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a b s t r a c t

We classify human actions occurring in depth image sequences using features based on skeletal joint
positions. The action classes are represented by a multi-level Hierarchical Dirichlet Process-Hidden
Markov Model (HDP-HMM). The non-parametric HDP-HMM allows the inference of hidden states
automatically from training data. The model parameters of each class are formulated as transformations
from a shared base distribution, thus promoting the use of unlabelled examples during training and
borrowing information across action classes. Further, the parameters are learnt in a discriminative way.
We use a normalized gamma process representation of HDP and margin based likelihood functions for
this purpose. We sample parameters from the complex posterior distribution induced by our
discriminative likelihood function using elliptical slice sampling. Experiments with two different
datasets show that action class models learnt using our technique produce good classification results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recognizing actions that occur in videos has applications in diverse
areas such as smart surveillance, search and retrieval of video
sequences and human computer interaction. Depth sensors such as
Kinect, with inbuilt human motion capturing techniques, provide
estimates of a human skeleton’s 3D joint positions over time [1]. High
level actions can be inferred from these joint positions. However,
robust and accurate inference is still a problem.

Given a sequence of 3D joint positions, a state space model such as
a Hidden Markov Model (HMM) is a natural way to represent an
action class. Recall that in an HMM [2], a sequence of discrete state
variables are linked in a Markov chain by a state transition matrix and
each observation in the sequence is drawn independently from a
distribution conditioned on the state. The HMM model parameters
(viz. the state transition matrix and the state specific observation
density) corresponding to each class can be learnt from prototypes
belonging to the class. The prediction of a new input’s class is obtained
from the class conditional posterior densities.

In classical parametric HMMs, the number of states must be
specified a-priori. In many applications this number is not known
in advance. A typical ad hoc procedure is to carry out training
using different choices for the number of states and then apply a
model selection criterion to find the best result. Instead it is

preferable to estimate the correct number of states automatically
from data. Further, when training the HMMmodels, the focus is on
explaining the examples of a particular class rather than discrimi-
nating them from other classes. Often this does not produce good
classification results [3].

Non parametric Bayesian methods such as mixture modelling
based on the Dirichlet Process (DP) estimate the number of mixture
components automatically from data. The Hierarchical Dirichlet
Process (HDP), a mixed membership model for groups of data, allows
mixture components to be shared across the groups albeit with group
specific mixture proportions [4]. It uses a set of DP priors – one for
each group – with these DP priors linked through a base DP in order
to share the mixture components across groups. The HDP-HMM is a
non-parametric variant of the classical HMM that allows an unb-
ounded set of states with one mixture component corresponding to
each state. Each state (group) in a HDP-HMM thus has state specific
transition probabilities (mixture proportions) but the atoms are
shared across the states (groups).

It would be straight forward to use separate HDP-HMMs for each
action class and train them individually. However, this would prohibit
sharing training examples across the action classes. To see the merit of
sharing examples, consider that an action is a sequence of poses. It is
quite likely that a set of actions have many similar poses between
themwith possibly a few poses unique to an action. In fact, for actions
such as ‘stand-up’ and ‘sit-down’ or ‘push’ and ‘pull’, the set of poses
may be identical with only the temporal order of pose sequences
differing. What necessarily differentiates one action from another are
the transition probabilities of the poses. If a particular pose is absent
from an action class then there is a low probability of transition to the
state for that pose. In our work, we use a single HDP-HMM to model
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all the action classes, but with an additional class specific hierarchical
level that accounts for differences in the state transition probabilities
among the classes (Fig. 1).

As outlined earlier, in a HDP-HMM the mixture components are
shared across the hierarchical levels. It would be more flexible to
allow the mixture components of an action class to vary slightly
from the other classes; i.e. we seek a class specific transformation
of the shared mixture component parameters so that we can
better discriminate the classes. Note that this is different from
using individually trained HDP-HMM model where the compo-
nent parameters are unshared among the classes. We assume the
mixture components are distributed as a Gaussian, and use class
specific affine transformation of the Gaussian distribution para-
meters (mean and covariance) in our work here.

The HDP-HMM based classification approach described above
defines a joint distribution of the input data and class labels to
train the classifier. This generative model allows the augmentation
of the labelled training examples with unlabelled examples and
thus provides a framework for semi-supervised learning. In con-
trast, a discriminative model uses conditional distribution of the
class labels given the input data to train the classifier. This
approach often produces good classification results [5]. For exam-
ple, Support Vector Machines (SVMs) use a margin based like-
lihood that maximizes the distances of the feature vectors to the
classification boundary while minimizing the empirical error rate
on the training set. Inspired by this, we incorporate a margin based
term in the likelihood function used in HDP-HMM training. The
inclusion of this discriminative term in the otherwise generative
model, compensates for model mis-specification and leads to
better classification results.

Incorporation of a discriminative term into the HDP-HMM model
makes the posterior sampling less straight-forward. The HDP model
construction as such has no provision for including an additional term
for the mixing proportions. For the mixture components with
Gaussian distribution parameters, the prior is not any more of the
same form as the likelihood and hence is not conjugate. We use a
normalized gamma process formulation [6] of the HDP that allows

scaling the mixing proportions of a DP through a discriminative
weighting term. Slice sampling [7] based techniques allow sampling
from any likelihood function, not necessarily a normalized density
function. Specifically, we place a Gaussian prior on the parameters and
use Elliptical Slice Sampling [8] to efficiently sample the posterior.

We perform our experiments on two different datasets to classify
actions based on the above discriminative two level HDP-HMM. Both
data sets have annotated 3D joint positions estimated from a depth
sensor. We use relative joint positions based on a pre-defined skeleton
hierarchy as features. We also show our results for features obtained
by projecting the relative joint positions into three orthogonal
Cartesian planes and employing a histogram based representation.

This paper is organized as follows: in Section 2 we review
related research and provide relevant background on HDP-HMM
in Section 3. We detail our model construction in Section 4 and
discuss the discriminative aspect in Section 5. Posterior inference
is presented in Section 6 and the results of the experiments are
shown in Section 7. Section 8 is a conclusion.

2. Related research

Ref. [9] provides a survey of research methods in action analysis
and discusses the methodologies used for recognizing simple
actions and high level activities. A review of depth image based
algorithms for action analysis can be found in [10]. Ref. [1]
provides the state-of-the-art method to extract joint positions
from depth images captured by an infrared sensor.

In [11], each joint position is associated with a local occupancy
feature and the actions are characterized using a subset of these joint
positions called actionlet. A Fourier temporal pyramid is used to
capture the temporal structure and discriminative weights are learnt
using a multiple kernel learning method. Ref. [12] uses histograms of
3D joint locations (HOJ3D) as a compact representation for postures in
order to demonstrate view invariant recognition. Linear Discriminant
Analysis (LDA) is applied to the HOJ3D features. The resulting low
dimensional features are clustered into visual words that are modelled
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P 1 P 2
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Training Examples 

Shared Parameters

Class Specific Parameters

Fig. 1. Overview of action classification—training examples contain joint position sequences from different action classes. The examples from all these action classes are
combined in order to infer the shared pose transitions and pose definitions. P1, P2, P3 and P4 represent the various poses (states) and each pose is defined through a
distribution. The action class specific transitions and definitions are inferred as transformations of this shared representation. Pose P3 may be absent in the first action class
and hence there is a low probability of transition to it.
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by a discrete HMM. In [13], 3D trajectories of the joint positions are
represented using a 2D trajectory based descriptor called histogram of
oriented displacements (HOD) that is scale and speed invariant. A
temporal pyramid is used to model the trajectories over time. The
above works have mainly focused on computing appropriate features
from the joint positions in order to classify the actions. In contrast, our
focus in this paper is on a general classification mechanism for
observation sequences in which training examples are shared among
different classes and discriminatory model parameters are learnt. This
allows our method to be applied to other sequence classification
problems.

There is wide interest in the application of Bayesian non-
parametric methods for vision problems. For example, [14] used a
transformed Dirichlet Process to automatically learn the number of
parts composing an object and the number of objects composing a
scene. The model used is a single hierarchical level and the transfor-
mation parameters are applied only to the mixture components. In
our work, we use a two-level HDP and extend the transformation to
include mixture weights. Further our model parameters are learnt in a
discriminative manner and provides a mechanism for sequence
classification. In [15], unsupervised activity discovery is achieved using
a beta process driven HMM to segment videos over time. While we
use a similar idea of applying non-parametric frameworks for action
recognition, our work differs vastly in the formulation (multi-level
gamma process vs beta process) and application (supervised classifi-
cation vs unsupervised pattern discovery). In [16], actions are seg-
mented and clustered into behaviours using a hierarchical non
parametric Bayesian model. This unsupervised approach uses a swi-
tching linear dynamic system to perform hierarchical clustering which
is different from the parameter transformation based model that we
use to perform classification.

Models based on HDP-HMM have been explored before. Ref. [17]
provides a HDP-HMM based method for jointly segmenting and
classifying actions with new action classes being discovered as they
occur. The model used here is simply the HDP-HMM extended for
streaming data by performing batch inferences. This is in contrast to
the multi-level HDP-HMM with discriminatively learnt parameters
that we use. Further, our method allows using unlabelled examples as
part of the training procedure. In [32], a HDP-HMM based framework
is used to detect abnormal activities. However, the HDP-HMM is used
only to compute a feature vector and a one-class SVM is used to
determine the decision boundary. We do not use any additional
learning mechanism such as SVM and our method can be extended
seamlessly to semi-supervised learning. Ref. [33] applies the sticky
HDP-HMM proposed in [22] for error detection during a robotic
assembly task. Our multi-level HDP-HMM that uses the normalized
gamma process formulation is very different from this.

The application of large margin and other discriminative learning
approaches [18] for training HMM is popular in the speech recognition
literature. A survey of such approaches can be found in [19]. A
discussion focusing on optimizing the HMM learning procedure for
discriminative criteria such as Minimum Classification Error (MCE)
and Maximum Mutual Information (MMI) can be found in [20]. In
[21], a margin based approach for supervised topic models that
minimized expected margin loss using Gibbs sampling methods is
discussed. More recently, [34] proposes a discriminative multi-scale
model based on SVM for predicting action classes from partially
observed videos.

Although HDP-HMM has been used before for solving vision
problems, using a discriminative training method for HDP-HMM has
not been explored before. The merits of using margin based learning
for classification is well discussed [20]. The HDP-HMM formulation as
such doesn’t provide any mechanism to learn model parameters
discriminatively. Our approach of using a normalized gamma process
formulation and the application of elliptical slice sampling provides a
new technique for discriminative parameter learning in HDP-HMM.

To the best of our knowledge, such a model has not been used before
in the literature.

3. Background

In this section we provide relevant background on the classical
HMM and it’s non parametric variant HDP-HMM. For more details
see [4,22].

3.1. Bayesian HMM

The classical HMM consists of an observation sequence
fxtgTt ¼ 1; xt A ℝd and a corresponding hidden state sequence
fztgTt ¼ 1; zt Af 1;2…Kg. Here K is the number of hidden states.
The hidden state sequence follows a first order Markov chain zt ?
z1:t�2 j zt�1 and the observations are conditionally independent
given the current state i.e. xt ? z1:t�1; x1:t�1j zt .

The probabilities of transitions between states are given by
fπj;kgKj ¼ 0; k ¼ 1 where πj;k ¼ P zt ¼ kjzt�1 ¼ jð Þ is the probability of
transitioning to state k given the current state j and π0;k ¼ Pðz1 ¼ kÞ
is the initial probability of state k. The observation distribution is
parameterized as P xt jzt ¼ kð Þ � FðθkÞ where θk are the natural
parameters of the family F of distributions. Here we assume the
observations are generated from a mixture of Gaussians, with one
Gaussian distribution corresponding to each state. Hence
P xt jzt ¼ kð Þ � N ðμk;ΣkÞ where N ðμ;ΣÞ is the normal distribution
with mean μ and covariance Σ.

In this Bayesian approach it is necessary to introduce priors for all
the parameters. Let H be the prior for θ or more specifically for the
Gaussian mixtures let the mixture mean have a normal prior
μ � N ðμ0;Σ0Þ and let the covariance have an Inverse-Wishart prior
Σ � IWðν0;Δ0Þ. We can use a Dirichlet prior for the state transitions
but we must ensure that the transitions out of different states are
coupled. Hence let β � DirðγK⋯γ

KÞ and πj � Dir αβ1…αβK

� �
where

γ;α A ℝþ are the hyper priors, βk is the probability of reaching state
k and Dir is the Dirichlet distribution.

3.2. Stick breaking construction of DP

Draws from a Dirichlet Process G0 � DPðγ;HÞ, where H is a
base distribution and γ A ℝþ a concentration parameter, are
distributions G0 containing values drawn from H with γ control-
ling the variability around H. The almost sure discreteness of
measures drawn from a Dirichlet Process can be made explicit
through the stick breaking construction and we can write

G0 ¼ ∑
1

k ¼ 1
βkδθk

βk ¼ β0
k ∏
lok

1�β0
l

� �
β0
k γ

iid

� Beta 1; γ
� �

θk

����
���� H iid

� H ð1Þ

where θk are the atoms drawn independently from the base
distribution and βk are the probabilities that define the mass on
the atoms with ∑1

k ¼ 1βk ¼ 1. It is common to write the probability
measure β¼ fβkg1k ¼ 1 obtained from (1) as β � GEMðγÞ.

The DP is a useful nonparametric prior distribution for mixture
models. If we interpret the βk as a random probability measure on
the set Zþ , then we can write the generative story for an
observation xn sampled from a mixture model as

βjγ � GEM γ
� �

θkjH � H

znj β � β xn j zn; fθkg1k ¼ 1 � Fðθzn Þ ð2Þ
Here zn is a latent variable that indicates the mixture component
of the nth observation and F denotes the distribution family of the
mixture component using θ as its parameter. Thus the DP can be
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used to model a mixture with no upper bounds on the number of
components. A component k has parameters θk and the prob-
ability that an observation is in the kth component is βk:

3.3. Grouped data and HDP

The HDP is an extension of the DP to model grouped data. Each
group is associated with a mixture model but all the groups share
the same mixture components. Hence each group has a separate
DP nonparametric prior and these DPs are linked through a
different base DP.

As before, let G0 be drawn from a Dirichlet Process. Let fGjgJj ¼ 1
be the set of random distributions over J groups of data. Given the
global measure G0, the set of measures over the J groups are
conditionally independent with

G0 j γ;H � DPðγ;HÞ Gjj α;G0 � DPðα;G0Þ ð3Þ
The global distribution G0 contains values drawn from the base

distribution H with γ controlling the variability. The jth group’s
distribution Gj contains values drawn from G0 with α controlling
the variability. The stick breaking construction of the global
measure is same as (1) while the construction of the group specific
measure can be formulated as

Gj ¼ ∑
1

k ¼ 1
πjkδθk

πjk ¼ π0
jk ∏
lok

1�π0
jl

� �
π0
jk α;β

iid

� Beta αβk;αð1� ∑
lok

βlÞ
 !����� ð4Þ

The HDP is a useful nonparametric prior distribution for a
mixture model set. If we interpret πj ¼ fπjkg1k ¼ 1 as a random
probability measure on the set Zþ , then we can write the
generative story for an observation xjn belonging to the jth group
as

βjγ � GEM γ
� �

πjjα;β�DPðα;βÞ θkjH�H

zjnjπj � πj xjnjzjn; fθkg1k ¼ 1 � Fðθzjn Þ ð5Þ

Here zjn is a latent variable that indicates the mixture component
of the jth group’s nth observation. For a component k, all the
groups share the same parameters θk but the jth group uses πjk

proportion while the jth group uses πj0k proportion.

3.4. Non parametric HMM

As outlined in Section 3.1, there are K hidden states in the
parametric HMM and a mixture component corresponding to each
state. Given a state πj, the jth row of the state transition matrix
defines the mixing proportions. In a non-parametric HMM, the
number of hidden states K is unbounded and the observations are
now generated from an infinite mixture of components. Each state
is associated with a (infinite) mixture model defining varying
mixing proportions. In order to ensure that the transitions out of
different states are coupled, the mixture models corresponding to
the states must share the same mixture components (Fig. 2).

Thus the non-parametric HMM can be represented using a HDP
—a set of (infinite) mixture models, capturing the state specific
mixture proportions, with the mixture models linked through a
global DP that ensures sharing the same mixture components. We
can write the generative story for an observation xnt sampled at
time t from a HDP-HMM that uses Gaussian mixtures as

βjγ � GEM γ
� �

πj j α; β � DPðα; βÞ
μkjμ0;Σ0 � N ðμ0;Σ0Þ Σkjν0;Δ0 � IWðν0;Δ0Þ
znt jznt�1;πj � πznt � 1 xnt j znt ; μk;Σk

� �1
k ¼ 1 � N ðμznt ;Σznt Þ

ð6Þ

4. Model

We are given i.i.d training data X ¼ fxngNn ¼ 1; Y ¼ fyngNn ¼ 1, where
xn ¼ xn1…xnT is an observation sequence and yn Af 1…Cg its corre-
sponding action class. An observation xt A ℝd consists of features
extracted from an image sequence at time-step t. We defer discussion
on the features to Section 7. Let the set of all model parameters be θ.
Our objective is classification, where given a new test observation
sequence x̂, we have to predict its corresponding action class ĉ. A
suitable prediction is ĉ¼ argmaxcpðc jx̂;X;YÞ. The pdf pðc j x̂;X;YÞ
can be written in the form

pðc j_x;X;YÞ ¼
Z

pðc j_x;θÞ pðθ j X;YÞ dθ ð7Þ

4.1. Two level HDP

If we represent each action class by a separate HDP-HMM as
outlined in Section 3, then θc ¼ fβc

;πc;μc
1::1;Σc

1::1g are the para-
meters for class c with θ¼ fθcgCc ¼ 1 and γ;α;μ0;Σ0;ν0;Δ0 the
hyper parameters. It would be straight forward to estimate the
posterior density of parameters pðθ j X;YÞ if each HDP-HMM
model is trained separately i.e. we can define a class conditional
density pðx j cÞ for each class and estimate the posterior from

pðθc j X;YÞ ¼ pðθcÞ ∏
n:yn ¼ c

pðxn j θcÞpðcÞ ð8Þ

However, in this approach we do not make use of training
examples from other classes while learning the parameters of a class.
As noted in Section 1, many actions contain similar poses and it is
useful to incorporate pose information from other classes during
training. Specifically, the inclusion of additional observations for a
similar pose benefits estimation of the Gaussian mixture parameters.
The state transition parameters must continue to be different for each
action class since it is these parameters that necessarily distinguish
the actions.

Instead of separate HDP-HMMs, we define a single HDP-HMM
for all the action classes albeit with an extra level that is class
specific i.e. in addition to the global distribution G0 and the state
specific distributions Gj, we now have class specific distributions
Gc
j for every state.

G0 j γ;H � DPðγ;HÞ Gj j α;G0 � DPðα;G0Þ Gc
j j λ;Gj � DPðλ;GjÞ

ð9Þ
Just as the Gjs are conditionally independent given G0, the Gc

j s are
conditionally independent given Gj. All the classes for a given state
share the same subset of atoms but the proportions of these atoms
will differ for each class determined by the concentration parameter λ.
The varying atom proportions induce differences in state transition
probabilities between action classes and ensure that classification can
be performed. The stick breaking construction for the additional class

...
μk,Σk

Fig. 2. Graphical representation of a HDP-HMM.
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specific measure can be formulated as

Gc
j ¼ ∑

1

k ¼ 1
φc

jkδθk

φc
jk ¼φc0

jk ∏
lok

1�φc0
jl

� �
φc0

jk λ;πj
iid

� Beta λπjk; λð1� ∑
lok

πjlÞ
 !�����

ð10Þ

Similar to β and πj, if we interpret φc
j ¼ fφc

jkg1k ¼ 1 as a random
probability measure on the set Zþ , we can write the generative story
for an observation xnt belonging to class c sampled at time t from the
two level HDP-HMM that uses Gaussian mixtures as

βjγ � GEM γ
� �

πjjα;β�DPðα;βÞ φc
j jλ; πj �DPðλ; πjÞ

μkjμ0;Σ0 �N ðμ0;Σ0Þ Σkjν0;Δ0 � IWðν0;Δ0Þ
znt jznt�1; y

n ¼ c; φc
j

n o1;C

j ¼ 1;c ¼ 1
�φc

znt � 1

xnt jznt ; μk;Σk
� �1

k ¼ 1 �N ðμznt
;Σznt Þ

ð11Þ

Consequently, for the two level HDP-HMM, the set of all model
parameters is θ¼ fβ; π; φ1::C ;μ1::1;Σ1::1g with γ;α;μ0;Σ0;ν0;Δ0; λ
being the hyper parameters.

4.2. Transformed HDP parameters

As explained in Section 3.3, in a HDP the same atoms are used
by the different groups i.e. the component parameters θk remain
the same in all Gj (and Gc

j in case of an additional level). This is less
flexible than allowing the parameters to vary across the groups. As
an example, a squat pose encountered during the course of an
action might mostly look the same across action classes such as sit
up, sit down and pick-up while it may slightly vary for pick-up
class. In this case, it would be useful to capture the deviation from
the standard squat pose for this pick-up action class—i.e. we wish
to introduce a transformation of the parameters from its canonical
form [14].

Let τðu;ϕÞ denote the transformation of a parameter vector u.
In order to express the transformations through a change of
observation coordinates, let us impose the restriction that there
exist a complementary transformation τ0ðv;ϕÞ of an observation v
such that

f ðv j τðu;ϕÞÞp f ðτ0 v;ϕ� � j uÞ ð12Þ
where f is a density function. The existence of τ0 satisfying (12) is
useful during inference. In our work, we consider the affine
transformation of the Gaussian distribution parameters mean μ
and covariance Σ. Let ρ be a vector and Λ be an invertible matrix.
The transforms

τ μ;Σ;ρ;Λ
� �¼ ðΛμþρ; ΛΣΛT Þ τ0 v;ρ;Λ

� �¼Λ�1ðv� ρÞ ð13Þ

ensure that the covariance matrix is positive (semi) definite and
we have

N v; Λμþρ; ΛΣΛT
� �

pN ðΛ�1 v� ρ
� �

; μ;ΣÞ ð14Þ

Typically restrictions on Λ would have to be enforced for
computational tractability. A useful simplification is to set Λ equal
to the identity matrix. This is equivalent to restricting the
transformations to a translation of the Gaussian mean by ρ. We
can also restrict Λ to be diagonal, to account for scaling.

We introduce class specific transformations based on (13) to
the Gaussian mixture component parameters. Let the transforma-
tion variable responsible for shifting the mean have a zero mean
normal prior i.e. ρ � N ð0;Ω0Þ. We focus only on scale transfor-
mations and assume Λ is diagonal. Effectively the scale transform
variable is now a vector and we assign independent log normal
prior for each element i.e. log ðΛjÞ � N ðϑ0;σ0Þ. An observation xnt
belonging to class c sampled at time t from the two level HDP-
HMM that uses Gaussian mixtures with transformed parameters is
generated as

Inclusion of the class specific transforms can be interpreted as an
extension of the parameter space. The global measure is now being
drawn from G0 �DPðγ;Hs � H1 …�…HCÞ, where Hs is a base
distribution for parameters that are shared across the classes while
H1;…;HC are class specific. During inference, the posterior distributions
for the shared parameters do not depend upon the class labels unlike
the class specific parameters. With the augmentation of
transform variables, the set of all model parameters is
θ¼ fβ; π; φ1::C ;μ1::1;Σ1::1;ρ1::C

1::1;Λ1::C
1::1g and γ;α;μ0;Σ0; ν0;Δ0; λ;

Ω0;ϑ0;σ0 are the hyper parameters (Fig. 3). A summary of notations
used can be found in Table 1.

Fig. 3. Graphical representation of a two level HDP-HMM with transformed
parameters—the observations on the left side belong to class ‘1’ while those on
the right side belong to class ‘C’.

βjγ � GEM γ
� �

πjj α;β�DPðα;βÞ φc
j j λ; πj �DPðλ; πjÞ

μkjμ0;Σ0 �N ðμ0;Σ0Þ Σkjν0;Δ0 � IWðν0;Δ0Þ
ρc
kjΩ0 �N ð0;Ω0Þ log ðΛc

jkÞj ϑ0;σ0 � N ðϑ0;σ0Þ

znt jznt�1; y
n ¼ c; φc

j

n o1;C

j ¼ 1;c ¼ 1
�φc

znt � 1

xnt jznt ; yn ¼ c; μk;Σk
� �1

k ¼ 1; ρc
k;Λ

c
k

� �1;C
k ¼ 1;c ¼ 1 �N ðΛc

znt
μznt

þρc
znt
;Λc

znt
Σznt Λ

cT

znt
Þ

ð15Þ
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4.3. Chinese restaurant process metaphor

The mixture components generated by DP and its extensions
described here can be better understood using a metaphor [4]. We
have a restaurant with unbounded number of tables. A customer
entering the restaurant either selects an unoccupied table with
certain probability or selects an occupied table with a probability
proportional to the number of customers already seated at the
table. In this DP metaphor, the tables correspond to mixture
components, the dish served at a table to the component para-
meters and the customers are observations.

In the HDP analogue, we have multiple restaurants with a
single menu i.e. a restaurant franchise. The tables in the restau-
rants serve dishes from the shared menu and multiple tables in
multiple restaurants can serve the same dish. A customer entering
a given restaurant selects a table in proportion to the number of
customers already seated in that restaurant’s tables but can also
select a new table. Each table is assigned a dish in proportion to
the number of tables across the franchise serving that dish but a
new dish can also be ordered. In this HDP metaphor, a restaurant
correspond to a (data) group or in the case of HDP-HMM a state.

In the HDP extended to a second level, each restaurant in the
franchise has sections viz. family, kids and adults section. There is
still a single menu across the sections and the restaurants. Given
the customer’s preferred section, the customer entering a given
restaurant selects a table in proportion to the number of custo-
mers already seated in the tables of that section of the restaurant.
He can also select a new table in that section. Each table is now
assigned a dish in proportion to the number of tables across the
sections, across the franchise serving that dish. In this two-level
HDP metaphor, the sections correspond to the action classes.

In the case of two-level HDP-HMM with transformed para-
meters, each dish now contains a base part and a flavouring part. A
dish contains flavours for every section viz. spicy flavour for family,
bland for kids and hot for adults. A dish served at a table in a given
section (of any restaurant in the franchise) has its base part
seasoned according to that section’s flavour. In this metaphor,
the flavours correspond to the class specific transform parameters
while the base part correspond to parameters shared across the
classes.

5. Discriminative learning

In the two level HDP-HMM with transformed parameters
described above, let the model parameters specific to a class c be
θc ¼ fφc;ρc

1::1;Λc
1::1g and the shared parameters across the classes

be θs ¼ fβ; π;μ1::1;Σ1::1g. Note that θ¼ θs [ fθcgCc ¼ 1 . We will
typically apply Gibbs sampling and use a very similar form to
(8) to sample the class specific posterior.

pðθcjX;Y ;θsÞppðθcÞ ∏
n:yn ¼ c

pðxnjθc
;θsÞ ð16Þ

The joint distribution over the inputs and labels pðx; c j θcÞ is
used in this formulation. This type of learning is intended to best
explain the training examples belonging to a class. In the asymp-
totic limit of infinite training examples and the distribution
specified by the model being identical to the true distribution of
data, it is a very effective way of learning. However, this generative
model with its parameters learnt as above often produces poor
classification results. In real world, the specified model is typically

Table 1
Summary of notations.

General

xn The nth training example sequence
yn The class that the nth training example belongs to
xt Observation at time instant t
zt Hidden state at time instant t
θ Set of all model parameters
HDP-HMM
βk Probability of transitioning to state k
πjk Probability of transitioning to state k given state j
μk Mean of Gaussian distribution corresponding to component k
Σk The covariance of Gaussian distribution corresponding to component k
γ Hyper-prior for β
α Hyper-prior for π
μ0;Σ0 Hyper-prior for μ
ν0;Δ0 Hyper-prior for Σ
Two level HDP-HMM
φc
jk Probability of transitioning to state k given state j for class c

λ Hyper-prior for φ
Transformed HDP-HMM parameters
ρck Parameter for shifting mean μk for class c
Λc
k Parameter for scaling covariance Σk for class c

ωc
jk Parameter used for scaling φc

jk for class c

Ω0 Hyper-prior for sampling ρ

ϑ0 ; σ0 Hyper-prior for Λ
ε0 Hyper-prior for ω
Posterior inference
θc Set of model parameters for class c

θ\c Set of model parameters excluding class c

θs Set of model parameters shared for all the classes
L Upper bound on the number of HMM states
nc
jk Number of transitions from state j to k for class c

n:
jk Number of transitions from state j to k for all the classes

X c
k Set of observations from class c assigned to state k

ξ0 Prior controlling importance of discriminative term
ζ0 Prior controlling the distance between distributions
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inaccurate and we need to compensate for the model mis-
specification.

In contrast, large margin based training used in discriminative
learning methods often produces good classification results. The
empirical error rate on the training data is balanced against the
generalization of the test data. The tolerance to mismatch between
training and test data is due to the classifier decision boundary
being well separated from the classes—i.e. the decision boundary
has a large margin to the training examples. Since the class
conditional data likelihood is used during prediction in the
generative model above, the classifier margin is a function of
the model parameters and adjusting the parameters alters the
margins.

There is an implicit assumption in (16) that the parameters of a
class are (conditionally) independent of the parameters of other
classes i.e. θc ? θ\c j θs. Let us relax this assumption and consider
a slightly different formulation.

pðθcjX;Y ;θs
;θ\cÞpp θc� �� p θ\cjθc

;X;Y ;θs
� �

� ∏
n:yn ¼ c

pðxnjθc
;θsÞ ð17Þ

Here we have made use of the Bayes theorem product rule for
pðθc j X; θ\cÞ. The introduction of the second term pðθ\c j θc

;XÞ,
referred henceforth as the discriminative term, offers more flex-
ibility. For example, we can use this term during inference to
minimize classification error on the training set and introduce
margin constraints. This discriminative term compensates for the
model mis-specification and improves classification results.

5.1. Scaled HDP and normalized gamma process

The HDP and its stick breaking construction does not provide
any mechanism for influencing the per-group component propor-
tions through additional factors. This makes incorporation of the
discriminant during inference for φc tricky. An alternative con-
struction for the last level in the two-level HDP in (10) is

Gc
j ¼ ∑

1

k ¼ 1

φc
jk

∑1
k0 ¼ 1φ

c
jk0
δθk φc

jk λ;πj
iid

� Gamma λπjk;1
� ����� ð18Þ

A Dirichlet distributed vector can be generated by indepen-
dently drawing from a gamma distribution and normalizing the
values. Its infinite extension relates to this normalized gamma
process construction. The representation in (18) as such does not
allow using an additional factor. Let each component be associated
with a latent location and let the group specific distribution of the
HDP be formed by scaling the probabilities of an intermediate
distribution. More specifically, let us modify the last level in the
two-level HDP described in (9) as

Gc0
j jλ;Gj �DPðλ;GjÞ Gc

j jGc0
j ;ω

c
j pGc0

j � eω
c
j ð19Þ

here Gc0
j is an intermediate distribution for the existing parameters

and ωc
j is a scaling factor that depends on the latent location.

Based on this scaled HDP structure, we can make use of the second
variable of the gamma distribution and draw the class specific
component proportions as

φc
jk λ;πj;ωc

j
iid

� Gamma λπjk; e
�ωc

jk

� ����� ð20Þ

The derivation of (20) follows from the property that if
y � Gammaða;1Þ and is scaled by b40 to produce z¼ by, then
z � Gammaða; b�1Þ. We refer the readers to [6] for a detailed
discussion on this construction. In our case, this additional scaling
factor allows incorporating the discriminative term. During inference,
we have to drawωc

jk in such a way that the posterior φc
jk is primed for

classification.

5.2. Elliptical slice sampling

We cannot use conjugate priors for the transform parameters
ρc
1::1;Λc

1::1 because of the presence of the discriminative term.
Hence there is no closed form solution for posterior inference of
these parameters. In the absence of an analytical update we can
resort to a Metropolis step, but it is necessary to find a proposal
distribution. Complex tuning may also be required.

Slice sampling [7] methods provide an alternate solution for
sampling from a pdf when the pdf is known up to a scale factor.
The main idea is to sample points uniformly from a region under the
true density curve and then use the sample points based on the
horizontal coordinates. Let ϕ be a random variable from which we
wish to draw samples and let f be a function proportional to the

density of ϕ. Let ϕi be the current sample. In slice sampling, we first

draw an auxiliary variable u� U½0; f ðϕiÞ� that defines a horizontal
slice. We then define a bracket (interval) around the current sample

BðϕiÞ and draw the new sample ϕiþ1 � ϕ0AB ϕi
� �

: uo f ϕ0� �n o
.

The challenge in slice sampling is to define the bracket containing
the current value from which the new value will be drawn. This is
especially difficult if ϕ takes values in a high dimensional space, as in
our work. If the density function for ϕ is a product of a likelihood
function and a zero mean Gaussian prior, then Elliptical Slice sampling
[8] provides a better sampling mechanism. Here a full ellipse is
defined passing through the current sample and the brackets are
determined by shrinking an angle variable.

Let L ϕ
� �¼ pð:jϕÞ be a likelihood function and p0 ¼N ðϕ;0;ΣÞ be a

multivariate normal prior with f ϕ
� �

pL ϕ
� �

p0 the density function
from which we wish to draw samples using Elliptical slice sampling.
Similar to slice sampling, an auxiliary variable u� U½0; f ðϕiÞ� is drawn
first. We then draw v � Nð0;ΣÞ that defines an ellipse centered at
the origin. An angle ψ � U½0;2π� determines the bracket and a new
location is computed as ϕ0 ¼ v sin ψþ ϕi cos ψ . If uo f ϕ0� �

, then
ϕ0 is accepted as the new sample ϕiþ1; otherwise ψ is shrunk to
determine a new location.

Since the angles are shrunk exponentially and the states consid-
ered for an update lie within a two dimensional plane, this technique
provides an efficient mechanism for sampling high dimensional
variables. We use Elliptical slice sampling for inferring the transform
parameters ρc

1::1;Λc
1::1 from the density function defined in (17).

6. Posterior inference

The central computation problem is posterior inference for the
parameters. Since it is intractable to compute the exact posterior,
we will resort to Markov Chain Monte Carlo (MCMC) techniques to
draw posterior samples from pðθ j X;YÞ. Recall that we have the
shared parameters θs ¼ fβ; π;μ1::1;Σ1::1g and the class specific
parameters θc ¼ fφc;ρc

1::1;Λc
1::1g with γ;α;μ0;Σ0;ν0; Δ0; λ;Ω0;ϑ0;

σ0 as the hyper parameters. We can apply Gibbs sampling and
sample the shared parameters θs

first and then given θs, we can
draw samples for each class one by one.

6.1. Truncated approximation

For sampling the HDP-HMM parameters, one option would be
to marginalize over the infinite state transition distributions π and
component parameters ðμ;ΣÞ and sequentially sample the hidden
states zt . Unfortunately this technique, referred as direct assign-
ment or collapsed sampler, exhibits slow mixing rates because the
HMM states are temporally coupled.

A better technique is to block sample the hidden state sequence
zt using the standard HMM forward–backward algorithm [2]. In
this uncollapsed sampler the state transition distributions and
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component parameters are explicitly instantiated. In order to take
account of the fact that there is no upper bound on the number of
states and the corresponding parameters, we can employ slice
sampling techniques [23,24] or use truncated approximations [25].
In almost sure truncations, for a given number L the stick breaking
construction is discarded for Lþ1; Lþ2…1 by setting β0

L ¼ 1 in (1).
An alternative technique is to consider a weak limit approximation
to DP and set

GEM γ
� �

9Dirðγ
L
;⋯

γ
L
Þ ð21Þ

here L is an upper bound on the number of components and as
L-1, the marginal distribution of this finite model approaches
the DP. We use this weak limit approximation for its computa-
tional efficiency and consequently in (15) we have

β γ �DirðγL;⋯γ
LÞπjjα;β�Dirðαβ1;…αβLÞφc

j jλ;πj �Dirðλπj1;…λπjLÞ
���

ð22Þ
Note that this is different from the classical parametric HMM

with finite Dirichlet priors. The prior induced by HDP leads to a
subset of L possible states with L being usually set to a large
number. Given this truncated approximation, the standard for-
ward–backward algorithm can be employed to sample the hidden
state sequences.

6.2. Sampling state transitions

The sampler is initialized by drawing the initial value of the
parameters from their respective priors. For a training example xn

whose yn ¼ c, given the state transitions φc
� �L;L

j ¼ 0;k ¼ 1, the
component means Λc

kμk þ ρc
k

� �L
k ¼ 1 and the covariances

Λc
kΣkΛcT

k

n oL

k ¼ 1
, the hidden state sequence is sampled from

p znt ¼ k
� �

p φc
znt � 1k

mtþ1;t kð ÞN ðxnt ; Λc
kμk þρc

k; Λ
c
kΣkΛ

cT

k Þ ð23Þ

here mt;t�1 kð Þ is the HMM backward message that is passed from
znt to znt�1 and is determined recursively as

mt;t�1 kð Þ ¼ ∑
L

j ¼ 1
φc

kj mtþ1;t jð ÞN ðxnt ;Λc
jμj þρc

j ; Λ
c
jΣ jΛ

cT

j Þ ð24Þ

Let ncAZLþ1�L be a matrix of counts computed from the
sampled hidden state sequences with nc

jk being the number of
transitions from states j to k for class c. We use the notation n:

jk to
denote the number of transitions from j to k for all the classes and
n:
:k to denote the number of transitions to k. The scaling factor ωc

j
in (19) is used as the discriminative term and we set it as

ωc
jk ¼

1
ε0

nc
jk� n0

jkþD

∑k0n
c
jk0
� n0

jk0
þD

" #
ð25Þ

Intuitively, the weight for a state k will be higher if there are
fewer transitions to this state from classes other than c. Here ε0 is
a prior that controls the importance of the scaling factor and D is a
sufficiently large constant to ensure that the scaling factor is
positive. We now proceed to sample the posteriors as

β j γ;m �Dir γ
Lþm :1;…γ

Lþm :L
� �

πj

j α; β;n � Dir αβ1þnj1;…αβLþnjL
� �

φc0
jk

j λ;πj;ωc
j ;n

c � Gamma λπjkþnc
jk; e

�ωc
jk

� �
φc

jk ¼
φc0

jk

∑L
k0 ¼ 1φ

c0
jk0

ð26Þ

Here m; n are auxiliary count matrices that are sampled from the
class specific matrices nc. In the Chinese restaurant metaphor,
these matrices correspond to the number of tables across the
franchise serving a dish and the number of tables across sections
in a restaurant serving a dish. These auxiliary matrices and the

hyper parameters γ;α; λ are sampled in the standard way as
outlined in [4].

6.3. Sampling component parameters

We sample the shared parameters first and then the class
specific parameters. Further we proceed by sampling posteriors
one component at a time. Let the set of observations belong-
ing to class c and assigned to hidden state k be X c

k ¼
fxnt AX : znt ¼ k 4 yn ¼ cg with Xk ¼ fX c

kgCc ¼ 1. For the mean and
covariance parameters that are shared across the classes, we have
conjugate priors and the posteriors can be computed using the
standard closed form updates as

Σk j ν0;Δ0;μk;Xk � IWðvk; vkΔkÞ

μk j μ0;Σ0Σk;Xk � N ðμk;Σ kÞ

where

vk ¼ ν0þ Xk

�� ��
νkΔk ¼ ν0Δ0þ ∑

xn A Xk

ðxn � μkÞðxn � μkÞT

Σ k ¼ ðΣ0
�1þ Xk

�� ��Σk
�1Þ�1

μk ¼ Σ k Σ0
�1μ0þ Σk ∑

xn A Xk

xn

 !
ð27Þ

For the transform parameters, we have to sample posterior
from (17) after defining the form of pðθ\c j θc

;X;θsÞ. There are
several choices for the discriminative term and one option is to set
it based on distance between the distributions of component
parameters. If the distribution distances are large, the parameters
are well separated and this will result in a larger margin for the
classifier decision boundary. For the state k of class c whose
transform parameters need to be sampled, we set

pðθ\cjθc
;θsÞ ¼ ∏

c0 A \c
∏
L

k0 ¼ 1
exp �ξ0 max

�

� 0; ζ0�D N μc
k;Σ

c
k

� �
jjN μc0

k0 ;Σ
c0
k0

� �� �� �o

where μc
k ¼Λc

kμk þρc
k Σ

c
k ¼Λc

kΣkΛ
cT
k ð28Þ

Here DðPjjQ Þ measures the similarity between two distributions P
and Q , ζ0 is a prior that specifies the minimum separation distance
and ξ0 is a constant that controls the overall importance of the
discriminative term. Since we have normal distributions in our
case, we can use Hellinger or Bhattacharya distance as a similarity
measure. Intuitively, we compare the distribution of a component
k from class c that we wish to sample to all the competing classes
and their corresponding components. If the distance is lesser than
a pre-specified minimum separation, then the pdf value will be
lower and perhaps the sample is inappropriate. The discriminative
term specified in (28) is computationally simple since it does not
involve the training examples and instead uses the sufficient
statistics.

Another option for the discriminative term is to use the like-
lihood of observations. The idea here is to ensure that the Gaussian
pdf value of an observation from class c assigned to a component k
is larger than the pdf value of competing classes and their
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corresponding components.

pðθ\c j θc
;θs

;X; YÞ ¼

∏
xnt A X

exp �ξ0 max 0; ζ0� N xnt ; μ
yn
znt

;Σ
yn
znt

� �
� max

c0 : yn ac

k0 ¼ 1 : L

N xnt ; μ
c0
k0 ;Σ

c0
k0

� �
0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

8>>>><
>>>>:

9>>>>=
>>>>;

where
μc
k ¼Λc

kμk þρc
k

Σ
c
k ¼Λc

kΣkΛ
cT
k

ð29Þ
If we consider our model as a single component Gaussian

instead of a HMM with Gaussian mixtures, then (29) encourages
that the pdf value for the correct label must be greater than the
pdf value of competing classes. The above discsriminative term can
be treated as an approximation to the empirical error rate and ζ0
offers the flexibility for a soft margin.

By plugging in (28) or (29) into (17), we get the posterior
distribution for the transform parameters. We can sample
Λc

kj ρc
k;μk;Σk and then ρc

k j Λ
c
k;μk ;Σk. Since the priors for both

these variables are Gaussian distribution, we can use Elliptical slice
sampling as specified in Section 5.2 for getting the posterior
updates. Note that if we have a non-zero mean as Gaussian prior,
we have to perform a shift to have zero mean. The inference
algorithm is provided in Fig. 4.

7. Experiments

We conduct our experiments on the MSR Action3D [26] and
UTKinect-Action [12] datasets. The datasets contain various
actions performed by different subjects. However each action
involves only one individual and there is no human-object inter-
action. All these datasets use an infrared camera to capture the

depth image sequences. The datasets also contain annotated 3D
joint positions of the subjects. These joint positions were esti-
mated from the depth image sequence as explained in [1] and may
have errors when there are occlusions. We work with these noisy
joint positions (Fig. 5).

7.1. Joint position features

Each depth image contains fPig20i ¼ 1 A ðx; y; zÞ joint positions. We
perform experiments on two types of features—one based on a
subset of pairwise relative joint positions within a frame and
another based on histogram of gradients that takes into account all
combinations of joint positions and includes adjacent frames. For
the first feature type, we determine 19 joint position pairs ðPi; Pj).
The pairs are defined based on a pre-defined skeleton hierarchy as
outlined in Fig. 6. The relative positions Pi� Pj are used as features.
Hence xnt A ℝ57. By using relative positions as features we ensure
invariance to uniform translation of the body.

For the second feature type, we compute the relative position
of a joint to all the other joints in the current frame and adjacent
frames. Further, we use three 2D values instead of a single 3D
value, representing the projection of a relative position on the
orthogonal xy; yz; xzð Þ Cartesian planes i.e. for a joint i the features
are

f i x; yð Þ ¼ fðPx
i �Px

j ; P
y
i �Py

j Þ 8 j APðt�1Þ; PðtÞ; Pðtþ1Þ 4 ia jg
f i y; zð Þ ¼ fðPy

i �Py
j ; P

z
i �Pz

j Þ 8 j APðt�1Þ; PðtÞ; Pðtþ1Þ 4 ia jg
f i x; zð Þ ¼ fðPx

i �Px
j ; P

z
i �Pz

j Þ 8 j APðt�1Þ; PðtÞ; Pðtþ1Þ 4 ia jg
ð30Þ

where Px
i ðtÞ is the x co-ordinate of the ith joint position at time t.

We then assign the gradients f iðx; yÞ to a histogram of 8 bins based
on the direction with the bin values being the gradient magnitude.
This technique is very similar to the Histogram of Oriented

Fig. 5. Examples of actions from the MSR-Action3D dataset [26] left: depth images right: the corresponding joint positions.

Fig. 4. Posterior inference algorithm.

N. Raman, S.J. Maybank / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9

Please cite this article as: N. Raman, S.J. Maybank, Action classification using a discriminative multilevel HDP-HMM, Neurocomputing
(2015), http://dx.doi.org/10.1016/j.neucom.2014.12.009i

http://dx.doi.org/10.1016/j.neucom.2014.12.009
http://dx.doi.org/10.1016/j.neucom.2014.12.009
http://dx.doi.org/10.1016/j.neucom.2014.12.009


Gradients (HOG) [28]. Repeating the step for f i y; zð Þ and f i x; zð Þ we
now have 24 bins for each joint. Concatenating the bins for all the
joints, we have a descriptor of length 20�24 for a frame and thus
xnt A ℝ480. Finally we apply Principle Component Analysis (PCA)
and use a subset of the Eigen vectors as features (Fig. 7).

7.2. UTKinect-Action dataset

We show results from the UTKinect-Action [12] dataset for
human actions walk, sit-down, stand-up, pick-up, carry, throw, pull,
wave and clap-hands. All these actions were performed in indoor
settings with each action collected from 10 subjects and repeated
twice. For each action, 60% of examples are used for training and
the rest for testing. We use features based on the pairwise relative
joint positions as shown in Fig. 6 for this dataset.

Parametric HMM: We first train a classifier, independently for
each class, based on classical HMM. The standard Baum–Welch
Expectation Maximization algorithm [2] is used for learning the
HMM parameters. Since the number of states must be specified
apriori for parametric HMMs, different numbers of states for each
class are tried during training. In the absence of priors, an
additional clustering step with K-Means is performed to estimate
the initial values of transition matrix and the mean and covariance
parameters. During testing, we evaluate a test example against all

the classes and select the class with the largest (log) likelihood as
the predicted class. Our observed best classification accuracy was
58.2%. The summary of classification results for HMM is presented
in Table 2.

HDP-HMM: We also train a HDP-HMM classifier, independently
for each class as before. We specify an upper bound on the number
of states (L¼ 20) as explained in Section 6.1. The number of states
is automatically learnt from the data for HDP-HMM unlike the
parametric HMM. In Fig. 8 the total number of states for the
different action classes in a sample collected during training is
shown. In an equivalent parametric HMM, we will have to run a
tedious and adhoc model selection step individually for each
class since the optimum cardinality of states vary between classes.

Table 2
Classical parametric HMM classification results.

Number of
states

Accuracy
(%)

Precision (%) (Average
across classes)

Recall (%) (Average
across classes)

3 49.3 52.3 50.0
5 48.1 60.3 48.7
7 53.1 64.4 53.7
10 58.2 65.6 58.7
15 55.6 70.8 56.2

Fig. 7. Comparison of the HOG based descriptor—for two similar poses on the left, the corresponding descriptor values appear overlapped when compared with the dis-
similar poses on the right.
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Fig. 6. Skeleton Hierarchy used for defining joint position pairs [27]. The arrows indicate the parent–child joint pairs with Hip Center as the root joint.
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This advantange of automatic state inference with HDP-HMM is
reflected as an improved classification accuracy of 76.1%. The
results are shown in Table 3.

Multi-level HDP-HMM with generative learning: We evaluate our
results on the two-level HDP-HMM but exclude discriminative
criterions. In this method, examples from all the classes are used
during parameter estimation. Thus it allows sharing of parameters
across classes and enables semi-supervised learning. In order to
exclude the discriminative conditions for the state transitions, we
simply set the scaling factor ωc

j to zero. This is equivalent to
sampling φc

jk (probability of transitioning to state k given we are in
state j for a class c) as per Eq. (10) instead of (26). Similarly for the
class specific transformation parameters, we set pðθ\cÞ to be a
constant in Eq. (17) thereby excluding the discriminative condi-
tions. The classification results are shown in Table 4 and the
accuracy is 77.4%. These results confirm that sharing of parameters
across classes doesn’t make the classification any worse. We

interpret the lack of a big increase in accuracy when compared
with HDP-HMM as an indication that there is a need for some
additional discriminative condition. In addition, the smaller num-
ber of training examples in this dataset could have been a factor.
Nevertheless, this technique provides a viable way to learn
parameters in situations where we can incorporate unlabelled
examples.

Multi-level HDP-HMM with discriminative learning: Finally, we
evaluate our results on the two-level HDP-HMM including the
discriminative conditions. The confusion matrix is shown in Fig. 9.
It is evident from the confusion matrix that the recognition rate is
good for most actions. However, there are a few mis-classifications
for actions that involve very similar pose sequences. For example,
some sit-down actions are classified as stand-up, pick-up actions as
sit-down and throw actions as clap-hands. We report an overall
classification accuracy of 83.1%.

7.3. MSR-Action3D dataset

We also conduct our experiments on the MSR Action3D [26]
dataset. The dataset has 20 actions high-arm-wave, horizontal-arm-
wave, hammer, hand-catch, forward-punch, high-throw, draw-x,
draw-tick, draw-circle, hand-clap, two-hand-wave, side-boxing,
bend, forward-kick, side-kick, jogging, tennis-swing, tennis-serve,
golf-swing, pickup-throw. The actions were performed by 10 sub-
jects and each one was repeated two or three times. Since some of
the actions overlap, the actions are grouped into three sets as in
[12,13] for performing classification. As before, we use 60% of
examples for training and the rest for testing. We use features
based on HOG descriptor as shown in (30) for this dataset. Using
the multi-level HDP-HMM with discriminative learning, we report
an overall classification accuracy of 81.2%, 78.1% and 90.6% for the
three sets, respectively. The confusion matrix is shown in Fig. 10.

In this dataset as well, the classifier has incorrectly labelled few
actions. These mis-classified actions involve very similar pose
sequences. In particular, some bend actions are classified as
pickup-throw, hand-clap actions as tennis-serve and hand-catch
actions as arm-wave. The draw-x, draw-tick and draw-circle actions
are challenging to classify and has less labelling accuracy com-
pared to other actions.

Summary: A comparison of the classification results can be seen
in Table 5. It is evident that the HDP-HMM improves classification
accuracy significantly when compared with a parametric HMM.
The multi-level HDP-HMM allows sharing the parameters
across classes and it doesn’t make the classification any worse.

Fig. 8. The number of hidden states being active for different action classes in a
sample collected during training. An active state is one in which at least one
observation is assigned to this state.

Table 3
HDP-HMM classification results.

Action Precision (%) Recall (%)

walk 100 87.5
sit-down 50 50
stand-up 66.6 100
pick-up 100 50
carry 77.7 100
throw 100 50
pull 100 100
wave 85.7 75
clap-hands 50 75

Table 4
Two-level HDP-HMM with generative learning classification results.

Action Precision (%) Recall (%)

walk 100 50
sit-down 63.6 87.5
stand-up 88.8 100
pick-up 80 50
carry 70 100
throw 100 50
pull 100 100
wave 75 75
clap-hands 58.3 87.5

Fig. 9. Confusion matrix for classification results on UTKinect-Action dataset.
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The introduction of discriminative conditions on the multi-level
HDP-HMM has improved the classification results. Our classifier
accuracy in the MSR-Action3D dataset is better than the other
approaches in [26,12,29]. However, our accuracy is less when
compared with [12,30,31] for the UT-Kinect dataset.

Discussion: In our training, we completely exclude 40% of the
subjects and use the instances of these subjects as test examples.
This makes classification more difficult than in the alternative
arrangement, in which training samples for all the subjects are
included and only specific samples for each subject are excluded.

Fig. 10. Confusion matrix for classification results on MSR Action3D dataset— top-left: Actions horizontal-arm-wave, hammer, forward-punch, high-throw, hand-clap, bend,
tennis-serve, pickup-throw, top-right: actions high-arm-wave, hand-catch, draw-x, draw-tick, draw-circle, two-hand-wave, forward-kick, side-boxing bottom: Actions high-
throw, forward-kick, side-kick, jogging, tennis-swing, tennis-serve, golf-swing, pickup-throw.

Table 5
Summary of classification results.

Method UTKinect-Action (Accuracy %)

Parametric HMM 58.2
HDP-HMM 76.1
Multi-level HDP-HMM (Generative learning) 77.4
Multi-level HDP-HMM (Discriminative learning) 83.1
Xia et al. [12] 90.9
Devanne et al. [30] 91.5
Slama et al. [31] 95.2

Method MSR-Action3D (Accuracy %)

Parametric HMM 48.7
HDP-HMM 75.3
Multi-level HDP-HMM (Generative learning) 76.8
Multi-level HDP-HMM (Discriminative learning) 83.3
Li et al. [26] 74.7
Xia et al. [12] 78.9
Yang et al. [29] 82.3
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In [12,30,31] a Leave-One-Out-Cross-Validation method is used. In
a particular iteration, they use only one observation sequence for
testing and the rest of the observation sequences are used for
training. This procedure is repeated to include all the observation
sequences for testing and finally the average accuracy across
iterations is reported. In our experiments, we completely separate
the training and test examples and use a more challenging cross
subject evaluation. This tests the variations of actions performed
by different subjects in a more realistic manner. Additionally, our
features (relative joint position pairs) are much simpler and
generic when compared with the features used in [12]. Inspite of
the limited number of training examples, our experiments prove
the utility of using a multi-level HDP-HMM with discriminative
learning for classification purposes.

8. Conclusion

We have proposed an action classification method based on a
multi-level HDP-HMM that shares training examples across action
classes. The non-parametric nature of HDP-HMM allows an unbounded
number of states. The normalized gamma process representation of the
HDPs last level and the usage of elliptical slice sampling has allowed
the inference of the posterior parameters in a discriminative way. Our
experiments demonstrate the utility of this approach. We intend to
broaden the discriminative criterions and apply our technique to
classify activities involving humans and objects.

References

[1] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman,
A. Blake. Real-time human pose recognition in parts from single depth images,
in:. CVPR, 2011.

[2] L. Rabiner, B.H. Juang, An introduction to hidden Markov models., IEEE ASSP
Mag., 3 (1986) 4–16.

[3] Tien-ho Lin, Naftali Kaminski, Bar-Joseph Ziv, Alignment and classification of
time series gene expression in clinical studies., Bioinformatics 24 (13) (2008)
i147–i155.

[4] Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, M. Blei David, Hierarchical
dirichlet processes., J. Am. Stat. Assoc. 101 (2006) 476.

[5] A. Lasserre, Julia., Christopher M. Bishop, Thomas P. Minka. Principled hybrids of
generative and discriminative models Comput. Vision Pattern Recognit. ( 2006).

[6] J. Paisley, C. Wang, D. Blei, The discrete infinite logistic normal distribution.,
Bayesian Anal. (2012).

[7] Radford M. Neal, Slice sampling., Ann. Stat. (2003) 705–741.
[8] Iain Murray, Ryan Prescott Adams, JC MacKay. David, Elliptical Slice Sampling.,

arXiv preprint arXiv 1001 (2009) 0175.
[9] J.K. Aggarwal, S. Michael Ryoo. Human activity analysis: a review ACM

Comput. Surv. (CSUR) 43.3: 16 (2011).
[10] Han, Jungong, Ling Shao, Dong Xu, Jamie Shotton. Enhanced computer vision

with microsoft kinect sensor: a review IEEE Trans. Cybern. (2013).
[11] Wang, Jiang, Zicheng Liu, Ying Wu, Junsong Yuan. Mining actionlet ensemble

for action recognition with depth cameras Comput. Vision Pattern Recognit.
(CVPR), (2012).

[12] L. Xia, C.C. Chen, J.K. Aggarwal, View invariant human action recognition using
histograms of 3d joints, in: IEEE Computer Vision and Pattern Recognition
Workshops (CVPRW), 2012.

[13] M.A. Gowayyed, M. Torki, E.M. Hussein, M. El-Saban, Histogram of oriented
displacements (HOD): describing trajectories of human joints for action
recognition, in: Proceedings of the Twenty-Third international joint confer-
ence on Artificial Intelligence. AAAI Press (2013).

[14] E.B. Sudderth, A. Torralba, W.T. Freeman, A. S. Willsky, Describing visual scenes
using transformed objects and parts. Int. J. Comput. Vision (2008).

[15] Hughes, C. Michael, B. Erik Sudderth. Nonparametric Discovery of Activity
Patterns from Video Collections Computer Vision and Pattern Recognition
Workshops, 2012.

[16] Kooij. F.P. Julian, Gwenn Englebienne, M. Dariu, Gavrila. A Non-parametric
Hierarchical Model to Discover Behavior Dynamics from Tracks Computer
Vision–ECCV, 2012.

[17] Bargi, Ava, R.Y.D. Xu, Massimo Piccardi. An online HDP-HMM for joint action
segmentation and classification in motion capture data, in: CVPRW, 2012.

[18] D. Yu, L. Deng, Large-margin discriminative training of hidden Markov models
for speech recognition, in: International Conference on Semantic Computing,
IEEE, 2007.

[19] Hui. Jiang, Discriminative training of HMMs for automatic speech recognition:
a survey., Comput. Speech Lang. 24 (4) (2010) 589–608.

[20] Xiaodong He, Li Deng, Wu Chou, Discriminative Learning In Sequential Pattern
Recognition, Signal Processing Magazine, IEEE (2008) 14–36.

[21] J. Zhu, N. Chen, H. Perkins, B. Zhang, Gibbs max-margin topic models with fast
sampling algorithms, in: Proceedings of the 30th International Conference on
Machine Learning (ICML), 2013.

[22] Fox, B. Emilys, B. Erik Sudderth, I. Michael Jordan, and S. Alan Willsky, An HDP-
HMM for systems with state persistence, in: Proceedings of the 25th
international conference on Machine learning. ACM, 2008.

[23] J. Van Gael, Y. Saatci, Y.W. Teh, Z. Ghahramani, Beam sampling for the infinite
hidden Markov model, in:25th International Conference on Machine Learning,
pp. 1088-1095. ACM, 2008.

[24] M. Kalli, J.E. Griffin, S.G. Walker, Slice sampling mixture models., Stat. Comput.
21 (1) (2011) 93–105.

[25] H. Ishwaran, Zarepour, Markov chain Monte Carlo in approximate Dirichlet
and beta two-parameter process hierarchical models., Biometrika 87 (2)
(2000) (s371-39).

[26] Li, Wanqing, Zhengyou Zhang, Zicheng Liu. Action Recognition Based on a Bag
of 3d Points Computer Vision and Pattern Recognition Workshops (CVPRW),
2010.

[27] Microsoft Developer Network, Joint Orientation, Kinect for Windows
Retrieved from 〈http://msdn.microsoft.com/en-us/library/hh973073.aspx〉.

[28] N. Dalal, B. Triggs. Histograms of oriented gradients for human detection, in:
CVPR, 2005.

[29] X. Yang, Y. Tian, Eigenjoints-based Action Recognition Using Naive-bayes-
nearest-neighbor., Computer Vision and Pattern Recognition Workshops
(CVPRW) (2012).

[30] M. Devanne, H. Wannous, S. Berretti, P. Pala, M. Daoudi, A Del Bimbo, Space-
time pose representation for 3d human action recognition, in: ICIAP (2013).

[31] R. Slama, H. Wannous, M. Daoudi, Grassmannian representation of motion
depth for 3D human gesture and action recognition., in: ICPR (2014).

[32] D.H. Hu, X.X. Zhang, J. Yin, V.W. Zheng, Q. Yang, Abnormal activity recognition
based on HDP-HMM models, in: IJCAI (2009).

[33] E. Di Lello, T. De Laet, H. Bruyninckx, Hierarchical dirichlet process hidden
markov models for abnormality detection in robotic assembly, in: NIPS (2012).

[34] Y. Kong, D. Kit, Y. Fu, A discriminative model with multiple temporal scales for
action prediction, in: ECCV (2014).

Natraj Raman is a Ph.D. student in Computer Vision at Birkbeck, University of
London. He received a Bachelors degree in Computer Science and Engineering from
Bharathiyar University and a Masters degree in Intelligent Information Systems
from University of London. His research focuses on recognizing activities that occur
in video sequences. His research interests include image processing, swarm
optimization and machine learning.

Stephen J. Maybank received the B.A. degree in mathe-
matics from King’s College Cambridge in 1976 and the
Ph.D. degree in computer science from Birkbeck Col-
lege, University of London in 1988. He was a research
scientist at GEC from 1980 to 1995, first at MCCS,
Frimley, and then, from 1989, at the GEC Marconi Hirst
Research Centre in London. In 1995, he became a
lecturer in the Department of Computer Science at
the University of Reading and, in 2004, he became a
professor in the Department of Computer Science and
Information Systems at Birkbeck College, University of
London. His research interests include camera calibra-
tion, visual surveillance, tracking, filtering, applications

of projective geometry to computer vision and applications of probability, statistics
and information theory to computer vision. He is the author of more than 120
scientific publications and one book. He is a Fellow of the IEEE and a Fellow of the
Royal Statistical Society. He received the Koenderink Prize in 2008.

N. Raman, S.J. Maybank / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 13

Please cite this article as: N. Raman, S.J. Maybank, Action classification using a discriminative multilevel HDP-HMM, Neurocomputing
(2015), http://dx.doi.org/10.1016/j.neucom.2014.12.009i

http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref1
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref1
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref2
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref2
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref2
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref3
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref3
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref4
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref4
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref5
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref6
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref6
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref7
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref7
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref7
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref8
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref8
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref9
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref9
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref10
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref10
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref11
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref11
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref11
http://msdn.microsoft.com/en-us/library/hh973073.aspx
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref12
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref12
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref12
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref13
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref13
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref14
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref14
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref15
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref15
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref16
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref16
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref17
http://refhub.elsevier.com/S0925-2312(14)01673-7/sbref17
http://dx.doi.org/10.1016/j.neucom.2014.12.009
http://dx.doi.org/10.1016/j.neucom.2014.12.009
http://dx.doi.org/10.1016/j.neucom.2014.12.009

	Action classification using a discriminative multilevel HDP-HMM
	Introduction
	Related research
	Background
	Bayesian HMM
	Stick breaking construction of DP
	Grouped data and HDP
	Non parametric HMM

	Model
	Two level HDP
	Transformed HDP parameters
	Chinese restaurant process metaphor

	Discriminative learning
	Scaled HDP and normalized gamma process
	Elliptical slice sampling

	Posterior inference
	Truncated approximation
	Sampling state transitions
	Sampling component parameters

	Experiments
	Joint position features
	UTKinect-Action dataset
	MSR-Action3D dataset

	Conclusion
	References




