the computation of the distance matrix 
under log-Euclidean Riemann metric takes only a few seconds, 
while the time required for metric [7] is more than 10 times 
longer. 

As shown in Fig. 11 (b), we compare our covariance 
descriptor with six popular descriptors on the Weizmann 
dataset. For K = {150, 200,…,1000}, the average recognition 
accuracy of our covariance descriptor is 85.25% which is 
higher than the other descriptors except the 3D SIFT. The 
PCA-SIFT descriptor and the HOG3D–HOF descriptor also 
have good average recognition accuracy, that is, 84.26% and 
80.25%. The average recognition accuracies and computation 
times for seven descriptors are shown in Table III. The 3D 
SIFT descriptor has a high computational complexity, and its 
computational time is three times more than that of our 
covariance descriptor. The main cost of our covariance 
descriptor arises from the computation of pixel optical flows.  
Besides, the dimensions of the 3D SIFT descriptor and our 
covariance descriptor are 640 and 91 respectively. A higher 
dimension needs more storage space and computational time 
for subsequent processes such as vocabulary construction, co-
occurrence matrix computation and so on. Therefore, for the 
3D SIFT descriptor, it costs more time not only in Tfeature 
calculation but also in using itT. 

Fig. 12 shows DPCM based experimental results on the 
Weizmann dataset, including two experiments: the results of 
the five methods shown as a function of the vocabulary size K 
and the results of the two kinds of DPCM (CM) methods 
shown as a function of the size of nearest neighbors d or r. In 
the two experiments, it can be seen that i) the CM and PDCM 
based methods, all exceed the BOVW method significantly 
and achieve good results with about 98% recognition accuracy; 
the BOVW method only obtains 81.11% average recognition 
accuracy; ii) the DPCM based approaches are slightly better 
than the CM based approaches and more stable with respect to 
changes in the number of nearest neighbors. Therefore, these 
experiments demonstrate the effectiveness of the proposed 
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Fig. 12. Cuboid descriptor related comparison experiments on the
Weizmann dataset. (a) The recognition accuracy curves obtained by the
five approaches vs. vocabulary size K, with d=30 and r=0.3. (b) The
recognition accuracy curves with respect to different nearest neighbor sizes
in two kinds of DPCM (CM) under vocabulary size K=200. 

(a) The UCF sport dataset 

(b) The UCF CIL action dataset 
      

(c) Feature Films dataset 
 

(d) The facial Expression Database 
Fig. 14. Representative frames from videos in the four datasets. Each frame 
is from one type of class. For (a), (b) and (d), each frame is from one type of 
class. For (c), the left three frames are from the kissing actions, and the right 
three frames show the hitting or slapping actions. 
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DPCM and CM on the Weizmann dataset.  
Further, “DPCM1” achieves the best recognition accuracy 

(e.g. 100%), “DPCM2” achieves 98.81%, while the BOVW 
approach only achieves 85.56%. Fig. 13 shows the confusion 
matrices of the BOVW approach and our DPCM based 
approaches on Weizmann dataset.  

E. Experimental results on UCF sports dataset 
This dataset [8] consists of 150 action videos including 10 

sport actions, diving, golf swinging, kicking, weightlifting, 
horseback riding, running, skating, swinging bench, swinging 
side angle, and walking. It collects a natural pool of actions 
featured in a wide range of scenes and viewpoints, and in 
unconstrained environments, as illustrated in Fig. 14 (a). 

The UCF sports database is tested in a leave-one-out 
manner, Twith each example chosen as a test video in turnT, 
following [8, 58]. Table IV shows the results obtained using 
several state-of-the-art methods on this dataset. The overall 
average accuracy for the UCF dataset using our approach 
“DPCM2” is 87.33%, which demonstrates the effectiveness of 
our proposed approaches on the realistic and complicated 
dataset. Fig. 15 shows the confusion matrix of our DPCM2 
based approaches on UCF sports dataset. It achieves 100% 
recognition accuracy for four action classes. 

F.  Experimental results and analysis on the UCF CIL 
action dataset 

TThe UCF CIL dataset isT collected by Shen et al. [54, 55, 57] 
from the Internet, consisting of 56 sequences of 8 classes of 
actions. Each action is performed by different subjects, and the 

videos are taken by different unknown cameras from various 
viewpoints, as illustrated in Fig. 14 (b). 

We employ the leave-one-out manner to test our approach. 
At each run, one video is used as a test and the remaining 
videos are used as a training set. The results are reported as the 
average of all runs. Table V lists the results obtained by our 
methods (DPCM1 and DPCM2), the BOVW methodbased on 
our covariance descriptor, the original results of [54], and the 
point triplet methodproposed in [55]. Our methods achieve 
100% accuracy, which is significantly higher than the 
accuracy of 89.66% obtained by the BOVW method. TThe 
results on the UCF CIL action dataset demonstrateT the 
effectiveness of our proposed approach on the multi-view 
dataset. 

G. Experimental results and analysis on Feature Films 
Rodriguez et al. [8] collected a dataset of actions performed 

in a range of film genres consisting of classic old movies, 
comedies, a scientific movie, a fantasy movie and romantic 
films. This dataset provides 92 samples of action classes 
“kissing” and 112 samples of “hitting/slapping.” As illustrated 
in Fig. 14 (c), the extracted samples cover a wide range of 
backgrounds and view points.  

The test for this dataset proceeds in a leave-one-out fashion. 
Given the significant intra-class variability present in the 
movie scenes, the recognition task is challenging. Table VI 
shows several state-of-the-art methods on this dataset. In both 
categories, our method shows a higher performance than 
previously reported. In [8], Rodriguez et al. also use the 
BOVW framework together with the PCA-SIFT descriptor. 
From Table VI, the BOVW method with the proposed 
covariance descriptor achieves better performance, 
demonstrating the effectiveness of our descriptor. 

H.  Experimental results and analysis on the Facial 
Expression Database 
Although our main goal is to recognize human actions, our 

framework can also be adapted to other application domains 
that involve spatio-temporal matching. We use our algorithm 
to classify facial action video sequences on the facial 

TABLE IV. COMPARISON OF DIFFERENT STATE-OF-THE-ART METHODS ON 
THE UCF SPORTS DATASET. 

 
Methods Accuracy (%) 

Rodriguez et al. [8] 
Wang et al. [22] 
Sun et al. [42] 
Kovashka et al. [58] 
Our approach “DPCM1” 
Our approach “DPCM2” 

69.2 
85.6 
86.9 
87.27 
86.67 
87.33 
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Fig. 15. The confusion matrix of the proposed approach DPCM2 on the 
UCF sports dataset. 

TABLE V. COMPARISON OF DIFFERENT STATE-OF-THE-ART METHODS 
ON THE UCF CIL ACTION DATASET. 

 
Methods Accuracy  

Shen T Tet al. [54] 95.83% 
Shen et al. [55] 100% 

BOVW 89.66% 
DPCM1 100% 
DPCM2 100% 

TABLE VI 
THE RECOGNITION ACCURACIES AND COMPUTATION TIMES FOR TWO 

METRICS ON THE WEIZMANN DATASET. 
 

Class RodriguezT 
Tet al. [8] 

YeffetT Tet al. 
[59] BOVW Ours 

Kissing 66.4% 77.3% 85.4% 91.67% 
Slapping 67.2% 84.2% 89.4% 92.94% 
Average 66.8% 80.75% 87.4% 92.27% 



 13

expression database [6]. The face data are performed by two 
individuals. There are six different classes of emotion 
expressions and two lighting setups. The expressions are anger, 
disgust, fear, joy, sadness and surprise. Certain expressions are 
quite distinct, such as sadness and joy, sadness and surprise. 
Certain expressions are quite distinct, such as sadness and joy, 
while others are fairly similar, such as fear and surprise. Under 
each lighting setup, each individual repeats each of the six 
expressions eight times. The individual always starts with a 
neutral expression, expresses an emotion, and returns to 
neutral, all in about 2 seconds. One representative frame from 
each action category is shown in Fig.14 (d).  

Following [6], in each experiment, we train on a single 
subject under one of the two lighting setups and test on four 
cases: (1) the same subject under the same illumination, which 
is evaluated in a leave-one-out fashion, (2) the same subject 
under different illumination, (3) a different subject under the 
same illumination, and (4) a different subject under different 
illumination. Using these four cases, we investigate how 
identity and lighting affect the algorithm’s performance. In 
each case, we repeat the experiments four times, where at each 
time one subject under one lighting setup is used as the 
training set. The reported results in Fig. 16 are the averages 
over each set of four experiments, obtained by our proposed 
DPCM algorithm. The parameter settings are as follows: the 
vocabulary size is 250, the number of cuboids detected in each 
video is 30, and the scale in interest point detection is set to 2. 
Our algorithm generates comparable results to the best results 
reported in [6]. 

I. Discussion 
The experiments on the KTH dataset and the Weizmann 

dataset show that: i) our covariance descriptor under the log-
Euclidean Riemannian metric is a useful cuboid descriptor for 
video action recognition, with high computational efficiency; 
ii) it is beneficial to include geometrical information about the 
relative positions of cuboids to improve the recognition 
performance; iii) the proposed DPCM and its DPCMK 
significantly improve the recognition precision. We achieve 
the highest classification accuracies among reported results on  
the KTH and Weizmann datasets, namely, 98.78% and 100%. 
The experimental results on the UCF sports dataset, the 
Feature Films dataset, the UCF CIL action dataset and the 
facial expression dataset show that the proposed method 
adapts well to realistic datasets with complicated backgrounds, 

to the multi-view actions and to other application domains 
such as facial expression recognition. 

VI. CONCLUSION 
In this paper, we have developed a new framework to 

recognize human actions from video sequences. In the 
framework, the covariance matrix of the low-level features 
from the cuboid is used to represent the local spatio-temporal 
property of a video sequence under the log-Euclidean 
Riemannian metric. Lying in the Euclidean space, our 
covariance features can be clustered by the k-means method to 
form the vocabulary. We have further proposed a Directional 
Pyramid Co-occurrence Matrix (DPCM) to represent a video 
sequence, which effectively captures simultaneously the local 
appearance information and the geometrical-temporal context 
information. The discriminative power of the proposed DPCM 
for video representation has been demonstrated on several 
benchmark video datasets, in comparison with several state-
of-the-arts algorithms. In particular, it greatly improves the 
results obtained by geometrically unconstrained BOVW 
approaches, as well as those by Spatio-temporal Co-
occurrence Matrix (CM). 
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